
IceParser: An Incremental Finite-State Parser for Icelandic

Hrafn Loftsson
Department of Computer Science

Reykjavik University
Reykjavik, Iceland
hrafn@ru.is

Eiríkur Rögnvaldsson
Department of Icelandic

University of Iceland
Reykjavik, Iceland
eirikur@hi.is

Abstract

We describe and evaluate an incremental
finite-state parser for Icelandic – the first
parser published for the language. Input
to the parser is POS tagged text and it gen-
erates output according to a shallow syn-
tactic annotation scheme, specifically de-
signed for this project. The parser con-
sists of a phrase structure module and a
syntactic functions module. Both modules
comprise a sequence of finite-state trans-
ducers, each of which adds syntactic in-
formation into substrings of the input text.
F-measure for constituents and syntactic
functions is 96.7% and 84.3%, respec-
tively. These results are good, because
Icelandic has a relatively free word order
which can be difficult to account for in a
parser. Moreover, of the various morpho-
logical features available in the rich POS
tags, the transducers only use the case fea-
ture in their patterns.

1 Introduction

Syntactic analysis for natural languages is often di-
vided into two categories: full parsing, in which a
complete analysis for each sentence is computed,
and shallow parsing, where sentence parts or chunks
are analysed without building a complete parse tree.

One problem with full parsing is that the set of
solutions can grow exponentially, because, gener-
ally, the parser considers all possible analysis of a

given sentence. Moreover, since the goal is to build
a complete parse tree for each sentence, the parser
sometimes rejects a correct analysis of a sentence
part on lower levels in the parse tree, on the ground
that it does not fit into a global parse. Shallow pars-
ing techniques do not have these problems because
their aim is “to recover syntactic information effi-
ciently and reliably from unrestricted text, by sacri-
ficing completeness and depth of analysis” (Abney,
1996).

In many natural language processing (NLP) appli-
cations, it can be sufficient to analyse sentence parts
or phrases. This can be the case, for example, in
applications like information extraction, text sum-
marisation and some types of grammar checking,
in which identification of phrases is more important
than a global parse. Additionally, in cases of low
quality input or spoken language, a shallow pars-
ing method can be more robust than a full parsing
method, because of noise, missing words and mis-
takes in the input (Li and Roth, 2001).

In this paper we describe a shallow parser, Ice-
Parser, for parsing Icelandic text – the first parser
published for the language1. IceParser is based
on the incremental finite-state approach, in which a
parser comprises a sequence of finite-state transduc-
ers. The transducers add syntactic information into
the text in an incremental manner.

The input to IceParser is part-of-speech (POS)
tagged text, using the detailed IFD tagset (Pind et
al., 1991). It produces output according to a shal-
low annotation scheme, specifically designed for

1This work was partly supported by the Icelandic Research
Fund, grant “Shallow parsing of Icelandic text”.

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
NODALIDA 2007 Conference Proceedings, pp. 128–135

IceParser: An Incremental Finite-State Parser for Icelandic

this project. The scheme consists of descriptions for
annotation of both constituent structure and syntac-
tic functions. Accordingly, the parser comprises two
main modules: a phrase structure module and a syn-
tactic functions module.

Evaluation shows that IceParser is both effective
and efficient. F-measure for constituents and syn-
tactic functions is 96.7% and 84.3%, respectively.
These results are good, because the free word or-
der in Icelandic can be difficult to account for in a
parser. The parser is implemented in Java and pro-
cesses about 11,300 word-tag pairs per second.

The remainder of this paper is organised as fol-
lows. In Section 2, we describe finite-state parsing
in more detail. In Section 3, the main relevant fea-
tures of Icelandic morphology and syntax are briefly
described. Our annotation scheme is described in
Section 4. We describe the design of IceParser in
Section 5, and, in Section 6, we present the evalu-
ation results. In Section 7, we analyse some of the
errors, and we conclude in Section 8.

2 Finite-state parsing

Non-recursive language models, like finite-state
grammars, have been used successfully to produce
shallow parsers from the early 1990’s.

