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Abstract virtually all Tree Adjoining Grammars (TAG, see

e.g., (Schabes et al., 1988)) used in NLP applica-
In this paper, we present a method which, in  tions can (almost) be seen as lexicalized Tree In-
practice, allows to use parsers for languages sertion Grammars (TIG), which can be converted
defined by very large context-free grammars  into strongly equivalent CFGs (Schabes and Waters,
(over a million symbol occurrences). The  1995). Hence, the parsing techniques and tools de-
idea is to split the parsing process in two  scribed here can be applied to most TAGs used for
passes. A first pass computes a sub-grammar NLP, with, in the worst case, a light over-generation
which is a specialized part of the large gram-  which can be easily and efficiently eliminated in a
mar selected by the input text and various  complementary pass. This is indeed what we have
filtering strategies. The second pass is a tra- achieved with a TAG automatically extracted from
ditional parser which works with the sub-  (villemonte de La Clergerie, 2005)’s large-coverage
grammar and the input text. This approach factorized French TAG, as we will see in Section 4.
is validated by practical experiments per-  Even (some kinds of) non CFGs may benefit from
formed on a Earley-like parser running on  the ideas described in this paper.

a test set with two large context-free gram- The reason why the run-time of context-free (CF)
mars. parsers for large CFGs is damaged relies on a theo-
_ retical result. A well-known result is that CF parsers
1 Introduction may reach a worst-case running time@f| G| x n?)

where|G]| is thesizeof the CFG and: is thelength

More and more often, in real-word natural lan- & ' =T
guage processing (NLP) applications based upd?'f the source text. In typical NLP applications

grammars, these grammars are no more written Wich mainly work at the sentence level, the length
hand but are automatically generated, this has se%t & Sentence does not often go beyond a value of
eral consequences. This paper will consider one 6fY 120’ while its average length is around 20-30
these consequences: the generated grammars n{égfds In these conditions, the size of the grammarr,
be very large. Indeed, we aim to deal with grammard€SPite its linear impact on the complexity, may be
that have, say, over a million symbol occurrenced1® Prevailing factor: in (Joshi, 1997), the author re-
and several hundred thousands rules. Traditiong_?arks that “the real limiting factor in practice is the
parsers are not usually prepared to handle thefiz€ Of the grammar™. _ _
either because these grammars are simply too big ' "€ idea developed in this paper is to split the

(the parser's internal structures blow up) or the tim827SiNg process in two passes. A first pass called
spent to analyze a sentence becomes prohibitive. fIt€ring pass computes a sub-grammar which is the

This paper will con_centratg on context-free gram-  ithese two notions will be defined precisely later on.
mars (CFG) and their associated parsers. However, 2At least for French, English and similar languages.
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sub-part of the large input grammar selected by the, with A € N anda € V*.

input sentence and various filtering strategies. The For a given stringa € V*, its size (length)
second pass is a traditional parser which works witls noted|«|. As an example, for the input string
the sub-grammar and the input sentence. The pur= a; - - - ay, a; € T, we havgw| = n. The empty
pose is to find a filtering strategy which, in typicalstring is denoted and we havéz| = 0. The sizgG|
practical situations, minimizes on the average thef a CFGG is defined by|G| = > 4, ,cp |Ac].

total run-time of the filtering pass followed by the For G, on strings ofl’*, we define the binary re-

parser pass. lation derive noted=>, by 71 Ay ‘=% yiavs if
A filtering pass may be seen as a (filtering) func- G

. . — a € P and~y;,y, € V*. The subscriptG
tion that uses the mput.sentence to select a suélf even the superscript — o may be omitted. As
grammar Ol.Jt of a large |np.ut CFG. Our hope, usstuaI, its transitive (resp. reflexive transitive) clo-
ing such a filter, is that the time saved by the parser . n . .
pass which uses a (smaller) sub-grammar will notire 1S “Otedg’ (resp. ?)' We callderivationany
totally be used by the filter pass to generate this susequence of the formy =z e A complete
grammar. derivationis a derivation which starts with the ax-

It must be clear that this method cannot improvéom and ends with a terminal string. In that case
the worst-case parse-time because there exists grawe haveS :;> 0l :;> w, and~ is asentential form

mars for which the sub-grammar selected by the fil- 1,4 string languagedefined (generated, recog-

tering pass is the input grammar itself. In such &zeq) py( is the set of all the terminal strings that
case, the filtering pass is simply a waste of time. Ouére derived from the axiomZ(G) = {w | S EN
purpose in this paper is to argue that this technique G

may profit from typical grammars used in NLP. Tow,w € T"}. We say that a CFG is empty iff its
do that we put aside the theoretical view point anéfnguage is empty.

we will consider instead the average behaviour of A nonterminal symboH is nullableiff it can de-
our processors. rive the empty string (i.e.4 :Zg ). A CFG ise-free

