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Abstract 

We present the first extension of the Data-
Oriented Parsing paradigm (Bod 1998a) to 
Natural Language Generation: Unmediated 
Data-Oriented Generation, or UDOG. It is 
“unmediated” because instead of using a 
logic-like amodal representation of mean-
ing as a basis for semantics (Van den Berg 
et al 1994), it exploits direct connections 
between exemplars in linguistic and non-
linguistic (in this case visual) modalities as 
the basis for meaning.  

1 Introduction 

Since Data-Oriented Parsing (DOP) was first pro-
posed (Scha 1990) and implemented (Bod 1992) as 
a method for statistical parsing by directly exploit-
ing the statistical regularities present in a training 
corpus without requiring any abstract representa-
tions to be generated, no equivalent system for 
language generation has been developed. This pa-
per presents the first Data-Oriented Generation 
algorithm: Unmediated Data-Oriented Generation, 
or UDOG. Whereas previous attempts to represent 
meaning in DOP models have relied on node-label 
annotations in a formal language, such as First Or-
der Predicate Logic (Bod et al 1996), or the OVIS 
Update Language (Veldhuijzen van Zanten 1996; 
Bod 1998b) to provide amodal representations of 
meaning, UDOG exploits direct connections be-
tween exemplars in linguistic and non-linguistic (in 

this case visual) modalities as the basis for mean-
ing. 

The model presented here offers a very simple 
first pass at UDOG, using a toy corpus and an ex-
tremely simple set of visual stimuli consisting of 
one-dimensional arrangements of lines and dots. 
Section 2 gives background information on the 
DOP paradigm, and Section 3 describes the task 
the present implementation of UDOG was de-
signed to perform. The algorithm itself is described 
in Section 4, and the evaluation criteria are de-
scribed and evaluation results given in Section 5. 
In Section 6, some cognitive implications of the 
results are considered and the overall significance 
of the model is assessed. 

2 Background 

2.1 Data-Oriented Parsing 

The simplest manifestation of DOP is DOP1, as 
described in Bod (1998a pp 12-23 and 40-50), 
though more sophisticated versions exist. The 
parser uses a large parsed corpus divided into a 
training corpus and a smaller corpus against which 
the parser is tested. The parser breaks every tree in 
the training corpus down into all its possible sub-
trees, according to the wellformedness rules below. 

• Every subtree must be of at least depth 1. 

• Every connection must have a node on ei-
ther end. 

• Sister relationships must be preserved. 

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
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The parser is given test corpus strings and builds 
up new parse-trees for these using fragments of 
arbitrary depth extracted from the training corpus, 
starting with a fragment with an S-node at the top, 
and then, for each nonterminal leaf-node, working 
rightwards, substituting in additional subtrees, the 
topmost node of which must carry the same label 
as the node to be substituted. (see fig. 1). 

In DOP research it is necessary to distinguish 
between parses and derivations. A parse is the tree 
structure expressed over a string, and a derivation 
is the particular sequence of subtree substitutions 
by which it was constructed. When parsing with 
probabilistic context-free grammars (PCFG’s, see 
Manning and Schütze (1999, pp.381-405). Note 
that a PCFG is equivalent to a DOP grammar in 
which subtree depth has been restricted to 1), there 
is a one-to-one mapping between parses and deri-
vations, because all non-terminal nodes must be 
substitution sites. In DOP, subtrees can be of any 
depth, and so in any given derivation, any subset of 
the non-terminal nodes could have been substitu-
tion sites, while the remainder will not have been. 
As such, if a parse contains N many non-terminal 
nodes, it will have 2N many derivations. 

 For each subtree substitution t, its probability 
P(t) is calculated as its total frequency of occur-
rence |t| in the training corpus over the summed 
corpus frequency of subtrees with the same root 
node; P(t) = |t| / Σ{ t':r(t')=r(t)} |t'|, where r(t) and r(t') 
are the node-labels on the root-nodes of subtrees t 
and t'. The probability of a derivation is the prod-
uct of the probabilities of its subtrees, P(t1 o … o tn) 
=  Πi P(ti): And the probability of a parse T is the 
sum of the probabilities of its possible derivations 
D, P(T) = Σ{ D:D derives T}  P(D). 