The reductionist method by Koskenniemi et al.
(1992) was influenced by the Constraint Grammar
approach (Karlsson et al., 1995), in which syntac-
tic tags are associated with words, instead of using
phrase tree structures to represent parses. The main
idea is to reduce all possible readings of a sentence
(represented by finite-state automata) to one correct
reading by a set of elimination rules.

A contrasting method is the constructive ap-
proach, which is based on a lexical description of a
collection of syntactic patterns. The use of finite-
state transducers to introduce syntactic labels into
the input sentences is one example of the construc-
tive approach.

A common constructive approach is to string to-
gether a sequence of transducers to build incre-
mental (or cascading) shallow parsers (Grefenstette,
1996; Abney, 1997). Each transducer adds syntactic
information into the text, such as brackets and names
for grammatical functions. The hybrid method by
(Aït-Mokhtar and Chanod, 1997) merges the con-

structive and the reductionist approaches by defin-
ing chunks (core phrases) by constraints rather than
syntactic patterns.

The Xerox Finite-State Tool (XFST) (Karttunen
et al., 1996) is often used to develop finite-state
parsers. The XFST includes extensions to the stan-
dard regular expression calculus, which simplify the
creation of finite-state transducers for syntactic pro-
cessing.

Finite-state parsing methods have been used to
develop a number of shallow parser for different
languages, e.g. Spanish (Molina et al., 1999),
Swedish (Megyesi and Rydin, 1999; Kokkinakis
and Johansson-Kokkinakis, 1999), German (Müller,
2004), and French (Aït-Mokhtar and Chanod, 1997).
Parsers built using finite-state methods are usually
robust and fast, because they are, in fact, just a
pipeline of lexical analysers.

3 Icelandic

Compared to its closest relatives (i.e. the other
Nordic languages), Icelandic is a heavily inflected
language, with nouns belonging to one of three gen-
ders, inflecting for four cases and two numbers. Ad-
ditionally, nouns sometimes have a suffixed definite
article. Adjectives inflect for four cases, three gen-
ders, three degrees, and two numbers, besides hav-
ing both a “strong” (indefinite) and “weak” (definite)
form; verbs inflect for three persons, two (main)
moods, two tenses, and two voices; and so on.

Thus, the main Icelandic tagset, constructed in the
compilation of the IFD corpus, is large (about 660
tags) compared to related languages. In this tagset,
each character in a tag has a particular function. The
first character denotes the word class. For each word
class there is a predefined number of additional char-
acters (at most six), which describe morphological
features, like gender, number and case for nouns;
degree and declension for adjectives; voice, mood
and tense for verbs, etc.

To illustrate, consider the word “hestarnir”
(horses). The corresponding tag is “nkfng”, denot-
ing noun (n), masculine (k), plural (f), nominative
(n), and suffixed definite article (g).

Due to the rich inflections which serve to indi-
cate sentence-internal relationships and dependen-
cies, Icelandic word order is rather free, especially

129

Hrafn Loftsson and Eiríkur Rögnvaldsson

in many styles of written language. This freedom
mainly concerns the relative order of major syntactic
constituents, such as noun phrases (subjects and ob-
jects), preposition phrases, and adverb phrases, but
also, to a certain extent, phrase-internal word order.

If we were aiming at full parsing and wanted to
build a complete hierarchical parse tree, we would
be faced with many difficult practical and theoret-
ical questions. However, our annotation scheme is
shallow in the sense that its syntactic structures are
rather flat and simple, i.e. the main emphasis is to
annotate core phrases without showing a complete
parse tree. Therefore, the relatively free word order
does not necessarily pose a problem for our syntac-
tic annotation by itself, even though it may in many
cases make it difficult for our parser to correctly
identify certain syntactic constituents and especially
syntactic functions.

4 The annotation scheme

Our annotation scheme follows the dominant para-
digm in treebank annotation, i.e. it is “the kind
of theory-neutral annotation of constituent structure
with added functional tags” (Nivre, 2002).