More precisely we will study on two large NL iff its nonterminal symbols are non-nullable.
CFGs the behaviour of our filtering strategies on a A CFG isreducediff every symbol of every pro-
set of test sentences. The purpose being to chooggction is a symbol of at least one complete deriva-
the bestfiltering strategy, if any. By best, we meantion. A reduced grammar is empty iff its production
the one which, on the average, minimizes the totaet is empty P = ). We say that a non-empty
run-time of both the filtering pass followed by thereduced grammar is icanonical formiff its vocab-
parsing pass. ulary only contains symbols that appear in the pro-
Useful formal notions and notations are recalleductions ofP.34
in Section 2. The filtering strategies are presented Two CFGsG and G’ are weakly equivalentff
in Section 3 while the associated experiments at@ey generate the same string language. They are
reported in Section 4. This paper ends with sometrongly equivalentff they generate the same set of

concluding remarks in Section 5. structural descriptions (i.e., parse trees). It is a well
o known result (See Section 3.2) that every CEG
2 Preliminaries can be transformed in time linear w.r{G| into a

strongly equivalent (canonical) reduced CEG

2.1 Context-free grammars ) ) . o~
For a given input stringy € T*, we define its

A CFG G is a quadruplg N, T, P, S) whereNis

a non-empty finite set afonterminal symbo)sI” is Swe may say that the canonical form of the empty reduced
. . . . grammar is({S}, 0, 0, S) though the axiont does not appear

a finite set ofterminal symbols P is a finite set of i, any production.

(context-free rewritingyules (or production$ and “Note that the pai(P, S) completely defines areduced CFG

S is a distinguished nonterminal symbol called th§= (N, T, Pﬁ}) 'LT {Cgf}logcal f?}“{“ Sllng(e we h’;‘(\m‘ =){(Xo |

. e . - 0 — € , = i 0o — 1 Xp c

gxmm The setsV andT" are .dISjOII’\t and’ = NUT PA1<1i<p}—N.Thus, inthe sequel, we often note simply

is thevocabulary The rules inP have the formA — G = (P, S) grammars in canonical form.
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rangesas the setR” = {[i..j] | 1 < i < j < configurations, notedf—x by (q,tx) : (¢, x), iff

w + 1} If w = witws € T is a terminal string, (¢,1,¢) € 8. If w'w” € T*, we callderivationany
and ift € T U {e} is a (terminal or empty) sym- sequence of the forry’, w'w’) : : (", w").

bol, theinstantiation of ¢ in w is the triple noted o _ A
If w € T, theinitial configurationis notedc, and

t[i..j] whereli..j] is a range withi = |wy| +1and | _ ) _ >

j =i+ |t|. More generally, thénstantiationof the is the pair(qo, w). A final _conflguratlonls notedc s

terminal stringws in w; waws is notedws|i..j] with ~ and has the fomtgy, <) with ¢y € I A complete
derivationis a derivation which starts with, and

i = |w1| +1andj = i+ |we|. Obviously, the in- e _ _
stantiation ofw itself is thenw([1..1 + |w]]. ends in a final configuratios;. In that case we have

Let us consider an input string = wiywows co = cy.

S0 A
and a CFGG. If V\f have a complete derivation Tp¢ language £(A) defined (generated recog-
d=S5 =;> w1 Aws =;>a wiaws =;> wiwaws, We nized by the FSAA is the set of all terminal strings

: + w for which there exists a complete derivation. We
see that4 deriveswsy (we haveA = ws). More- . e . )

_ _ S a say that an FSA is empty iff its language is empty.
over, in this complete derivation, we also know aryo FSAsA and A’ areequivalentiff they defined
range inR", namely/[i..j], which covers the sub- {ne same language.
string wp which is derived byA (i = |wi| + 1 An FSA ise-freeiff its transition relation has the
andj_ = i+ |wa). 'This is represented by the-  form s = {(gi,t.4))|ai-q; € Q,t € T}, except per-
stantiated nonterminal symbdl[i..j]. In fact, each a5 for a distinguished transition, theransition
symbol which appears in a complete derivation may;nich has the formgo, e, q;), ¢; € F and allows

be transformed into its instantiated counterpart. Wg,q empty string to be in£(A). Every FSA can be

thus talk of instantiated productions or (complete).ansformed into an equivalentfree FSA.

instantiated derivations. For a giyen input text AnFSAA = (Q, %, 5, qo, F) is reducediff every

and a CFGG, let P be the set of instantiated pro- gjement of5 appears in a complete derivation. A

ductions that appears in all complete instantiatefhq,ced FSA is empty iff we have = (. We say

derivations? The pair(P, S[1..|w| +1]) is the(re-  hat 5 non-empty reduced FSA iséanonical form

duced) shared parse foreistcanonical fornf iff its set of stateg) and its set of terminal symbols

32 only contain elements that appear in the transition

relationd.” It is a well known result that every FSA

A finite-state automatoFSA) is the 5-tupled = A can be transformed in time linear witH | into an

(Q,%,6,q, F) whereQ is a non empty finite set equivalent (canonical) reduced FS#.

of states ¥ is a finite set otterminal symbolsé is . _

the transition relatiod = {(g;,t,q;)|qi,q; € Q A 2-3 Inputstrings and input DAGs

t € T U{e}}, qo is a distinguished element @@ In many NLP applicatiorfsthe source text cannot

called theinitial stateand F" is a subset of) whose be considered as a single string of terminal symbols

elements are callefinal states The size of4 is  but rather as a finite set of terminal strings. These

defined byl A| = |d]. sets are finite languages which can be defined by
As usual, we define bothanfigurationas an ele- particular FSAs. These particular type of FSAs are

ment of@ x T andderivea binary relation between called directed-acyclic graphgDAGSs). In a DAG

~ SFor example, in the previous complete derivation__ (@20, qO’F).’ the.mltlal .stateqo 's 1 and we

d, let the right-ﬁand sidec be the (vocabulary) string assume that there is a single final stafg” = {f})’

X;--- X --- X, in which each symbolX, derives the ter- () is a finite subset of the positive integers less than

minal stringz, € T* (we have X ? zp andw, = or equal tof: @ = {i|l < i < f}, X is the set of

x1- -z - - - Tp), then the instantiated productiotfio..i,] —  terminal symbols. For the transition relationwe

2.2 Finite-state automata

1,41 =d0 +|z1|, .- ok = tk—1 + k| ... ANdip = io + |w2| "We may say that the canonical form of the empty reduced

is an element of?Y . FSA is ({0}, 0,0, g0, 0) though the initial statej, does not
®The popular notion of shared forests mainly comes fron@ppear in any transition.

