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Abstract 

This paper describes a new method for 
compensating bandwidth mismatch for 
automatic speech recognition using multi-
variate linear combinations of feature vec-
tor components. It is shown that 
multivariate compensation is superior to 
methods based on linear compensations of 
individual features. Performance is evalu-
ated on a real microphone-telephone 
mismatch condition (this involves noise 
compensation and bandwidth extension of 
real data), as well as on several artificial 
bandwidth limitations. Speech recognition 
accuracy using this approach is similar to 
that of acoustic model compensation 
methods for small to moderate mis-
matches, and allows keeping active a sin-
gle acoustic model set for multiple 
bandwidth limitations. 

1 Introduction 

Noise robustness is a major issue in current re-
search on Automatic Speech Recognition (ASR). 
Systems trained and tested under laboratory condi-
tions reach high accuracy rates. However, when 
there is a mismatch between training and test con-
ditions accuracy is severely affected. 

This work studies the problem of mismatch be-
tween training and test in terms of available fre-
quency bandwidth. Speech recognition systems 

are typically trained on full-bandwidth data (for 
speech recognition systems this is normally 0-
8kHz). However, in real implementations part of 
the spectrum of input data could be missing; for 
example, this situation could be created by a chan-
nel distortion or sampling frequency below 16kHz. 

Clearly, a simple solution to this problem is re-
training new models for the specific type of chan-
nel. However, it may well be the case that not 
enough training data is available from the new 
environment. Also, when a wide range of possible 
band-limitations exists for a particular application 
training of acoustic models for each of them is not 
appropriate. 

Our approach is to compensate band-limited 
feature vectors to generate pseudo-full-bandwidth 
features that can be passed to a speech recognizer 
trained on full-bandwidth speech. The advantages 
are twofold: first, it is easy to train and requires 
only small amounts of data. Second, the recog-
nizer module keeps a single acoustic recognizer 
active at all times, a desirable situation for small 
devices where memory limitation and energy con-
sumption are relevant. 

Feature compensation has been used in the past, 
especially for speech affected by noise (Moreno, 
1996; Droppo et al., 2001). In other cases, com-
pensation is introduced in the decoder module 
(Deng et al., 2005). 

For the case of bandwidth mismatch feature 
compensation has recently been used in the form 
of univariate linear and polynomial correction 
(Seltzer et al., 2005; Morales et al., 2005). These 
studies proposed compensation directly in the do-
main of Mel Frequency Cepstrum Coefficients 
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(MFCC), the parameterization of choice for most 
speech recognizers. Thus, the compensator module 
may be easily inserted between the parameterizer 
and recognizer modules of already working ASR 
engines (Figure 1). 

In this work we propose the use of multivariate 
linear correction for bandwidth compensation. 
Each individual MFCC is compensated using a 
linear combination of a selection of other coeffi-
cients in the same frame. The previously refer-
enced univariate compensation algorithms 
corrected each MFCC coefficient independently 
based on the assumption that MFCCs are highly 
uncorrelated. However, as we show in Section 3, 
this assumption is less valid when data is band-
limited. Experiments show that by discarding this 
assumption, better compensation and ASR per-
formance may be achieved. 

Band-restricted speech can be found in histori-
cal spoken document retrieval (Hansen et al., 
2004). In broadcast news’ transcription it may also 
occur that the channel conditions change abruptly 
and rapidly, for example when the studio presenter 
talks to an anchor in a foreign country. Other cases 
where multiple band-limiting distortions may be 
found are on-board systems, such as those in cars, 

or in airplanes (Abut et al., 2005; Denenberg et al., 
1993). In these cases using multiple acoustic 
model sets for the different conditions could be 
costly and complicated. On the contrary, feature 
compensation generalizes seamlessly to such ag-
gressive environments; for example, it has been 
shown that multiple band-limitations may be 
automatically classified and successfully compen-
sated using a single compensation system, and 
also that data from a sufficient number of envi-
ronments allows for compensation of unseen dis-
tortions (Morales et al., 2007). These properties 
are related to the method employed for partition-
ing the limited-bandwidth MFCC space (Section 
4) and are independent of whether univariate or 
multivariate compensations are applied. Thus, they 
hold true for multivariate compensation.  

