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Abstract tion over competing hypotheses. Parse selection ap-
proaches for these frameworks often use discrimi-
native Maximum Entropy (ME) models, where the
probability of each parse tree, given an input string,
is estimated on the basis of select properties (called
features) of the tree (Abney, 1997; Johnson, Ge-
man, Canon, Chi, & Riezler, 1999). Such features,
in principle, are not restricted in their domain of
locality, and enable the parse selection process to
take into account properties that extend beyond lo-
cal contexts (i.e. sub-trees of depth one).

We extend a recently proposed algorithm for
n-best unpacking of parse forests to deal ef-
ficiently with (a) Maximum Entropy (ME)
parse selection models containing important
classes of non-local features, and (b) forests
produced by unification grammars contain-
ing significant proportions of globally incon-
sistent analyses. The new algorithm empir-
ically exhibits a linear relationship between
processing time and the number of analyses
unpacked at all degrees of ME feature non-
locality; in addition, compared with agenda-
driven best-first parsing and exhaustive pars-
ing with post-hoc parse selection it leads to
improved parsing speed, coverage, and ac-
curacy!

There is a trade-off in this set-up between the ac-
curacy of the parse selection model, on the one hand,
and the efficiency of the search for the best solu-
tion(s), on the other hand. Extending the context size
of ME features, within the bounds of available train-
ing data, enables increased parse selection accuracy.
However, the interplay of the core parsing algo-
1 Background—Motivation rithm and the probabilistic ranking of alternate (sub-
)hypotheses becomes considerably more complex

Te.ch.nology for_natural language analysis using IIné]nd costly when the feature size exceeds the domain
guistically precise grammars has matured to a leve

. . c%f locality (of depth-one trees) that is characteristic
of coverage and efficiency that enables parsing o :
of phrase structure grammar-based formalisms. One

large amounts of running text. Research groups

. . . . current line of research focuses on finding the best
working within grammatical frameworks like CCG balance between parsing efficiency and parse selec-
(Clark & Curran, 2004), LFG (Riezler et al., 2002), parsing y andp

and HPSG (Malouf & van Noord, 2004; Oepen; it S e 0 PP 8818 FERE S, S0 B
Flickinger, Toutanova, & Manning, 2004; Miyao, P

Ninomiya, & Tsujii, 2005) have successfully in- ffort.

tegrated broad-coverage computational grammars This paper explores a range of techniques, com-
with sophisticated statistical parse selection model8ining a broad-coverage, high-efficiency HPSG
The former delineate the space of possible analyarser with a series of parse selection models with
ses, while the latter provide a probability distribu-varying context size of features. We sketch three
general scenarios for the integration: (a) a baseline
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and Erik Velldal for many discussions and their support. Weerleaved but approximative solution, performing a
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ing insightful information about related approaches, hiyt¢he greedy search for an-best list of results; and (c) a

XLE and CLE parsers. two-phase approach, where a complete packed for-
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est is created and combined with a specialized graph subjh
search procedure to selectively enumerate results |jn
(globally) correct rank order. Although conceptu-

ally simple, the second technique has not previously hspec th'rd‘sgf'n‘verb
been evaluated for HPSG parsing (to the best of ouyr detthe le  singnoun v_unerg_le
knowledge). The last of these techniques, which wge | | ) Ik

arks

call selective unpackingvas first proposed by Car- the n.intrle

roll & Oepen (2005) in the context of chart-based dgg

generation. However, they only provide an account

of the algorithm for local ME properties and assertigyre 1: Sample HPSG derivation tree for the sentethee

that the technique should generalize to larger cormlog barks Phrasal nodes are labeled with identifiers of gram-

texts straightforwardly. This paper describes thigar rules, and (pre-terminal) lexical nodes with class reafoe
L . . L. .types of lexical entries.

generalization of selective unpacking, in its appli-

cation to parsing, and demonstrates that the move .

from features that resemble a context-free domaiﬁ?”o_wed by relevant background on parse sglectmn.

of locality to features of, in principle, arbitrary con-  Figure 1 shows an example ERG derivation tree.

text size can indeed be based on the same a|gorithl‘ﬁ,terna| tree nodes are labeled with identifiers of
but the required extensions are non-trivial. grammar rules, and leaves with lexical entries. The