(Billot and Lang, 1989). 8Speech processing, lexical ambiguity representation, . ..
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require that its elements, ¢, j) are such that < j  every production inP} is used in at least one com-
(there are no loops in a DAG). Without loss of genplete derivation. Now, if this process is viewed as
erality, we will assume that DAGs atefree reduced a filtering strategy that computes a filtering function
FSAs in canonical form and that any DAGIs noted  as introduced in Section 1, it is clear that this strat-
by a triple (X, 6, f) since its initial state is always egy issize-optimaln the sense tha?; is of minimal
and its set of states g | 1 <1 < f}. size, we call it thegold strategy and the associated

For a given CFGG, the recognition of an input gold filtering function is noted. Since we do not
DAG w is equivalent to the emptiness of its inter-want that a filtering strategy looses parses, the result
section withG. This problem can be solved in time Gl = (Pdf, S) of any filtering functionf must be
linear in|G| and cubic in@Q| the number of states of such that, for every senteneg P{: is a superset of
w. PJ. In other words theecall scoreof any filtering

If the input text is a DAG, the previous notions offunction f must be of 100%. We can note that the
range, instantiations and parse forest easily generglarsing pass which generat6$ may be led by any
ize: the indiceg and; which in the string case locate filtering strategyy.
the positions of substrings are changed in the DAG As usual, theprecision scordprecision for short)
case into DAG states. For exampleAfiy..i,] —  of a filtering strategyf (w.r.t. the gold case) is, for
Xi[ig-i1] -~ Xplip—1.-i] is an instantiated produc- a givenw, defined by the quotient2! which ex-
tion of the parse forest fo&& = (N, T, P, S) and [Pol
w = (%,0, f), we haveA — X;---X, € P and
there is a path in the input DAG from statgto state
ip Via stategy, ..., ip—1.

Of course, any nonempty terminal stringe 7',
may be viewed as a DAG., 4, f) whereX = {t |
w = witwy ANt € T}, 6§ = {(i,t,i +1) | w =
witwa At € TNt = I—le]} andf = I—Hw]. If the

:S'zg[ iztr(lgggu J:? \t\?ﬁ;&p? ;trisn%, {t?f as;)c;c;ar;tgd ing strategyc, we only have to plot the times taken
_ 9 Thl’.lS’ in the se ua v’ve v;ill asjsgljme that thé)y the filtering pass and by the parsing pass to make
i];r;ns' of our’ parsers a?e né)t sirings but DAGs. As gome estimations on their average (median, decile)

. i parse times and then to decide which is the winner.
consequence the size (ength) of a sentence is the However, it may well happens that a strategy which
size of its DAG (i.e., its number of transitions). ' y PP 9y

has not received the award (with the sample of CFGs
and the test sets tried) would be the winner in an-
other context!

3.1 Gold Strategy All the following filtering strategies exhibit nec-
Let G = (N,T,P,S) be a CFGw = (5,4, f) essary conditions that any production must hold in

be an input DAG of sizen = |§| and (F,) = Ordertobeinaparse.
((Py),S[1..f]) be the reduced output parse for-
est in canonical form. FromP,), it is pos-
sible to extract a set of (reduced) uninstantiAn algorithm which takes as input any CFG
ated productionsPi = {A — X;---X, | G = (N,T,P,S) and generates as output a
Alig..ip] — Xilio..i1)Xali1..ia] - -+ Xp[ip—1.ip) € Strongly equivalentreduced CFG G’ and which
(P,)}, which, together with the axiorfi, defines a runs in O(|G|) can be found in many text books
new reduced CF@, = (PJ,S) in canonical form. (See (Hopcroft and Ullman, 1979) for example).
This grammar is called thgold grammar ofG for So as to eliminate from all our intermediate sub-
w, hence the superscrigt Now, if we useGY, to grammars all useless productions, each filtering
reparse the same input DAG, we will get the same strategy will end by a call to such an algorithm
output forest F,,). But in that case, we are sure thainamedmake-a-reduced-grammar

presses the number of useful productions selected by
f onw (for someG).

However, it is clear that we are interested in strate-
gies that aréime-optimaland size-optimal strategies
are not necessarily also time-optimal: the time taken
at filtering-time to get a smaller grammar will not
necessarily be won back at parse-time.