Two labels are attached to each marked con-
stituent. The first one denotes the beginning of the
constituent, the second one denotes the end (e.g.
[NP . . . NP]). The main labels are AdvP, AP, NP,
PP and VP – the standard labels used for phrase an-
notation (denoting adverb, adjective, noun, prepo-
sition, and verb phrase, respectively). Addition-
ally, we use the labels CP, SCP, InjP, and MWE
for marking coordinating conjunctions, subordinat-
ing conjunctions, interjections, and multiword ex-
pressions, respectively. Furthermore, we use the la-
bels APs and NPs, for marking a sequence of adjec-
tive phrases (agreeing in gender, number and case)
and noun phrases (agreeing in case), respectively.

Our scheme subclassifies VPs. A finite verb
phrase is labelled as [VP . . . VP] and consists of a
finite verb, optionally followed by a sequence of
AdvPs and supine verbs. Other types of VPs are
labelled as [VPx . . . VPx], where x can have the fol-
lowing values: i, denoting an infinitive VP; b, de-
noting a VP which demands a predicate nominative
(i.e primarily a verb phrase consisting of the verb
“vera” (be)); s, denoting a supine VP; p, denoting

a past participle VP; g: denoting a present participle
VP.

We use curly brackets for denoting the beginning
and the end of a syntactic function (as carried out
by Megyesi and Rydin (1999)). Special function
tags are used for labels: *QUAL, *SUBJ, *OBJ,
*OBJAP, *OBJNOM, *IOBJ, *COMP, *TIMEX,
denoting a genitive qualifier, a subject, an object, an
object of an AP, a nominative object, an indirect ob-
ject, a complement, and a temporal expression, re-
spectively.

Additionally, for some of the syntactic function
labels (see table 2), we use relative position indica-
tors (“<” and “>”). For example, *SUBJ> means
that the verb is positioned to the right of the sub-
ject, *SUBJ< denotes that the verb is positioned to
the left, while *SUBJ is used when it is not clear
where the accompanying verb is positioned or when
the verb is missing. The motivation behind using
the indicators is to simplify grammar checking at
later stages. A thorough description of the annota-
tion scheme can be found in (Loftsson and Rögn-
valdsson, 2006).

We have constructed a grammar definition corpus
(GDC), a corpus consisting of 214 sentences (se-
lected from the IFD corpus), representing the ma-
jor syntactic constructions in Icelandic. The purpose
of the GDC is to “provide an unambiguous answer
to the question how to analyse any utterance in the
object language” (Voutilainen, 1997). Furthermore,
this corpus has been used as the development corpus
for IceParser.

To illustrate the annotation scheme, consider the
following sentence parts (shown without POS tags),
obtained from the GDC.

• {*SUBJ> [NP vagnstjórinn NP] *SUBJ>} [VP
sá VP] {*OBJ< [NP mig NP] *OBJ<}
(driver-the saw me)

• {*SUBJ> [NP systir NP] {*QUAL [NP hennar
NP] *QUAL} *SUBJ>} [VPb var VPb]
(sister her was)

• [VPb er VPb] {*SUBJ< [NP ég NP] *SUBJ<}
{*COMP< [VPp fædd VPp] [CP og CP] [VPp
uppalin VPp] *COMP<}
(am I born and raised)

130

IceParser: An Incremental Finite-State Parser for Icelandic

• {*SUBJ> [NP ég NP] *SUBJ>} [VPb er
VPb] {*COMP< [AP bundin AP] *COMP<}
{*OBJAP< [NP Reykjavík NP] *OBJAP<}
(I am bound [to] Reykjavik)

5 IceParser

IceParser is designed to produce annotations ac-
cording to the annotation scheme described in Sec-
tion 4. The parser, which is purely constructive, con-
sists of two main components: a phrase structure
module (14 transducers) and a syntactic functions
module (8 transducers). The purpose of the modular
architecture “is to facilitate the work during devel-
opment, to allow different uses of the parser and to
reflect the different linguistic knowledge that is built
into the parser” (Megyesi and Rydin, 1999). In both
modules, the output of one transducer serves as the
input to the following transducer in the sequence.

The transducers include numerous syntactic pat-
terns, written to account for the relatively free word
order of Icelandic. Apart from relying on word class
or subclass information in the POS tags, the patterns
only use the grammatical case feature.