      

 The output of the parser is, in theory, the most 
probable parse. In practice, there are issues of 
computational complexity that prevent this from 
being calculated directly; instead, Monte-Carlo 
sampling may be employed to approximate the 
most probable parse (Bod 1993) 

Bod (1998a p.54) reports accuracies of 85% on 
the ATIS1 corpus for DOP1. Bod (2005) reports 
accuracies of 91.1% for a more sophisticated form 
of DOP,  DOP+. 

3 The Task 

3.1 Training Data 

UDOG differs from existing DOP algorithms in 
that the items in the training data are not single 
trees over a string, but pairs of trees, one over a 
linguistic string, the other over content in some 
other cognitive modality, connected at particular 
nodes by crossmodal linkages. Figure 2 shows an 
example of a tree pair used in the present simula-
tions: both the visual and verbal content are anno-
tated with labeled tree-structures, and additionally 
a few of the crossmodals are shown. 

Figure 2: Paired image and description trees, with 
crossmodal connections; note that some crossmo-

dals have been omitted for clarity. 

                                                 
1 Air Transport Information System – part of the Penn Tree-
bank. 
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Figure 1: A derivation of “John likes Mary”. 
“o”  is the tree-substitution operator. 
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A training corpus of image-description pairs 

such as this was generated from templates using a 
script, “CorpusMonkey”. CorpusMonkey gener-
ated all 120 possibilities for images consisting of 
either one group of one, two or three dots, dashes, 
short lines or long lines2, paired with a description 
of the form “X”, “two X-s” or “three X-s”; or two 
such groups, provided each group is comprised of 
different types of basic object, paired with descrip-
tions of either the form “X to the left of Y”, or “Y 
to the right of X”. Which form of description was 
employed was selected at random, with equal 
probabilities. 

3.2 Tests 

Two tests were used to evaluate UDOG’s 
performance. The General Test was run in six 
parts; the CorpusMonkey training data was divided 
into six blocks, and in each part a different block 
was selected to be test data, while the rest was used 
as training data, so that it was only ever tested on 
unseen data. The test data was presented as 
unparsed visual stimuli alone, of which the system 
was required to produce descriptions. In the second 
test, the Wug Test, the complete CorpusMonkey 
corpus was presented, plus twelve identical tokens 
of the form shown in Figure 33, introducing a new 
type of object (a seven-pixel line) and a new 
vocabulary item, a “wug”. 
 

Figure 3: A novel item of vocabulary 
 

                                                 
2 A dot was always a single pixel, a dash was a three-pixel 
line, a short line five pixels, and a long line ten. 
3 The decision to use twelve tokens was arbitrary, but it was 
felt that in order to cut down the noise in the Monte Carlo 
sample, the prevalence of wugs in the corpus should be in the 
same order of magnitude as that of other basic objects. As it 
was there were a quarter as many wugs as any other basic 
object. 

The system was then tested using images com-
prising a group of one, two, or three wugs to the 
left or right of one, two or three dots, dashes, short 
lines or long lines. Thus, UDOG was required to 
extract syntactic patterns from the CorpusMonkey 
data, and redeploy them with a vocabulary item 
that it had not encountered in such contexts; this 
was therefore A direct test of UDOG’s ability to 
generalize syntactic patterns beyond the training 
data. 

4 The UDOG algorithm 

4.1 Substitutions 

Like DOP1, UDOG derivations are constructed 
from arbitrary-depth fragments extracted from the 
training data; unlike DOP, the fragments are in fact 
groups of crossmodally connected subtrees (ex-
actly one non-linguistic (visual) and one or more 
linguistic), which, if possible, should be connected 
at their root nodes, and correspondingly, the substi-
tution sites are not single nodes, but groups of 
nodes, (again, one non-linguistic and one or more 
linguistic), which should also, if possible, be 
crossmodally connected. 