For a given CFQG7, an input DAGw and a filter-

3 Filtering Strategies

3.2 Themake-a-reduced-grammar Algorithm
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The make-a-reduced-grammaalgorithm works

as follows. It first finds alproductiv€ symbols. Af- S — AB 1)
terwards it finds alteachablé® symbols. A symbol S _ BA @)
is useful(otherwiseuseleskif it is both productive A = a 3)
and reachable. A productioh — X --- X, is use-

ful (otherwiseuseleskiff all its symbols are useful. A — ab (4)
A last scan over the grammar erases all useless pro- B — b (5)
duction and leaves the reduced form. Tamonical B — bc (6)

formis reached in only retaining in the nonterminal
and terminal sets of the sub-grammar the symbols _
which occur in the (useful) production set. Table 1: A simple grammar
3.3 Basic Filtering Strategy: b-filter O(|G|) time if we assume that the access to the ele-
The basic filtering strategyfilter for short) which ments of the terminal sét is performed in constant
is described in this section will always be tried thdime. Unlexicalizedproductions whose right-hand
first. Thus, its input is the coupléG,w) where sides are inV* are kept. It also rejects productions
G = (N, T, P, S) is the large initial CFG and the in- in which several terminal symbol occurs, in an order
put sentencev is a reduced DAG in canonical form which is not compatible with the linear order of the
w = (3,6, f) of sizen. It generates a reduced CFGinpult.
in canonical form noted?® = (P?, S) in which the Consider for example the set of productions
references to botlir andw are assumed. Besidesshown in Table 1 and assume that the source text
this b-filter, we will examine in Sections 3.4 and 3.5is the terminal stringib. It is clear that the-filter
two others filtering strategies namedindd. These Will erase production 6 sinceis not in the source
filters will always have as input a couplé&“,w) text.
whereG¢ = (P¢,S) is a reduced CFG in canonical The execution of theb-filter produces a (non-
form which has already been filtered by a previouseduced) CFG such thafG’| < |G|. However, it
sequence of strategies notedThey generate a re- may be the case that some production&ofire use-
duced CFG in canonical form notéd/ = (P¢/,S) less, it will thus be the task of thmake-a-reduced-
with f = a or f = d respectively. Of course it may grammaralgorithm to transforn@’ into its reduced
happens that</ is identical toG¢ if the f-filter is canonical formG? in time O(|G’|). The worst-case
not effective. A filtering strategy or a combination oftotal running time of the wholé-filter pass is thus
filtering strategies may be applied several times an@(|G| x n).
lead to a filtered grammar of the form sgjfe”de We can remark that, after the execution of the
in which the sequencii?da explicits the order in filter, the set of terminal symbols @’ is a subset
which the filtering strategies have been performedf 7' N .
We may even repeatedly applyuntil a fixed point
is reached before applyingy and thus get something
of the formGbe~a, As explained before, we assume that the input to
The idea behind thefilter is very simple and has the adjacent filtering strategyifilter for short) de-
largely been used in lexicalized formalisms parsingscribed in this section is a coupl&“, w) where
in particular in LTAG (Schabes et al., 1988) parsingG® = (N¢, T, P¢,S) is a reduced CFG in canon-
The filter rejects productions @f which contain ter- ical form. However, thes-filter would also work
minal symbols that do not occur & (i.e., that are for a non-reduced CFG. As usual, we define the

not terminal symbols of the DAG) and thus takes Symbols ofG° as the elements of the vocabulary

3.4 Adjacent Filtering Strategy: a-filter

- Ve=NeUT".
°X € Vis productive iff we haveX = w,w € T". The idea is to erase productions that cannot be
"X € V is reachable iff we havé = w1 Xws,wiw> €  part of any parses fap in using an adjacency crite-
T*. ria: if two symbols are adjacent in a rule, they must
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derive terminal symbols that are also adjacenvin Moore, 2000), hereaftdtC, is a well-known rela-

To give a (very) simple practical idea of what wetion since many parsing strategies are based upon it.
mean by adjacency criteria, let us consider again th&fe say thatX is in the LC of A and we writed . X
source string:b and the grammar defined in Table 1. %
. . : iff (A, X B)Y)|B Y PAa= e}
in which the last production has already been erased (4, X) 6 { )| B—aYie 4G 2
by theb-filter. We can writeA L X to enforce how the cou-

—aXp

The fact that theB-production ends with &and  ple (A, X) may be produced.
that the A-productions all start with am, implies  For its dual relationright-corner, noted., we say

that production 2 is in a complete parse only if thgn 4t v is in the right corner oft and we writeX s A
source text is such thdtis immediately followed

by a. Since it is not the case, production 2 can béf (X,4) € {(Y,B) [ B — oY € PAJ :(’;>
erased. e}. We canwriteX 1 A to enforce how the

More generally, consider a production of tr12e formcouple(X, A) may bggséijﬁuced.
A= - XY If for each couple(a, b) € 7" in We also define thérst (resp. last) relation noted
which a is a terminal symbol that can terminate (the{_} (resp. <o) by = {(X.t) | X € V AL €
terminal strings generated by andb is a terminal ¢ ooP- ) BY ! '
symbol that can lead (the terminal strings generated* X 7t A2 €T } (resp.—= {(X, 1) | X €
by) Y, there is no transition ohthat can followa V Atc TAX = atAz € ).
transition ora in the DAGw, it is clear that the pro- ¢
ductionA — --- XY --- can be safely erased.

Now assume that we have the following (left) .
derivation Y :*> Ylﬁl =*> Y;ﬁl s ﬁl :*> (Xv g, Y) € {(Uaﬁa V) | A— aUﬂV’y € P/\ﬂ z?

X e}. This means thak andY occur in that order in

WYplp-- P = Yplp P e right-hand side of some production and are sep-
with ay, = . If for each couple(a,?’) in which arated by a nullable string. Note thatX or Y may

a has the previous definition arid is a terminal ©Of may not be nullable. _
symbol that can lead (the terminal strings gener- On the input DAGw = (%, 4, f), we define the
ated by)Y,, there is no transition ol that can fol- immediately precedeelation noted< and we write
low a transition oru in the DAG w, the production ¢ < b for a,b € ¥ iff wiabws € L(w), w1, ws €
Yp-1 — apY;B, can be erased if it is not valid in g«
another context.

