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Abstract

Current parameters of accurate unlexical-
ized parsers based on Probabilistic Context-
Free Grammars (PCFGs) form a two-
dimensional grid in which rewrite events
are conditioned on both horizontal (head-
outward) and vertical (parental) histories.
In Semitic languages, where arguments
may move around rather freely and phrase-
structures are often shallow, there are ad-
ditional morphological factors that govern
the generation process. Here we pro-
pose that agreement features percolated up
the parse-tree form a third dimension of
parametrization that is orthogonal to the pre-
vious two. This dimension differs from
mere “state-splits” as it applies to a whole
set of categories rather than to individual
ones and encodes linguistically motivated
co-occurrences between them. This paper
presents extensive experiments with exten-
sions of unlexicalized PCFGs for parsing
Modern Hebrew in which tuning the param-
eters in three dimensions gradually leads to
improved performance. Our best result in-
troduces a new, stronger, lower bound on the
performance of treebank grammars for pars-
ing Modern Hebrew, and is on a par with
current results for parsing Modern Standard
Arabic obtained by a fully lexicalized parser
trained on a much larger treebank.
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1 Dimensions of Unlexicalized Parsing

Probabilistic Context Free Grammars (PCFGs) are
the formal backbone of most high-accuracy statisti-
cal parsers for English, and a variety of techniques
was developed to enhance their performance rela-
tive to the naive treebank implementation — from
unlexicalized extensions exploiting simple category
splits (Johnson, 1998; Klein and Manning, 2003)
to fully lexicalized parsers that condition events be-
low a constituent upon the head and additional lexi-
cal content (Collins, 2003; Charniak, 1997). While
it is clear that conditioning on lexical content im-
proves the grammar’'s disambiguation capabilities,
Klein and Manning (2003) demonstrate that a well-
crafted unlexicalized PCFG can close the gap, to a
large extent, with current state-of-the-art lexicalized
parsers for English.

The factor that sets apart vanilla PCFGs (Char-
niak, 1996) from their unlexicalized extensions pro-
posed by, e.g., (Johnson, 1998; Klein and Manning,
2003), is the choice for statistical parametrization
that weakens the independence assumptions implicit
in the treebank grammar. Studies on accurate unlex-
icalized parsing models outline two dimensions of
parametrization. The first, proposed by (Johnson,
1998), is the annotation of parental history, and the
second encodes a head-outward generation process
(Collins, 2003). Johnson (1998) augments node la-
bels with the label of their parent, thus incorporat-
ing a dependency on the node’s grandparent. Collins
(2003) proposes to generate the head of a phrase first
and then generate its sisters using Markovian pro-
cesses, thereby exploiting head/sister-dependencies.
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Klein and Manning (2003) systematize the dissult is on a par with those achieved for MSA using a
tinction between these two forms of parametrizatiofully lexicalized parser and a much larger treebank.
by drawing them on a horizontal-vertical grid: par-The remainder of this document is organized as fol-
ent encoding is vertical (external to the rule) whereasws. In section 2 we review characteristic aspects
head-outward generation is horizontal (internal tof MH (and other Semitic languages) and illustrate
the rule). By varying the value of the parame+the special role of morphology and dependencies
ters along the grid, Klein and Manning (2003) tunedisplayed by morpho-syntactic processes using the
their treebank grammar to achieve improved perfoicase of syntactic definiteness in MH. In section 3 we
mance. This two-dimensional parametrization hadefine our three-dimensional parametrization space.
been instrumental in devising parsing models thdh section 4 we spell out the method and procedure
improve disambiguation capabilities for English ador the empirical evaluation of one, two and three
well as other languages, such as German (Dubey apdrametrization dimensions, and in section 5 we re-
Keller, 2003) Czech (Collins et al., 1999) and Chiport and analyze results for different parametrization
nese (Bikel and Chiang, 2000). However, accuracghoices. Finally, section 6 discusses related work
results for parsing languages other than English stifind in section 7 we summarize and conclude.
lag behindt

We propose that for various languages includ2 Dimensions of Modern Hebrew Syntax
:r? dtr:\ioiimltlgt?nrggae'ﬂém?céﬁﬂrg S?Zi‘ﬁlir(gﬂ;)_ Parsing MH is in its infancy. AIthough a syntacti-_
mension of parametrization is necessary for encod? lly annotated corpus has been available for quite

o ) . some time (Sima’an et al., 2001), we know of only
ing linguistic information relevant for breaking false . . . .

. ) s two studies attempting to parse MH using statistical

independence assumptions. In Semitic languages, .

methods (see section 6). One reason for the sparse-

arguments may move around rather freely and the . . ) L

7 ness in this field is that the adaptation of existing

phrase-structure of clause-level categories is often . . . :

models to parsing MH is technically involved yet

shallow. For such languages agreement features plgges not quarantee to yield comparable resuits as

a role in disambiguation at least as important as t : )
. _g o P r}ﬁe processes that license grammatical structures of
vertical and horizontal conditioning. We propose ahrases and sentences in MH differ from those as-

third dimension of parameterizations that encode . . . : .
morohological featuFr)es such as those realizing s r?_umed for English. This section outlines differences
P 9 g ybetween English and MH and discusses their reflec-

tactic agreement. These features are percolated fr%rgn in the MH treebank annotation scheme. We

surface forms in a bottom-up fashion and express . .
) : : .. _“"argue that on top of syntactic processes exploited
information that is complementary to the horizon- :
) . L by current parsers there is an orthogonal morpho-

tal and vertical generation histories proposed before: . : o
: ) . , . Syntactic dimension which is invaluable for syntac-

Such morphological information refines syntactl%
categories based on their morpho-syntactic role, an
captures linguistically motivated co-occurrences and
dependencies manifested via, e.g., morpho-syntactc;  nodern Hebrew Structure

agreement.

