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Abstract

This paper compares two approaches to
lexical compound word reconstruction
from a speech recognizer output where
compound words are decomposed. The
first method has been proposed earlier
and uses a dedicated language model that
models compound tails in the context of
the preceding words and compound heads
only in the context of the tail. A novel ap-
proach models imaginable compound par-
ticle connectors as hidden events and pre-
dicts such events using a simple N -gram
language model. Experiments on two
Estonian speech recognition tasks show
that the second approach performs consis-
tently better and achieves high accuracy.

1 Introduction

In many languages, compound words can be formed
by concatenating two or more word-like particles. In
Estonian (but also in other languages, such as Ger-
man), compound words occur abundantly and can
even be built spontaneously. In a corpus of written
Estonian consisting of roughly 70 million words, the
number of different word types (including inflected
words forms) is around 1.7 million and among those,
around 1.1 million (68%) are compound words.

In large vocabulary continuous speech recogni-
tion (LVCSR) systems, an N -gram statistical lan-
guage model is used to estimate prior word prob-
abilities in various contexts. The language model
vocabulary specifies which words are known to the
system and therefore can be recognized. However,

the large amount and spontaneous nature of com-
pound words makes it difficult to design a language
model that has a good coverage of the language. In
addition, when vocabulary is increased, it becomes
more difficult to robustly estimate language model
probabilities for all words in different contexts. In
order to decrease the lexical variety and the resulting
out-of-vocabulary (OOV) rate, compound words can
be split into separate particles and modeled as sepa-
rate language modeling units. As a result however,
the output of the recognizer consists of a stream of
non-compound units that must later be reassembled
into compound words where necessary.

In this paper, we compare the accuracy of two dif-
ferent methods for compound word reconstruction
from recognizer output. The first model was pro-
posed by Spies (1995) and is based on the assump-
tion that a compound word can be decomposed into
its first part(s) and the tail part. The predictive ef-
fect of the preceding context is only applied to the
tail of the compound word. The head part, on the
other hand, is assumed to be independent of the pre-
ceding context and its probability is calculated given
only the tail. The second approach treats imagin-
able connectors between compound word particles
as hidden events in the language model. Such a lan-
guage model is typically used for sentence segmen-
tation of conversational speech based on recognized
words (Stolcke and Shriberg, 1996), but can be gen-
eralized for detecting other hidden events between
recognized units. The latter approach is in essence
similar to the method used in the morph-based
speech recognition system described in (Siivola et
al., 2003), except that they model word boundaries,
not compound word connectors as seperate units,
and do it already in the decoder.
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The paper is organized as follows. In section 2 we
describe the approach to statistical large vocabulary
language modeling for Estonian. Section 3 describes
the two approaches for compound word reconstruc-
tion in more detail. Results of a variety of exper-
iments are reported in section 4. Some interesting
error patterns are identified and analyzed. We end
with a conclusion and some suggestions for future
work.

2 Language modelling for Estonian

Estonian is an agglutinative and highly inflective
language. One or many suffixes can be appended to
verb and noun stems, depending on their syntactic
and semantic role in the sentence.

Estonian is also a so-called compounding lan-
guage, i.e. compound words can be formed from
shorter particles to express complex concepts as sin-
gle words. For example, the words rahva ‘folk’ and
muusika ‘music’ can be combined to form a word
rahvamuusika ‘folk music’ and this in turn can be
combined with the word ansambel to form rahva-
muusikaansambel ‘folk music group’.

As a result, the lexical variety of Estonian is very
high and it is not possible to achieve a good vocab-
ulary coverage when using words as basic units for
language modelling. Figure 1 compares the out-of-
vocabulary (OOV) rates of three different vocabu-
laries: words, words after decompounding, and after
full morphological decomposition. The vocabular-
ies are selected from a corpus described in section
4.1 and the OOV-rates are measured against a set
of sentence transcripts used for speech recognition.
The OOV-rate was measured using varying vocabu-
lary sizes.

