Modular and Efficient Top-Down Parsing for Ambiguous Left-Recursive

Grammars
Richard A. Frost and Rahmatullah Hafiz Paul C. Callaghan
School of Computer Science Department of Computer Science
University of Windsor University of Durham
Canada U.K.

rfrost @ogeco. ca P. C. Cal | aghan@lur ham ac. uk
Abstract parser combinators, and Frost 2006 for a discussion
_ _ _ of their use in natural-language processing) and def-
In functional and logic programming, inite clause grammars (DCGs) respectively. For ex-

parsers can be built as modular executable ample, consider the following grammar, in which
specifications of grammars, using parser s stands for sentenceyp for nounphraseyp for
combinators and definite clause grammars verbphrase, andet for determiner:

respectively. These techniques are based on s = np vp

top-down backtracking search. Commonly np = noun | det noun

used implementations are inefficient for ‘égt z}’z,rbl ”,pt,

ambiguous languages, cannot accommodate noun ::="'i’ | 'm | 'p | b
left-recursive grammars, and require expo- verb ::="s’

nential space to represent parse trees for A set of parsers for this grammar can be con-
highly ambiguous input. Memoization is structed in the Haskell functional programming lan-
known to improve efficiency, and work by guage as follows, whereerm ‘orelse', and
other researchers has had some success in ‘thens are appropriately-defined higher-order
accommodating left recursion. This paper functions called parser combinators. (Note that
combines aspects of previous approaches packquotes surround infix functions in Haskell).
and presents a method by which parsers can s np ‘thenS vp

be built as modular and efficient executable np = noun ‘orelse’ (det ‘thenS noun)
specifications of ambiguous grammars vp = verb "thenS np

P o) g g_ det =term’a ‘orelse’ term’t’
containing unconstrained left recursion. noun = term’i’' ‘orelse’ term’'mn

‘orelse' term’
‘orelse’ term’

o T

1 Introduction verb = term's’

Top-down parsers can be built as a set of mutually- Note that the parsers are written directly in the
recursive processes. Such implementations are mgatogramming language, in code which is similar in
ular in the sense that parsers for terminals and simpd¢ructure to the rules of the grammar. As such,
non-terminals can be built and tested first. Subsehe implementation can be thought of as an exe-
quently, parsers for more complex non-terminals cagcutable specification with all of the associated ad-
be constructed and tested. Koskimies (1990), antintages. In particular, this approach facilitates
Nederhof and Koster (1993) discuss this and othenodular piecewise construction and testing of com-
advantages of top-down parsing. ponent parsers. It also allows parsers to be defined
In functional and logic programming, top-downto return semantic values directly instead of inter-
parsers can be built using parser combinators (e.gediate parse results, and parsers to be parameter-
see Hutton 1992 for a discussion of the origins oized in order to accommodate context-sensitive lan-

109

Proceedings of the 10th Conference on Parsing Technologies, pages 109-120,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics

guages (e.g. Eijck 2003). Also, in functional pro-(such as speech recognition) it is not appropriate in
gramming, the type checker can be used to catch exther applications. According to Aho, Sethi, and
rors in parsers attributed with semantic actions. Ullman (1986) converting a grammar to non-left re-

Parser combinators and DCGs have been used eursive form makes it harder to translate expressions
tensively in applications such as prototyping of comeontaining left-associative operators. Also, in NLP
pilers, and the creation of natural language intelit is easier to integrate semantic actions with parsing
faces to databases, search engines, and web pagesen both leftmost and rightmost parses of ambigu-
where complex and varied semantic actions areus input are being generated. For example, con-
closely integrated with syntactic processing. Howsider the first of the following grammar rules:

ever, both techniques are based on top-down re- np = noun | np conj np
cursive descent search with backtracking. Com- ~ conj ::= "and" | "or" _
noun ::= "jim | "su" | "ali"

monly used implementations have exponential com-
plexity for ambiguous languages, cannot handle left- and its non-left-recursive weakly equivalent form:
recursion, and do not produce compact representa- np noun np’
tions of parse trees. (Note, a left-recursive grammar "’ conj np np’ | enpty
is one in which a non-terminal derives an expan- The non-left-recursive form loses the leftmost
sionp .. headed with @ either directly or indi- parses generated by the left-recursive form. Inte-
rectly. Application of a parser for such a grammagrating semantic actions with the non-left-recursive
results in infinite descent.) These shortcomings limitule in order to achieve the two correct interpre-
the use of parser combinators and DCGs especialfgtions of input such ag"john", "and", "su",
in natural-language processing. "or", "ali"] is significantly harder than with the
The problem of exponential time complexity inleft-recursive form.
top-down parsers constructed as sets of mutually- Several researchers have recognized the impor-
recursive functions has been solved by Norvigance of accommodating left-recursive grammars in
(1991) who uses memotables to achieve polynomi&p-down parsing, in general and in the context of
complexity. Norvig's technique is similar to the useparser combinators and DCGs in particular, and have
of dynamic programming and state sets in Earley’proposed various solutions. That work is described
algorithm (1970), and tables in the CYK algorithmin detail in section 3.
of Cocke, Younger and Kasami. The basic idea in In this paper, we integrate Norvig's technique
Norvig's approach is that when a parser is appliewith aspects of existing techniques for dealing with
to the input, the result is stored in a memotable foleft recursion. In particular: a) we make use of the
subsequent reuse if the same parser is ever reappliedgth of the remaining input as does Kuno (1965),
to the same input. In the context of parser combinds) we keep a record of how many times each parser
tors, Norvig's approach can be implemented usingia applied to each input position in a way that is
functionnenoi ze to selectively “memoize” parsers. similar to the use of cancellation sets by Neder-
In some applications, the problem of left-hof and Koster (1993), ¢) we integrate memoization
recursion can be overcome by transforming thwith a technique for dealing with left recursion as
grammar to a weakly equivalent non-left-recursiveloes Johnson (1995), and d) we store “left-recursion
form. (i.e. to a grammar which derives the same sebunts” in the memotable, and encapsulate the mem-
of sentences). Early methods of doing this resultedization process in a programming construct called
in grammars that are significantly larger than the@ monad, as suggested by Frost and Hafiz (2006).
original grammars. This problem of grammar size Our method includes a new technique for accom-
has been solved by Moore (2000) who developed modating indirect left recursion which ensures cor-
method, based on a left-corner grammar transformaect reuse of stored results created through curtail-
tion, which produces non-left recursive grammarsnent of left-recursive parsers. We also modify the
that are not much larger than the originals. Howmemoization process so that the memotable repre-
ever, although converting a grammar to a weaklysents the potentially exponential number of parse
equivalent form is appropriate in some applicationgrees in a compact polynomial sized form using a