This work aims at parsing MH and explores thd>hrases and sg_ntences in MH, as well as in Arab_ic
empirical contribution of the three dimensions of2Nd other Semitic languages, have a relatively flexi-
parameters specified above. We present extensigi¢® Phrase structure. Subjects, verbs and objects can
experiments that gradually lead to improved perfor?€ inverted and prepositional phrases, adjuncts and
mance as we extend the degree to which the thrdgrbal modifiers can move argund rather freely. The
dimensions are exploited. Our best model uses dictors that affect word-order in the language are not

three dimensions of parametrization, and our best réXclusively syntactic and have to do with rhetorical
- and pragmatic factors as wéll.

The learning curves over increasing training data (e.g.,fa__
German (Dubey and Keller, 2003)) show that treebank size can 2See, for instance, (Melnik, 2002) for an Information
not be the sole factor to account for the inferior perforneanc  Structure-syntactic account of verb initial sentences.

i& disambiguation, and it can be effectively learned
sing simple treebank grammars.
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sentence (b) (markinB(efiniteness))
NPFS-OBJ VPMP NPMP-SBJ (a) s (b) SV
\ |
N.FS V.MP
| CD"MP N"‘\AP NPFS.D VPFS NP(NNT).FSD VP(V)).FS
gt e i hildim vFs vFs
two.MP  the-childrenMP NN‘T'FS N'M‘S'D i NN‘T'FS N'M‘S'D i
sganit hmnhl res’iér{ed’?s sganit hmnhl resi;)r{ed;s
deputyFS the-manageiS.D deputyFS the-manageMS.D

Figure 1: word Order and Agreement Features in MH

Phrases: Agreement onMP features reveals the subject- Figure 3: Phrase-Level Agreement Features and Head-

rIB'ependencies in MH:The direction of percolating definiteness

inating constituents in a variable phrase-structure (mmgrk P : g
M (asculine) F(eminine) S(ingular), P(lural).) in MH is distinct of that of the head (markingnead-tag)

It would be too strong a claim, however, to clas-
sify MH (and similar languages) as a free-word{roperty (Danon, 2001). Definite noun-phrases ex-
order language in the canonical sense. The level bibit agreement with other modifying phrases, and
freedom in the order and number of internal consuch agreement helps to determine the internal struc-
stituents varies between syntactic categories. Withiure, labels, and the correct level of attachment as
a verb phrase or a sentential clause, for instanc#lustrated in figure 2. The agreement on definite-
the order of constituents obeys less strict rules tharess helps to determine the internal structure of noun
within, e.g., a noun phraseFigure 1 illustrates two phrases 2(a), and the absence thereof helps in de-
syntactic structures that express the same grammtgrmining the attachment to predicates in verb-less
ical relations yet vary in their internal order of con-sentences, as in 2(b). Finally, definiteness may be
stituents. Within the noun phrase constituents, howpercolated from a different form than the one deter-
ever, determiners always precede nouns. mining the gender and number of a phrase. In figure

Within the flexible phrase structure it is typically 3(a), for instance, the definiteness feature (marked
morphological information that provides cues for theas D) percolates fromhimnhl’ (the-manager.MS.D)
grammatical relations between surface forms. Iwhile the gender and number are percolated from
figure 1, for example, it is agreement on gendersganit’ (deputy.FS). The direction of percolation
and number that reveals the subject-predicate depedi-definiteness may be distinct of that of percolat-
dency between surface forms. Figure 1 also showg head information, as can be seem in figure 3(b).
that agreement features help to reveal such relatiofEhe direction of head-dependencies in MH typi-
between higher levels of constituents as well. cally coincides with that of percolating gender.)

Determining the child constituents that contribute 14 summarize agreement features are helpful in

each of the features is not a trivial matter either. Tap5)y7ing and disambiguating syntactic structures in
illustrate the extent and the complexity of that mattef,q “not only at the lexical level, but also at higher

let us considedefinitenes MH, which is morpho- jeyels of constituency. In MH, features percolated
logically marked (as an prefix to the stem, glossed o gifferent surface forms jointly determine the

here explicitly as “the-") and behaves as a syntactigaqres of higher-level constituents, and such fea-

3See (Wintner, 2000) and (Goldberg et al., 2006) for formaFures manifest multiple deper_ldenues, which in turn
and statistical accounts (respectively) of noun phrasé4Hn  cannot be collapsed onto a single head.
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2.2 The Modern Hebrew Treebank Scheme Feature:Value | Value Encoded

