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Abstract

This paper presents a short description of
work recently done at University of Tartu
to construct a word–based speech recogni-
tion system. Simple bigram and trigram
language models with cross–word triphone
acoustic models are used by a one–pass best
hypothesis recognizer to perform decoding
of test data. The lowest word error rate of
37.5% reported in this paper is a common
figure for word–based speech recognition of
languages like Estonian.

1 Introduction

Estonian belongs to a family of inflectional and ag-
glutinative languages which received a particular at-
tention in recent years (Maučec et al., 2003; Kurimo
et al., 2006). A single base word–form by means of
inflections and compounding may have a huge num-
ber of derivative words. This greatly complicates
the problem of building a speech recognition sys-
tem with comparable word error rate (WER) perfor-
mance to English systems. A common approach is
to employ some type of subword systems, the good-
ness of which can be compared to each other and/or
a word–based system (Hirsimäki et al., 2005). This
paper is devoted to building of such word–based sys-
tem and reports on results we obtained.

The first comprehensive description of work done
on Estonian speech recognition appeared only re-
cently (Alumäe, 2006). A huge number of experi-
ments is conducted on two databases: Estonian part
of Babel multi–language database (Eek and Meister,

1998) and Estonian SpeechDat–like database (Meis-
ter et al., 2003). The language modeling is per-
formed both on a word and subword level. Our set
of experiments is much more modest as compared
to that work. However, we do not replicate the work
already done but provide a completely independent
set of results on Estonian part of Babel database.

The rest of the paper is organized as follows: in
Section 2 language modeling is described. Sec-
tion 3 is devoted to acoustic modeling. Section 4
describes experiments we performed and Section 5
makes conclusions drawn from this study.

2 Language Modeling

Experimental work with language modeling is per-
formed on the Mixed Corpus of Estonian (MCE) – a
set of written texts collected and maintained by Uni-
versity of Tartu1 The total size of MCE is approxi-
mately 77M words excluding such special tags like
sentence beginning (<s>), sentence ending (</s>)
and number (<NUMBER>) symbols.2

A number of competitive bigram and trigram
language models (LMs) is created using the HTK
toolkit3 The vocabulary of LMs is fixed to 65,000
most frequent words. All the diversity of LMs is
obtained by application of different cut–off values
to the number of bigrams and trigrams left in the
model. Thecut–off valuespecifies the least number
of times any n–gram should have been seen in the

1http://www.cl.ut.ee/
2All numbers in this study are mapped to a common tag

<NUMBER> since there is no known to us application capable
of expanding them into verbal representations.

3http://htk.eng.cam.ac.uk/
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corpus to be included in the model. Standard Good–
Turing discounting is applied to refine parameters of
LMs. The discounting factork is kept greater from
the cut–off value by seven for both bigrams and tri-
grams. Table 1 provides information about cut–off
values for bigrams and trigrams, number of n–grams
and size (for ARPA–compatible textual representa-
tion) of corresponding trigram LM. The size of tri-

Cut-off Bigrams Trigrams Size (MB)
0 11,676,757 34,166,450 –
1 3,855,881 5,760,565 111.7

10 635,555 507,714 14.3
100 66,440 38,885 2.4

Table 1: Characteristics of trigram LMs

gram LM with cut–off values of 0 significantly ex-
ceeds the amount of available computer memory so
it is not used in further experiments.

3 Acoustic Modeling

3.1 Babel Multi–Language Speech Database

Experimental work with acoustic modeling is per-
formed on Estonian part of Babel multi–language
speech database (Eek and Meister, 1998). The
database consists of three subsets:very few, few
and many talker sets. The recordings are made in
a clean recording environment from the set of 40
text passages, 2 sets of numbers and 4 sets of sen-
tences with multiple occurrence of acoustically con-
fusable words (e.g.,Lina and liina, türi and tüüri).
The recorded speech is sampled at 20,000 Hz and
digitized using 16-bit integers.

The training part in this study is composed from
the very few and many talker sets. The few talker set
is used for development and testing. Basic statistics
for training, development and testing parts is sum-
marized in Table 2.

Train Dev Test
Passages 163 40 40

Sentence groups 67 0 8
Number groups 64 0 8

Hours 7.4 0.3 0.9

Table 2: Statistics for training, development and
testing parts of Babel Speech Database

All audio data in this study is preprocessed using
Mel–Frequency Cepstral Coefficients (MFCC) fea-
ture extraction scheme with default values of con-
figurable parameters (Young et al., 2006).

3.2 Unit Selection

The first step in acoustic modeling is to decide upon
basic modeling units. There are many options to
choose from: words, syllables, phonemes. The large
vocabulary speech recognition is best done with
phoneme units. There are two possible phoneme
sets: orthographic and phonetic set. Experiments
conducted on two different Estonian speech cor-
pora revealed no preference in WER figures between
these two representations (Alumäe, 2006). The or-
thographic representation used in this study is based
upon the letters of Estonian alphabet with some mi-
nor modifications to the loaned letters such asc, q,
x, etc. These letters are substituted with a sequence
of common letters following the generic rules of Es-
tonian pronunciation.

