
Proceedings of the 10th Conference on Parsing Technologies, pages 106–108,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Pomset mcfgs

Michael J Pan
University of California Los Angeles

mjpan@cs.ucla.edu

Abstract

This paper identifies two orthogonal dimen-
sions of context sensitivity, the first being
context sensitivity in concurrency and the
second being structural context sensitivity.
We present an example from natural lan-
guage which seems to require both types of
context sensitivity, and introduce partially
ordered multisets (pomsets) mcfgs as a for-
malism which succintly expresses both.

Introduction

Researchers in computer science and formal lan-
guage theory have separately investigated context
sensitivity of languages, addressing disjoint dimen-
sions of context sensitivity. Researchers in paral-
lel computing have explored the addition of con-
currency and free word order to context free lan-
guages, i.e. a concurrency context sensitivity (Gis-
cher, 1981; Warmuth and Haussler, 1984; Pratt,
1985; Pratt, 1986; Lodaya and Weil, 2000). Com-
putational linguistis have explored adding cross-
ing dependency and discontinuous constituency, i.e.
a structural context sensitivity (Seki et al., 1991;
Vijay-Shanker et al., 1987; Stabler, 1996).

Research considering the combination of two di-
mensions of expressing context sensitivity have been
sparse, e.g. (Becker et al., 1991), with research ded-
icated to this topic virtually nonexistent. Natural
languages are not well expressed by either form of
context sensitivity alone. For example, in Table 1,
sentences 1-8 are valid, but 9, 10 are invalid con-
structions of Norwegian. In addition to the cross-
ing dependency between the determiner and adverb
phrase, this example can be described by either

Derfor ga Jens Kari kyllingen tydeligvis ikke lenger kald

Therefore gave Jens Kari the chicken evidently not longer cold

Derfor ga Jens Kari tydeligvis kyllingen ikke lenger kald

Derfor ga Jens tydeligvis Kari kyllingen ikke lenger kald

Derfor ga Jens tydeligvis Kari ikke kyllingen lenger kald

Derfor ga Jens tydeligvis Kari ikke lenger kyllingen kald

Derfor ga Jens tydeligvis ikke lenger Kari kyllingen kald

Derfor ga tydeligvis Jens ikke lenger Kari kyllingen kald

Derfor ga tydeligvis ikke Jens lenger Kari kyllingen kald

* Derfor ga Jens ikke tydeligvis Kari lenger kyllingen kald

* Derfor ga Jens ikke tydeligvis kyllingen lenger Kari kald

Table 1: Bobaljik’s paradox/shape conservation example

Bobaljik’s paradox (Bobaljik, 1999), which asserts
that relative ordering of clausal constituents are not
unambiguously determined by the phrase structure,
or shape conservation (Müller, 2000), i.e. that lin-
ear precedence is preserved despite movement op-
erations. In other words, the two structurally con-
text sensitive components (due to the crossing de-
pendency between them) can be shuffled arbitrarily,
leading to concurrent context sensitivity.

This paper proposes pomset mcfgs as a formal-
ism for perspicuously expressing both types of con-
text sensitivity. 1 The rest of the paper is organized
as follows. Section 1 introduces pomsets, pomset
operations, and pomset properties. Section 2 pro-
vides a definition of pomset mcfgs by extending the
standard definition of mcfgs, defined over tuples of
strings, to tuples of pomsets. Section 3 discusses
pomset mcfg parsing.

1Other pomset based formalisms (Lecomte and Retore,
1995; Basten, 1997; Nederhof et al., 2003) have been limited
to the use of pomsets in context free grammars only.