The annotation scheme of version 2.0 of the MH gender.z masculine
. . gender:N feminine
treebank (Sima’an et al., 20d113ims to capture the gender:B both
morphological and syntactic properties of MH just number-Y singular
described. This results in several aspects that dis- number:R plural
tinguish the MH treebank from, e.g., the WSJ Penn number:B both
treebank annotation scheme (Marcus et al., 1994). definiteness:H | definite
definiteness:U | underspecified

The MH treebank is built over word segments.
This means that the yields of the syntactic trees do Table 1:Features and Values in the MH Treebank
not correspond to space delimited words but rather
to morphological segments that carry distinct syn-

Dependency Type | Features Percolated

tactic roles, i.e., each segment corresponds to a sin- DEP HEAD all

- : DEP_MAJOR at least gender
gle P_OS tag. _(Thls in tqrr_w means thaF_preﬂxes DEP NUMBER Cumber
marking determiners, relativizers, prepositions and DEP.DEFINITE definiteness
definite articles are segmented away and appear as DEPACCUSATIVE | case

leaves in a syntactic parse tree.) The POS categories DEPMULTIPLE | all (e.g., conjunction)

assigned to segmented words are decorated with fea- 1 pje 2:p ependency Labels in the MH Treebank
tures such as gender, number, person and tense, and
these features are percolated higher up the tree @&s nested structures capturing the recursive struc-
cording to pre-defined syntactic dependencies (Knjiure of construct-state nouns, numerical expressions
molowski et al., 2007). Since agreement featuregnd possession. An additional category, PREDP, is
of non-terminal constituents may be contributed bypdded in the treebank scheme to account for sen-
more than one child, the annotation scheme definé&nces in MH that lack a copular element, and it may
multiple dependency labels that guide the percolalso be decorated with inflectional features agreeing
tion of the different features higher up the tree. Defwith the subject. The MH treebank scheme also fea-
initeness in the MH treebank is treated as a segmeittres null elements that mark traces and additional
at the POS tags level and as a feature at the level laels that mark functional features (e.g., SBJ,0BJ)
non-terminals. As any other feature, it is percolatewhich we strip off and ignore throughout this study.
higher up the tree according to marked dependency Morphological features percolated up the tree
labels. Table 1 lists the features and values annotatethnifest dependencies that are marked locally yet
on top of syntactic categories and table 2 describd®ve a global effect. We propose to learn treebank
the dependencies according to which these featurggammars in which the syntactic categories are aug-
are percolated from child constituents to their parmented with morphological features at all levels of
ents. the hierarchy. This allows to learn finer-grained
In order to comply with the flexible phrase struc-categories with subtle differences in their syntactic
ture in MH, clausal categories (S, SBAR and FRAGehavior and to capture non-independence between
and their corresponding interrogatives SQ, SQBARertain parts of the syntactic parse-tree.
and FRAGQ) are annotated as flat structures. Verbs
(VB tags) always attach to a VP mother, howeved Refining the Parameter Space

only non-finite VBs can accept complements un;

) . lein and Manning, 2003) argue that parent en-
der the same VP parent, meaning that all mflecteg( ! 'ng .) gue that p
coding on top of syntactic categories and RHS

verb forms are represented as unary prOCIuct'onsarkovization of CFG productions are two instances

under an inflected VP. NP and PP are annotateO the same idea, namely that of encoding the gener-

“Version 2.0 of the MH treebank is publicly available ation history of a node to a varying degree. They
at http://mla.cs.technion. ac.il/english/ gypsequently describe two dimensions that define

i ndex. ht m along with a complete overview of the MH thei ters’ Thertical di .
annotation scheme and illustrative examples (Krymoloveski eIr parameters: space. ertical dimension ¢),

al., 2007). capturing the history of the node’s ancestors in a top-
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vertical

down generation process (e.g., its parent and grand-
parent), and thlorizontaldimension ), capturing T
the previously generated horizontal ancestors of a
node (effectively, its sisters) in a head-outward gen- S8y
eration process. By varying the value fand v M,(N;I.){\WM)
along this two-dimensional grid they improve per- .
formance of their induced treebank grammar. SROZGN R
Formally, the probability of a parse treeis cal- N/\ ‘ L
culated as the probability of its derivation, the se-
guential application of rewrite rules. This in turn : [ horisontal
is calculated as the product of rules’ probabilities, /
approximated by assuming independence between,,,,
themP(w) = [, P(ri|ri o ... ori—1) = [[; P(ri).
The vertical dimensiom can be thought of as a func- Figure 4:The Three-Dimensional Parametrization Space
tion ¥ selecting features from the generation his-
tory of the constituent thus restoring selected depefimpoverished morphological treatment, but for lan-
dencies: guages in which morphological processes are more
pertinent, we argue, bi-dimensional parametrization
shall not suffice.
The horizontal dimensioh can be thought of astwo  The emerging picture is as follows. Bare-category
functions¥, ¥y over decomposed rules, whebg  skeletons reside in a bi-dimensional parametrization
selects hidden internal features of the parent, argpace (figure 3(a)) in which the vertical (figure 3(b))
¥, selects previously generated sisters in a headnd horizontal (figure 3(c)) parameter instantiations
outward Markovian process (we retain here the aglaborate the generation history of a non-terminal
sumption that the head child H always matters). node. Specialized structures enriched with (an in-
creasing amount of) morphological features reside
P(ri) = Pu(H[¥1(LHS(ri))) deeper along a third dimension we refer todapth