110

technique derived from the chart parsing methods ofp-

; 1 ((1,2), [SubNode ("noun", (1,2))])
Kay (1980) and Tomita (1986). 3 ((3.5), [Branch [SubNode ("det”, (3,4)),
i SubNode ("noun", (4,5))]1)
As _an example use of our mfathod, consider the ((3.8). [Branch [Subneds (rmor (3 5))
following ambiguous left-recursive grammar from SubNode ("pp", (5,8))11)
. ; . . ,11), h [SubNode ("np", .5)),
Tomita (1985) in whictpp stands for prepositional (311 [Braneh [btede o (& 2051,
phrase, angr ep for preposition. This grammar is Braneh [onode toome 90
left recursive in the rules far andnp. Experimental 6 ((6.8), [Branch [SubNode E: det”, gg 8%11)
. . u e noun", (7,
results using larger grammars are given later. ((6,11), [Branch [SubNode ("np”, (6,8)),
SubNode ("pp", (8,11))]])
9 ((9,11), [Branch [SubNode ("det", (9,10))
s =npvp | s pp SubNode ("noun", (10,11))]11)
np = noun | det noun | np pp "prep”
- prep n 5 ((5,6), [Leaf "n"])
pp = prép np 8 ((8.9), [Leaf "w'])
vp = verb np ‘pp"
det ='a | 't’ 8 ((8,11),[Branch [SubNode ("prep",(8,9)),
noun ::="'i' | 'm | 'p | ‘b SubNode (“np”, (9,11))]])
verb =g 5 ((5,8), [Branch [SubNode ("prep", (5,6))
o s SubNode ("np", (6,8))]1])
prep ='n | 'w ((5,11), [Branch [SubNode ("prep",(5,6))
i SubNode ("np", (6,11))1])
The Haskell code below defines a parser for theverb:
above grammar, using our combinators: oy (28 Lheat 7stD)
2 ((2,5), [Branch [SubNode ("verb", (2,3))
. . ‘ . SubNode ("np", (3,5))]11)
s = menoi ze "s" ((np ‘thenS' vp) ((2,8), [Branch [SubNode ("verb",(2,3)),
‘orelse' (s ‘thenS' pp)) SubNode ("np", (3,8))]])
np = nenoize "np" (noun ((2,11), [Branch [gugmgg (:xe[b",(gy i)l)
‘orel se' (det ‘thenS' noun) . . ("np*, (3, 11)]11)
‘orelse’ (np ‘thenS pp)) 1 ((1,5), [Branch [SubNode ("np", (1,2)),
pp = nenoi ze "pp" (prep ‘thenS np) SubNode ("vp", (2,5))11)
vp = nmenoize "vp" (verb ‘thenS' np) ((1,8), [Branch [gugmgg Eng g;g;;}
_ - " " y) V) \ , N s
det = menoize "det” (term’a o Branch [SubNode ("s", (1.5)),
orelse’ term’t) SubNode ("pp", (5,8))11)
noun = nenoi ze "noun" (term’'i’ ((1,11), [Branch [SubNode ("np", (1,2)),
‘orelse' term’ni 5) [gugmgeg"vp", gié)lg)]
¢ ‘ P r anc U e ("s", , ,
,orelser term ' p SubNode ("pp", (5,11))1,
orelse' term’b’) Branch [SubNode ("s", (1,8)),
verb = nmenpi ze "verb" (term’'s’) SubNode ("pp", (8,11))]]
prep = nenoi ze "prep" (term’'n’ . .
‘orelse’ term’w) Our method has two disadvantages: a) it has

O(n*) time complexity, for ambiguous grammars,

The following shows the output when thecompared with O(f) for Earley-style parsers (Ear-
parser functions is applied to the input string €y 1970), and b) it requires the length of the input
"i sannt pwab” , representing the sentence “l saw 40 be known before parsing can commence.
man in the park with a bat”. It is a compact rep- Our method maintains all of the advantages of
resentation of the parse trees corresponding to tf@P-down parsing and parser combinators discussed
several ways in which the whole input can be parse@prller. In addition, our method accommodates ar-
as a sentence, and the many ways in which subggitrary context-free grammars, terminates correctly
quences of it can be parsed as nounphrases etc. AR correctly reuses results generated by direct and

discuss this representation in more detail in subsetildirect left recursive rules. It parses ambiguous lan-
tion 4.4. guages in polynomial time and creates polynomial-

apply s "isamt pwab" => sized representations of parse trees.
In many applications the advantages of our ap-

"noun"

L 55‘11 gg Hg;; " Im%; proach will _o.utweigh the digadvantages: In pgrticu-
7 ((7.8), [Leaf "p"]) lar, the additional time required for parsing will not
20 (10,11, [Leal "b7]) be a major factor in the overall time required when
g 552 ‘713 Hgg; jj?jj%; semantic processing, especially of ambiguous input,
9 ((9,10), [Leaf "a"]) is taken into account.