The rest of the paper is organized as follows: 
Section 2 introduces MFCC compensation and 
Section 3 discusses on the need of multivariate 
compensation for band-limited speech. Section 4 
describes practical issues and Section 5 presents 
experimental results. In Section 6 conclusions are 
presented. 
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Figure 1. Modification of a basic speech recognizer system for MFCC feature compensation. The ideal 
working environment is noted as “Undistorted input”. However, in many cases, some kind of distortion, 
affects the input signal, producing a mismatch between the characteristics of speech and the acoustic mod-
els of the decoder (in our case a bandwidth restriction). In this study mismatch is reduced by introducing an 
MFCC compensation module between the parameterizer and decoder modules. 
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2 MFCC Compensation 

Previous works have studied in detail the effect of 
band-limiting distortions on the MFCCs (Huang et 
al., 2001; Morales et al., 2005). Here, we present 
their main conclusions. 

The band-limited MFCC space may be modeled 
as a mixture of K  Gaussian classes: 

 ( ) ( ) ( )
1

; ,
K

k k

k

p N P k
=

= ⋅∑y y µ Σ , (1) 

where y  is the band-limited feature vector and 

( ); ,k kN µ Σ�  is the Gaussian distribution with 

mean vector k
µ  and covariance matrix kΣ  associ-

ated to class k . The full-bandwidth space is mod-
eled similarly and assuming that both spaces are 
jointly Gaussian for each class k , the expectation 
of the full-bandwidth vector x  is: 
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where kB  and kb  are the compensation matrix 
and offset vector for class k , and sub-indexes x  
and y  indicate full-bandwidth or limited band-
width speech, respectively. Generally, the impor-
tance of non-diagonal terms was assumed 

negligible and kB  was diagonalized (Droppo et 
al., 2001; Morales et al., 2005). Thus, an expres-
sion for individual full-bandwidth MFCC coeffi-
cients may be simplified from (2) as: 

( )ˆ
i

k k
i i i i ix x y k B y b≈ = ⋅ + ,                (3) 

where i  is the order of the MFCC coefficient, kib  
is element i  of vector kb and k

iB  the diagonal ele-

ment (i , i ) in matrix kB . 
As will be shown in the following section, the 

diagonal simplification in (3) that is acceptable on 
full-bandwidth speech corrupted by noise could be 
harmful when it is applied to band-limited speech. 

3 On MFCC Uncorrelation and Band-
limiting Distortions  

MFCC features are generally assumed uncorre-
lated. In fact, this is one of the key points for their 
extended use in ASR systems – they allow using 
diagonal covariance matrices in Gaussian mixture 
models without significant performance loss. In 
the past, this assumption led to the use of diagonal 
compensation matrices for MFCC feature com-
pensation. However, we recently observed that 
MFCC features coming from band-limited speech 
showed a higher degree of correlation than those 
coming from full-bandwidth speech. 

In order to compare the degree of correlation 
between MFCC parameters we defined the follow-
ing measure of non-diagonality for the covariance 
matrix: 

       

( ) ( ) ( )
,

,

1 cov , cov , cov , .
0

staticMFCCs MFCCs

ij
i j j i

ij

nonDiag

if i i j j i j
otherwise

δ

τδ

≠

=

 ⋅ ≤ ⋅= 


∑ ∑

      (4) 

Using 5τ =  we obtained a nonDiagonality of 51 
for full-bandwidth features, 108 for their corre-
sponding 4kHz low-pass filtered features and 110 
for a band-pass filter 300-3400Hz (similar results 
are found with other values of τ ). This shows that 
filtered MFCCs are more correlated than full-
bandwidth MFCCs. Thus, the general assumption 
of uncorrelation seems less valid for band-limited 
MFCCs and the use of a non-diagonal compensa-
tion matrix is justified. 

From (2) we can establish the relationship be-
tween the covariance matrices of band-limited and 
full-bandwidth MFCCs as: 

 ( )tk k k k= ⋅ ⋅x yΣ B Σ B . (5) 

 

Frequency (Hz) 

Figure 2. Cepstral transforms of orders 1 and 3 for 
full-bandwidth (top) and limited-bandwidth speech 
(bottom; 300-3400Hz band-pass filter). Band-
limited transforms are no longer orthogonal. 
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Assuming that the covariance matrix of full-

bandwidth MFCCs, k
xΣ , is diagonal and that of 

band-limited features, k
yΣ , is non-diagonal, then 

the compensation matrix, kB needs to be non-
diagonal, in order to satisfy (5).  

