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Abstract

This paper describes a new method for
compensating bandwidth mismatch for
automatic speech recognition using multi-
variate linear combinations of feature vec-
tor components. It is shown that
multivariate compensation is superior to
methods based on linear compensations of
individual features. Performance is evalu-
ated on a real microphone-telephone
mismatch condition (this involves noise
compensation and bandwidth extension of
real data), as well as on several artificial
bandwidth limitations. Speech recognition
accuracy using this approach is similar to
that of acoustic model compensation
methods for small to moderate mis-
matches, and allows keeping active a sin-
gle acoustic model set for multiple
bandwidth limitations.
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are typically trained on full-bandwidth data (for
speech recognition systems this is normally O-
8kHz). However, in real implementations part of
the spectrum of input data could be missing; for
example, this situation could be created by a chan-
nel distortion or sampling frequency below 16kHz.

Clearly, a simple solution to this problem is re-
training new models for the specific type of chan-
nel. However, it may well be the case that not
enough training data is available from the new
environment. Also, when a wide range of possible
band-limitations exists for a particular applicatio
training of acoustic models for each of them is not
appropriate.

Our approach is to compensate band-limited
feature vectors to generate pseudo-full-bandwidth
features that can be passed to a speech recognizer
trained on full-bandwidth speech. The advantages
are twofold: first, it is easy to train and reqgsire
only small amounts of data. Second, the recog-
nizer module keeps a single acoustic recognizer
active at all times, a desirable situation for dmal
devices where memory limitation and energy con-
sumption are relevant.

1 Introduction

Feature compensation has been used in the past,
especially for speech affected by noise (Moreno,
9996; Droppo et al., 2001). In other cases, com-
ensation is introduced in the decoder module
Beng et al., 2005).

For the case of bandwidth mismatch feature

Noise robustness is a major issue in current r
search on Automatic Speech Recognition (ASR
Systems trained and tested under laboratory con
tions reach high accuracy rates. However, whe

dltlons accuracy Is severely affected. : of univariate linear and polynomial correction
This work studies the problem of mismatch be(Seltzer et al., 2005; Morales et al., 2005). These

tween tr%inindg ‘zr:g teSst in Lerms of ".’}[Ya”abletfre'studies proposed compensation directly in the do-
quency bandwidtn. opeech recognition SySIeMgain of Mel Frequency Cepstrum Coefficients
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Figure 1. Modification of a basic speech recognizer systemMFCC feature compensation. The ideal
working environment is noted as “Undistorted inpufowever, in many cases, some kind of distortion,
affects the input signal, producing a mismatch keetwthe characteristics of speech and the acoustie

els of the decoder (in our case a bandwidth réistnc In this study mismatch is reduced by intrcidg an
MFCC compensation module between the parametenmbdecoder modules.

(MFCCQC), the parameterization of choice for mosbr in airplanes (Abut et al., 2005; Denenberg gt al
speech recognizers. Thus, the compensator moddl@93). In these cases using multiple acoustic
may be easily inserted between the parameterizerodel sets for the different conditions could be
and recognizer modules of already working ASReostly and complicated. On the contrary, feature
engines (Figure 1). compensation generalizes seamlessly to such ag-
In this work we propose the use of multivariategressive environments; for example, it has been
linear correction for bandwidth compensationshown that multiple band-limitations may be
Each individual MFCC is compensated using automatically classified and successfully compen-
linear combination of a selection of other coeffi-sated using a single compensation system, and
cients in the same frame. The previously referalso that data from a sufficient number of envi-
enced univariate compensation algorithmsonments allows for compensation of unseen dis-
corrected each MFCC coefficient independentlyortions (Morales et al., 2007). These properties
based on the assumption that MFCCs are highbre related to the method employed for partition-
uncorrelated. However, as we show in Section 3ng the limited-bandwidth MFCC space (Section
this assumption is less valid when data is bandt) and are independent of whether univariate or
limited. Experiments show that by discarding thisnultivariate compensations are applied. Thus, they
assumption, better compensation and ASR pehold true for multivariate compensation.
formance may be achieved. The rest of the paper is organized as follows:
Band-restricted speech can be found in historiSection 2 introduces MFCC compensation and
cal spoken document retrieval (Hansen et alSection 3 discusses on the need of multivariate
2004). In broadcast news’ transcription it may alse@ompensation for band-limited speech. Section 4
occur that the channel conditions change abruptlgescribes practical issues and Section 5 presents
and rapidly, for example when the studio presenterxperimental results. In Section 6 conclusions are
talks to an anchor in a foreign country. Other sasgresented.
where multiple band-limiting distortions may be
found are on-board systems, such as those in cars,
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wherei is the order of the MFCC coefficiert;
is elementi of vectorb* and B* the diagonal ele-