It is clear from the experiments that neither words
nor decompounded words are suitable for language
modelling using a conventionally sized vocabulary.
The OOV-rate of the word-based vocabularies is
much over what can be tolerated even when using
a very large 800K size vocabulary. It can be seen
that after splitting the compound words, the OOV-
rate is roughly halved. Still, even when using a large
100K vocabulary, the OOV-rate is about 6% – too
much to be used in large vocabulary speech recog-
nition. However, the OOV-rates of morphemes is
much lower and can be compared with the OOV-
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Figure 1: Out-of-vocabulary rate of different vocab-
ularies.

rates of English word-based vocabularies of similar
sizes. The OOV-rate of the morpheme-based vocab-
ulary reaches the 2% threshold already when using
a 40K vocabulary.

When using morphemes as basic units for lan-
guage modelling, the output of the decoder is a se-
quence of morphemes. The set of different suf-
fix morphemes is rather small and thus the suffixes
can be tagged in the vocabulary so that they can
be concatenated to the previous stem after decod-
ing. However, this approach can not be applied for
reconstructing compound words as the set of stems
and morphemes that take part in forming compound
words is very large and sparse. The rest of the paper
describes and compares two methods that attempt to
reconstruct compound words from the sequence of
morphemes.

3 Methods

This section describes two independent approaches
to compound word reconstruction. Both of those
methods enable us to compute a posterior probabil-
ity of a compound word once its subsequent com-
posing words have been recognized.

3.1 Compound word language model
The compound word language model proposed by
Spies (1995) is based on the observation that the
grammatically determining part of a compound
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word in many languages is the last particle. This is
true for both German, for which the model was orig-
inally developed, as well as for Estonian. The head
words of a compound may be considered as seman-
tic modifiers of the last particle.

This observation suggests that when calculating
language model scores for compound words, the
predictive effect of the preceding context should be
applied only to the tail part of the compound, while
the probabilities of head words are computed given
the tail. Let h1 denote the first head of a compound,
h2...hn the (optional) remaining heads, t the tail of
part of the compound and w1w2 the two preceding
context words. Then, the total probability of a com-
pound word h1..hnt given the two preceding words
w1w2 can be calculated as

P (h1..hnt|w1w2) =

Ph(h1)
n∏

i=2

Ph(hi|hi−1)
Pbw(hn|t)Ptail(t|w1w2)

P (hn)

Here, Ph(hi|hi−1) is the within-head bigram proba-
bility, i.e., the probability that the compound head hi

occurs after the compound head hi−1. Pbw(hn|t) is
the backward bigram probability of compound head
hn followed by tail t, i.e., the probability of the last
head given the tail. Ptail(t|w1w2) is the distant tri-
gram probability of the compound tail, i.e. the prob-
ability of a compound ending with the tail t given
the last two context words. The given equation con-
sists of two parts: the first part amounts to a simple
bigram probability of the compound head sequence,
independent of the observed context, while the last
fraction expresses the distant trigram probability of
the tail, multiplied by the gain in probability of the
last head due to the observed tail. See the original
proposal of this model (Spies, 1995) for more de-
tails about the derivation of this equation.

Given a sequence of recognized units (that are
either true words or compound particles), the most
probable reconstruction is found as follows:

1. Any unit can be regarded as a non-compound
part. Unit probability is then calculated using
the trigram distribution.

2. In case the unit has occurred as a compound
head in the training corpus, a new compound
branch is created. The compound branch con-
tinues as follows:

(a) If the next word is again a head candidate,
a new compound branch is created, and
the processing in the new branch is con-
tinued as in step 2.

(b) If the next word is a compound tail candi-
date, a new possible compound word has
been found. The compound word proba-
bility is calculated according to the com-
pound word model equation. Processing
in this branch continues as in step 1.

(c) If the next word is neither a head nor a tail
candidate, the current branch is discarded.

3. The most probable reconstruction of a sentence
is the one that corresponds to the path with the
highest product score.

3.2 Hidden event language model

The hidden event language model (Stolcke and
Shriberg, 1996) describes the joint distribution of
words and events, PLM (W,E). In our case,
words correspond to the recognized units and
events to the imaginable interword compound
particle connectors. Let W denote the recog-
nized tokens w1, w2, ..., wn and E denote the se-
quence of interword events e1, e2, ..., en. The
hidden event language model describes the joint
distribution of words and events, P (W,E) =
P (w1, e1, w2, e2, ..., wn, en).