Moreover, consider a (right) derivation of the _ _
form X = X, =S ap-eeaX, = We writtea < b for a,b € X iff wiawsbws €

Xp—1—apXpPp
: =

We define theadjacentternary relation o/ x
N* x V noted « and we write X <& Y iff

Yp—lgpypﬁp

We also define therecederelation noted« and

. L(w),w;,ws, w3 € X*.We can note thak is not
o1 pXply =y apXp, iy 1
the transitive closure of.

. * 12 . .
with 3, = e. If for each couple(a’, b) in which b For each productiont — aXoX: -« X, 1 X,7

has the previous definition andis a terminal sym- 4 pc and for each symbol pairsXy, X,,) of non-
bol that can terminate (the terminal strings gene

ated by).X,, there is no transition ohthat can fol-
low a transition on’ in the DAG w, the production PUte two setsl; andA; of couples(a, b),a,b € T*
X,_1 — apX,3, can be erased if it is not valid in defined by A; = Uocicp = {(a,0) | a <
another context. Xo X g X; —¢ by and Ay = Up<icp =
In order to formalize these notions we define sev- Xip1Xp1
eral binary relations together with their (reflexive){(“’ b) [ a = Xi e Xp = b} Any
transitive closure. —
Within a CFGG = (N, T, P, S), we first define Hconsider the source strirtgab for which we haven z ¢,
left-corner noted.. Left-corner (Nederhof, 1993; but nota < c.

Rullable symbols s.t.X;--- X, 4 §*> €, wWe com-
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pair (a,b) of A; is such that the terminal symbol Z is non-empty, thug. is also non-empty?
a may terminate a phrase &, while the terminal
symbolb may lead a phrase ak,--- X,. Since "o e (left) derivation of the form

Xy and X, are not nullable is not empty. If * % X
0 P A1 Pty XoY = woawicY = woewiwY =

none of its elements$a, b) is such thata < b, the Ge Ge Ge

. . Z—aolU
pl’OdUCtIOﬂA — aXpXy ---prlXp’}/ is useless woawlwzngw gi A woawlwgwgaUﬁW :*>

and can be erased. Analogously, any gairb) of G

As is such that the terminal symbal may termi- _ o
nate a phrase akoX, - -- X,_; while the terminal in which wiwywswsws € T<*. These derivations

symbolb may lead a phrase of,,. SinceX, and contains all possible usages of the production-

X, are not nullable,A, is not empty. If none of U8 in a parse. If for every couplg:, b) € L, the
its elements(a, b) is such thata < b, the produc- Statemena < b does not hold, we can conclude that

tion A — aXoX; --- X, 1X,7 is useless and can the productionZ — aUg is not used in any parse
be erased. Of course X, -- X, 1 = e, we have and can thus be deleted.

A= Ayt Analogously, we can check that the order of ter-

The previous method has checked some adjaceginal symbols is compatible with both a production
properties inside the right-hand sides of productiong,n its right grammatical context.

The following will perform some analogous checks

but at the beginning and at the end of the right-hand L€t Z — aU 3 be a production irP® in which U

sides of productions. is non-nullable ang? :> e. If Y is a non-nullable
Let us go back to Table 1 to illustrate our pur-symbol, we compute the sét = {(a,b) | a «

pose. Recall that, with source teat, productions 6 7 |, 7 x &y s, b}. SinceG* is reduced

and 2 have already been erased. Consider produc-Z2—oUB

tion 4 whose left-hand side is aa, the terminal and sinceS < §, we are sure that the sgt’ X <

Stl’ing ab that it generates ends lby If we look for Y |S non_empty’ thuﬂ is also non_ernptyfl
the occurrences afl in the right-hand sides of the
(remaining) productions, we only find production 1 10 €ach couple(a,b) € R we can asso-
which indicates thatl is followed by B. Since the Ciate at Ieast one (right) derlvatlon of the Iorm
phrases of3 all start withb (See production 5) and XY §> Xowibwy :> Xwawibwo o
since in the source tg)btdoes not immediately fol- 1 Zwswawy b Z—;;Uﬁ el Bwswywybwg :*>
low anotherb, production 4 can be erased. Ge

In order to check that the input senteneestarts 1ol wiwswawibwg => W1a72aw5w4w?,ZU2wlbWO

and ends by valid terminal symbols, we augmenh which w5w4w3w2w1 € T. These deriva-
the adjacent relation with two elemerits ¢, S) and  tions contains all possible usages of the production
(S,¢,$) where$ is a new terminal symbol whichis 7z —. U3 in a partial parse. If for every couple
supposed to start and to end every sentefce. (a,b) € L, the statement < b does not hold, we

. LetZ _”’ chUﬁ b((eha grodwf:tlon_ IP< in Wh'(l:lhg can conclude that the productidh — U is not
IS hon-nullable an ? e. It X is a non-nullable used in any parse and can thus be deleted.

We can associate with each couple,b) €

*
woawiwawzwU Bryo = woawi Wawsw4wsbyi B2

symbol, we compute the sét — {(a,b) | a «—4
P . . Now, a call to themake-a-reduced-grammaal-
XeYLZ o U< b}. SinceGeisreduced g

Z—alUB gorithm produces a reduced CFG in canonical form
and since$ < S, we are sure that the sat & v ©  hamedGe = (N, T, P, S).