P(r;) = P(ri|¥o(rio..ori_1))

X H Po(C|Vo(RHS(r;)), H) (d). Figure 4 illustrates an instantiation df= 1
CEeRHS(r;)—H with a single definiteness feature. Highéralues

The fact that the default notion of a treebankvould imply adding more (accumulating) features.
grammar takes = 1 (i.e., ¥g(ry0..or;_1) = 0) Klein and Manning (2003) view thevertical

andh = oo (RHS cannot decompose) is, accordingaind horizontal parametrization dimensions as im-
to Klein and Manning (2003), a historical accident. plementingexternalandinternal annotation strate-
We claim that languages with freeer word ordegies respectively. External parameters indicate fea-
and richer morphology call for an additional dimen-tures of the external environment that influence the
sion of parametrization. The additional parametenode’s expansion possibilities, and internal parame-
shows to what extent morphological features erters mark aspects of hidden internal content which
coded in a specialized structure back up the derivaafluence constituents’ external distribution. We
tion of the tree. This dimension can be thought ofiew the third dimension of parametrization as im-
as a function¥; selecting aspects of morphologicalplementing arelational strategy of annotation en-
orthogonal analysis of the rules, whéeveA denotes coding the way different constituents may combine
morphological analysis of the syntactic categories ito form phrases and sentences. In a bottom up pro-
both LHS andRH S of the rule. cess this annotation strategy imposes soft constraints
on a the top-down head-outward generation process.
P(ri) = P(ri[¥s(MA(r:))) Figure 6(a) focuses on a selected NP node high-
The fact that in current parseds; (M A(r;)) = 0 is, lighted in figure 4 and shows its expansion possibil-
we claim, another historical accident. Parsing Enities in three dimensions. Figure 6(b) illustrates how
glish is quite remarkable in that it can be done witlihe depth expansion interacts with both parent anno-
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vertical vertical

S - S(VB) S S(VB) S(VB)
NP NP(NNT) VP(VT) NP - NP(NNT) VP(VT) NP(NNT) VP(VT)
NP NP(NNT) ADIJP(1]) NP NP(NNT) ADIP(JT) NP(NNT) ADIJP(1J)
NNT ] NN Rl VB NNT NN i) VB NNT NN 1 VB
| | | | | | | | | | | | |
mno i Snnn nmonn nvann nno Yminn nmonn nmvann nno | Smnn nmonn mvann
deputy-of | the-manager the-dedicated resigned deputy-of the-manager ~ the-dedicated resigned deputy-of | the-manager the-dedicated resigned
+ + horizontal t + horizontal
NP ADIJP NP ADJP
(a) The horizontal/verticalGrid (b) The vertical dimension (c) The horizontaldimension

Figure 5:The Two-Dimensional SpaceThe horizontal and vertical dimensions outlined by (Kleid &anning, 2003)

vertical vertical

tation and neighbor dependencies thereby affecting (raren Encading
both distributions.

3.1 A Note on State-Splits

Recent studies (Klein and Manning, 2003; Mat-
suzaki et al., 2005; Prescher, 2005; Petrov et al,, .~ i
2006) suggest that category-splits help in enhan((,‘:j) B () s
ing the performance of treebank grammars, and Rigure 6: The Expansion Possibilities of a Non-Terminal
previous study on MH (Tsarfaty, 2006) outlines SpeNode: Expanding the NP from figure 4 in a three-dimensional
- . . . parameterization Space
cific POS-tags splits that improve MH parsing ac-
curacy. Yet, there is a major difference betweeAN additional dimension of statistical estimation for
category-splits, whether manually or automaticallyearmning unlexicalized treebank PCFGs. Our pro-
acquired, and the kind of state-splits that arise frorgosal deviates from various stochastic extensions of
agreement features that refine phrasal categorie‘é‘.Ch constraints-based grammatical formalisms (cf.
While category-splits aim at each category in isolAbney, 1997)) and has the advantage of elegantly
lation, agreement features apply to a whole sdtypassing the issue of loosing probability mass to
of categories all at once, thereby capturing refind@iled derivations due to unification failures. To the
ment of the categories as well as linguistically mobest of our knowledge, this proposal has not been
tivated co-occurrences between them. IndividugtmPpirically explored before.
category-splits are viewed as taking place in a twojr
dimensional space and it is hard to analyze and em-
pirically evaluate their interaction with other annota-Our goal is to determine the optimal strategy for
tion strategies. Here we propose a principled way tiearning treebank grammars for MH and to contrast
statistically model the interaction between differentt with bi-dimensional strategies explored for En-
linguistic processes that license grammatical struglish. The methodology we use is adopted from
tures and empirically contrast their contribution.  (Klein and Manning, 2003) and our procedure is
identical to the one described in (Johnson, 1998).
3.2 A Note on Stochastic AV grammars We define transformations over the treebank that ac-
The practice of having morphological features orcept as input specific points in tlig, v, d) space de-
thogonal to a constituency structure is not a newicted in figure 7. We use the transformed training
one and is familiar from formal theories of syntaxsets for learning different treebank PCFGs which we
such as HPSG (Sag et al., 2003) and LFG (Kahen used to parse unseen sentences, and detrans-
plan and Bresnan, 1982). Here we propose to réorm the parses for the purpose of evaluafion.