ment (i ,i) in matrix B¥.

As will be shown in the following section, the
diagonal simplification in (3) that is acceptable o
full-bandwidth speech corrupted by noise could be
harmful when it is applied to band-limited speech.

-1 T

0 2000 4000 60008000 3 On MFCC Uncorrelation and Band-
Frequency (Hz) limiting Distortions

Figure 2. Cepstral transforms of orders 1 and 3 for
full-bandwidth (top) and limited-bandwidth speech MFCC features are generally assumed uncorre-
(bottom; 300-3400Hz band-pass filter). Band-lated. In fact, this is one of the key points floeit

limited transforms are no longer orthogonal. extended use in ASR systems — they allow using
diagonal covariance matrices in Gaussian mixture
2 MFCC Compensation models without significant performance loss. In

the past, this assumption led to the use of didgona
Previous works have studied in detail the effect @ompensation matrices for MFCC feature com-
band-limiting distortions on the MFCCs (Huang epensation. However, we recently observed that
al., 2001; Morales et al., 2005). Here, we presemMFCC features coming from band-limited speech

their main conclusions. showed a higher degree of correlation than those
The band-limited MFCC space may be modelec¢oming from full-bandwidth speech.

as a mixture ok Gaussian classes: In order to compare the degree of correlation
K .

B K ook between MFCC parameters we defined the follow-

p(y)= kZ:;N (vin',z")-P(K), (1) ing measure of non-diagonality for the covariance

where y is the band-limited feature vector andMatrix:

N(0;p*,2") is the Gaussian distribution with oM COs MECCs

mean vector® and covariance matrix® associ- Nnonbiag = Z Z S
ated to classk . The full-bandwidth space is mod- ' b

eled similarly and assuming that both spaces arg 2{1 if \/cov(i i)-coj .j)<z- coyi j)
jointly Gaussian for each class, the expectation ™" |0 otherwise '
of the full-bandwidth vectox is:

(4)
%(y.k) = E{x|y,k} =y + =5, (2 )71(y—u';) = (2) Using r=5 we obtained a nonDiagonality of 51

=B*y + b ' for full-bandwidth features, 108 for their corre-

) ) _ ~ sponding 4kHz low-pass filtered features and 110
where B® and b" are the compensation matrix for a band-pass filter 300-3400Hz (similar results
and offset vector for clask, and sub-indexes  are found with other values of). This shows that
and y indicate full-bandwidth or limited band- fiitered MFCCs are more correlated than full-
width speech, respectively. Generally, the imporbandwidth MFCCs. Thus, the general assumption
tance of non-diagonal terms was assumedf uncorrelation seems less valid for band-limited
negligible andB* was diagonalized (Droppo et MFCCs and the use of a non-diagonal compensa-
al., 2001; Morales et al., 2005). Thus, an expredion matrix is justified.

sion for individual full-bandwidth MFCC coeffi- ~ From (2) we can establish the relationship be-
cients may be simplified from (2) as: tween the covariance matrices of band-limited and
full-bandwidth MFCCs as:

X~ % (k) =B -y, +b,
=l =B*.x.(B"). (5)
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TRAINING OF CLASSES AND CORRECTOR FUNCTIONS
— — Full-bandwidth
Training Limited- Datz
bandwidtt Date 1
l ( Gaussian ) l ( Corrector
¢ Funct 1
Clas:1 2. Assign distorted data
1. Top-down to classes. Use stereg
partitioning of MFCC | _ < | Gaussiar| } —» data and linear | —p { [ Corrector
space |n_mult|var|ate Clas: 2 regression to compute Funct. :
Gaussian classes Py corrector functions °
) )
\ o ) \ °
DATA CORRECTION
Test Limited- 1. Use MMSE to 2. Apply the Pseudo Full
bandwidth | =—» | identify partitioning| =—» corresponding | =—» | bandwidth
Data classes corrector functions Data

Figure 3. Schematic representations of the proposed architesfor training of classes and corrector func-
tions and for compensation of band-limited MFCCgeaerate pseudo-full bandwidth MFCCs.