The structure of the paper is as follows. Secderivation tree provides complete information about

tion 2 summarizes our forma”sm, grammars usedhe actual HPSG analysis, in the sense that it can be
parse selection approach, and training and test datdgwed as a recipe for computing it. Lexical entries
Section 3 discusses the range of possibilities fand grammar rules alike are ultimately just feature
structuring the process of statistical, grammar-basegructures, complex and highly-structured linguistic
parsing, and Sections 4 to 6 describe our approad&tegories. When unified together in the configura-
to efficientn-best parsing. We present experimentalion depicted by the derivation tree, the resulting fea-
results in Section 7, compare our approach to previlire structure yields an HPSG sign, a detailed repre-

ous ones (Section 8), and finally conclude. sentation of the syntactic and semantic properties of
the input string. Just as the full derivation denotes a
2 Overall Set-up feature structure, so do its sub-trees, and for gram-

While couched in the HPSG framework. the techMars like the ERG and GG each such structure will

niques explored here are applicable to the largdiP"tain hundreds of feature —value pairs.

class of unification-based grammar formalisms. We Because of the lexicalized nature of HPSG (and
make use of the DELPH-INreference formalism, Similar frameworks) our parsers search for well-
as implemented by a variety of systems, includingormed derivations in a pure bottom-up fashion.
the LKB (Copestake, 2002) and PET (CallmeierOther than that, there are no hard-wired assumptions
2002). For the experiments discussed here, waboutthe order of computation, i.e. the specific pars-
adapted the open-source PET parsing engine iRg strategy. Our basic set-up closely mimics that of
conjunction with two publicly available grammars,O€epen & Carroll (2002), where edges indexed by
the English Resource Grammar (ERG; Flickingersub-string positions in a chart represent the nodes of
2000) and the DFKI German Grammar (GG; Mulletthe tree, recording both a feature structure (as its cat-
& Kasper, 2000, Crysmann, 2005). Our parse se&gory label) and the identity of the underlying lexi-
lection models were trained and evaluated on HPS@&l entry or rule in the grammar. Multiple edges de-
treebanks that are distributed with these grammargved for identical sub-strings can be ‘packed’ into a
The following paragraphs summarize relevant propsingle chart entry in case their feature structures are

erties of the structures manipulated by the parsetompatible, i.e. stand in an equivalence or subsump-

—Y . _ _ tion relation. By virtue of having each edge keep
Deep Linguistic Processing with HPSG, an open- k-point to its d ht d the i diat
source repository of grammars and processing tools; sé%ac -pointers 1o Iis daughter edges—the immediate

‘http://ww. del ph-in. net/". sub-nodes in the tree whose combination resulted in
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the mother edge—the parse forest provides a comFype Sample Features

plete ancexplicitencoding of all possible resultsina 1 (0 subjh hspec third_sg_fin_verb)

maximally compact forn?. A simple unpacking pro- 1 (1 A subjh hspec third_sg_fin_verb)

cedure is obtained from the cross-multiplication of 1 (O hspec det_the_le sing_noun)

all local combinatorics, which is directly amenable 1 (1 subjh hspec det_the_le sing_noun)

to dynamic programming. 1 (2 A subjh hspec det_the_le sing_noun)

Figure 2 shows a hypothetical forest (on the left), 2 (0 subjh third_sg_fin_verb)

where sets of edges exhibiting local ambiguity have 2 (0 subjh hspce)
2 |
2
3
3
3

been packed into a single ‘representative’ edge, viz. 1 subjh hspec det_the_le)

the one in each set with one or more incoming dom- 1 subjh hspec sing_noun)

inance arcs. Confirming the findings of Oepen & 1 n_intr_le dog)

Carroll (2002), in our experiments packing under 2 det_the_le n_intr_le dog)

feature structure subsumption is much more effec- 3 < det_the_le n_intr_le dog)

tive than packing under mere equivalence, i.e. for

each pair of edges (over identical sub-strings) thdiable 1: Examples of structural features extracted from the

stand in a subsumption relation, a technique th%Frivation tree in Figure 1. Th&ype column indicates the
! emplate corresponding to each sample feature; the intbger

Oepen & Carroll (2002) termed retro-active packstarts each feature indicates the degree of grandpare(itige
ing ensures that the more general of the two edgeésse of type 1 and 2 features)igram size (type 3 features).