frame SyStem_at'C morphological decorafuon Of SYN-"Sprevious studied on MH used different portions of the tree-
tactic categories at all levels of the hierarchy asank and its annotation scheme due to its gradual develdpmen

horizontal
(Head-outward
Markovization)

Experimental Setup

161



Data We use version 2.0 of the MH treebankstantiated value of then selects the number of pre-
which consists of 6501 sentences from the dailyiously generated (non-head) sisters to be taken into
newspaper ‘Ha'aretz’. We employ the syntactic cataccount when generating the next sister in a Marko-
egories, POS categories and morphological featuregn process¥, in our formal exposition).
annotated therein. The data set is split into 13 sec- Thed dimension we proposed is implemented us-
tions consisting of 500 sentences each. We use tirgy a transformation that augments syntactic cate-
first section (section 0) as our development set argbries with morphological features percolated up the
the last section (section 12) as our test set. The rgee. We usal = 0 to select bare syntactic cate-
maining sentences (sections 1-11) are all used fgories and instantiatd = 1 with the definiteness
training. After removing empty sentences, sentencdsature. The decision to select definiteness (rather
with uneven bracketing and sentences that do ntian, e.g., gender or number) is rather pragmatic as
match the annotation schefnee remain with ade- its direction of percolation may be distinct of head
vsetof 483 sentences (average length in word segaformation and the question remains whether the
ments 48), arainset of 5241 sentences (53) andcombination of such non-overlapping dependencies
a testsetof 496 sentences (58). Since this workis instrumental for parsing MH.
is only the first step towards the development of a Our baseline model is a vanilla treebank PCFG
broad-coverage statistical parser for MH (and othess described in (Charniak, 1996) which we locate
Semitic languages) we use the development set fon the (oo, 0,0) point of our coordinates-system.
parameter-tuning and error analysis and use the tafta first set of experiments we implement simple
set only for confirming our best results. PCFG extensions of the treebank trees based on se-
lected points on th€oo,v,d) plain. In a second

Models  The models we implement use one-, tWOget of experiments we use an unlexicalized head-

or three-dimensional parametrization and differenfian paseline a la (Collins, 2003) located on the
in_stantiation of values thereof. (Due to the Smalto,o,o) coordinate. We transform the treebank trees
size of our data set we only use the valyésl} i, correspondence with different points in the three-
as possible |nstant|at|ops.) _ dimensional space defined by, v, d). The models
The v dimension is implemented using a transyye jmplement are marked in the coordinate-system
form as in (Johnson, 1998) where= 0 corresponds  ygpjcted in figure 7. The implementation details of

to bare syntactic categories and= 1 augments e ransformations we use are spelled out in tables
node labels with the label of their parent node. 3.4

Theh dimension is peculiar in that it distinguishes
PCFGs b = ~0), where RHS cannot decompose Procedure We implement different models that
from their head-driven unlexicalized variety. To im-correspond to different instantiations kfv andd.
plementh # oo we use a PCFG transformation em-+or each instantiation we transform the training set
ulating (Collins, 2003)’s first model, in which sistersand learn a PCFG using Maximum Likelihood es-
are generated conditioned on the head tag and a sitimates, and we use BitPar (Schmidt, 2004), an ef-
ple ‘distance’ function (Hageloh, 2007).The in- ficient general-purpose parser, to parse unseen sen-
tences. The input to the parser is a sequence of word

process. As the MH treebank is approaching maturity we fe i
that the time is ripe to standardize its use for MH statii;ticefé(:"gmemS where each segment corresponds to a sin

parsing. The software we implemented will be made availablgle POS tag, possibly decorated with morphologi-
for non-commercial use upon request to the author(s) and thgy| features. This setup assumes partial morpholog-

feature percolation software by (Krymolowski et al., 200¥) . . . . .
publicly available through the Knowledge Center for Preees ical disambiguation (namely, segmentation) but cru-

ing Hebrew. By this we hope to increase the interest in MHially we donot disambiguate their respective POS

of more sophisticated models by cutting down on setup time. . | ina tool d it k
6Marked as “NOMATCH” in the treebank. ing general-purpose parsing tools and it makes our

"A formal overview of the transformation and its corre-results comparable to studies in other langudges.
spondence to (Collins, 2003)’s models is available at (dge
2007). We use the distance function defined therein, marking 2Our working assumption is that better performance of a
the direction and whether it is the first node to be generated. parsing model in our setup will improve performance also
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Transliterate The lexical items (leaves) in the MH treebank are writtetriefwrite and are encoded

in utf8. A transliteration software is used to convert thieemtcoding into Latin characters and to reverse

their order, essentially allowing for standard left-tghi processing.