Assuming that the covariance matrix of full-the computational cost of non-diagonal compensa-

bandwidth MFCCs,=¥, is diagonal and that of tion matrices may be assumed if, as will be shown
o * C _ later, significant performance gains may be
band-limited featuresX, , is non-diagonal, then achieved.

the compensation matrixB* needs to be non-
diagonal, in order to satisfy (5).

The approximately uncorrelated nature Ofrhe proposed framework is shown in Figure 3.
MFCCs has been empirically observed on Speeci4ining consists of two steps. First, the pantitio
data and is associated with the fact that the Digng classes from each environment are created and
crete Cosine Transform (DCT) on filterbank energecqnq a corrector function is computed for each
gies and Principal Component Analysis (PCA) 0555 and MFCC feature. When a system needs to
the co_rrelation matrix generate very similar transpq deployed in an environment where different
formations (Pols, 1977). However, as seen in Figyhes of handwidth limitations may exist, classes
ure 2, using the DCT on band-limited frames i$nq corrector functions are created independently
effectively a different transformation of that overy, aach of the existing conditions. Classes trine
full-bandwidth speech. The vectors in the basis ar&ii, data from the different distortions will be
no longer orthogonal (on the contrary DCT Omnyp|e g jdentify the type of distortion of incoming
full-bandwidth data as well as PCA are orthogonali;ia and will then apply the appropriate compen-
transforms) and empirical evidence suggests thakion functions. Also, if the need to create @ass
this could increase correlation of band-limite or new distortions arises, these can be added to

MFCCs compared to full-bandwidth featuresy,q existing framework without any further modi-
(though more experiments should be done for befi.ation (Morales et al., 2007).

ter comprehension of this phenomenon).
Because our compensation framework does not
require matrix inversions or expensive calculations

4 Classand Corrector Function Training
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Polynomial fit order 3. MFCC C2. Reoot Mean Squared Error. MFCC C2
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Figure 4. Mapping of lowpass filter 4kHz data Figure 5. Root Mean Squared Error (RMSE) for
full-bandwidth for MFCC parameter C2 in a pamtic multivariate fit of full-bandwidth MFCC C2 in a par

lar classk . The plot also shows a third order ypol ticular classk of the limited bandwidth space (for a

nomial fit. low-pass filter, cut-off frequency 4kHz). RMSE im-
proves as more coefficients are included in the fit
4.1 ClassCreation Ticks in the x-axis show the best coefficient tal ad

in each step (C2, C1, etc. indicate static MFCG-coe
For each target distorting environment a differe ficients of orders 2, 1, etc., respectively).
set of Gaussian classes is generated using a -
down approach: an initial multivariate Gaussiarwhere K is the total number of classes. For uni-
distribution with mean and diagonal covariancevariate polynomial correction, each MFCC value
computed from all the training data is divided intain the band-limited space is mapped to its equiva-
two classes. Data are then re-assigned to eithlent in the full-bandwidth space. In Figure 4 each
class and their mean vector and covariance matrpoint represents the value of a given MFCC in the
are re-estimated. The process is repeated introduzand-limited space (x-axis) and full-bandwidth
ing new classes in successive iterations until thgpace (y-axis). Then, for each corrector class the

number of final mixtures is reached. Correspondin@k and bk are Computed using lin-
ear regression (the green curve in Figure 4). For
multivariate linear correction a similar approash i

Separate correction matrices and offset vectors af@/owed identifying feature vectors from stereo
trained for each compensation class defined in t{g¢mes in  the full-bandwidth and limited-

restricted-bandwidth space as explained in Sectidindwidth spaces and employing multivariate lin-
4.1. In our experiments we use stereo data to corf@l regression. Multivariate linear regression fol-
pute the coefficients in the corrector functiond®WS an incremental form, starting from a simple