111

We begin with some background material, showegnizer returns an empty set. Otherwise, it checks
ing how our approach relates to previous work byo see if the token at position in the input corre-
others. We follow that with a detailed description ofsponds to the terminal. If so, it returns a singleton
our method. Sections 5, 6, and 7 contain informadet containing + 1, otherwise it returns the empty
proofs of termination and complexity, and a briefset. For example, a basic recognizer for the termi-
description of a Haskell implementation of our al-nal’ s’ can be defined as follows (note that we use a
gorithm. Complete proofs and the Haskell code arfunctional pseudo code throughout, in order to make
available from any of the authors. the paper accessible to a wide audience. We also use

We tested our implementation on four naturala list lookup offset of 1):
language grammars from Tomita (1986), and on .
four abstract highly-ambiguous grammars. The rgt ™ © tjerm S
sults, which are presented in section 8, indicate that {3 , if j >1_input
our method is viable for many applications, espe-= {i + 1}, if jth elenment of input =t
cially those for which parser combinators and defi- - otherw se
nite clause grammars are particularly well-suited. ~ Theenpty recognizer is a function which always

We present our approach with respect to pars§HCCe€ds returning its input index in a set:
combinators. However, our method can also be im- empty | = {j}
plemented in other languages which support recur- A recognizer corresponding to a construct q
sion and dynamic data structures. in the grammar is built by combining recognizers

for p andq, using the parser combinatoer el se* .
2 Top-Down Backtracking Recognition When the composite recognizer is applied to index
j,itappliesptoj, then it applies; toj, and subse-
Top-down recognizers can be implemented as a sgfiently unites the resulting sets.:

of mutually recursive processes which search for (p ‘orelse’ q) j =unite (pj) (qij)
parses using a top-down expansion of the gran®.g, assuming that the input'issss", then
mar rules defining non-terminals while looking for (empty ‘orelse’ terms) 2 => {2, 3}

matches of terminals with tokens on the input. To- A composite recognizer corresponding to a se-
kens are consumed from left to right. Backtrackquence of recognizets g on the right hand side of
ing is used to expand all alternative right-hand-sideg grammar rule, is built by combining those recog-
of grammar rules in order to identify all possiblenizers using the parser combinatatens . When
parses. In the following we assume that the inpithe composite recognizer is applied to an ingdei

is a sequence of tokensiput, of lengthl iinput first appliesp toj , then it applies; to each index in

the members of which are accessed through an ithe set of results returned lpy It returns the union
dexj . Unlike commonly-used implementations ofof these applications af.

parser combinators, which produce recognizers that (p ‘thenS q) j = union (map q (p j))
manipulate subsequences of the input, we assumeg.g., assuming that the inputiissss", then
as in Frost and Hafiz (2006), that recognizers are (terms ‘thenS terms) 1 => {3}

functions which take an index as argument and The combinators above can be used to define

which return a set of indices as result. Each indeéomposite mutua”y_recursive recognizers_ For ex-
in the result set corresponds to the position at whichmple, the grammass ::= 's’ sS sS | enpty

the recognizer successfully finished recognizing gan be encoded as follows:
sequence of tokens that began at posifion AN ss = (terms ‘thenS sS ‘thenS s9S)

empty result set indicates that the recognizer failed ‘orelse’ enpty
to recognize any sequence beginning at j. Multiple Assuming that the input isssss", the recognizer
results are returned for ambiguous input. sS returns a set of five results, the first four corre-

According to this approach, a recognizesr mt sponding to proper prefixes of the input being rec-
for a terminalt is a function which takes an index ognized as ars. The results corresponds to the
j asinput, and if is greater tham_i nput, the rec- case where the whole input is recognized assn

112

sS 1 =>{1, 2, 3, 4, 5} clarity associated with pure top-down parsing. Leer-

The method above does not terminate for Ieﬁ[nakers did not extend his method to produce com-

. . . _pact representations of trees.
recursive grammars, and has exponential tlm%) B
complexity with respect ta i nput for non-left- 4) Nederhof and Koster (1993) introduced “can-

. Lo ellation” parsing in which grammar rules are trans-
recursive grammars. The complexity is due to th§)
fact that recognizers may be repeatedly applied tgtr;dinmltoi D(iilGnruIe“s i%i?lai?;[:gtc"hasDC;S ;X?:;
the same index during backtracking induced by th&ze al Is given a ‘ca . .
‘ .. argument. Each time a new non-terminal is de-
operator orel se' . We show later how complexity ",
rived in the expansion of a rule, this non-terminal

can be improved, using Norvig’'s memoization tech- : :
. b 9 g is added to the cancellation set and the resulting set
nique. We also show, in section 4.4, how the com: . .
. ‘ ‘ ‘ ‘ is passed on to the next symbol in the expansion.
binatorsterm “orel se’, and *thens' can be re- If a non-terminal is derived which is already in the
defined so that the processors create compact repre-t th -th inat | b I\I/<t ks. This tech)I/]
sentations of parse trees in the memotable, with o - en the parser backlracks. IS technique pre-

effect on the form of the executable specification. vents npn-termlnatlon, but Ipses SOMeE parses. To
solve this, for each non-termina) which has a left-