The reason for not using to full extent the morpho-
logical information available in each POS tag, is
that we want our parser to be utilised as a gram-
mar checking tool, among other things. If the parser,
for example, uses feature agreement to a great extent
to mark phrases then it will not be possible for the
grammar checking tool to point out feature agree-
ment errors inside phrases. This is because the cor-
responding words would not have been recognised
as one phrase by the parser, due to the lack of fea-
ture agreement!

The parser is implemented in Java and the lexical
analyser generator tool JFlex (http://jflex.de/). Each
transducer is written in a separate file, which is com-
piled into Java code using JFlex. The resulting Java
code is a deterministic finite-state automaton (DFA),
along with actions to execute for each recognised
pattern. The actions add syntactic information into
the text.

The reason for not using the XFST for implemen-
tation is that IceParser is part of a NLP toolkit for
Icelandic, all of which is implemented in Java.

5.1 The phrase structure module
The purpose of the phrase structure module is to
add brackets and labels to input sentences to indi-
cate constituent structure. The syntactic annotation
is performed in a bottom-up fashion, i.e. the deepest
constituents are analysed first. For example, AdvPs
are marked before APs, which are in turn marked
before NPs.

To illustrate, consider the Phrase_AdvP trans-
ducer, which marks AdvPs, consisting of a single ad-
verb, by putting the markers [AdvP . . . AdvP] around
it. An adverb in the input text is recognised using the
regular expressions:
Adv={WordSpaces}{AdvTag}

The pattern {WordSpaces} denotes a sequence of
word characters (all possible characters except white
space) followed by one or more spaces. {AdvTag}
is a pattern which matches an adverb POS tag. An
{Adv} is thus a word tagged as an adverb.

The action associated with the {Adv} pattern is re-
sponsible for putting the appropriate brackets and
labels around the recognised substring. For exam-
ple, the word-tag pair mjög aa (very) is annotated as
[AdvP mjög aa AdvP] by this transducer.

Consider the Phrase_AP transducer (slightly sim-
plified), which marks APs, (using [AP . . . AP]), con-
sisting of a single adjective optionally preceded by
an AdvP. It uses the following regular expressions:
Adj={WordSpaces}{AdjTag}
OpenAdvP="[AdvP"
CloseAdvP="AdvP]"
AdvPhrase={OpenAdvP}~{CloseAdvP}
AdjPhrase={AdvPhrase}?{Adj}

Here {Adj} is a pattern which matches a word
tagged as an adjective. In JFlex, the regular expres-
sion ∼a matches everything up to (and including)
the first occurrence of a text matched by a. Thus, an
{AdvPhrase}, to be included in an {AdjPhrase}, con-
sist of a bracket and a label denoting the start of an
adverb phrase followed by everything up to a label
and a bracket denoting the end of the AdvP. For ex-
ample, the substring [AdvP mjög aa AdvP] góður
lkensf (very good) is annotated as [AP [AdvP mjög
aa AdvP] góður lkensf AP] (henceforth, we do not
show the POS tags in the examples).

The most complicated of all the transducers is the
Phrase_NP transducer, which marks noun phrases

131

Hrafn Loftsson and Eiríkur Rögnvaldsson

(the resulting DFA consists of about 50,000 states).
This is due to the various ways a NP can be gen-
erated – from a single pronoun (e.g. [NP hann
NP] (he)), to a sequence of an indefinite pronoun, a
demonstrative pronoun/article, a numeral, an adjec-
tive phrase and a noun (e.g. [NP allir þessir þrír [AP
stóru AP] strákar NP] (all these three big boys)).

For example, the substring [AP [AdvP mjög
AdvP] góður AP] kennari (very good teacher) is an-
notated as [NP [AP [AdvP mjög AdvP] góður AP]
kennari NP] by this transducer.

5.2 The syntactic functions module
The purpose of the syntactic functions module is to
add tags to denote grammatical functions. The input
to the first transducer in this module is the output of
the last transducer in the phrase structure module.