(here stereo data refers to speech recorded sim@ffSet and adding successively the coefficient for
taneously under the full-bandwidth and limited/Nich @ higher decrease of Mean Squared Error

bandwidth environments. Alternatively, when a(MSE) is achieved until no significant decrease is

good characterization of the distortion is avaiabl found. In this way, it is possible to determine the
it is possible to generate pseudo-distorted data). ideal number of MFCC coefficients to use for the

Band-limited speech frames from the trainin ompensation of a particular component. In figure

set are assigned to one of the corrector classgs"e Show explicitly the evolution of the Root
previously defined based on a maximum likeli-Vi€an Squared Error (RMSE) after inclusion of
hood criterion: each individual coefficient in the regression. The

~ C target coefficient is full-bandwidth MFCC C2 and
k(t)= mkaX(N (ve;n“ Z¥)-P(k)), 1<k<K.(6) not surprisingly the first coefficient insertediis-
ited-bandwidth MFCC C2. Going from a simple

4.2 Corrector Function Training
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offset to compensation with a single coefficiel [MahaanobisDis. 1 Univar 1 Multivar 1 Multivar

reduces RMSE from 6.28 to 3.58. This is equiv (x102) static_| dynamic static

lent to univariate linear compensation. Howeve | StaticMFCCs | 0.7848 0.7091 0.7091
the inclusion of the next 6 coefficients (C1, C AMFCCs 0.8180 0.7193 0.7234
C6, C11 and C4) further reduces RMSE to 3.1 AAT'V'ﬁCS %i%‘iz 3-176?;393 201-;;326
which seems to indicate that significant benef ASR accUracy 697 o323 a6

may be obtained by applying multivariate compe
sation. On the contrary inclusion of additional ¢
efficients offers very little improvement, whict
indicates that in this case, compensation may
truncated after the best 7 coefficients. : . - .
Data compensation uses an MMSE version (%lflres (Multivar static). Not surprisingly, the dis-

S A ance is smaller usingMultivar namic
(2) for multivariate and (3) for univariate compen- . 9 dy .
sation compensation, because feature compensation

minimizes MSE between the actual full-bandwidth
5 Resultsand Discussion data and pseudo-full-bandwidth data. However,

from the point of view of speech recognition accu-
Experiments are based on two measures: first, dfcy we have observed that dynamic features com-
rect reconstruction quality is assessed by compuauted by regression of static featuréduitivar
ing the average Mahalanobis distance between ré&tatic) is better. Thus, it seems that even if the ac-
full-bandwidth data and estimated pseudo-fulltual MSE is minimized using feature compensation
bandwidth data (generated by compensation & dynamic features, this may cause incongruence
limited-bandwidth data); second, ASR accuracy igetween static and dynamic features producing a
evaluated using full-bandwidth acoustic models di®ss in accuracy (for example, in the case of low-

Table 1. Mahalanobis distance between real full-
bandwidth data and reconstructed data from low-
pass filtered data with cut-off frequency 4kHz.

pseudo-full-bandwidth data. pass filter with cut-off frequency 4kHz, regression
obtains a relative 0.76% accuracy gain compared
5.1 Measuring Reconstruction Quality to dynamic feature compensation).

The quality of feature compensation may be di5.2 Measuring Speech Recognition

rectly measured in terms of a distance metric be-

tween the real full-bandwidth vectors and theiSpeech recognition of reconstructed speech is

corresponding reconstructed vectors. The ultimatevaluated using a phonetic recognition engine

goal being ASR performance, perfect reconstrud?@ased on 51 Hidden Markov Models (HMM) and a

tion of feature vectors may be unnecessary as lofione bigram. The front-end uses pre-emphasis

as speech recognition decoding performs satisfafiltering (0=0.97) and 25ms Hamming windows

torily. However, a direct measure is useful becaus#ith a 10ms window shift. Thirteen MFCC coeffi-

it is fast and independent of external elementsients including CO and their respective first and

such as grammar, phoneme list or other tunabrgecond order derivatives (39 total features) are

parameters. computed from a filter-bank of 26 Mel-scaled fil-
The quality measure used in this work is the agers distributed in the region 0-8 kHz. HMM mod-

erage Mahalanobis distance. Table 1 shows a cofis are trained using TIMIT (Fisher et al., 1986).