Thus, at each step of the derivation, exactly one 
substitution site on the image tree is chosen at ran-
dom; if this substitution site is crossmodally con-
nected to any of the potential substitution sites on 
the verbal tree4, it can in theory substitute subtrees 
at all of these sites. The wellformedness criteria 
are as follows:  

 
1) All of the component unimodal subtrees are 

well-formed by the normal standards of DOP1. 
2) All unimodal subtrees should originate from 

the same tree-pair P. 
3) Each verbal subtree should contain only nodes 

which either: 
a) Have no crossmodal connections at all, or 
b) Have crossmodal connections, at least one 

of which is to a node in the visual subtree. 
4) The root node of each verbal subtree should be 

crossmodally connected to the root node of the 
visual subtree. 

                                                 
4 In the case of the first substitution in a derivation, a substitu-
tion site of a crossmodally connected NP node and Y node is 
assumed. All tree pairs in the training data are rooted in 
crossmodally connected NP and Y nodes.  

a wug 
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5) No root node of a verbal subtree can be an an-
cestor or descendant of the root node of any 
other: that is to say, if nodes n1 and n2 are in an 
ancestor-descendant relationship in the verbal 
tree W of the originating corpus tree-pair, they 
cannot both be selected to be the head-nodes of 
subtrees in the same bimodal subtree. 

6) The set of verbal subtrees in a well-formed 
bimodal subtree cannot be a proper subset of 
the set of verbal subtrees in any other well-
formed subtree. 

7) For each node-label L represented x many 
times in the set of possible substitution sites, 
there should be no more than x many verbal 
subtrees in the bimodal subtree with root-
nodes labelled L. 

 
The algorithm exhaustively checks all possible 

subsets of the set of nodes in the verbal tree con-
nected to the root node of the visual subtree for 
validity, according to the standards of (5), (6) and 
(7). A subset is chosen at random, at a probability 
modelled by the equation: 
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Where S and Si are sets of nodes, V is the set of 
valid sets of nodes according to criteria (5), (6) and 
(7) above, and subtreesnodex is the total number of 
subtrees rooted in nodex. The total number of sub-
trees of any node node can be found using equation 
2: 
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For each node n in the chosen set, a subtree t for 
which n = root(t) is chosen at a probability mod-
eled by equation 3 below: 

)(

1
)(

roottsubtrees
tP =   (3) 

If it is either not possible to find a substitution 
site, or a bimodal subtree, that meets the above 
criteria, the system backs off to a simpler system, 
whereby a well-formed exemplar fragment com-
prises one visual and one verbal tree, and must 
otherwise only meet criteria (1)-(3) of the normal 
wellformedness criteria. 

4.2 From derivations to final outputs 

Substitutions continue until either the visual or the 
verbal tree is completed: that is to say, has no non-
terminal leaf nodes. There is no guarantee that the 
two trees will be completed together, and indeed, 
since the verbal trees in the training data have far 
more nodes than the visual trees, it almost always 
happens that the visual tree is completed first. 
Thus, because of the high prevalence of incomplete 
verbal trees in the output from derivations, instead 
of simply gathering the outputs of many deriva-
tions and polling them as a Monte-Carlo set for the 
most frequent output, an algorithm, the details of 
which are not relevant here, was used to find the 
largest unifiable subset of the trees in the sample. 
Two trees are taken to be unifiable if there is at 
least one possible (not necessarily complete) tree 
of which both trees are co-racinous5 legal subtrees 
according to the unimodal wellformedness criteria 
of DOP1. The unification of the two trees, then, is 
the smallest tree that meets this description, if any 
tree can. Two unifiable trees and their unification 
are shown in Figure 4. The system’s output, then, 
is the unification of the largest unifiable subset of 
the sample. 