To illustrate, consider the Func_SUBJ transducer,
which annotates subjects. This transducer uses var-
ious patterns to recognise subjects, depending on
whether the subject appears to the left of the finite
verb phrase, to the right of the verb phrase, precedes
a relative conjunction, etc. Here, we only discuss
(a simplified version of) the main case, in which the
subject appears to the left of the finite verb phrase:

NomSubj={NPNom}|{NPsNom}
VPorVPBe={VP}|{VPBe}
SubjVerb=({NomSubj}{WS}+{VPorVPBe}|

{DatSubj}{WS}+{VPDat}|
{AccSubj}{WS}+{VPAcc}

{WS}+ denotes one or more white spaces. {Nom-
Subj}, {AccSubj} and {DatSubj} match a single nom-
inative NP, or a sequence of NPs, in the nominative,
accusative, or dative case, respectively. {VPorVPBe}
matches a finite verb phrase or a verb phrase con-
taining the verb “vera” (be), and {VPDat} and
{VPAcc} match verbs that demand oblique case sub-
jects (this list of verbs is implemented as regular
expressions). The action, associated with the pat-
tern {SubjVerb}, finds out where the VP starts (using
string searches) and puts the appropriate markers
{*SUBJ> . . . *SUBJ>} around the subject.

As another example, consider the Func_COMP
transducer, whose main function is to annotate com-
plements of the verb “vera”. A part of the patterns
used by this transducer is (slightly simplified):

Compl={APSeqNom}|{NPSeqNom} |

{VPPastSeq}
SubjVerbBe={Subject}{WS}+{VPBe}{WS}+
SubjVerbCompl={SubjVerbBe}{Compl}

According to this pattern a {Compl} is a sequence
of nominative APs or NPs, or a sequence of past par-
ticiple VPs. A {SubjVerbBe} is a {Subject}, followed
by a verb phrase containing the verb “vera”. The ac-
tion, associated with the pattern {SubjVerbCompl},
finds out where the VP ends and puts the appropriate
markers {*COMP< . . . *COMP<} around the com-
plement.

For example, for the substring [NP hann NP]
[VPb er VPb] [NP [AP [AdvP mjög AdvP] góður
AP] kennari NP] (he is very good teacher), the ap-
plication of the Func_SUBJ and Func_COMP trans-
ducers results in the string {*SUBJ> [NP hann NP]
*SUBJ>} [VPb er VPb] {*COMP< [NP [AP [AdvP
mjög AdvP] góður AP] kennari NP] *COMP<}.

6 Evaluation

IceParser has been evaluated on 509 sentences
(8281 tokens), randomly selected from the IFD cor-
pus. Since this corpus is only POS tagged, two an-
notators manually annotated the sentences (after the
parser had been developed) with constituent struc-
ture and syntactic functions, according to our anno-
tation scheme. The resulting treebank is our gold
standard.

We used the Evalb bracket scoring program
(Sekine and Collins, 1997) for automatic evaluation.
For the evaluation of labelled constituent structure,
we carried out two experiments. In the first one,
we used the tags from the IFD corpus, i.e. we as-
sumed correct tagging (see column 2 in table 1). In
this case, the overall F-measure (2 ∗ precision ∗
recall/(precision + recall)) is 96.7%.

As can be deduced from table 1, VP, CP, SCP
and InjP are “easy” to annotate. These phrase types
constitute 28.6% of the phrases in the gold standard,
and, thus, help to make the overall accuracy quite
high. On the other hand, the accuracy for the more
“difficult” phrase types, like AP, NP and PP (which
constitute 58.7% of the phrases), is about 95%-97%,
according to our results.

In the second experiment, we used the tagger Ice-
Tagger (Loftsson, 2006) to tag the sentences in the
gold standard, before IceParser was run. The POS

132

IceParser: An Incremental Finite-State Parser for Icelandic

Phrase F-measure F-measure Freq. in
type using correct using test data

POS tags IceTagger
AdvP 91.8% 85.1% 8.2%
AP 95.1% 86.3% 8.1%
APs 87.0% 68.6% 0.5%
NP 96.8% 93.0% 37.6%
NPs 80.4% 74.3% 1.5%
PP 96.7% 91.3% 13.0%
VPx 99.2% 93.8% 19.3%
CP 100.0% 99.6% 5.7%
SCP 99.6% 97.6% 3.4%
InjP 100.0% 96.3% 0.2%
MWE 96.9% 92.6% 2.5%
All 96.7% 91.9% 100.0%

Table 1: Results for the various phrase types.

tagging accuracy for these sentences is 91.1% (un-
known word ratio is 7.8%). In this case, the over-
all F-measure for constituent structure drops from
96.7% to 91.9% (see column 3 in table 1), which is
equivalent to about 5.0% reduction in accuracy. The
POS tagging accuracy is relatively low, compared to
related languages, and this has substantial effect on
the overall parsing accuracy.