parison between univariate linear compensatidror training we use all 4680 files in the training

(Univar) and multivariate linear Compensatiorpal’tition and evaluation is made on all the 1620

(Multivar). As can be seen, multivariate lineafiles in the test partition.

compensation offers better performance for each ) .

group of MFCC parameters (this holds for eacfromparison of Different Approaches

individual parameter, though a full table is nag-pr In this section different approaches are considered

sented here for lack of space). We also COMPH&G the problem of band-limited input speech. Ta-

reconstruct_ion of d_ynamic parameters using f.eatuﬁ(fe 2 shows results for artificial filters applied
compensationMultivar dynamic) or computation TIMIT: Low-Pass 6kHz, Low-Pass 4kHz and

W't.h th? typical def'mt'on of dynamic feature$.|. Band-Pass 300-3400Hz, the last one simulating a
using linear regression on reconstructed static fea
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: Percent | Percent
Test Set Correction Correct | Accuracy 60
Full-Band None 75.40 71.18 gzl
None 64.32 58.30
Matched 75.45 71.03
Loé"k'HPZaSS Model Adapt 7497 | 70.35 Z &7
Univariate-32 74.88 70.65 = g5l
Multivariate-32 75.22 70.95 & :
None 55.93 | 44.67 Ees polyft
Low- Pass Matched 74.73 69.33 2 —&— muttivar
4kHz Model Adapt 73.30 68.38 B4} — #— - mllr .
Univariate-32 72.41 66.97 — O - millr+map
Multivariate-32 73.16 68.46 63 1
None 41.13 32.67
Band- Pas§ ___ Matched 71.86 65.73 62— — e
300-3400 | Model Adapt 70.04 64.25 10 10 10
Hz Univariate-32 65.63 58.46 Training time (zeconds)
Multivariate-32 69.29 63.44 Figure 6. Accuracy for different feature compensa-
MN?f;]ed Cé%-i% %11%36 tion and model-based approaches for 8kHz-4kHz
ac e . . . . . - -
N Model Adapt £6.86 =195 mismatch vs. available training data (in seconds).
phone data Ur!lvarlate-32 56.03 49.14 . _ _ .
Univariate-256 60.32 53.38 were multivariate compensation is only 2.4% ab-
Multivariate-32 | 62.53 56.78 solute worse than with model adaptation.
Muliivariate-256 | _64.67 | _ 58.79 An important consideration is the number of

Table 2. Band-limited speech recognition results.
In Univariate and Multivariate the number that
follows indicates the amount of classes employed
for band-limited space partitioning.

corrector classes to be used. Previous experiments
showed how compensation performance saturates
for alarge number of classes. Dealing with artifi-
cial filters, saturation appears for a number of
erf;lasses around 25 (in our experiments, only 32

noise-free telephone channel. In addition, p I 4. on th : for th
formance on real telephone data is given: th&'aSSEes were use )- On the contrary, for the more

whole TIMIT database was passed through theomplicated situation of real telephone data, where
telephone line in a single call. This is similar tol'©/S€ IS also present, a larger number of classes

NTIMIT (Jankowski et al., 1990), but in our Cas'eproduced a very substantial improvement (compare

all data is distorted by the same channel; a desi'i"-aSUItS for 32 and 256 classes for this case).
able condition in stereo-data compensation.
For comparison, results are given in the firs