3 Left Recursion and Top-Down Parsing recursive alternative 1) a function is added to the
parser which places a special tokerat the front
Several researchers have proposed ways in whigfithe input to be recognized, 2) a DCG correspond-
left-recursion and top-down parsing can coexist: ing to the rulen :: = n is added to the parser, and
1) Kuno (1965) was the first to use the length oB) the new DCG is invoked after the left-recursive
the input to force termination of left-recursive de-DCG has been called. The approach accommodates
scent in top-down parsing. The minimal lengths ofeft-recursion and maintains modularity. An exten-
the strings generated by the grammar on the contigion to it also accommodates hidden left recursion
uation stack are added and when their sum exceedich can occur when the grammar contains rules
the length of the remaining input, expansion of thavith empty right-hand sides. The shortcoming of
current non-terminal is terminated. Dynamic proNederhof and Koster's approach is that it is expo-
gramming in parsing was not known at that timenential in the worst case and that the resulting code
and Kuno's method has exponential complexity. is less clear as it contains additional production rules
2) Shiel (1976) recognized the relationship beand code to insert the special tokens.
tween top-down parsing and the use of state sets5) Lickman (1995) defined a set of parser com-
and tables in Earley and SYK parsers and developdiinators which accommodate left recursion. The
an approach in which procedures corresponding toethod is based on an idea by Philip Wadler in an
non-terminals are called with an extra parameter ininpublished paper in which he claimed that fixed
dicating how many terminals they should read fronpoints could be used to accommodate left recursion.
the input. When a procedure corresponding to Bickman implemented Wadler’s idea and provided
non-terminaln is applied, the value of this extra pa-a proof of termination. The method accommodates
rameter is partitioned into smaller values which aréeft recursion and maintains modularity and clarity
passed to the component procedures on the right of the code. However, it has exponential complex-
the rule definingr. The processor backtracks whenity, even for recognition.
a procedure defining a non-terminal is applied with 6) Johnson (1995) appears to have been the first
the same parameter to the same input position. The integrate memoization with a method for dealing
method terminates for left-recursion but has expowith left recursion in pure top-down parsing. The
nential complexity. basic idea is to use the continuation-passing style
3) Leermakers (1993) introduced an approachf programming (CPS) so that the parser computes
which accommodates left-recursion through “recumultiple results, for ambiguous cases, incrementally.
sive ascent” rather than top-down search. Althougfhere appears to have been no attempt to extend
achieving polynomial complexity through memoiza-Johnson’s approach to create compact representa-
tion, the approach no longer has the modularity antions of parse trees. One explanation for this could

113

be that the approach is somewhat convoluted and eshow how to accommodate direct and indirect left
tending it appears to be very difficult. In fact, John+ecursion. We end this section by showing how rec-
son states, in his conclusion, that “an implemenegnizers can be extended to parsers.
tation attempt (to create a compact representation) o
would probably be very complicated.” 4.1 Memoization

7) Frost and Hafiz (2006) defined a set of parseks in Norvig (1991) a memotable is constructed dur-
combinators which can be used to create polynomiéthg recognition. At first the table is empty. During
time recognizers for grammars with direct left recurthe process it is updated with an entry for each rec-
sion. Their method stores left-recursive counts in thegnizer ti that is applied. The entry consists of a set
memotable and curtails parses when a count exceeafspairs, each consisting of an indgxat which the
the length of the remaining input. Their method doegecognizer ri has been applied, and a set of results
not accommodate indirect left recursion, nor does f the application ofri toj .
create parse trees. The memotable is used as follows: whenever a

Our new method combines many of the ideas déecognizer ri is about to be applied to an index
veloped by others: as with the approach of Kunéhe memotable is checked to see if that recognizer
(1965) we use the length of the remaining input thias ever been applied to that index before. If so,
curtail recursive descent. Following Shiel (1976)the results from the memotable are returned. If not,
we pass additional information to parsers which ighe recognizer is applied to the input at indexhe
used to curtail recursion. The information that wememotable is updated, and the results are returned.
pass to parsers is similar to the cancellation sefr non-left-recursive recognizers, this process en-
used by Nederhof and Koster (1993) and includesures that no recognizer is ever applied to the same
the number of times a parser is applied to each inpitdex more than once.
position. However, in our approach this informa- The process of memoization is achieved through
tion is stored in a memotable which is also used tthe functionnmenoi ze which is defined as follows,
achieve polynomial complexity. Although Johnsorwhere theupdat e function stores the result of rec-
(1995) also integrates a technique for dealing witRgnizer application in the table:
left recursion with memoization, our method dif- nenoize Iabel r_i j
fers from Johnson’s Of) approach in the technique = i f 1 ookup I abel j succeeds,

. return nenotabl e result

that we use to accommodate left recursion. Also, ¢ e apply r i toj,
our approach facilitates the construction of com- update table, and return results
pac? representations of parse trees_ whereas ‘]_O hn'I\/Iemoized recognizers, such as the following,
son’'s appears not to. In the Has.kell mplementaﬁuonawe cubic complexity (see later):
of our algorithm, we use a functional programming .
structure called a monad to encapsulate the details™> = MMi z& "meS" (s ‘thteﬂg’;]slmgss)
of the parser combinators. Lickman’s (1995) ap- ‘orel se' enpty)
proach also uses a monad, but for a different pur- ™ = menoize "ns" terms
pose. Our algorithm stores “left-recursion counts42 Accommodating direct left recursion
in the memotable as does the approach of Frost
and Hafiz (2006). However, our method accommoln order to accommodate direct left recursion, we in-
dates indirect left recursion and can be used to credi@duce a set of valuesig denoting the number of
parsers, whereas the method of Frost and Hafiz ciifnes each recognizerirhas been applied to the in-
only accommodate direct left recursion and createdeXj . For non-left-recursive recognizers this “left-

recognizers not parsers. rec count” will be at most one, as the memotable
lookup will prevent such recognizers from ever be-
4 The New Method ing applied to the same input twice. However, for

left-recursive recognizers, the left-rec count is in-
We begin by describing how we improve complex-creased on recursive descent (owing to the fact that
ity of the recognizers defined in section 2. We thethe memotable is only updated on recursive ascent