106

1 Pomsets

In this section, we define pomsets as a model for de-
scribing concurrency. A labelled partial order (LPO)
is a 4 tuple (V, Σ, �, µ) where V is a set of ver-
tices, Σ is the alphabet, � is the partial order on the
vertices, and µ is the labelling function µ:V→ Σ.
A pomset is a LPO up to isomorphism. The con-
catenation of pomsets p and q is defined as ;(p,q)
= (Vp∪Vq,Σp ∪ Σq,�p ∪ �q ∪Vp×Vq,µp ∪ µq).
The concurrency of pomsets p and q is defined
as ‖(p,q) = (Vp∪Vq,Σp ∪ Σq,�p ∪ �q,µp ∪ µq).
Pomset isolation (ι) is observed only in the con-
text of concurrency. The concurrence of an isolated
pomset with another pomset is defined as ‖(ιp,q) =
({vp}∪Vq,pλ ∪ Σq,�q,{(pλ,vp)}∪µq), where λp is
the set of linearizations for p, and pλ is a function
which returns an element of λp. Let ‖i be a pomset
concurrency operator restricted to an arity of i. Be-
cause concurrency is both associative and commu-
tative, without isolation, ‖m‖n = ‖n‖m = ‖m+n, de-
feating any arity restrictions. Isolation allows us to
restrict the arity of the concurrency operator, guaran-
teeing that in all linearizations of the pomset, the lin-
earizations of the isolated subpomsets are contigu-
ous.2 A mildly concurrent operator ι ‖n, i.e. an n-
concurrent operator, is a composite operator whose
concurrency is isolated and restricted to an arity of n,
such that it operates on at most n items concurrently.

2 Pomset mcfgs

There are many (structural) mildly context sensitive
grammar formalisms, e.g. mcfg, lcfrs, mg, and they
have been shown to be equivalent (Vijay-Shanker et
al., 1987). In this section we construct mcfgs over
pomsets (instead of strings) to define grammars with
both types of context sensitivity.

A pomset mcfg G is a 7-tuple (Σ,N,O,P,F,R,S)
such that Σ is a finite non-empty set of atoms, i.e.
terminal symbols, N is a finite non-empty set of non-
terminal symbols, where N∩Σ=∅, O is a set of valid
pomset operators, P is a set of i-tuples of pomsets
labelled by Σ∪N, F is a finite set of pomset rewrit-
ing functions from tuples of elements of P into ele-
ments in P, F⊆{ g:Pn →P | n>0 }, R is a finite set

2Pomset isolation is similar to proposals in for string iso-
lation in linear specification language (Goetz and Penn, 2000),
locking in idl-expressions (Nederhof and Satta, 2004), and in-
tegrity constraints in fo-tag (Becker et al., 1991).

of rewrite rules which pair n-ary elements of F with
n+1 nonterminals, and S∈N is the start symbol, and
d(S) = 1.

This definition extends the standard mcfg defini-
tion (Seki et al., 1991), with two main differences.
First, strings have been generalized to pomsets, i.e.
P is a set of i-tuples of pomsets instead of i-tuples of
strings. It follows that F, the set of functions, oper-
ate on tuples of pomsets instead of tuples of strings,
and so forth. Second, pomset mcfgs explicitly spec-
ify O, the set of possible operators over the pomsets,
e.g. {;, ι ‖2}; string mcfgs have an implied operator
set O={;} (i.e. just string concatenation).

Additionally, just as in mcfgs, where the arity of
string components are limited, we can limit the ar-
ity of the concurrency of pomsets. A n-concurrent
pomset mcfg is a pomset mcfg such that for all con-
currency operators ‖i in the grammar, i≤n. A pom-
set mcfg with no concurrency among its components
is a 1-concurrent pomset mcfg, just as a cfg is a 1-
mcfg.

3 Parsing

In this section we propose a strategy for parsing
pomset mcfgs, based on IDL parsing (Nederhof and
Satta, 2004). We define pomset graphs, which ex-
tend IDL graphs and pom-automata and are defined
over tuples of pomsets (or tuples of idl expressions),
rather than single pomsets or idl expressions. An in-
formal analysis of the computational complexity for
parsing pomset mcfgs follows.

Pomset graphs The construction is quite straight
forward, as pomsets themselves can already be con-
sidered as DAGs. However, in the pomset graph,
we add two vertices, the start and end vertices. We
then add precedence relations such that the start ver-
tex precedes all minimal vertices of the pomset, and
that the end vertex succeeds all maximal vertices of
the pomset. For any nonempty pomset, we define
Vmin ⊆V and Vmax ⊆V to be the minimal and
maximal, respectively, vertices of V. Informally, no
vertex in a pomset precede Vmin and none succeed
any in Vmax. Formally, ∀ v∈V, v’∈V,v’6=v, Vmin =
{ v | (v’,v) 6∈� } and Vmax = { v | (v,v’) 6∈� }. The
start vertex is then labelled with the empty string, ε,
and the end vertex is labelled with σ’, a symbol not
in Σ.