Unfortunately, we can not compare our results
to other parsers for Icelandic, since this evaluation
is the first parser evaluation published for the lan-
guage. For the sake of a comparison with a re-
lated language2, Swedish, Knutsson et al. (2003) re-
port 88.7% F-measure for all phrases, and 91.4% for
NPs, when using a tagger to preprocess the text and
a shallow (not finite-state) rule-based parser. Using
a finite-state parser, Kokkinakis and Johansson-
Kokkinakis (1999) report higher numbers, 93.3% for
all phrases and 96.2% for NPs, despite using a tag-
ger for preprocessing. The tagger used, however, ob-
tains very high accuracy when tagging the test data,
i.e. 98.7%. We believe that this comparison indi-
cates our parser performs well when annotating con-
stituents.

For the evaluation of syntactic functions, we also
carried out experiments with and without correct

2Note that comparison between languages is questionable,
because of different language characteristics, parsing methods,
annotation schemes, test data, evaluation methods, etc.

Function F-measure F-measure Freq. in
type using correct using test data

POS tags IceTagger
SUBJ 68.2% 47.6% 4.7%
SUBJ> 92.7% 89.4% 30.3%
SUBJ< 83.7% 75.1% 12.3%
OBJ 0.0% 0.0% 0.2%
OBJ> 43.5% 20.0% 0.8%
OBJ< 90.2% 78.2% 19.7%
OBJAP> 71.4% 57.2% 0.2%
OBJAP< 75.0% 46.2% 0.4%
OBJNOM< 30.8% 16.7% 0.6%
IOBJ< 73.3% 51.9% 0.9%
COMP 56.9% 40.0% 2.8%
COMP> 91.3% 91.3% 1.3%
COMP< 75.1% 70.0% 12.7%
QUAL 87.7% 77.9% 10.4%
TIMEX 74.7% 55.9% 2.7%
All 84.3% 75.3% 100.0%

Table 2: Results for the various syntactic functions.

tagging. When using the correct tags from the IFD
corpus, the overall F-measure is 84.3% – see column
2 of table 2. When considering subjects and objects,
the highest accuracy is obtained for the functions
SUBJ> and OBJ<, i.e. a subject whose accompa-
nying verb is to the right, and an object whose ac-
companying verb is to the left. This was to be ex-
pected, because the normal word order is SVO. If
the relative position indicator is ignored (many shal-
low parser do not include such an indicator), thus,
for example, combining the three subject functions
into one, F-measure for SUBJ and OBJ is 90.5% and
88.2%, respectively.

When IceTagger is used to produce tags, the over-
all F-measure for syntactic functions drops from
84.3% to 75.3% (see column 3 in table 2), which
is equivalent to about 10.7% reduction in accuracy.
Thus, the accuracy of the syntactic functions mod-
ule is more sensitive to tagging errors than the con-
stituent module. This can be explained by the fact
that the former component relies to a much higher
extent on the case feature, which is often responsi-
ble for the errors made by the tagger.

Again, we are not in a position to compare our
results to another Icelandic parser. For German (a

133

Hrafn Loftsson and Eiríkur Rögnvaldsson

related language), Müller (2004), for example, has
presented the following results of syntactic func-
tion annotation using a finite-state parser (and POS
tags from a corpus): 82.5% F-measure for all func-
tions, and 90.8%, 64.5% and 81.9%, for subjects,
accusative objects and dative objects, respectively.
If these results are used for comparison, IceParser
seems to obtain good results for syntactic functions.

In the first version of IceParser, the output file
of one transducer is used as an input file in the
next transducer in the sequence. This version pro-
cesses about 6,700 word-tag pairs per second (run-
ning on a Dell Optiplex GX620 Pentium 4, 3.20
GHz). We have implemented another version of the
parser which, instead of reading and writing to files,
reads from and writes directly to memory (using the
Java classes StringReader and StringWriter). This
version annotates about 11,300 word-tag pairs per
second, which is equivalent to about 75% speed in-
crease compared to the previous version.