114

after the recognizer has been applied). Applicatiofor that recognizer and that index,i¢ is checked

of arecognizer to an indeX is failed whenever the to see if the recognizer should be failed because
left-rec count exceeds the number of unconsumedatihas descended too far through left-recursion. If
tokens of the input plus 1. At this point no parse iso, nenoi ze returns an empty set as result with the
possible (other than spurious parses which could omemotable unchanged. Otherwise, the countgr ¢
cur with circular grammars — which we want to re-is incremented and the recognizeris applied tg ,
ject). As illustration, consider the following branchand the memotable is updated with the result before
being created during the parse of two remaining tat is returned. The functionenoi ze defined below,
kens on the input (wheng, P andQare nodes in the can now be applied to rules with direct left recursion.

parse search space corresponding to non-terminalgy i e 1abel r i j =

andA, B andcto terminals or non-terminals): if lookup |abel j succeeds
return nenotable results

N else if c_ij > (l_input)-j+1, return {}

N/ \A el se increnent c_ij, apply r_i toj,

updat e nenot abl e,
and return results

P C 4.3 Accommodating indirect left recursion

Q We begin by illustrating how the method described
/ above may return incomplete results for grammars
containing indirect left recursion.

The last call of the parser for should be failed Consider the following grammar, and subset of
owing to the fact that, irrespective of whats, and the search space, where the left and right branches
C are, either they must require at least one input taepresent the expansions of the first two alternate
ken, otherwise they must rewrite topty. If they right-hand-sides of the rule for the non termirsal
all require a token, then the parse cannot succeed.dpplied to the same position on the input:

any of them rewrite tenpty, then the grammaris s .. = s then ..| Q| P | «x s
circular (N is being rewritten tov) and the last call P ::= S then . / \
should be failed in either case. (Tg s ; IS then .. IQ
Note that failing a parse when a branch is longer Sthen .. T
than the length of the remaining input is incorrect as IP IP

this can occur in a correct parse if recognizers are | |
rewritten into other recognizers which do not have Sthen.. S then ..
“token requirements to the right”. For example, we l
cannot fail the parse &or Qas these could rewrite fail s
to enpty without indicating circularity. Also note Suppose that the left branch occurs before the
that we curtail the recognizer when the left-rec countght branch, and that the left branch was failed due
exceeds the number of unconsumed tokelus 1 to the left-rec count fos exceeding its limit. The
The plus 1 is necessary to accommodate the casesults stored foP on recursive ascent of the left
where the recognizer rewrites to empty on applicasranch would be an empty set. The problem is that
tion to the end of the input. the later call of on the right branch should not reuse
To make use of the left-rec counts, we simphithe empty set of results from the first callrods they
modify the nmenoi ze function to refer to an addi- are incomplete with respect to the positionrobn
tional table callectt abl e which contains the left- the right branch (i.e. iP were to be re-applied to the
rec counts ¢j, and to check and increment theseanput in the context of the right branch, the results
counters at appropriate points in the computationwould not necessarily be an empty set). This prob-
if the memotable lookup for the recognizei and lem is a result of the fact tha caused curtailment
the index produces a result, that result is returnedof the results fop as well as for itself. This problem
However, if the memotable does not contain a resuttan be solved as follows:

115

1) Pass left-rec contexts down the parse space. Wad been constrained by the left-rec contextfait
need additional information when storing and conj. If there were no curtailment, the left-rec context
sidering results for reuse. We begin by defining thef a result would be empty and that result can be
“left-rec-context” of a node in the parse search spaaeused anywhere irrespective of the current left-rec
as a list of the following type, containing for each in-context.
dex, the left-rec count for each recognizer, including
the current recognizer, which have been called in the4 Extending recognizers to parsers

search branch leading to that node: Instead of returning a list of indices representing

[(i ndex, [(recogl abel,left reccount)])] successful end points for recognition, parsers also

2) Generate the reasons for curtailment Whefum the parse trees. However, in order that these
computing results. For each result we need to kNOWeeg he represented in a compact form, they are con-
if the subtrees contributing to it have been curtailedy,teq with reference to other trees that are stored
through a left-rec limits, and if so, which recogniz-i, the memotable, enabling the explicit sharing of
ers, at which indices, caused the curtailment. A I'S(t,ommon subtrees, as in Kay's (1980) and Tomita’s
of (recog.l abel, index) pairs which caused cur- 19g6) methods. The example in section 1 illustrates
tailment in any of the subtrees is returned with th?he results returned by a parser.