For training such a hidden event language model,
a training corpus is used such that the compound
words are decomposed into separate units, and the
compound connector event is represented by an ad-
ditional nonword token (<CC>), for example:

gruusia rahva <CC> muusika <CC>
ansambel andis meelde <CC> jääva
kontserdi

‘Georgian folk music group gave a memorable con-
cert’.

The language model used for recognition is
trained on the corpus where the compound connec-
tor tags are removed. The vocabulary of the com-
pound reconstruction language model is the same as
that of the main language model, with an additional
token “<CC>”. We do not explicitly model the
“non-CC” event in order to make more effective use
of the contextual information. During compound re-
construction, the Viterbi algorithm is used to find the
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most likely sequence of words and hidden tokens for
the given input sequence. The word/event pairs cor-
respond to states and the words to observations, and
the transition probabilities are given by the the hid-
den event N -gram model.

4 Experiments

4.1 Training data

We tested the concepts and algorithms described
here using two different Estonian speech databases,
BABEL and SpeechDat.

The Estonian subset of the BABEL multi-
language database (Eek and Meister, 1999) contains
speech recordings made in an anechoic chamber, di-
rectly digitized using 16-bits and a sampling rate of
20 kHz. The textual content of the database consists
of numbers, artificial CVC-constructs, 5-sentence
mini-passages and isolated filler sentences. The iso-
lated sentences were designed by phoneticians to be
especially rich in phonologically interesting varia-
tions. The sentences are also designed to reflect the
syntactic and semantic complexity and variability
of the language. For training acoustic models, the
mini-passage and isolated sentence recordings of 60
speakers were used, totalling in about 6 hours of au-
dio data. For evaluation, 138 isolated sentence utter-
ances by six different speakers were used.

The SpeechDat-like speech database project
(Meister et al., 2002) was aimed to collect tele-
phone speech from a large number of speakers for
speech and speaker recognition purposes. The main
technical characteristics of the database are as fol-
lows: sampling rate 8 kHz, 8-bit mono A-law en-
coding, calls from fixed and cellular phones as
the signal source, calls from both home and of-
fice environments. Each recording session consists
of a fixed set of utterance types, such as isolated
and connected digits, numbers, money amounts,
spelled words, time and date phrases, yes/no an-
swers, proper names, application words and phrases,
phonetically rich words and sentences. The database
contains about 241.1 hours of audio data from 1332
different speakers. For recognition experiments, the
database was divided into training, development and
test set. The development and test sets were cho-
sen by randomly assigning 40 different speakers to
each of the sets. To avoid using the same speaker’s

data for both training and evaluation, those 80 speak-
ers were chosen out of those contributors who only
made one call session. Only the prompted sentence
utterances were used in evaluations, thus both the
development and test set contained 320 utterances.

For training language models, we used a the fol-
lowing subset of the Mixed Corpus of Estonian
(Kaalep and Muischnek, 2005), compiled by the
Working Group of Computational Linguistics at the
University of Tartu: daily newspaper “Postimees”
(33 million words), weekly newspaper “Eesti Eks-
press” (7.5 million words), Estonian original prose
from 1995 onwards (4.2 million words), academic
journal “Akadeemia” (7 million words), transcripts
of Estonian Parliament (13 million words), weekly
magazine “Kroonika” (0.6 million words).