s . he symbolsA and < denote the root of the tree and left pe-
remains in the chart. When packing under subsumﬂbhery of the yield, respecively.
tion, however, some of the cross-product of local

am biguities in the forest may not _be globally CONeature functiong; can test for arbitrary structural
sistent. Assume for example that, in Figure 2, edg

A o operties of analyses, and their value typically is
(6] and(g] subsuméz] and(s), respectively; combining the number of times a specific property is present

and[9] into the same tree during unpacking can iqn t;. Toutanova, Manning, Flickinger, & Oepen

principle fail. Thus, unpacking effectively needs to(2005) propose an inventory of features that per-

deterministically replay unifications, but this extrac . well in HPSG parse selection: currently we re-

expense in our experience is negligible when €OMkirict ourselves to the best-performing of these, of

pared to the decreased cost of constructing the fotrﬁe form illustrated in Table 1, comprising depth-
est under subsumption. ’

thi v in ad dltn S?ct!on 3 we argue-th%e sub-trees (or portions of these) with grammar-

IS VEry property, in addition to Increasing parsingio ) jgentifiers as node labels, plus optionally
efficiency, interacts beneficially with parse selectlo% chain of one or more dominating nodes (i.e. lev-
and on-demand enumeration of results in rank ordeé1S of grandparents). If a grandparents c.hellin is

Following (Johnson et al., 1999), a Condltlonl"‘Ipresent then the feature is non-local. For expository

][VIE mOdel of the pC:Obab'“t'(.eS of treeft; f 'ft”} purposes, Table 1 includes another feature type,
or a_ string s, an a_ssummg a sgt 0 ?aturegrams over leaf nodes of the derivation; in Section 5
functions {f1 ... f,,} with corresponding weights

3 VoY is defined as- below we speculate about the incorporation of these
(M- A}, is defined as: (and similar) features in our algorithm.
exp ;A f;(ti)

> k—1€xXp Y A fi(tk)
Tproperty of parse forests is not a prerequisite of théA\t an abstract level, given a grammar and an associ-

chart parsing framework. The basic CKY procedure (Kasam@t€d ME parse selection model, there are three basic
1965), for example, as well as many unification-based aelaptgvays of combining them in order to find the single

tions (e.g. the Core Language Engine; Moore & Alshawi, 1992)be5t, or small set ofi-best results
merely record the local category of each edge, which is suffi- . : N : ) i
cient for the recognition task and simplifies the search. How The first way is a naive sequential set-up, in which

ever, reading out complete trees from the chart, then, atsounthe parser first enumerates the full set of analyses,

to a limited form of search, going back to the rules of the gram ¢ f h using th del d
mar itself to (re-)discover decomposition relations amohgrt  COMPULES & SCore Tor eéach using the model, and re-

entries. turns the highest-ranking results. For carefully

p(ti]s) (1) 3 Interleaving Parsing and Ranking
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Figure 2: Sample forest and sub-node decompositions: avafe forest (on the left) indicate packing of edges undéssmp-
tion, i.e. edge#d], [7], [9], and[11] arenot in the chart proper. During unpacking, there will be mukiptays of instantiating a
chart edge, each obtained from cross-multiplying alter@ughter sequences locally. The elements of this craghipr we call
decompositionand they are pivotal points both for stochastic scoring@mhmic programming in selective unpacking. The table
on the right shows all non-leaf decompositions for our exianmcked forest: given two ways of decomposiélgthere will be
three candidate ways of instantiati@jand six for{4], respectively, for a total of nine full trees.