Correct The manual annotation resulted in unavoidable errors imtimetation scheme, such as typos

(e.g., SQBQR instead of SQBAR) wrong delimiters (e.g., stead of “”) or wrong feature order (e.g.,
number-gender instead of gender-number). We used an atitsuapt to detect these error, we manually
determine their correction. Then we created an automatigtgo apply all fixes (57 errors in 1% sentences).
Re-attach VB elements are attached by convention to a VP which inhigsitsiorphological features.

9 VB instances in the treebank are mistakenly attached topareit without an intermediate VP level.

Our software re-attaches those VB elements to a VP parerpencdlates its morphological features.

Disjoint Due to recursive processes of generating noun phrases aretical expressionsmixut)

in MH the sets of POS and syntactic categories are not disjbhis is a major concern for PCFG parsers

that assume disjoint sets of pre- and non-terminals. Thdagvbetween the sets also introduces additional
infinite derivations to which we loose probability mass. Gaftware takes care to decorate POS categories
used as non-terminal with an additional “P”, creating a neto$ categories encoding partial derivations.
Lexicalize A pre-condition for applying horizontal parameterizasanla Collins is the annotation of

heads of syntactic phrases. The treebank provided by thel&dge center does not define unique heads,

but rather, mark multiple dependencies for some categaridsione for others. Our software uses rules

for choosing the syntactic head according to specified digranies and a head table when none are specified.
Linearize In order to implement the head-outward constituents’ gei@r process we use software made
available to us by (Hageloh, 2007) which converts PCFG prooln such as the generation of a head is followed by left ayid r
markovized derivation processes. We used two versions dkdx&ation, one which conditions only on the
head and a distance function, and another which condititsesom immediately neighboring sister(s).
DecorateOur software implements an additional general transforrichvbelects the features that are to be
annotated on top of syntactic categories to implement uanmrametrization decisions. This transform can be
used for, e.g., displaying parent information, selectimgphological features, etc.

Table 3:Transforms over the MH Treebank: We clean and correct the treebank usimgnsliterate, Correct, Re-attach and
Disjoint, and transform the training set according to certain patdra¢éion decisions usinbexicalize, Linearize andDecorate

Smoothing pre-terminal rules is done explicitly byfor two evaluation options, once including punctua-
collecting statistics on “rare word” occurrences andion marks {¥” P) and once excluding thenii(O P).
providing the parser with possible open class cat-

egories and their corresponding frequency counts. Results

The frequency threshold defining “rare words” was

tuned empirically and set to 1. The resulting tesPur baseline for the first set of experiments is

parses are detransformed and to skeletal constitughtvanilla PCFG as described in (Charniak, 1996)

structures, and are compared against the gold pard#gthout a preceding POS tagging phase and without
to evaluate parsing accuracy. right branching corrections). We transform the tree-

bank trees based on various points in the, v, d)

Evaluation We evaluate our models using EVALB yyo-dimensional space to evaluate the performance
in accordance with standard PARSEVAL evaluationyf the resulting PCFG extensions.

metrics. The evaluation of all models focuses on Tapje 5 reports the accuracy results for all models
Labeled Precision and Recall considering bare sypi, section Odevse} of the treebank. The accuracy
tactic categories (stripping off all morphological oryegjts for the vanilla PCFG are approximately 10%
parental features and removing intermediate nodgS,er than reported by (Charniak, 1996) for English
for linearization). We report the average F'measurﬁemonstrating that parsing MH using the currently
for sentences of length up to 40 and for all sentencegyyilable treebank is a harder task. For all unlexical-
(F<a0 and Fyy respectively). We report the results e extensions learned from the transfromed tree-

within an integrated model for morphological and syntadte= ~ banks, the resulting grammars show enhanced dis-
ambiguation in the spirit of (Tsarfaty, 2006). We conjeetur ambiguation capabilities and improved parsing ac-
that the kind of models developed here which takes into attcou . . .

morphological information is more appropriate for the niarp curacy. We observe that the vertical dimension con-
logical disambiguation task defined therein. tributes the most from both one-dimensional mod-
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Name Params Description Transforms used

DIST h=0 0-order Markov process Lexicalize(category), Linearize(distance)
MRK h =1 1-order Markov process Lexicalize(category), Linearize(distance, neighbor)
PA v =1 Parent Annotation Decorate(parent)

DEF d=1 Definiteness feature percolationDecorate(definiteness)

Table 4:Implementing Different Parametrization Options using Transforms

Implementation

(hyv,d) ‘ Farr Feao  Farn  Feao head-dependencies which play a role in determin-
WP WP WOP WOP  ing grammatical structures in English are also in-

PCFG Eoo,0,0; 656167 66-8: 63-;; 627-78 strumental for parsing MH. However, the marginal
PA 00,0,1) | 70.6 71.96 70. 72.1 - : T .