 

 
Figure 4: two unifiable trees (a, b) and their unifi-

cation, (c) 
  

The working assumption here is that, although 
the trees output by UDOG are incomplete, they 
will tend, if the algorithm is working, to be frag-
ments of correct outputs: therefore unifying them 
allows complete (or at least, closer to complete) 
trees to be made. If fragments of correct trees are 
indeed the most frequent output, the largest unifi-
able set should unify into a correct complete output 

4.3 Naïve UDOG 

For comparison, a naïve version of the algorithm 
was also tested; this version used the “backoff” 
behaviour described at the end of §4.1 as it’s de-

                                                 
5 Subtrees t1 and t2 are co-racinous iff root(t1) ≡ root(t2). 
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fault behaviour. Thus the full version of UDOG 
(“Smart” UDOG) used wellformedness criteria (4)-
(7) as a way of “binding” meaningfully related 
subparts of paired trees, whereas Naïve UDOG 
relies on frequency of co-occurrence alone. 

5 Results and Discussion 

5.1 Evaluating the outputs 

In both tests the output for each stimulus of both 
models was manually scored as the average of four 
measures: Object (O), Number (N), Relation (R) 
and Grammaticality (G). The measures used are 
tabulated in Table 1. All measures were taken as 
percentages.  
 

(O) Judged on the identification of the cor-
rect type or types of basic object6 in the 
stimulus. Because, in some outputs, the 
number of types named did not match 
with the number of types present in the 
stimulus, this was judged as an F1-
score: that is to say, as the harmonic 
mean7 of precision (the proportion of 
correct elements in the output) and re-
call (the proportion of elements in the 
input correctly named in the output).  

(N) Judged according to whether the named 
objects were correctly numbered. 
Again, this was expressed as an F1-
score. 

(R) If the image contained only one group 
of same-type basic objects, or a single 
basic object, full marks on this measure 
were awarded for naming only one ob-
ject type, and no “to the left of” or “to 
the right of” term, and zero marks are 
awarded otherwise. If two types of ba-
sic object are present in the stimulus, 
full marks are awarded if only the two 
types are named and the left/right rela-
tionship between them is correctly de-
scribed. Partial marks are given if a cor-
rect relationship description is present 
but more than two tokens of object-

                                                 
6 “Dot”, “dash”, etc… 
7 The harmonic mean or x and y is given by the equation 

yx

xy
M

+
=

2
 

group namings are present, because in 
this case the system has in such a case 
had extra chances to get it right. 

(G) A purely subjective measure of gram-
maticality and intelligibility. 

Table 1: scoring criteria 

5.2 General Test 

The results of the general test on both systems are 
summarised in Table 2 below. 
 
 O N R G Overall 
Naïve 54.48

% 
33.88
% 

22.70
% 

28.42
% 

36.62% 

Smart 76.51
% 

71.70
% 

53.99
% 

57.60
% 

68.52% 

Table 2: Performances of the Naïve and Smart-
UDOG systems on the general test. 

 
Eyeballing the data, the overwhelming impres-

sion is that the smart system far outperforms the 
naïve system on all measures; overall, the smart 
performance is almost double the naïve, and on 
individual measures the smart system more than 
doubles the naïve score on all counts except Ob-
ject, where it is still approximately 40% better. It is 
notable that Object is the only metric for the most 
part not dependent on word-ordering considera-
tions. It is also of interest that, in comparing the 
three non-subjective scoring criteria (Object, 
Number and Relation), for both systems, the easi-
est, Object, was that which depended on the short-
est-distance syntactic/semantic relations (between 
noun and adjective within an NN group, if any syn-
tactic relation was present at all), and the hardest 
was that which depended on the longest-distance 
syntactic/semantic relationship, spanning the 
whole noun phrase. A 2x4 mixed-design ANOVA 
was conducted to test the significance of the differ-
ences in Table 3. 

 
 F Sig. at p 
System 67.71 <0.001 
System * Scoring Criterion 11.31 <0.001 
Scoring Criterion 93.79 <0.001 

Table 3: 2x4 mixed design ANOVA 
 

The differences between the two systems, four 
scoring criteria, and their interaction, were all 
found to be highly significant at p <0.001. This 
finding was investigated in more detail, comparing 
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the individual scoring criteria (within systems) us-
ing pairwise t-tests (Table 4) and the systems per-
formance on each scoring criterion individually 
using independent samples t-tests (Table 5). 