4.2 LVCSR system

The CMU Sphinx (Placeway et al., 1997) speech
recognition system was used used for speech recog-
nition experiments. The latest version of Sphinx-
Train was used for training and Sphinx 3.6.3 was
used for decoding test utterances. For acoustic fea-
tures, MFCC coefficients were used, extracted from
a window of 0.0256 seconds with a frame rate of 100
frames/second. All acoustic units are modeled by
continuous left-to-right HMMs with three emitting
states and no skip transitions. The output vectors are
39-dimensional and are composed of 13 cepstral co-
efficients, delta and double delta coefficients. Data-
driven decision trees were used for creating tied-
state triphone models. Each state is modeled by 8
Gaussian mixture components. The BABEL-based
acoustic models use a sample rate of 16 kHz, the
number of senones is fixed to 3000. The SpeechDat-
based models use a sample rate of 8000 Hz, a fre-
quency band of 130 Hz - 3400 Hz, and the number of
senones was fixed to 6000. Models were created for
25 phonemes, silence, and five filler/noise types (the
latter only for the SpeechDat-based system). Long
phonemes as well as diphthongs are modelled by
sequences of two corresponding phone units. The
only exception in the handling of short and long
phonemes lies in the modelling of plosives since the
realization of long plosives is clearly different from
concatenation of two short plosives. Therefore, we
model short and long plosives using separate units.
Pairs of palatalised and unpalatalised phonemes are
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merged into one acoustic unit.
The SRILM toolkit (Stolcke, 2002) was used for

selecting language model vocabulary and compiling
the language model. The language model was cre-
ated by first processing the text corpora using the
Estonian morphological analyzer and disambigua-
tor (Kaalep and Vaino, 2001). Using the informa-
tion from morphological analysis, it is possible to
split compounds words into particles and separate
morphological suffixes from preceding stems. Lan-
guage model vocabulary was created by selecting
the most likely 60 000 units from the mixture of
the corpora, using sentences in the SpeechDat train-
ing set as heldout text for optimization. The result-
ing vocabulary has a OOV-rate of 2.05% against the
sentences in the BABEL test set and 2.20% against
the sentences in the SpeechDat test set. Using the
vocabulary of 60 000 particles, a trigram language
model was estimated for each training corpus sub-
set. The cutoff value was 1 for both bigrams and
trigrams, i.e. singleton n-grams were included in the
models. A modified version of Kneser-Ney smooth-
ing as implemented in SRILM was applied. Finally,
a single LM was built by merging the six models, us-
ing interpolation coefficients optimized on the sen-
tences in the SpeechDat training set.

Since Estonian is almost a phonetic language, a
simple rule-based grapheme-to-phoneme algorithm
described in (Alumäe, 2006) could be used for gen-
erating pronunciations for both training data as well
as for the words in the language model used for de-
coding. The pronunciation of foreign proper names
deviates obviously from rule-based pronunciation
but since our test set did not contain many proper
names, we limited the amount of proper names in the
vocabulary to most frequent 500, which were mostly
of Estonian origin. No manual correction of the pro-
nunciation lexicon was done.

4.3 Training models for compound word
reconstruction

The models for compound word reconstructions
were estimated using the morphologically analyzed
corpora, that is, words were split into morphemes
and compound word connector symbols marked
places where compound words are formed.

The compound word language model consists of
three sub-models: the distant trigram model, inner-

compound head bigram model and head-given-tail
bigram model. All given models were trained over
the union of the text corpora as follows: for train-
ing the distant trigram model, all head compound
particles were removed from the texts and a tri-
gram language model was estimated; for training the
inner-compound head bigram, all compound head
sequences were extracted from the corpus, and a bi-
gram language model was estimated; for training the
head-given-tail bigram model, all compounds were
extracted from the corpus, all but the last head and
tail were removed from the compound words, the re-
maining word pairs were reversed and a bigram lan-
guage model was estimated. In all cases, modified
Kneser-Ney smoothing using a cutoff value of 2 was
applied.

For training the hidden event language model, we
took the same vocabulary as was used for training
the main language model, added the compound con-
nector symbol to it, and estimated a trigram model
over the union of the subcorpora, using a cutoff
value of 2 and Kneser-Ney smoothing.

4.4 Evaluation metrics

We tested both compound word models on two kinds
of test data:

• reference transcripts, split into morphemes.
This corresponds to perfect recognizer output;

• actual recognizer output, consisting of recog-
nized morphemes.