7 Error analysis

In this section, we show examples of the errors made
by IceParser.

The only type of error in adverb phrase annotation
occurs when the parser incorrectly groups together
two (or more) adjacent adverbs. Consider the incor-
rect output:
[PP um [NP það NP] PP] [VP vissi VP] [NP stel-
pan NP] [AdvP ekki þá AdvP] (about that knew girl
not then).
The two adverbs at the end should form two distinct
AdvPs, because “ekki” is a sentence adverb which
does not modify the temporal adverb “þá”.

Adverbs are also the source of some of the errors
made in then annotation of adjective phrases. Con-
sider the incorrect output:
[CP og CP] [VP tóku VP] [NP [AP [AdvP fram
AdvP] eigin AP] dósir NP] (and took out own cans).
In this sentence part, the adverb “fram” is a particle
associated with the verb “tóku” (take out), but not a
modifier of the adjective “eigin”.

A frequent noun phrase error made by the parser
is exemplified by the incorrect output [NP árin NP]
[AP gullnu AP] (years golden). Here, the correct
annotation is [NP árin [AP gullnu AP] NP], because
the adjective “gullnu” is a post-modifier of the noun

“árin”. IceParser makes this type of error, because
it does not include a pattern for noun-adjective word
order.

The Phrase_NPs transducer groups together a se-
quence of noun phrases agreeing in case. Consider
the incorrect output:
[AP sterkur AP] [VPb var VPb] [NPs [NP hann NP]
[CP og CP] [NP íþróttamaður NP] NPs] [AP ágæ-
tur AP] (strong was he and athlete fine).
Here, the parser groups the noun phrases [NP hann
NP] and [NP íþróttamaður NP] together, because
the phrases agree in case. The correct annotation,
however, is:
[AP sterkur AP] [VPb var VPb] [NP hann NP] [CP
og CP] [NP íþróttamaður [AP ágætur AP] NP].

To give an example where IceParser annotates a
subject without a correct position indicator, consider
the output:
[VPb er VPb] [AdvP ekki AdvP] [VPi að koma VPi]
{*SUBJ [NP matur NP] *SUBJ}? (is not to come
food?).
The correct annotation for the subject is {*SUBJ<
[NP matur NP] *SUBJ<}, because “matur” is the
subject of the verb “er” at the beginning of the sen-
tence. IceParser does include patterns to match the
order VP-AdvP-SUBJ, but, in this case, the infini-
tive verb phrase [VPi að koma VPi] is positioned
in between the AdvP and the SUBJ. The parser,
however, marks all stand-alone nominative NPs as
{*SUBJ . . . *SUBJ}, and therefore the [NP matur
NP] phrase does receive subject marking, albeit in-
complete.

Finally, note that some of the errors in syntac-
tic function annotation are due to errors made in
the phrase structure annotation. For the incorrect
phrase structure output (discussed above) [CP og
CP] [VP tóku VP] [NP [AP [AdvP fram AdvP] eigin
AP] dósir NP], the parser will produce the syntactic
function:
{*OBJ< [NP [AP [AdvP fram AdvP] eigin AP]
dósir NP] *OBJ<}.
This object is incorrect, because it includes the ad-
verb phrase [AdvP fram AdvP].

8 Conclusion

We have described and evaluated the incremental
finite-state parser IceParser, for parsing Icelandic

134

IceParser: An Incremental Finite-State Parser for Icelandic

text. The parser comprises two modules: a phrase
structure module and a syntactic functions module.
Both modules consist of a sequence of transduc-
ers, which add syntactic information into the input
strings, according to our shallow syntactic annota-
tion scheme.

Evaluation shows that F-measure for phrases and
syntactic functions is 96.7% and 84.3%, respec-
tively. We have argued that these results are good,
because Icelandic has a relatively free word order,
which is difficult to account for in a parser. More-
over, of the various morphological features available
in the rich POS tags, the transducers only use the
case feature in their patterns.