 
 

 t Sig. at p 
O–N 5.92 <0.001 
O-R 10.88 <0.001 
O-G 9.15 <0.001 
N-R 6.31 <0.001 
N-G 5.10 <0.001 

Naïve 
 

R-G -2.62 0.01 
O-N -5.14 <0.001 
O-R 6.51 <0.001 
O-G 5.45 <0.001 
N-R 9.07 <0.001 
N-G 8.84 <0.001 

Smart 

R-G -1.31 0.193 
Table 4: Pairwise t-tests for significance of differ-

ence between types of measure 
 

 t Sig. at p 
O 7.143 <0.001 
N 11.124 <0.001 
R 5.656 <0.001 
G 5.489 <0.001 

Table 5: Independent samples t-tests, for signifi-
cance of difference between systems 
 

All differences between types of measure proved 
highly significant, at p<0.001, except for between 
Relation and Grammaticality, which remains sig-
nificant at p<0.05 for Naïve UDOG, and does not 
attain significance for Smart-UDOG. All these re-
sults were double-checked using non-parametric 
tests (Friedman tests for the pairwise t-tests, a 
Kruskal-Wallis test for the independent samples t-
test). 

5.3 Wug Test 

The results of the Wug test on both systems are 
summarised in Table 6 below 
 

 O N R G Overall 
Naïve 50.6

5% 
29.3
1% 

8.01
% 

14.5
4% 

25.62% 

Smart 79.4
5% 

94.6
2% 

69.0
6% 

66.0
0% 

77.28% 

Table 6: Results from the Wugs test 

 
Eyeballing the data, the difference between the 

two systems seems to be even more marked, most 
notably in Relation, where Naïve UDOG performs 
at a fraction of its score on the general test, 
whereas Smart-UDOG has actually improved. In-
deed, the pattern is found across the board, that 
Naïve UDOG becomes less accurate faced with a 
vocabulary item for which it has no context, 
whereas Smart-UDOG performs better than in the 
general test. 

Theoretically speaking, what is of greatest inter-
est here is effect of the “wug” condition on per-
formance, as compared to the general test (or, here, 
the “no-wug” condition), in relation to the Relation 
score, since the binding of elements into correct 
semantic relations was quite explicitly what the 
smart system was formulated to do, and to the 
Overall score. A 72-item random sample was taken 
at random from the general test dataset, so that 2x2 
mixed ANOVAs could be performed, between 
“system” and “wugs/no-wugs”, for the Relation 
score (Table 7), and the Overall score (Table 8). 

 
 F Sig. at p 
System  237.861 <0.001 
System * Wugs 6.422 0.12 
Wugs 0.483 0.488 

Table 7: 2x2 mixed design ANOVA on Overall 
scores 

 
 F Sig. at p 
System 124.054 <0.001 
System * Wugs 0.194 0.047 
Wugs 93.79 0.66 

Table 8: 2x2 mixed design ANOVA on Relation 
scores 

 
No main effect, in either case, was found for 

Wugs, which is unsurprising given that the differ-
ence between wugs and no-wugs in the two sys-
tems pull in opposite directions. In both cases, sig-
nificant interaction effects were found for System 
and Wugs, at p<0.05, and highly significant results 
were found for System, at p<0.001. The effect of 
the Wugs condition was investigated in greater 
detail using independent t-tests (Table 9). 
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 t Sig. at p 
Naïve 3.446 0.01 Rela-

tion Smart -2.217 0.028 
Naïve 3.15 0.002 Overall 
Smart 168.395 0.027 

Table 9: independent t-tests on the effect of the 
“wugs” condition on relation scores and overall 

scores for both models. 
In all cases, the effect of the Wugs parameter is 

found to be significant at p<0.05. It is no surprise 
that the naïve version suffered in the wug test; it 
relies wholly on the contexts given in exemplars to 
bind syntactic elements within semantic relations, 
which it was expressly denied in the wug test. The 
surprising result is that the improvement in per-
formance in Smart-UDOG also proved significant. 