The approximately uncorrelated nature of 
MFCCs has been empirically observed on speech 
data and is associated with the fact that the Dis-
crete Cosine Transform (DCT) on filterbank ener-
gies and Principal Component Analysis (PCA) on 
the correlation matrix generate very similar trans-
formations (Pols, 1977). However, as seen in Fig-
ure 2, using the DCT on band-limited frames is 
effectively a different transformation of that over 
full-bandwidth speech. The vectors in the basis are 
no longer orthogonal (on the contrary DCT on 
full-bandwidth data as well as PCA are orthogonal 
transforms) and empirical evidence suggests that 
this could increase correlation of band-limited 
MFCCs compared to full-bandwidth features 
(though more experiments should be done for bet-
ter comprehension of this phenomenon).  

Because our compensation framework does not 
require matrix inversions or expensive calculations 

the computational cost of non-diagonal compensa-
tion matrices may be assumed if, as will be shown 
later, significant performance gains may be 
achieved.  

4 Class and Corrector Function Training  

The proposed framework is shown in Figure 3. 
Training consists of two steps. First, the partition-
ing classes from each environment are created and 
second, a corrector function is computed for each 
class and MFCC feature. When a system needs to 
be deployed in an environment where different 
types of bandwidth limitations may exist, classes 
and corrector functions are created independently 
for each of the existing conditions. Classes trained 
with data from the different distortions will be 
able to identify the type of distortion of incoming 
data and will then apply the appropriate compen-
sation functions. Also, if the need to create classes 
for new distortions arises, these can be added to 
the existing framework without any further modi-
fication (Morales et al., 2007). 
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Figure 3. Schematic representations of the proposed architectures for training of classes and corrector func-
tions and for compensation of band-limited MFCCs to generate pseudo-full bandwidth MFCCs. 
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4.1 Class Creation 

For each target distorting environment a different 
set of Gaussian classes is generated using a top-
down approach: an initial multivariate Gaussian 
distribution with mean and diagonal covariance 
computed from all the training data is divided into 
two classes. Data are then re-assigned to either 
class and their mean vector and covariance matrix 
are re-estimated. The process is repeated introduc-
ing new classes in successive iterations until the 
number of final mixtures is reached. 

4.2 Corrector Function Training 

Separate correction matrices and offset vectors are 
trained for each compensation class defined in the 
restricted-bandwidth space as explained in Section 
4.1. In our experiments we use stereo data to com-
pute the coefficients in the corrector functions 
(here stereo data refers to speech recorded simul-
taneously under the full-bandwidth and limited 
bandwidth environments. Alternatively, when a 
good characterization of the distortion is available 
it is possible to generate pseudo-distorted data). 

Band-limited speech frames from the training 
set are assigned to one of the corrector classes 
previously defined based on a maximum likeli-
hood criterion: 

  ( ) ( ) ( )( )max , , 1; k k
t

k
k t N P k k K= ⋅ ≤ ≤y µ Σ
)

,(6) 

where K  is the total number of classes. For uni-
variate polynomial correction, each MFCC value 
in the band-limited space is mapped to its equiva-
lent in the full-bandwidth space. In Figure 4 each 
point represents the value of a given MFCC in the 
band-limited space (x-axis) and full-bandwidth 
space (y-axis). Then, for each corrector class the 

corresponding kB  and kb  are computed using lin-
ear regression (the green curve in Figure 4). For 
multivariate linear correction a similar approach is 
followed identifying feature vectors from stereo 
frames in the full-bandwidth and limited-
bandwidth spaces and employing multivariate lin-
ear regression. Multivariate linear regression fol-
lows an incremental form, starting from a simple 
offset and adding successively the coefficient for 
which a higher decrease of Mean Squared Error 
(MSE) is achieved until no significant decrease is 
found. In this way, it is possible to determine the 
ideal number of MFCC coefficients to use for the 
compensation of a particular component. In figure 
5 we show explicitly the evolution of the Root 
Mean Squared Error (RMSE) after inclusion of 
each individual coefficient in the regression. The 
target coefficient is full-bandwidth MFCC C2 and 
not surprisingly the first coefficient inserted is lim-
ited-bandwidth MFCC C2. Going from a simple 

Figure 5. Root Mean Squared Error (RMSE) for 
multivariate fit of full-bandwidth MFCC C2 in a par-
ticular class k  of the limited bandwidth space (for a 
low-pass filter, cut-off frequency 4kHz). RMSE im-
proves as more coefficients are included in the fit. 
Ticks in the x-axis show the best coefficient to add 
in each step (C2, C1, etc. indicate static MFCC coef-
ficients of orders 2, 1, etc., respectively).  