In future work, we would like to improve individ-
ual components of our parser, and build a version
of it which utilises to a greater extent the morpho-
logical information available in the POS tags.

9 Acknowledgements

Thanks to the Institute of Lexicography at the Uni-
versity of Iceland, for providing access to the IFD
corpus.

References
S. Abney. 1996. Part-of-Speech Tagging and Partial

Parsing. In K. Church, S. Young, and G. Bloothooft,
editors, Corpus-Based Methods in Language and
Speech. Kluwer Academic Publishers.

S. Abney. 1997. Partial Parsing via Finite-State Cas-
cades. Natural Language Engineering, 2(4):337–344.

S. Aït-Mokhtar and J-P. Chanod. 1997. Incremental
Finite-State Parsing. In Proceedings of Applied Nat-
ural Language Processing, Washington DC, USA.

G. Grefenstette. 1996. Light Parsing as Finite State Fil-
tering. In Proceedings of the ECAI ’96 workshop on
“Extended finite state models of language”, Budapest,
Hungary.

F. Karlsson, A. Voutilainen, J. Heikkilä, and A. Anttila.
1995. Constraint Grammar: A Language-
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, Berlin, Germany.

L. Karttunen, J-P. Chanod, Grefenstette, G., and
A. Schiller. 1996. Regular expressions for lan-
guage engineering. Natural Language Engineering,
2(4):305–328.

O. Knutsson, J. Bigert, and V. Kann. 2003. A Ro-
bust Shallow Parser for Swedish. In Proceedings of
NoDaLiDa 2003, Reykjavik, Iceland.

D. Kokkinakis and S. Johansson-Kokkinakis. 1999. A
Cascaded Finite-State Parser for Syntactic Analysis of
Swedish. In Proceedings of the 9th Conference of the
European Chapter of the ACL (EACL), Bergen, Nor-
wsay.

K. Koskenniemi, P. Tapanainen, and A. Voutilainen.
1992. Compiling and using finite-state syntactic rules.
In Proceedings of the 14th International Conference
on Computational Linguistics, Nantes, France.

X. Li and D. Roth. 2001. Exploring Evidence for Shal-
low Parsing. In Proceedings of the 5th Conference on
Computational Natural Language Learning, Toulouse,
France.

H. Loftsson and E. Rögnvaldsson. 2006. A shallow
syntactic annotation scheme for Icelandic text. Tech-
nical Report RUTR-SSE06004, Department of Com-
puter Science, Reykjavik University.

H. Loftsson. 2006. Tagging a Morphologically Complex
Language Using Heuristics. In T. Salakoski, F. Ginter,
S. Pyysalo, and T. Pahikkala, editors, Advances in Nat-
ural Language Processing, 5th International Confer-
ence on NLP, FinTAL 2006, Proceedings, Turku, Fin-
land.

B. Megyesi and S. Rydin. 1999. Towards a Finite-State
Parser for Swedish. In Proceedings of NoDaLiDa
1999, Throndheim, Norway.

A. Molina, F. Pla, L. Moreno, and N. Prieto. 1999.
APOLN: A Partial Parser of Unrestricted Text. In Pro-
ceedings of SNRFAI99, Bilbao, Spain.

F-H. Müller. 2004. Annotating Grammatical Functions
in German Using Finite-State Cascades. In 20th In-
ternational Conference on Computational Linguistics,
Geneva, Switzerland.

J. Nivre. 2002. What kinds of trees grow in Swedish
soil? A Comparison of Four Annotation Schemes for
Swedish. In Proceedings of the 1st Workshop on Tree-
banks and Linguistic Theories, Sozopol, Bulgaria.

J. Pind, F. Magnússon, and S. Briem. 1991. The Ice-
landic Frequency Dictionary. The Institute of Lexi-
cography, University of Iceland, Reykjavik, Iceland.

S. Sekine and M.J. Collins. 1997. The Evalb
Software. http://nlp.cs.nyu.edu/evalb/. Site visited
November 2006.

A. Voutilainen. 1997. Designing a (Finite-State) Parsing
Grammar. In E. Roche and Y. Schabes, editors, Finite-
State Language Processing. MIT Press.

135