121t can be shown that the previous check can be performed
on(G*, w) in worst-case timé& (|G| x42|3) (recallthag>| <
n). This time reduces t@ (|G| x |X|?) if the input sentence  This statement does not hold any more if we exclude from
is not a DAG but a string. P the productions that have been previously erased during the
13This is equivalent to assume the existence in the grammaurrenta-filter. In that case, an empty set indicates that the
of asuper-productiorwhose right-hand side has the fofif§$.  productionZ — U can be erased.
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3.5 Dynamic Set Automaton Filtering matically generated CFG, the other one is the CFG
Strategy: d-filter equivalent of a TIG automatically extracted from a

In (Boullier, 2003) the author has presented iActorized TAG.

method that takes a CFG and computes a FSA __ 1he first grammar, name@”=", is a variant of
that defines a regular supersett7). However his € CFG backbone of a large-coverage LFG gram-
method would produce intractable gigantic FSASNar for French used in the French LFG parser de-
Thus he uses his method to dynamically computﬁ.\c”bed in (Boullier and Sagot, 2005). In this vari-
the FSA at parse time on a given source text. Bas@f'l the SeT’ of terminal symbols is the whole set of

on experimental results, he shows that his methdg€nch inflected forms present in thefitea large-
called dynamic set automatotDSA) is tractable. COVerage syntactic lexicon for French (Sagot et al.,

He uses it toguide an Earley parser (See (Ear-2006)' This leads to as many as 407,863 different

ley, 1970)) and shows improvements over the noF;Arminal symbols and 520,711 lexicalized prqduc-
guided version. The DSA method can directly bdons (hence, the average number of categories —
used as a filtering strategy since the states of the uffNich are here non-terminal symbols — for an in-

derlying FSA are in fact sets dfems For a CFG flected form is 1.27). Moreover, this CFG entails
G = (N,T,P,S), an item (or dotted production) a non-neglectible amount of syntactic constraints

is an element of [A — a.8] | A — af € P}. (including over-generating sub-categorization frame

A completeitem has the form{A — ~.], it indi- checkin.g), _WhiCh implie_s as manyﬁ?ﬂ = 19,028

cates that the productiod — ~ has been, in some non-lexicalized productlons. All in allGT>N has

sense, recognized. Thus, the complete items of tRe2: 739 productions. G

DSA states gives the set of productions selected by 1he second grammar, named ™, is a CFG

the DSA. This selection can be further refined if we/Nich represents a TIG. To achieve this, we applied

also use the mirror DSA which processes the sourdBoullier, 2000)'s algorithm on the unfolded version

text from right to left and if we only select completeOf (Villemonte de La Clerger!e, 20022 factorlzed

items that both belong to the DSA and to its mirror. JAG- The numberTngproductlons 6=~ Is com-
Thus, if we assume that the input to the DSA filparable to that ot . However, tl}%sée o gram-

tering strategy dfilter) is a couple(G¢, w) where mars are _completely dn‘fere_nt. Firgt '~ has much

Ge = (P*,S) is a reduced CFG in canonical form, €SS terminal and non-terminal symbols tiah~ .

we will eventually get a set of productions which isT i jrggans that thﬁ tj)vasic fiter may be less ;z;fci;cient

S .

a subset ofP°. If it is a strict subset, we then ap- 2" G than onG; ' Secon_d, the size %T’;N

ply the make-a-reduced-grammaaigorithm which |sh§nr:)rr1r1]ous (rrr:ore. tﬂaﬂ l?j twges t;?}g )

produces a reduced CFG in canonical form nameff 'c" SNOWs that right-hand sides s pro-

Ged — (Pl 5), ductions are huge (the average number of right-hand
The Section 4 will give measures that may help t&'de symbols is more than 24). This may increase

compare the practical merits of theandd-filtering the usefulness Qf _andd-ﬂltermg strategies. ,
strategies. Global quantitative data about these grammars is

shown in Table 2.
4 Experiments Both grammars, as evoked in the introduction,
have not been written by hand. On the contrary, they
The measures presented in this section have begfe automatically generated from a more abstract
taken on a 1.7GHz AMD Athlon PC with 1.5 Gb and more compact level (a meta-level over LFG for
of RAM running Linux. All parsers are written in C G7>N  and a metagrammar f67/¢). These gram-
and have been compiled with gcc 2.96 with B2  mars are not artificial grammars set up only for this
optimization flag. experiment. On the contrary, they are automatically
generated huge real-life CFGs that are variants of
grammars used in real NLP applications.
We have performed experiments with two large Our test suite is a set of 3093 French journalistic
grammars described below. The first one is an autgentences. These sentences argémerallemonde

4.1 Grammars and corpus
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L6 [N ] Jm | el [ AP | 16l ] Strategy| Average precision
GT>N | 7,862 407,863 539,739] 19,028 | 1,123,062 GT>N ‘GTIG
GTic 448 173 | 493,408| 4,338 | 12,455,767 no filter | 0.04% | 0.03%

b 62.87%| 39.43%
bd 74.53% | 66.56%
ba 77.31%| 66.94%
ba™> 77.48% | 67.48%

Table 2: Sizes of the grammaés’ > and GTI¢
used in our experiments

part of the EASy parsing evaluation campaign cor- bad 80.27%| 77.16%
pus. Raw sentences have been turned into DAGs ba®d | 80.30%| 77.41%
of inflected forms known by both grammar/lexicon gold | 100% | 100%

couplest® This step has been achieved by the pre-
syntactic processing chairx®ipe (Sagot and Boul- Table 3: Average precision of six different filtering
lier, 2005). They are all recognized by both gramstrategies on our test corpus witH >» andG*7¢.
mars!® The resulting DAGs have a median size of