DEF (x.1.0) | 6753 6878 6882 7006 CONUribution of the head-driven variation is surpris-
PA+DEF (c0,1,1) | 72.63 73.89 73.01 74.11 ingly low. Next we observe that for one-dimensional

models the vertical dimension still contributes the
Ta.ble 5:PCFG Two-Dimensional ExtensionS'Accuracy re-  most to parsing accuracy_ However’ morphologi_
sults for parsing thelevesi{section 0) . . . ;
cal information represented by the depth dimension
n%ontributes more to parsing accuracy than informa-

els. A qualitative error analysis reveals that pare L . . )
i L . . fion concerning immediately preceding sisters on
annotation strategy distinguishes effectively vanoui1 : . : . . .
the horizontal dimension. This outcome is consis-

kinds of distributions clustered together under a sin-

gle category. For example, S categories that appetaernt with our observation that the grammar of MH

under TOP tend to be more flat than S categories a yltsti:less; S|grr11|f|catr;]c? on :]t:jetﬂo?trlsnro;‘]clonsi,tlttljeir:]ts
pearing under SBAR (SBAR clauses typically gen-ea € 1o one ofhers a at morpnhological in-

erate a non-finite VP node under which additionalc "a0N 1S more indicative of the kind of syntac-

PP modifiers can be attached). tic relations that appear between them. For two-

Orthogonal morphological marking provide addi_d_imensional models, incorpqrating the_ dept.h dimen-
tional information that is indicative of the kind of ston (orthog_onal morphologllcal marking) is bgtter
dependencies that exist between a category and Egsfan n<_)t doing so, and relying sqlely on horizon-
various child constituents, and we see that - /verngal parameters perfprms slightly worse than

. ) P the vertical/depth combination. The best performing
mension instantiated wittiefinitenessot only con-

. ) model for two-dimensional head-driven extensions
tribute more than 2% to the overall parsing accurac

?é the one combining vertical history and morpho-
of a vanilla PCFG, but also contributes as much tP d y P

: ) ogical depth. This is again consistent with the prop-
the improvement obtained from a treebank alread g P g brop

. . . . 4% ties of MH highlighted in section 2 — parental in-
annotated with the vertical dimension. The Conmbuformation gives cues about the possible expansion

tions are thus additive providing preliminary empir- S .
ical Tt ¢ claim that th wo dimensi non the current node, and morphological information
cal support fo our ciaim that tnese ftwo ENSIONG, dicates possible interrelation between child con-
provide information that is complementary. . . ,
_ stituents that may be generated in a flexible order.

In our next set of experiments we evaluate the
contribution of the depth dimension to extensions of Our second set of experiments shows that a three-
the head-driven unlexicalized variety a la (Collinsdimensional annotation strategy strikes the best bal-
2003). We set our baseline at th@& 0,0) coordi- ance between bias and variance and achieves the best
nate and evaluate models that combine one, two aadcuracy results among all models. Different dimen-
three dimensions of parametrization. Table 6 showsions provide different sorts of information which
the accuracy results for parsing section 0 using there complementary, resulting in a model that is ca-
resulting models. pable of generalizing better. The total error reduc-

The first outcome of these experiments is that oufon from a plain PCFG is more than 20%, and our
new baseline improves on the accuracy results dfest result is on a par with those achieved for other
a simple treebank PCFG. This result indicates thdnguages (e.g., 75% for MSA).

164



Implementation| Params| Far, F<iao Far F<ao been successfully used for various NLP tasks such as
(hyv,d) | WP WP WOP WOP - : : - :
morphological disambiguation, POS tagging (Bar-
DIST | (0,0,0) | 66.56 68.20 67.59 69.24 Haim et al., 2007) and NP chunking (Goldberg et
MRK (1,0,0) | 66.69 68.14 67.93 69.37  al.,, 2006). However its use for statistical parsing has
PA (0,1,0) | 68.87 70.48 69.64 70.91 )
DEF (0.01) | 6885 6992 7042 71.45 bgen mtorde_ scartc;e anf_l Iests succesi;‘ll:—:. Thei(only p][e
PA+MRK (1,1,0) | 69.97 71.48 70.69 71.98 vious stu ,|es attempting o parse We Know o
MRK+DEE (1,0,1) | 69.46 70.79 71.05 72.37 are (Slma anetal., 2001), applylng avariation of the
PA+DEF (0,1,1) | 71.15 72.34 71.98 72.91 DOP tree-gram model to 500 sentences, and (Tsar-
PA+MRK+DEF [ (1,1,1) [ 72.34 73.63 73.27 74.41 faty, 2006), using a treebank PCFG in an integrated

system for morphological and syntactic disambigua-
tion.’ The adaptation of state-of-the-art parsing
models to MH is not immediate as the flat variable
structures of phrases are hard to parse and a plen-

Table 6:Head-Driven Three-Dimensional ExtensionsAc-
curacy results for parsing thievesi{section 0)

Implementaton ('Za;ar;)s Pa fow L ten tiful of morphological features that would facilitate
PCFG (2.0.0) | 6508 67.31 6582 68.22 disambiguation are not exploited by currently avail-
PCFG+PA+DEF‘ (00,1,1) | 7226 74.46 72.42 74.52 able parsers. Also, the MH treebank is much smaller
DIST ‘ (0,0,0) ‘ 66.33 68.79 67.06 69.47 than the ones for, e.g., English (Marcus et al., 1994)
PA+MRK+DEF | (1,1,1) | 72.64 74.64 73.21 75.25

and Arabic (Maamouri and Bies, 2004), making it
hard to apply data-intensive methods such as the all-
subtrees approach (Bod, 1992) or full lexicalization
(Collins, 2003). Our best performing model incor-
porates three dimensions of parametrization and our