107

Given a pomset p= (Vp,Σ,�,µp), a pomset
graph for p is a vertex labelled graph γ(p) =
(Vγ ,E,µγ) where Vγ and E are a finite set of ver-
tices and edges, where Vγ=Vp∪{vs,ve} and E= �
∪vs×Vmin∪Vmax×ve, Σγ=Σ∪{ε,σ’}, where σ’ is
a symbol not in Σ, and µγ=µp∪{(vs,ε),(ve,σ’)} is
the vertex labelling function. Having defined the
pomset graph, we can apply the IDL parsing algo-
rithm to the graph.

Complexity While the complexity of the mem-
bership problem for pomset languages in general
is NP-complete (Feigenbaum et al., 1993), by re-
stricting the context sensitivity of the pomset gram-
mars, polynomial time complexity is achievable.
The complexity of the parsing of IDL graphs is
O(n3k) (Nederhof and Satta, 2004) where k is the
width of the graph, and the width is a measurement
of the number of paths being traversed in parallel,
i.e. the arity of the concurrent context sensitivity.
Our intuition is that the parameterization of the com-
plexity according to the number of parallel paths
applies even when structural context sensitivity is
added. Thus for a k-concurrent m-structural mcfg,
we conjecture that the complexity is O(n3km).

4 Conclusion

In this paper we identified two types of context sen-
sitivity, and provided a natural language example
which exhibits both types of context sensitivity. We
introduced pomset mcfgs as a formalism for describ-
ing grammars with both types of context sensitivity,
and outlined an informal proof of the its polynomial-
time parsing complexity.

References

Twan Basten. 1997. Parsing partially ordered multisets.
International Journal of Foundations of Computer Sci-
ence, 8(4):379–407.

Tilman Becker, Aravind K. Joshi, and Owen Rambow.
1991. Long distance scrambling and tree adjoining
grammars. In Proceedings of EACL-91, the 5th Con-
ference of the European Chapter of the Association for
Computational Linguistics.

Jonathan David Bobaljik. 1999. Adverbs: The hierarchy
paradox. Glot International, 4.

Joan Feigenbaum, Jeremy A. Kahn, and Carsten Lund.
1993. Complexity results for pomset languages. SIAM
Journal of Discrete Mathematics, 6(3):432–442.

Jay Gischer. 1981. Shuffle languages, Petri nets, and
context-sensitive grammars. Communications of the
ACM, 24(9):597–605, September.

Thilo Goetz and Gerald Penn. 2000. A proposed lin-
ear specification language. Technical Report 134, Ar-
beitspapiere des SFB 340.

A. Lecomte and C. Retore. 1995. Pomset logic as an
alternative categorial grammar. In Glyn Morrill and
Richard Oehrle, editors, Formal Grammar, pages 181–
196.

K. Lodaya and P. Weil. 2000. Series-parallel languages
and the bounded-width property. Theoretical Com-
puter Science, 237(1–2):347–380.

Gereon Müller. 2000. Shape conservation and remnant
movement. In Proceedings of NELS 30.

Mark-Jan Nederhof and Giorgio Satta. 2004. IDL-
expressions: A formalism for representing and parsing
finite languages in natural language processing. Jour-
nal of Artificial Intelligence Research, 21:287–317.

Mark-Jan Nederhof, Giorgio Satta, and Stuart M.
Shieber. 2003. Partially ordered multiset context-free
grammars and ID/LP parsing. In Proceedings of the
Eighth International Workshop on Parsing Technolo-
gies, pages 171–182, Nancy, France, April.

Vaughan R. Pratt. 1985. The pomset model of paral-
lel processes : Unifying the temporal and the spatial.
Technical report, Stanford University, January.

Vaughan R. Pratt. 1986. Modelling concurrency with
partial orders. International Journal of Parallel Pro-
gramming, 15(1):33–71.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context free gram-
mars. Theoretical Computer Science, 88:191–229.

Edward P. Stabler. 1996. Derivational minimalism.
In Christian Retoré, editor, LACL, volume 1328 of
Lecture Notes in Computer Science, pages 68–95.
Springer.

K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. 1987.
Characterizing structural descriptions produced by
various grammatical formalisms. In Proceedings of
the ACL, pages 104–111, Stanford, CA.

Manfred K. Warmuth and David Haussler. 1984. On the
complexity of iterated shuffle. J. Comput. Syst. Sci.,
28(3):345–358.

108