Figure 4. Mapping of low-pass filter 4kHz data to 
full-bandwidth for MFCC parameter C2 in a particu-
lar class k . The plot also shows a third order poly-
nomial fit. 
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offset to compensation with a single coefficient 
reduces RMSE from 6.28 to 3.58. This is equiva-
lent to univariate linear compensation. However, 
the inclusion of the next 6 coefficients (C1, C3, 
C6, C11 and C4) further reduces RMSE to 3.14, 
which seems to indicate that significant benefits 
may be obtained by applying multivariate compen-
sation. On the contrary inclusion of additional co-
efficients offers very little improvement, which 
indicates that in this case, compensation may be 
truncated after the best 7 coefficients. 

Data compensation uses an MMSE version of 
(2) for multivariate and (3) for univariate compen-
sation. 

5 Results and Discussion 

Experiments are based on two measures: first, di-
rect reconstruction quality is assessed by comput-
ing the average Mahalanobis distance between real 
full-bandwidth data and estimated pseudo-full-
bandwidth data (generated by compensation of 
limited-bandwidth data); second, ASR accuracy is 
evaluated using full-bandwidth acoustic models on 
pseudo-full-bandwidth data. 

5.1 Measuring Reconstruction Quality 

The quality of feature compensation may be di-
rectly measured in terms of a distance metric be-
tween the real full-bandwidth vectors and their 
corresponding reconstructed vectors. The ultimate 
goal being ASR performance, perfect reconstruc-
tion of feature vectors may be unnecessary as long 
as speech recognition decoding performs satisfac-
torily. However, a direct measure is useful because 
it is fast and independent of external elements 
such as grammar, phoneme list or other tunable 
parameters. 

The quality measure used in this work is the av-
erage Mahalanobis distance. Table 1 shows a com-
parison between univariate linear compensation 
(Univar) and multivariate linear compensation 
(Multivar). As can be seen, multivariate linear 
compensation offers better performance for each 
group of MFCC parameters (this holds for each 
individual parameter, though a full table is not pre-
sented here for lack of space). We also compare 
reconstruction of dynamic parameters using feature 
compensation (Multivar dynamic) or computation 
with the typical definition of dynamic features, i.e. 
using linear regression on reconstructed static fea-

tures (Multivar static). Not surprisingly, the dis-
tance is smaller using Multivar dynamic 
compensation, because feature compensation 
minimizes MSE between the actual full-bandwidth 
data and pseudo-full-bandwidth data. However, 
from the point of view of speech recognition accu-
racy we have observed that dynamic features com-
puted by regression of static features (Multivar 
static) is better. Thus, it seems that even if the ac-
tual MSE is minimized using feature compensation 
for dynamic features, this may cause incongruence 
between static and dynamic features producing a 
loss in accuracy (for example, in the case of low-
pass filter with cut-off frequency 4kHz, regression 
obtains a relative 0.76% accuracy gain compared 
to dynamic feature compensation). 

5.2 Measuring Speech Recognition 

Speech recognition of reconstructed speech is 
evaluated using a phonetic recognition engine 
based on 51 Hidden Markov Models (HMM) and a 
phone bigram. The front-end uses pre-emphasis 
filtering (α=0.97) and 25ms Hamming windows 
with a 10ms window shift. Thirteen MFCC coeffi-
cients including C0 and their respective first and 
second order derivatives (39 total features) are 
computed from a filter-bank of 26 Mel-scaled fil-
ters distributed in the region 0-8 kHz. HMM mod-
els are trained using TIMIT (Fisher et al., 1986). 
For training we use all 4680 files in the training 
partition and evaluation is made on all the 1620 
files in the test partition. 

Comparison of Different Approaches 

In this section different approaches are considered 
for the problem of band-limited input speech. Ta-
ble 2 shows results for artificial filters applied on 
TIMIT: Low-Pass 6kHz, Low-Pass 4kHz and 
Band-Pass 300-3400Hz, the last one simulating a 

Mahalanobis Dist. 
(x10-2) 

Univar 
static 

Multivar 
dynamic 

Multivar 
static 

Static MFCCs 0.7848 0.7091 0.7091 
∆ MFCCs 0.8180 0.7193 0.7234 
∆∆ MFCCs 0.8582 0.7393 0.7526 

Total 2.461 2.168 2.185 
ASR accuracy 66.97 68.22 68.46 

Table 1. Mahalanobis distance between real full-
bandwidth data and reconstructed data from low-
pass filtered data with cut-off frequency 4kHz. 
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noise-free telephone channel. In addition, per-
formance on real telephone data is given: the 
whole TIMIT database was passed through the 
telephone line in a single call. This is similar to 
NTIMIT (Jankowski et al., 1990), but in our case 
all data is distorted by the same channel; a desir-
able condition in stereo-data compensation. 