_result.‘ orel se* and t.hens.‘ are r_n_od|f|ed, acc_ord— Parsers for terminals return a leaf value together
ingly, to merge these lists, in addition to merging th%vith an endpoint, stored in the memotable as illus-

rezultsstfrom subl;[re'est.h table toaeth ith trated below, indicating that the terminad" was
) Store results in the memotable together wi fentified at position 2 on the input:

subset of the current left-rec context corresponding
to those recognizers which caused the curtailment.
When a result is to be stored in the memotable for
a recognizep, the list of recognizers which caused The combinator:thens is extended so that
curtailment (if any) in the subtrees contributing toparsers constructed with it return parse trees which
this result is examined. For each recognigevhich are represented using reference to their immediate
caused curtailment at some index, the current lefsubtrees. For example:

rec counter fos at that index (in the left-rec context |,

"verb" 2 ((2,3),[Leaf "s"])

the only part of the left-rec context of a node, that is SubNode("noun”, (4,5))]])
stored with the result for that node, is a list of those

recognizers and current left-rec counts which had amhjs memotable entry shows that a parse tree for a

effect on Curtai”ng the result. The limited Ieft'reCnounphrase np" has been |dent|f|ed, Starting at po-

context which is stored with the result is called thesjtion 3 and finishing at positios, and which con-

“left-rec context of the result”. sists of two subtrees, corresponding to a determiner
4) Consider results for reuse. Whenever a memnd a noun.

otable result is being considered for reuse, the left- The combinator or el se* unites results from two

rec-context of that result is compared with the leftyarsers and also groups together trees which have

rec-context of the current node in the parse searoﬁ1e same begin and end points. For example:

The result is only reused if, for each recognizer and

index in the left-rec context of the result, the left-rec, Dt

count is smaller than or equal to the left-rec-coung ((3, 5), [Branch[SubNode("det", (3,4)),

of that recognizer and index in the current context. SubNode(" noun”, (4,5))]])

This ensures that a result stored for some applicatiort (38 [Branch[SubNode(“np", (3,5)),

. .) SubNode("pp", (5,8))]11)
P of a recognizer at index is only reused by a sub- ((3, 11), [Branch[SubNode("np", (3,5)),

sequent applicatior of the same recognizer at the SubNode("pp", (5,11))],
s . Branch[SubNode("np", (3,8)),
same position, if the left-rec context fer would SubNode("pp". (8 11))11)

constrain the result more, or equally as much, as it

116

which shows that four parses of a nounphrasg® worst-case time complexities of Grand O(1}) re-
have been found starting at position 3, two of whictspectively, where n is the number of tokens in the
share the endpoint 11. input. The proof proceeds as follows:or el se*

An important feature is that trees for the sameequires O(n) operations to merge the results from
syntactic category having the same start/end pointa/o alternate recognizers provided that the indices
are grouped together and it is the group that is rere kept in ascending ordert hen' involves O(1?)
ferred to by other trees of which it is a constituentoperations when applying the second recognizer in
For example, in the following the parse tree for @ sequence to the results returned by the first rec-
"vp" spanning positions 2 to 11 refers to a group obgnizer. (The fact that recognizers can have mul-
subtrees corresponding to the two parses ofn tiple alternatives involving multiple recognizers in

both of which span positions 3 to 11: sequence increases cost by a factor that depends on
"vp" 2 (["np"1,[1) the grammar, but not on the length of the input). For
((2,5), [Br anch[gﬂgmgzg:sxe[b"'gﬁ’ g;g]]) non-left-recursive recognizersenoi ze guarantees
((2,8), [Branch| SubNode("vgr b". (2. 3)), that each recognizer is applied at most once to each
SubNode("np", (3,8))11) input position. It follows that non-left recursive rec-
((2,11), [Branch[SubNode("verb", (2, 3 ognizers have Off) complexity. Recognizers with

)
SubNode(*np®, (3, 11))11) direct left recursion can be applied to the same input

5 Termination position at mosh times. It follows that such recog-
_ S _ ~nizers have O(H complexity. In the worst case a

The only source of iteration is in recursive funCt'onrecognizer with indirect left recursion could be ap-
calls. Therefore, proof of termination is based Ofhlied to the same input position * nt times where
the arguments of recursive calls to a well-foundeethis worst case would occur when every nontermi-
ascending sequence of integers. . nal was involved in the path of indirect recursion for

Basic recognizers such asrm i’ and the rec- some nonterminal. Complexity remains @)n
ognizerenpty have no recursion and clearly termi- - he only difference between parsers and recog-
nate for finite input. Other recognizers that are desjzers s that parsers construct and store parts of
fined in terms of these basic recognizers, througharse trees rather than end points. We extend the
mutual and nested recursion, are applied by th&mplexity analysis of recognizers to that of parsers
menoi ze function which takes a recognizer and anyng show that for grammars in Chomsky Normal
indexj as input and which accesses th@ot abl e. Form (CNF) (i.e. grammars whose right-hand-sides
An appropriate measure function maps the index arghye at most two symbols, each of which can be ei-
the set of left-rec values to an integer, which inther g terminal or a non-terminal), the complexity
creases by at least one for each recursive call. Thg non-left recursive parsers is Gjnand of left-
fact that the integ.er is bounded by_conditions iMtecursive parsers it is Ofj The analysis begins by
posed on the maximum value of the index, the MaXyefining a “parse tuple” consisting of a parser name
imum values of the left-rec counters, and the MaXs; a start/end point pairs, e), and a list of parser
imum number of left-rec contexts, establishes tehames and end/point pairs corresponding to the first
mination. Extending recognizers to parsers do§gye| of the parse tree returned pyor the sequence
not involve any additional recursive calls and consess tokens frons to e. (Note that this corresponds to
quently, the proof also applies to parsers. A formaln entry in the compact representation). The anal-
proof is available from any of the authors. ysis then considers the effect of manipulating sets
of parse tuples, rather than endpoints which are the
values manipulated by recognizers. Parsers corre-
The following is an informal proof. A formal proof sponding to grammars in CNF will return, in the
is available from any of the authors. worst case, for each start/end point pair (s, @k

We begin by showing that memoized non-leftss) + 1) * 2) parse tuples, wheteis the number of ter-
recursive and left-recursive recognizers have minals and non-terminals in the grammar. It follows