To evaluate the accuracy of reconstructing com-
pound words in reference transcripts, the recon-
structed sentences were simply compared with orig-
inal sentences. However, it is not obvious what to
use as reference when evaluating reconstruction of
recognizer output. We chose to use dynamic pro-
gramming for inserting compound word connectors
in the recognizer output by aligning the recognized
units with reference units and inserting compound
word connectors according to their location in refer-
ence transcripts. This approach however sometimes
inserts compound word connectors in places where
they are linguistically not legitimate. For example,
consider a reference sentence

.. pälvis suure tähele <CC> panu

and the recognized token stream

... pälvis suure tähele PANNA
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Test set Model Inserted
tags

Precision Recall F measure WER

BABEL
Compound word LM 154 0.64 0.83 0.72 8.2
Hidden event LM 122 0.82 0.85 0.83 4.4

Speechdat
Compound word LM 395 0.84 0.89 0.86 6.5
Hidden event LM 352 0.89 0.94 0.91 4.2

Table 1: Compound word connector tagging accuracies and the resulting would-be word error rate resulting
from incorrect tagging, given perfect morpheme output by the decoder.

According to the alignment, the token tähele and the
misrecognized token panna should be recomposed,
although in reality, those two words often occur to-
gether and are never written as a compound word (as
opposed to tähele and panu which are always writ-
ten as a compound word).

For measuring compound reconstruction accu-
racy, we calculated compound connector insertion
precision and recall. Precision is defined as a mea-
sure of the proportion of tags that the automatic pro-
cedure inserted correctly:

P =
tp

tp + fp

where tp is the number of correctly inserted tags
(true positives) and fp the number of incorrectly in-
serted tags (false positives). Recall is defined as the
proportion of actual compound word connector tags
that the system found:

R =
tp

tp + fn

where fn is the number of tags that the system failed
to insert (false negatives).

Precision and recall can be combined into a sin-
gle measure of overall performance by using the F
measure which is defined as follows:

F =
1

α 1
P + (1 − α) 1

R

[α=0.5]
=

2PR

P + R

where α is a factor which determines the relative im-
portance of precision versus recall.

Another measure we used was the word error rate,
calculated after compound word reconstruction, af-
ter alignment with the original reference transcripts.
Word error rate is calculated as usual:

WER =
S + D + I

N

where S is the number of substitution errors, D the
number of deletion errors, I the number of insertion
errors and N the number of words in the reference.

4.5 Results
As the first test, the method was tested on the ref-
erence transcripts from the BABEL and SpeechDat
speech databases. The input consists of morphemes
where compound word connectors are deleted. Re-
sults are shown in table 1.

As can be seen, the hidden event language model
does better than the compound word language
model. The latter seems to have a big problem with
overgenerating compound words which lowers the
precision figures.

The second test analyzed compound word recon-
struction, given the recognized hypotheses from the
decoder. Results are listed in table 2. The table also
gives the “oracle” WER for each test set, that is, the
WER given the perfect compound word reconstruc-
tion based on alignment with reference sentences.

The precision and recall of the models is much
lower than when using reference sentences as input.
This is expected, as often one particle of a compound
word is misrecognized which “confuses” the mod-
els and gives them no reason to suggest a compound
word.

For both test sets, the hidden event language
model performed better in terms of both preci-
sion/recall as well as the final WER. The relative
improvement in WER of the hidden event language
model over the compound word language model
was 5.0% for the BABEL test set and 4.7% for the
SpeechDat test set.

4.6 Analysis
Table 3 lists some sentences from the SpeechDat test
set that contain mistakenly compounded or uncom-
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Test set Model Inserted
tags

Precision Recall F measure WER Oracle WER

BABEL
Compound word LM 160 0.54 0.73 0.62 31.7

28.9
Hidden event LM 123 0.67 0.70 0.68 30.2

Speechdat
Compound word LM 378 0.66 0.67 0.66 44.2

40.0
Hidden event LM 338 0.74 0.67 0.70 42.2

Table 2: Compound word connector tagging accuracies and the resulting word error rate compared to the
“oracle” word error rate, given the actual recognized hypotheses from the decoder.

pounded words, using the hidden event LM. The er-
rors are written in upper case and the correct words
are written in the right column. Quick investigation
reveals at least three common patterns where com-
pound recomposition errors occur:

1. a compound word is not recognized when both
of the compound word particles are very in-
frequent: the result is that there is not enough
occurrences of the pair, nor occurrences where
the head word is a head in a compound, neither
where the tail word is a tail in a compound; as a
result, the statistical model has no reason to in-
sert a compound connector between them (e.g.
piirde-tross, traks-tunkedes, ainu-autorsusest,
broiler-küülik)

2. two words are mistakenly recognized as a com-
pound word when the first word is often a head
word in compound words, and/or the second
word is often a tail word in compound words,
although their pair may actually never occur as
a compound, and it also does not occur as an
uncompounded pair often enough (e.g. suur
laud / suur-laud, kuue meetri / kuue-meetri)

3. in some cases, words are mistakenly recom-
posed into a compound word when the fact that
the words should be written separately comes
from the surrounding context (e.g. laulu looja
/ laulu-looja, kunsti tekke põhjuseks / tekke-
põhjuseks, eri värvi osadest / värvi-osadest).
Those errors are probably the hardest to han-
dle since the correct behavior would often re-
quire understanding of the discourse. Often, it
is arguable whether the words should be writ-
ten as a compound or not (e.g. tekke-põhjuseks,
taime-seemnetes.

Manual analysis of the compounding errors of the
SpeechDat reference texts shows that the majority of

errors (around 60%) were of type 1. About 30% of
the errors could be classified as context errors (type
3) and the rest (around 10%) were of type 2.

5 Conclusion

We tested two separate methods for reconstructing
compound words from a stream of recognized mor-
phemes, using only linguistic information. The first
method, using a special compound word language
model, relies on the assumption that the head part of
a compound word is independent of the preceding
context and its probability is calculated given only
the tail. Probability of the tail, on the other hand, is
calculated given the preceding context words. As an
alternative approach, we proposed to use a trigram
language model for locations of hidden compound
word connector symbols between compound parti-
cles. Experiments with two test sets showed that the
method based on hidden event language model per-
forms consistently better than the compound word
language model based approach.

The proposed compound word reconstruction
technique could be improved. The analysis of re-
construction errors revealed two kinds of problems
caused by data sparseness issues. Some of such is-
sues could probably be eliminated by using a class-
based language model. An added area for further
study is to combine acoustic and prosodic cues, such
as pause length, phone duration and pitch around
the boundary between possible compound particles,
with the linguistic model, as has been done for auto-
matic sentence segmentation (Stolcke et al., 1998).
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Tiigriülikool program and by the Estonian Associ-

11



Tanel Alumäe

Recognized Actual
ühevärviline kostüüm pikendab teie figuuri samas kui eri
VÄRVIOSADEST lühendab

.. VÄRVI OSADEST ..

üles pannakse uued liiklusmärgid PIIRDE TROSS tõmmatakse pingule .. PIIRDETROSS ..
üheks kunsti TEKKEPÕHJUSEKS peetakse inimese tarvet ilu ja
loomisrõõmu järele

.. TEKKE PÕHJUSEKS ..

väikeses ja pimedas kambris oli näha vaid voodi ja SUURLAUD .. SUUR LAUD ..
väga soodsalt mõjuvad organismile tsitrused küüslauk ja TAIME
SEEMNETES leiduvad ained

.. TAIMESEEMNETES ..

viis miljonit aastat tagasi VÄLJA SURNUD hiire fossiil oli üllatavalt
hästi säilinud

.. VÄLJASURNUD ..

vaikne ja ennast ise kütusega varustav liikur on KUUEMEETRI pikkune
silindriline puur

.. KUUE MEETRI ..

vaguniuksel istub taburetil õlistes TRAKS TUNKEDES naine .. TRAKSTUNKEDES ..
vaesed MAA INIMESED said aru et see oli pogromm nende vastu .. MAAINIMESED ..
LAULULOOJA oli huvitatud AINU AUTORSUSEST LAULU LOOJA .. AINU-

AUTORSUSEST
kuigi broileriks nimetatakse noort kana saab maitsva prae ka BROILER
KÜÜLIKUST

.. BROILERKÜÜLIKUST

Table 3: Some sample compound word reconstruction errors from the SpeechDat test set.

ation of Information Technology and Telecommuni-
cations.
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