28 andan averggelsae of 3.1'7' ) lier, 2003), at least as precision is concerned. We
Before entering into details, let us give here th

first important result of these experiments: it was hall see later that this is stil the case on global
. : ' arsing times. However, applying tlEfilter after
actually possible to build parsers out@f>" and b g PRYIng

GTIG and t ticiently with th i the a-filter still removes a non-neglectible amount
and to parse eticiently wi € resuing ¢ productionst’ each technique is able to eliminate

ggrserfh(wfe Sth?rlll ?etan Iate(; OT. eﬁm;r:cy reSUItS%roductions that are kept by the other one. The result
ven ne fact that we are dealing With grammarag paqe filters is suprisingly good: in average, after

whose sizes are respectively over 1,000,000 and ovgﬁ . .
N Sy filters, only approx. 20% of the productions that
12,000,000, this is in itself a very satisfying result. y app ° P

have been kept will not be successfully instantiated
4.2 Precision results in the final parse forest. Third, the adjacency filter
can be used in its one-pass mode, since almost all

_Let us recall !nformally tha_t the preC|S|on'of afllter the benefit from the full (fix-point) mode is already
ing strategy is the proportion of productions in the : S L .
resulting sub-arammar that are in the aold rammarreaChed after the first application. This is practically
. 9 9 . . . gold g d very valuable result, since the one-pass mode is
i.e., that have effectively instantiated counterparts in, .

. obviously faster than the full mode.
the final parse forest.

. . . However, all these filters do require computing
We have applied different strategies so as to COMime, and it is necessary to evaluate not only the pre-
pare their precisions. The results 67>" and ’ y ythe p

TIG . . cision of these filters, but also their execution time
G are summed up in Table 3. These results give . :
. as well as the influence they have on the global (in-
several valuable results. First, as we expected, ﬂ&?udin filtering) parsing time
basicb-filter drastically reduces the size of the gram- g 9P g '

mar. The result is even better 6f > thanks toits 4.3 Pparsing time and best filter
large number of terminal symbols. Second, both the

adjacency:-filter and the DSAd-filter efficiently re- Filter execution times for the six filtering strategies
duce the size of the grammar: 6>, thea-filter introduced in Table 3 are illustrated f&”>" in

eliminates 20% of the productions they receive a§/9ure 1. These graphics show three extremely valu-
input, a bit less for thel-filter. Indeed, theu-filter able pieces of information. First, filtering times are

performs better than thefilter introduced in (Boul- €XWémely low: the average filtering time for the
slowest filter pa>°d, i.e., basic plus full adjacency

'°As seen above, inflected forms are directly terminal symplus DSA) on 40-word sentences is around 20 ms.

bols of GT>¥, while GT1¢ uses alexiconto map these in- oo .
flected forms into its own terminal symbols, thereby possibl Second, on small sentences, filtering times are virtu-

introducing lexical ambiguity. ally zero. This is important, since it means that there
8 Approx. 15% of the original set of sentences were notrec-—

ognized, and required error recovery techniques; we dedile  ’Although not reported here, applying thebefored leads

discard them for this experiment. to the same conclusion.
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Filter execution time (seconds)
Filter execution time (seconds)
Filter execution time (seconds)

) 50 ) 50 ) 50
Sentence length Sentence length Sentence length

b-filter bd-filter ba-filter

Filter execution time (seconds)
Filter execution time (seconds)
Filter execution time (seconds)

) 50 ) 50 W 60
Sentence length Sentence length Sentence length

ba > -filter bad-filter ba™> d-filter

Figure 1: Filtering times for six different strategies witH >

is almost no fixed cost to pay when we use thesg. °: RT——

. . . T ~ DSA filter

filters (let us recall that without any filter, building £ . T e e ;
. . . . [&] ne-pass adjacency filter an ilter .-"

efficient parsers for such a huge grammar is highly} Folladacency e and DA e "

0.15 |-

problematic). Third, all these filters, at least wherg
used withGT>", are executed in a time which is g
linear w.rt. the size of the input sentence (i.e., thes
size of the input DAG). 3
The results o7 7¢ |ead to the same conclusions,é
with one exception: with this extremely huge gram—g
mar with so long right-hand sides, the basic fiIter§
is not as fast as om7>" (and not as precise, as < ol =t . . - -
we will see below, which slows down theake-a- Sentence length
reduced-grammarlgorithm since it is applied on
a larger filtered grammars). For example, the merigure 2: Global (filtering+parsing) times for six
dian execution time for the basic filter on sentencedifferent strategies witli:”? >
whose size is approximately 40 is 0.25 seconds,

to be compared with the 0.00 seconds reached on

GT>N (this zero value means a median time strictly One can see that the results are completely differ-
lower than 0.01 seconds, which is the granularity Oént, showing a strong dependency on the character-
our time measurments). istics of the grammar. In the case@f>", the huge
Figure 2 and 3 show the global (filtering+parsinghumber of terminal symbols and the reasonable av-
execution time for the 6 different filters. We only erage size of right-hand sides of productions, the ba-
show median times computed on classes of seaic filtering strategy is the best strategy: although it
tences of lengthl0i to 10(s + 1) — 1 and plotted is fast because relatively simple, it reduces the gram-
with a centeredc-coordinate {0(: + 1/2)), but re- mar extremely efficiently (it has a 60.56% precision,
sults with other percentiles or average times on th® be compared with the precision of the void filter
same classes draw the same overall picture. which is 0.04%). Hence, fo&">", our only result