6 Complexity

117

that there are O(n) parse tuples for each parser anthed to obtain the best performance from this pat-
begin/endpoint pair. Each parse tuple corresponderm). We used a 3GHz/1GB PC in our experiments.
to a bi-partition of the sequence starting and fin-
ishing ate by two parsers (possibly the same) fro
the set of parsers corresponding to terminals anthe Tomita grammars used were: G1 (8 rules), G2
non-terminals in the grammar. It is these parse ty40 rules), G3 (220 rules), and G4 (400 rules). We
ples that are manipulated byr el se* and: t hens'. used two sets of input: a) the three most-ambiguous
The only effect on complexity of these operations isnputs from Tomita’s sentence set 1 (Appendix G)
to increase the complexity oforel se* from O(n) of lengths19, 26, and26 which we parsed with

to O(r?), which is the same as the complexity ofG3 (as did Tomita), and b) three inputs of lengths
‘thens' . Owing to the fact that the complexity of 4, 10, and 40, with systematically increasing
‘thens' had the highest degree in the application odmbiguity, chosen from Tomita’s sentence set 2,
a compound recognizer to an index, increasing thehich he generated automatically using the formula:
complexity of* orel se* to the same degree in pars-

ing has no effect on the overall complexity of the noun verb det noun (prep det notin)

process.

The representation of trees in the memotable has The results, which are tabulated in figure 1,
one entry for each parser. In the worst case, wheshow our timings and those recorded by Tomita for
the parser is applied to every index, the entry hasis original algorithm and for an improved Earley
n sub-entries, corresponding idbegin points. For method, using a DEC-20 machine (Tomita 1986,
each of these sub-entries there are up sub-sub- Appendix D).
entries, each corresponding to an end point of the Considered by themselves our timings are low
parse. Each of these sub-entries contains O(n) pamseough to suggest that our method is feasible for
tuples as discussed above. It follows that the size ofe in small to medium applications, such as NL in-

mB.l Tomita’'s Grammars

the compact representation is G)n terfaces to databases or rhythm analysis in poetry.
_ Such applications typically have modest grammars
7 Implementation (no more than a few hundred rules) and are not re-

We have implemented our method in the pure funcqlerecj to parse huge vqumgs of input. . .
Clearly there can be no direct comparison against

tional programming language Haskell. We use a

monad (Wadler 1995) to implement memoization) S2rS-0ld DEC-20 times, and improved versions of
both of these algorithms do exist. However, we point
Use of a monad allows the memotable to be sy

tematically threaded through the parsers while hij—o some relevant trends in the results. The increases

ing the details of table update and reuse, allowin? times for our method roughly mirror the increases

. . Zhown for Tomita’s algorithm, as grammar complex-
a clean and simple interface to be presented to the . o ;
: : ity and/or input size increase. This suggests that our
user. The complete Haskell code is available from; . L
algorithm scales adequately well, and not dissimi-

any of the authors.

larly to the earlier algorithms.

8 Experimental Results 8.2 Highly ambiguous abstract grammars

In order to provide evidence of the low-order poly-We defined four parsers as executable specifica-
nomial costs and scalability of our method, we contions of four variants of a highly-ambiguous gram-
ducted a limited evaluation with respect to foumar introduced by Aho and Ullman (1972) when
practical natural-language grammars used by Tomitliscussing ambiguity: an unmemoized non-left—
(Appendix F, 1986) when comparing his algorithmrecursive parset, a memoized versioims, a memo-
with Earley’s, and four variants of an abstract highlyized left-recursive versiogini , and a left—recursive
ambiguous grammar from Aho and Ullman (1972)version with all parts memoized. (This improves
Our Haskell program was compiled using the Glasefficiency similarly to converting the grammar to
gow Haskell Compiler 6.6 (the code has not yet beeBhomsky Normal Form.):

118

I nput No. of Qur al gorithm (conpl ete parsing)-PC Tonmi tas (conpl ete parsing)-DEC 20 Earl eys (recognition only)-DEC 20

I ength Par ses GL (4 [€5] (€] GL [G3 [eZ] GL [G3 [eZ]
Input from Tom tas sentence set 1. Tinmings are in seconds.

19 346 0. 02 4.79 7. 66

26 1,464 0. 03 8. 66 14.65

Input from Tom tas sentence set 2. Tinings are in seconds.

22 429 0. 00 0. 00 0. 03 0. 05 2. 80 6. 40 4.74 19.93 2.04 7.87 7.25 42.75
31 16, 796 0. 00 0.02 0. 05 0.09 6.14 14. 40 10. 40 45. 28 4.01 14.09 12.06 70.74
40 742,900 0. 03 0. 08 0.11 0.14 11.70 28. 15 18. 97 90. 85 6. 75 22.42 19.12 104.91

Figure 1: Informal comparison with Tomita/Earley results

s = (term’a’ ‘thenS s ‘thenS s) 9 Concluding Comments
‘orel se' enpty
sm = menoi ze "snf

((term'a ‘thenS sm‘thenS sm We have extended previous work of others on mod-

“orel se' enpty) ular parsers constructed as executable specifica-
sm = nenoi ze "sm " tions of grammars, in order to accommodate am-
((sm :Egﬂg tsgrm) biguity and left recursion in polynomial time and
‘orel se' enpty) space. We have implemented our method as a set of
smmi = nmenoi ze "smm * parser combinators in the functional programming
(((Snmgimi tzge.r.fmﬂ o language Haskell, and have conducted experiments
(st ‘thenS term’a’))) which demonstrate the viability of the approach.