Figure 8 shows the", (WOP) results for all best result (75.25%) is similar to the one obtained
models we implemented. In general, we see that f&Y the parser of (Bikel, 2004) for Modern Standard
parsing MH higher dimensionality is better. More-Arabic (75%) using a fully lexicalized model and
over, we see that for all points on the, h,0) plain a training corpus about three times as large as our
the corresponding models on tke, 1, 1) plain al- newest MH treebank.
ways perform better. We further see that the contri- This work has shown that devising an adequate
bution of the depth dimension to a parent annotatd@fseline for parsing MH requires more than sim-
PCFG can compensate, to a large extent on the laBle category-splits and sophisticated head-driven ex-
of head-dependency information. These accumuld€nsions, and our results provide preliminary evi-
tive results, then, provide empirical evidence to théence for the variation in performance of different
importance of morphological and morpho-syntacti@@rametrization strategies relative to the properties
processes such as definiteness for syntactic analy8Rd structure of a given language. The compari-
and disambiguation as argued for in section 2.  Son with parsing accuracy for MSA suggests that

We confirm our results on thstsetand report Parametrizing an orthogonal depth dimension may
in table 7 our results on section 12 of the treebanfe€ able to compensate, to some extent, on the lack
The performance has slightly increased and we ol9f Sister-dependencies, lexical information, and per-
tain better results for our best strategy. We retain tig@Ps even the lack of annotated data, but establish-
high error-reduction rate and propose our best resulfld €émpirically its contribution to parsing MSA is a
75.25% for sentences of length 40, as an empiri- matter for further research. In the future we intend
cally established string baseline on the performand@ further investigate the significance of the depth di-
of treebank grammars for MH. mension by extending our models to include more

morphological features, more variation in the pa-

Table 7:PCFG and Head-Driven Unlexicalized Models:
Accuracy Results for parsing thestst(section 12)

6 Related Work

°Both studies acheived between 60%-70% accuracy, how-

. ever the results are not comparable to our study because of th
The MH treebank (Sima'an et al., 2001), a MO se of different training sets, different annotation cartians,

phologically and syntactically annotated corpus, hashd different evaluation schemes.
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Figure 7:All Models: Locating Unlexicalized Parsing Moddisgure 8:All Results: Parsing Results for Unlexicalized Mod-
in a Three-Dimensional Parametrization Space els in a Three-Dimensional Parametrization Space

rameter space, and applications to more languagesrder language in the canonical sense, and our qual-
itative analysis shows that all dimensions contribute
7 Conclusion to the models’ disambiguation capabilities. Orthog-
Morphologically rich languages introduce a new di-(?nal d|m_en_5|ons provide complementary informa-
mension into the expansion possibilities of a nont—Ion that is invaluable fo_r the_ parsing process _to the
extent that the relevant linguistic phenomena license

terminal node in a syntactic parse tree. This di- tical struct in the | 0 It
mension is orthogonal to the vertical (Collins, 2003 rammatical Structures in the language. DUF results
oint out a principled way to quantitatively charac-

and horizontal (Johnson, 1998) dimensions previ-

ously outlined by Klein and Manning (2003), and_tenzmg differences between languages, thus guid-

it cannot be collapsed into any one of the previoug'g the selection of parameters for the development
two. These additional dependencies exist alongsidt anngtated resources, cu_stom parsers and cross-
the syntactic head dependency and are attested us Wé;wstlc robust parsing engines.
morphosyntactic phenomena such as long distance
agreement. We demonstrate using syntactic defi-
niteness in MH that incorporating morphologically
marked features as a third, orthogonal dimensioficknowledgments We thank the Knowledge
for annotating syntactic categories is invaluable foEenter for Processing Hebrew and Dalia Bojan for
weakening the independence assumptions implidaroviding us with the newest version of the MH
in a treebank PCFG and increasing the model’s digreebank. We are particularly grateful to the devel-
ambiguation capabilities. Using a three-dimension&Pment team of version 2.0, Adi Mile'a and Yuval
model we establish a new, stronger, lower bound offrymolowsky, supervised by Yoad Winter for con-
the performance of unlexicalized parsing models foiinued collaboration and technical support. We fur-
Modern Hebrew, comparable to those achieved fdher thank Felix Hageloh for allowing us to use the
other languages (Czech, Chinese, German and Argeftware resulting from his M.Sc. thesis work. We
bic) with much larger corpora. also like to thank Remko Scha, Jelle Zuidema, Yoav
Tuning the dimensions and value of the parameSeginer and three anonymous reviewers for helpful
ters for learning treebank grammars is largely an enfomments on the text, and Noa Tsarfaty for techni-
pirical matter, and we do not wish to claim here thagal help in the graphical display. The work of the
a three-dimensional annotation strategy is the befitst author is funded by the Netherlands Organiza-
for any given language. Rather, we argue that fdfon for Scientific Research (NWO), grant number
different languages different optimal parametriza017.001.271, for which we are grateful.
tion strategies may apply. MH is not a free-word-
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