0.1

0.05 |-
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‘Baslc filter only

_ Many parsers process their inputs from left to
°"e'péaﬁ:§}:§§:§§§i§ right but we can find in the literature other parsing
TR e it B3 e | strategies. In particular, in NLP, (van Noord, 1997)
and (Satta and Stock, 1994) propose bidirectional al-
gorithms. These parsers have the reputation to have
a better efficiency than their left-to-right counterpart.
This reputation is not only based upon experimental
results (van Noord, 1997) but also upon mathemat-
ical arguments in (Nederhof and Satta, 2000). This
is specially true when the productions of the CFG
strongly depend on lexical information. In that case
the parsing search space is reduced because the con-
straints associated to lexical elements are evaluated
Figure 3: Global (filtering+parsing) times for six as early as possible. We can note that our filtering
different strategies witl?” /¢ strategies try to reach the same purpose by a totally
different mean: we reduce the parsing search space
by eliminating as many productions as possible, in-

is that this basic filter does allow us to build an eﬁ"cluding possibly non-lexicalized productions whose

c:;i_pars?rf_(lit[hg mostt etff|c_|ent one) ’tht t?"’}t rE)fmeﬁjrelevance to parse the current input can not be di-
additionnal filtering strategies are not useful. rectly deduced from that input.

The p|ctur§>|]sv completely different witty . We can also remark that our results are not in con-
Contrary toG , this grammar has comparatively

¢ inal and il bol radiction with the claims of (Nederhof and Satta,
very tew te_rmlna an 'non-termlna Symbols, an 000) in which they argue that “Earley algorithm
very long right-hand sides. These two facts lea

L o nd related standard parsing techniques [...] can-
to a lower precision of the basic filter (39.43%), P g a L]

which keeps many more productions when applier&]Ot be directly extended to allow left-to-right and
orrect-prefix-property parsing in acceptable time
on GG than when applied o>, and leads, P property p g P

h lied al o the | Hicient Thbound". First, as already noted in Section 1, our
when applied aione, 1o the 1ess etlicient parser. 1Ny q4 does not work for any large CFG. In order

gives to the adjacency filter much more Opportunity, oy well, the first step of our basic strategy must

© |mp|>roye thfetglobal executlonkum(taH Howe\;er, tt_h‘?ilter out a great amount of (lexicalized) productions.
complexity of the grammar makes the construc %% do that, it is clear that the set of terminals in the

of the DSA filter relatively costly despite its preci- input text must select a small ratio of lexicalized pro-

sion, leading to the following conclusion: @#" ductions. To give a more concrete idea we advo-

(and probably on any grammar with similar CharacE:ate that the selected productions produce roughly a

teristics), the best filtering strategy is the One'pasérammar ofnormal size out of the large grammar.
adjacency strategy. In particular, this leads to an imSecond our method as a whole clearly does not pro-
provement over the work Of. (Boullier,_ 2003) WhiChcess thé input text from left-to-right and thus does
only mtroc_luced tp?GDSA filter. Inmdgntally, the not enter in the categories studied in (Nederhof and
_extrgme siz€ OG. leads tg much higher pars- Satta, 2000). Moreover, the authors bring strong evi-
'”%j'j?es’ gpp.rommat.ely 10 t|.mes hlghgr than Wlthdences that in case of polynomial-time off-line com-
G ! which is c;onsstent with the ratio betweenpilation of the grammar, left-to-right parsing cannot
the sizes of both involved grammars. be performed in polynomial time, independently of
the size of the lexicon. Once again, if our filter pass
is viewed as an off-line processing of the large input
It is a well known result in optimization techniquesgrammar, our output is not a compilation of the large
that the key to practically improve these processes ggammar, but a (compilation of a) smaller grammar,
to reduce their search space. This is also the casedpecialized in (some abstractions of) the source text
parsing and in particular in CF parsing. only. In other words their negative results do not

15
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Average global execution time (seconds)

40 60 80 100
Sentence length
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necessarily apply to our specific case. 171-182, Trento, ltaly. Revised version at
The experiment campaign as been conducted in http://wwv. cogs. susx. ac. uk/ 1 ab/nl p/
using an Earley-like parsé?. We have also success- 62770l !/ cfg-resources/iwpt2000-rev2. ps.

fuly tried the coupling of our filtering strategies with Mark-Jan Nederhof and Giorgio Satta. 2000. Left-to-

a CYK parser (Kasami, 1967; Younger, 1967) as right parsing and bilexical context-free grammars. In
ost-processor. However the couplina with a GLR Proceedings of the first conference on North Ame_rican

post-p piing . chapter of the ACLpages 272—-279, San Francisco,

parser (See (Satta, 1992) for example) is perhapsCA' USA. Morgan Kaufmann Publishers Inc.

more problematic since the time taken to build up

the underlying nondeterministic LR automaton fronMark-Jan Nederhof. 1993. Generalized left-corner pars-

) . ing. In Proceedings of the sixth conference on Euro-
the sub grammar_ Cf"l_n be prohibitive. pean chapter of the AGlpages 305-314, Morristown,
Though no definitive answer can be made to the N3 Usa. ACL.

guestion asked in the title, we have shown that, in _ _
some cases, the answer is certaiyig Benoit Sagot and Pierre Boullier. 2005. From raw cor-
’ pus to word lattices: robust pre-parsing processing. In
Proceedings of L&TC 20Q05ages 348—-351, Poznah,

Poland.
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