‘orelse’ enpty) The results of the experiments suggest that our

We chose these four grammars as they are highfjjethod is feasible for use in small to medium ap-

ambiguous. According to Aho and Ullman (1972)'plications which need_ parsing of ambiguou; gram-
s generates over2s billion complete parses of an mars. Our method, like other methods which use

input consisting of 24 a’'s. Although the left- Parser combinators or DCGs, allows parsers to be

recursive grammar does not generate exactly tiféeated as executable specifications which are “em-
same parses, it generates the same number of parf&dded” in the host programming language. It is

as it matches a terminal at the end of the rule rath&ften claimed that this embedded approach is more
than at the start. convenient than indirect methods which involve the

use of separate compiler tools such as yacc, for rea-
sons such as support from the host language (includ-
ing type checking) and ease of use. The major ad-
Tnput No. of parses Seconds to generate the vantage of our method is that it increases the type

| th | udi ked tati .
O tial parses of full and partial parses Of grammars that can be accommodated in the em-

. - : S gf”oo gmg‘o bedded style, by supporting left recursion and ambi-
12 208, 012 out of 0.00 0.00 0.02 guity. This greatly increases what can be done in
5 ey e s or—oi3 o5 this approach to parser construction, and removes
48 1.313e+26 0.83 0.97 0.80 the need for non-expert users to painfully rewrite
and debug their grammars to avoid left recursion.
Figure 2: Times to compute forest for n We believe such advantages balance well against any

reduction in performance, especially when an appli-
cation is being prototyped.
The Haskell implementation is in its initial stage.
These results show that our method can accomiVe are in the process of modifying it to improve ef-
modate massively-ambiguous input involving thdiciency, and to make better use of Haskell's lazy
generation of large and complex parse forests. Féwvaluation strategy (e.g. to return only the firist
example, the full forest fom=48 contains 1,225 successful parses of the input).
choice nodes and 19,600 branch nodes. Note alsoFuture work includes proof of correctness, analy-
that the use of more memoization $an reduces sis with respect to grammar size, testing with larger
the cost of left-rec checking. natural language grammars, and extending the ap-

119

proach so that language evaluators can be conis.

structed as modular executable specifications of at-
tribute grammars.

Acknowledgements

16.

Richard Frost acknowledges the support provided
by the Natural Sciences and Engineering Research
Council of Canada in the form of a discovery grant.

References
1.

10.

11.

12.

13.

14.

Aho, A. V. and Ullman, J. D. (1972Yhe Theory of
Parsing, Translation, and Compiling. Volume I: Parsing.
Prentice-Hall.

. Aho, A. V., Sethi, R. and Ullman, J. D. (198&pmpil-

ers: Principles, Techniques and ToolAddison-Wesley
Longman Publishing Co.

19.
. Camarao, C., Figueiredo, L. and Oliveira, R.,H. (2003)

Mimico: A Monadic Combinator Compiler Generator.
Journal of the Brazilian Computer Socied{1).

20.
. Earley, J. (1970) An efficient context-free parsing algo-

rithm.Comm. ACML3(2) 94-102.

. Eijck, J. van (2003) Parser combinators for extraction. |

Paul Dekker and Robert van Rooy, editoPspceedings
of the Fourteenth Amsterdam ColloqiuixL.C, Univer-
sity of Amsterdam. 99-104.

. Frost, R. A. (2006) Realization of Natural-Language In-

terfaces using Lazy Functional ProgrammiA@&M Com-
put. Surv.38(4).

. Frost, R. A. and Hafiz, R. (2006) A New Top-Down Pars-

ing Algorithm to Accommodate Ambiguity and Left Re-
cursion in Polynomial Time.SIGPLAN Noticegt2 (5)
46-54.

. Hutton, G. (1992) Higher-order functions for parsirdg.

Functional Programming (3) 323-343.

. Johnson, M. (1995) Squibs and Discussions: Memo-

ization in top-down parsingComputational Linguistics
21(3) 405-417.

Kay, M. (1980) Algorithm schemata and data structures in
syntactic processingTechnical Report CSL-80-1XE-
ROX Palo Alto Research Center.

Koskimies, K. (1990) Lazy recursive descent parsing for
modular language implementationSoftware Practice
and Experienc@0 (8) 749-772.

Kuno, S. (1965) The predictive analyzer and a path elim-
ination technigueComm. ACMB(7) 453-462.

Leermakers, R. (1993he Functional Treatment of Pars-
ing. Kluwer Academic Publishers, ISBN0—7923-9376—
7.

Lickman, P. (1995) Parsing With Fixed Poinkdaster’s
Thesis University of Cambridge.

120

17.

Moore, R. C. (2000) Removing left recursion from
context-free grammars. |Rroceedings, 1st Meeting
of the North American Chapter of the Association for
Computational Linguistics, Seattle, Washington, ANLP—
NAACL 2000 249-255.

Nederhof, M. J. and Koster, C. H. A. (1993) Top-Down
Parsing for Left-recursive GrammarsTechnicalReport
93-10 Research Institute for Declarative Systems, De-
partment of Informatics, Faculty of Mathematics and In-
formatics, Katholieke Universiteit, Nijmegen.

Norvig, P. (1991) Techniques for automatic memoisation
with applications to context-free parsinGomputational
Linguistics17(1) 91-98.

18. Shiel, B. A. (1976) Observations on context-free pars-

ing. Technical ReporfTR 12-76, Center for Research
in Computing Technology, Aiken Computational Labo-
ratory, Harvard University.

Tomita, M. (1986)Efficient Parsing for Natural Lan-
guage: A Fast Algorithm for Practical System&luwer
Academic Publishers, Boston, MA.

Wadler, P. (1995) Monads for functional programming,
Proceedings of the Baastad Spring School on Advanced
Functional Programminged J. Jeuring and E. Meijer.
Springer Verlag LNCS 925.