There are 32 letters in Estonian alphabet and 27
of them are considered to be common letters. The
remaining 5 letters are substituted with one or more
letters from the first set. In addition, two models
are created for representingshort pause(usually be-
tween two words) andsilence(usually between two
phrases or sentences) events. Thus the monophone
set consists of 29 models:

a, b, d, e, f, g, h, i, j, k,
l, m, n, o, p, r, s, sh, z, zh,
t, u, v, io, ae, oe, ue, sp, sil

wheresh corresponds tǒs letter,zh to ž, io to õ,
ae to ä, oe to ö andue to ü.

3.3 Acoustic Models

Acoustic model (AM) training follows the generic
training procedure described in (Young et al., 2006):
a single 3–state left–to–right hidden Markov model
(HMM) is constructed for each monophone except
for short–pause (sp) model which is a single state
HMM tied to the central state of silence (sil)
model; once the monophone models are trained, the
next stage of training procedure is to create a set
of cross–word triphone models the parameters of
which are tied using a phonetic decision–tree state
tying procedure implemented in HTK; the number
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of mixtures is gradually increased until each model
in the final set is represented at each state by the
weighted sum of eight Gaussian probability density
functions (pdfs).

4 Experiments

A large vocabulary speech recognizer implemented
in the HTK toolkit (HDecode) is used to transcribe
test sentences. There are many configurable param-
eters to alter the decoding process in some direction
(speed, depth, accuracy, etc). For some of them the
default values are used, for others, values giving the
lowest WER are estimated on the development set.

Fig. 1 gives an example of influence imposed
by the value ofword insertion penaltyon resulting
WER figures. The word insertion penalty is a fixed
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Figure 1: WER at different values of word insertion
penalty

value added to each token when it transits from the
end of one word to the beginning of another. By
penalizing inter–word tokens we can force the ap-
pearance of new words only when their probability
becomes sufficiently high.

Fig. 2 shows the performance of recognizer at dif-
ferent widths of decoding beam. Themain beam
width restricts the growth of recognition network
and token propagation only to those HMM models
the likelihoods of which fall no more than a beam
width from the most likely model. Narrow beam
width results in a smaller number of tokens consid-
ered at any given time, thus increasing the decoding
speed. The time spent for recognition of test utter-
ance is usually given as a portion of utterance real
length called real–time ratio (RT). In Fig. 2 the de-
coding time varies between 0.2xRT and 7xRT. (Es-

timation of parameters and evaluation of test data is
performed at the main beam width value of 200 with
2xRT speed of decoding unless otherwise stated.)
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Figure 2: WER at different values of main beam
width

Fig. 3 shows WER figures on the development set
when LM and AM likelihoods are scaled. Giving a
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Figure 3: Effect of scaling down AM and LM like-
lihoods (results for up to 10xRT performance are
shown)

preference to AM likelihoods by scaling down LM
likelihoods leads to increased error rates; decreasing
AM likelihoods, on contrary, enhances the accuracy
of recognition with degradation in RT–performance.

Fig. 4 shows the improvement in recognition ac-
curacy obtained by incrementing number of pdfs in
the HMM state output distribution. The major drop
in WER occurs when the number of pdfs is increased
from three to five (13.4% absolute or25.0% rela-
tive). Additional pdfs, however, lead to negligible
reduction in WERs (1.8% absolute or4.5% relative).

Final results of evaluation are given in Table 3.
The first column describes the LM used in recog-
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Figure 4: WER at different number of pdfs in HMM
state distribution

LM Del. Subs. Ins. WER
bg100 420 1494 89 38.9
bg10 417 1472 86 38.3
bg1 417 1447 84 37.8
bg0 416 1438 81 37.5

LM Del. Subs. Ins. WER
tg100 420 1494 89 38.9
tg10 417 1471 86 38.3
tg1 417 1446 84 37.8

Table 3: Number of errors and corresponding WER
figures for bigram and trigram LMs

nition: bg stands for bigram,tg for trigram and
appended with the cut–off value for any order of
n–grams. Next three columns specify the amount
of different errors made by recognizer. As can be
noted,75% of all errors are substitution errors which
can be originated from the lack of proper n-grams or
weakly representative AMs, or both. LM’s hit–ratios
on the testing set confirm at least the first assump-
tion: average hit–ratios for bigrams and trigrams are
50% and11%. Since the number of trigram hits is
very low, in major cases bigram instances are used
instead. This also explains a comparable WER fig-
ures of bigram and trigram LMs. The lowest WER
of 37.5% is obtained by the most comprehensive LM
– bigram LM with more than 11M of distinct bi-
grams (113MB).

5 Conclusions

In this paper we described briefly the initial set of
experiments with Estonian speech recognition using

Estonian part of Babel speech database. The lowest
WER reported in this paper (37.5%) can be com-
pared to recently reported value of36.2% (Alumäe,
2006) if we account for reduced amount of train-
ing data available to us. The recognition of test
data is performed using a single–pass best hypoth-
esis strategy which generally loses considerably to
multi–pass N–best list strategies with a lattice stage
rescored using more comprehensive LMs. However,
this is an example of things needed to be done in the
future using baseline systems built and described in
this paper.
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simäki, J. Pylkkönen, T. Alumäe, and M. Saraclar.
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