row for the case of full-bandwidth training andttes|n real applications it could be difficult to procki
data, setting the upper limit performance. Recogsufficient amounts of training material for feature
nition with full-bandwidth models and reStriCted-Compensation or model adaptation. Figure 6 shows
bandwidth test data incurs in a significant accuperformance relative to the amount of training data
racy loss even for small distortions like a 6kHzayajlable.MLLR denotes global MLLR adaptation
low-pass filter (accuracy goes from 71.18% tgollowed by 32-class MLLR adaptation.
58.30%, a relative 45% error increase; see Tablg| | R+ MAP uses MAP adaptation on previously
2). Thus, some compensation (either on the featuf@ | R-adapted models (this is also used for model
or the model side) needs to be applied. adaptation in Table 2). When the amount of train-
The new multivariate linear correction approachng material is very limited, model adaptation out-
clearly and significantly outperforms polynomial performs multivariate compensation, showing the
correction showing the convenience of a noneffectiveness of global MLLR (the first stage ap-
diagonal matrix for feature compensation (i.eplied in model adaptation). However, the learning
multivariate compensation). Also, the performanc@jope in multivariate feature compensation is
achieved is similar to that of model compensatiogteeper and from ~50 seconds of training material,
approaches, even for the real telephone distortiomultivariate linear correction obtains better réesul

{_imited Amountsof Training Data
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than model adaptation methods, remaining so f®efer ences

as much as ~40 minutes of speech. Thus, it seem

that at least for this particular case of filteritig- Djj 'Af‘gf b i\|]1'-|\-|/érL1i <|:-|| : ns;nr; a':TdDE'l eTag?ggn(fdslgl'u?OOS'

tortions and limited data, feature compensatio\;gerlspringer_Ve”ag_

could be a better approach than model adaptation. | penenberg, H. Gish, M. Meteer, T. Miller, J.R.
) Rohlicek, W. Sadkin and M. Siu. 1993. Gisting canve

6 Conclusions sational speech in real timBroceedings |CASSP, 2:

131-134.
A new feature compensation framework based on | peng, J. Droppo and A. Acero. 2005. Dynamic

multivariate linear correction was presented. Feaompensation of HMM variances using the feature en-
ture compensation for robust ASR under multipldhancement uncertainty computed from a parametric
distorting environments is desirable because it afodel of speech distortiolEEE Speech and Audio
lows using a single acoustic model set independeRtocessing, 13(3):412-421.

of the number of distorting environments, and J: Droppo, L. Deng and A. Acero. 2001. Evaluation

keeps memory load and computation requiremen the SPLICE algorithm on the Aurora2 database.
low P y P q roceedings EuroSpeech, 217-220.

W. M. Fisher, R. Doddington and K. M. Goudie-

.A.SR accuracy with the proposgd algorithm 'SMarshall. 1986. The DARPA Speech Recognition Re-
similar to that of model-compensation approach€$.,rch Database: Specifications and Sta®usceed-

if large amounts of training material are availablejngs DARPA Workshop on Speech Recognition, 93-99.
In addition, when the amount of training data is J. H. L. Hansen, R. Huang, P. Mangalath, B. Zhou,
small, multivariate linear correction shows betteM. Seadle, M. and J. Deller. 2004. SPEECHFIND:
accuracy than all the other approaches considerezpoken document retrieval for a national galleryhef
Experiments on real telephone data where alsgpoken wordNORSIG, 1-4.
conducted showing very promising results (only X- Huang, A. Acero and H. W. Hon. 2003poken
~2% absolute loss compared to model adaptationb'?mg“a\?aenpkrg\fv”% Plie{;)t/';ﬁs';'v"’::ﬁy S Basson and J
. The new approach clearly _outpe_rforms our plreépitz. 1990. NTiMIT: A Phoneticaliy Balanced, Con-

vious pol-ynomlal compe_nsanon.wnh very Sma”tinuous Speech, Telephone Bandwidth Speech Data-
increase in computation time. This shows the greglhse proceedings of ICASSP, 1:109-112 .
advantage of a full compensation matrix over a N. Morales, D. T. Toledano, J. H. L. Hansen, J. Co-
diagonal one for the case of band-limited data anes and J. Garrido. 2005. Statistical class-basE€®
is in agreement with the practical observations ienhancement of filtered and band-limited speech for
Sections 3 and 4.2. robust ASR Proceedings EuroSpeech, 2629-2632.

In the future, the need of stereo data should beN- Morales, D. T. Toledano, J. H. L. Hansen and J.

overcome to allow straightforward application to &©las. 2007. Blind feature compensation for time-
variety of new practical situations. variant band-limited speech recognitiditEE Sgnal

Processing Letters, 14(1):70-73.
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