6 Discussion & Conclusions 

First of all, Smart-UDOG shows, for the first time, 
that the Data-Oriented approach can be applied to 
generation tasks, and that a Data-Oriented model 
can integrate more than one cognitive modality. 

6.1 Why did Wugs help Smart UDOG? 

One outcome of the tests performed on the two 
UDOG systems was that Smart UDOG would ac-
tually perform better on the Wug Test than on the 
General Test; I had instead expected that it would 
either show no significant effect, or that its per-
formance would be decremented, either to the 
same degree as the Naïve system, indicating that 
the “Smart” welformedness conditions should be 
seen as a technological fix for sparse data, or to a 
significantly less degree, indicating that they 
should be seen as essential to the success of the 
algorithm. However, it is easy to figure out just 
how the Wug condition helped Smart-UDOG 
along. One common type of error is illustrated in a 
real example taken from Smart-UDOG’s perform-
ance on the General Test: 

 
Input =   
Output = a dot *PL* to the right *PREP* a 
short line to the line of two *NN* 
 
A correct output here would have been “Three 

dots to the right of a short line” or “A short line to 
the left of three dots”. 

What has happened here is that structure for the 
relation expression has been imported into the out-

put from two separate sources: one coming with 
material contributing to the description of the sin-
gle short line, the other coming with the what I 
presume to be an abortive attempt at describing 
two of the three dots. In both cases, the object-and-
number describing material came bound up with 
relation-describing material, and these together 
caused a confused and ill-formed output. In the 
Wug Test, the description of the wug cannot come 
with such extraneous material, since the only ex-
emplars associating the word “wug” with images 
of wugs contain nothing more than a single wug, 
described as “a wug” (see Figure 3). 

 
This suggests an interesting hypothesis regard-

ing First Language Acquisition, to be followed up 
if further work on UDOG proves successful. 
Smart-UDOG benefits notably from having access 
to isolated examples of words paired with their 
referents. Bates et al (1988) outline a “two-strand” 
theory of individual differences in First Language 
Acquisition, wherein two main learning strategies 
employed by infant language learners: “Strand 
two” is characterised by slow vocabulary growth 
and a tendency towards holophrases in which 
multi-word utterances are used as unanalysed 
wholes, but of greater interest here is “Strand one”. 
Below is Bates et al’s (ibid.) full tabulation of the 
key features of “Strand one” semantic learning: 

• High proportion of nouns in first 50 words 

• Single words in early speech 

• Imitates object names 

• Greater variety within lexical categories 

• Meaningful elements only 

• High adjective use 

• Context-flexible use of names 

• Rapid vocabulary growth 

Bates et al, ibid. 
 

If some mechanism like Smart-UDOG does in-
deed form the basis of human linguistic produc-
tion, might it be that the comparatively rapid vo-
cabulary learning of “Strand one” learners, and 
their ability to use names context-flexibly, owes to 
their creation of exemplars of a noun linked to its 
referent, isolated from context, just like the “wug” 
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exemplars in the Wug Test in §§5.2 and 6.3, which 
are then available to the child as part of her exem-
plar-base. This suggests a direction for the empiri-
cal testing of the UDOG model against human sub-
jects. 

6.2 Conclusion 

The achievement of the model itself is small, but 
what it has shown to be possible – generation and 
the integration of multiple cognitive modalities 
under a Data-Oriented framework, represent con-
siderable advances for Data-Oriented approaches 
to Cognitive Science and Artificial Intelligence. 
On the webpage for the new Cognitive Systems 
research group at the University of St. Andrews, 
Bod (2006) proposes the goal of the new group to 
be “to develop one system that unifies different 
modalities” (author’s emphasis): certainly the 
models of language, music and reasoning in Bod 
(2005) show that unimodal DOP models can be 
used to unify cognitive modalities under a single 
formalism; but the programme of multimodal Data-
Oriented research that the present work warrants, 
offers a potential way to integrate different mo-
dalities within a single model. 
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