For comparison, results are given in the first 
row for the case of full-bandwidth training and test 
data, setting the upper limit performance. Recog-
nition with full-bandwidth models and restricted-
bandwidth test data incurs in a significant accu-
racy loss even for small distortions like a 6kHz 
low-pass filter (accuracy goes from 71.18% to 
58.30%, a relative 45% error increase; see Table 
2). Thus, some compensation (either on the feature 
or the model side) needs to be applied. 

The new multivariate linear correction approach 
clearly and significantly outperforms polynomial 
correction showing the convenience of a non-
diagonal matrix for feature compensation (i.e. 
multivariate compensation). Also, the performance 
achieved is similar to that of model compensation 
approaches, even for the real telephone distortion, 

were multivariate compensation is only 2.4% ab-
solute worse than with model adaptation. 

An important consideration is the number of 
corrector classes to be used. Previous experiments 
showed how compensation performance saturates 
for a large number of classes. Dealing with artifi-
cial filters, saturation appears for a number of 
classes around 25 (in our experiments, only 32 
classes were used). On the contrary, for the more 
complicated situation of real telephone data, where 
noise is also present, a larger number of classes 
produced a very substantial improvement (compare 
results for 32 and 256 classes for this case). 

Limited Amounts of Training Data 

In real applications it could be difficult to produce 
sufficient amounts of training material for feature 
compensation or model adaptation. Figure 6 shows 
performance relative to the amount of training data 
available. MLLR denotes global MLLR adaptation 
followed by 32-class MLLR adaptation. 
MLLR+MAP uses MAP adaptation on previously 
MLLR-adapted models (this is also used for model 
adaptation in Table 2). When the amount of train-
ing material is very limited, model adaptation out-
performs multivariate compensation, showing the 
effectiveness of global MLLR (the first stage ap-
plied in model adaptation). However, the learning 
slope in multivariate feature compensation is 
steeper and from ~50 seconds of training material, 
multivariate linear correction obtains better results 

Test Set Correction Percent 
Correct 

Percent 
Accuracy 

Full-Band None 75.40 71.18 
None 64.32 58.30 

Matched 75.45 71.03 
Model Adapt 74.97 70.35 
Univariate-32 74.88 70.65 

Low- Pass 
6kHz 

Multivariate-32 75.22 70.95 
None 55.93 44.67 

Matched 74.73 69.33 
Model Adapt 73.30 68.38 
Univariate-32 72.41 66.97 

Low- Pass 
4kHz 

Multivariate-32 73.16 68.46 
None 41.13 32.67 

Matched 71.86 65.73 
Model Adapt 70.04 64.25 
Univariate-32 65.63 58.46 

Band- Pass 
300-3400 

Hz 
Multivariate-32 69.29 63.44 

None 30.98 21.23 
Matched 69.10 61.80 

Model Adapt 66.86 61.22 
Univariate-32 56.03 49.14 
Univariate-256 60.32 53.38 
Multivariate-32 62.53 56.78 

Real tele-
phone data 

Multivariate-256 64.67 58.79 

Table 2. Band-limited speech recognition results. 
In Univariate and Multivariate the number that 
follows indicates the amount of classes employed 
for band-limited space partitioning. 

Figure 6. Accuracy for different feature compensa-
tion and model-based approaches for 8kHz-4kHz 
mismatch vs. available training data (in seconds). 
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than model adaptation methods, remaining so for 
as much as ~40 minutes of speech. Thus, it seems 
that at least for this particular case of filtering dis-
tortions and limited data, feature compensation 
could be a better approach than model adaptation. 

6 Conclusions  

A new feature compensation framework based on 
multivariate linear correction was presented. Fea-
ture compensation for robust ASR under multiple 
distorting environments is desirable because it al-
lows using a single acoustic model set independent 
of the number of distorting environments, and 
keeps memory load and computation requirements 
low. 

ASR accuracy with the proposed algorithm is 
similar to that of model-compensation approaches 
if large amounts of training material are available. 
In addition, when the amount of training data is 
small, multivariate linear correction shows better 
accuracy than all the other approaches considered. 
Experiments on real telephone data where also 
conducted showing very promising results (only 
~2% absolute loss compared to model adaptation). 

The new approach clearly outperforms our pre-
vious polynomial compensation with very small 
increase in computation time. This shows the great 
advantage of a full compensation matrix over a 
diagonal one for the case of band-limited data and 
is in agreement with the practical observations in 
Sections 3 and 4.2. 

In the future, the need of stereo data should be 
overcome to allow straightforward application to a 
variety of new practical situations. 
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