crafted grammars and inputs of average complexitweights on a partial solution as its agenda score, ef-
the approach can perform reasonably well. fectively, means that sub-trees with low scores ‘sink’
Another mode of operation is to organize thdo the bottom of the agenda; highly-ranked partial
parser’s search according to an agenda (i.e. prioriggonstituents, in turn, instigate the immediate cre-
gueue) that assigns numeric scores to parsing movaton of larger structures, and ideally the bottom-up
(Erbach, 1991). Each such move is an application @fgenda-driven search will greedily steer the parser
the fundamental rule of chart parsing, combining atowards full analyses with high scores. Given its
active and a passive edge, and the scores represbatristic nature, this procedure cannot guarantee
the expected ‘figure of merit' (Caraballo & Char-that itsn-best list of results corresponds to the glob-
niak, 1998) of the resulting structure. Assuming ally correct rank order, but it may in practice come
parse selection model of the type sketched in Seceasonably close to it. While conceptually simple,
tion 2, we can determine the agenda priority for greedy best-first search does not combine easily with
parsing move according to the (unnormalized) MEmbiguity packing in the chart: (a) at least when
score of the derivation (sub-)tree that would resulpacking under subsumption, it is not obvious how
from its successful execution. Note that, unlike ifo accurately compute the agenda score of packed
probabilistic context-free grammars (PCFGs), MEhodes, and (b) to the extent that the greedy search
scores of partial trees do not necessarily decrease a®ids exploration of dis-preferred local ambigu-
the tree size increases; instead, the distribution dtfy, the need for packing should be greatly reduced.
feature weights is in the rande oo, +00), centered Unfortunately, in scoring bottom-up parsing moves,
around0, where negative weights intuitively corre- ME features involving grandparenting are not ap-
spond to dis-preferred properties. plicable, leading to a second potential source of re-
This lack of monotonicity in the scores associateduced parse selection accuracy. In Section 7 below,
with sub-trees, on the one hand, is beneficial, in thaye provide an empirical evaluation of both the naive
performing a greedy best-first search becomes pragequential and greedy best-first approaches.
tical: in contrast, with PCFGs and their monoton-
ically decreasing probabilities on larger sub-trees4  Selective Unpacking
once the parser finds the first full tree the chart nec-
essarily has been instantiated almost completely. Garroll & Oepen (2005) observe that, at least for
the other hand, the same property prohibits the applgrammars like the ERG, the construction of the
cation of exact best-first techniques liké B8earch, parse forest can be very efficient (with observed
because there is no reliable future cost estimate; polynomial complexity), especially when packing
this respect, our set-up differs fundamentally fronedges under subsumption. Their selective unpacking
that of Klein & Manning (2003) and related PCFGprocedure, originally proposed for the forest created
parsing work. Using the unnormalized sum of MEby a chartgenerator aims to unpack the-best set
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1 procedureselectively-unpack-edge(edge, n) =
2 results « (); i+ 0;
3 do
4 hypothesis < hypothesize-edge(edge,i); i i + 1;
5 if (new « instantiate-hypothesis(hypothesis)) then
6 n < n — 1; results < results @ (new);
7 while (hypothesis andn > 1)
8 return results;
9 procedure hypothesize-edge(edge, i) =
10 if (edge.hypotheses]i]) return edge.hypothesesi];
11 if (i=0) then
12 for each(decomposition in decompose-edge(edge)) do
13 daughters < (); indices — ()
14 for each(edge in decomposition.rhs) do
15 daughters «— daughters @ (hypothesize-edge(edge, 0));
16 indices « indices @ (0);
17 new-hypothesis(edge, decomposition, daughters, indices);
18 if (hypothesis < edge.agenda.pop()) then
19 for each(indices in advance-indices(hypothesis.indices)) do
20 if (indices € hypothesis.decomposition.indices) then continue
21 daughters «— ();
22 for each(edge in hypothesis.decomposition.rhs) each(i in indices) do
23 daughter «— hypothesize-edge(edge, i);
24 if (not daughter) then daughters < (); break
25 daughters «— daughters @ (daughter);
26 if (daughters) then new-hypothesis(edge, hypothesis.decomposition, daughters, indices)
27 edge.hypotheses[i] < hypothesis;
28 return hypothesis;
29 procedurenew-hypothesis(edge, decomposition, daughters, indices) =
30 hypothesis < new hypothesis(decomposition, daughters, indices);
31 edge.agenda.insert(score-hypothesis(hypothesis), hypothesis);
32 decomposition.indices < decomposition.indices U {indices};

Figure 3: Selective unpacking procedure, enumerating:thest realizations for a top-level reseligefrom a packed forest. An
auxiliary functiondecompose-edge() performs local cross-multiplication as shown in the exaaph Figure 2. Another utility
function not shown in pseudo-codeadvance-indices(), a ‘driver’ routine searching for alternate instantiasaf daughter edges,
e.g.advance-indices((02 1)) — {(121) (03 1) (02 2)}. Finally, instantiate-hypothesis() is the function that actually builds
result trees, replaying the unifications of constructiawsnfthe grammar (as identified by chart edges) with the feagtructures
of daughter constituents.

of full trees from the forest, guaranteeing the globating each daughter: a parallel index vecfor=
ally correct rank order according to the probability(ig ... i,) serves to keep track of ‘vertical’ search
distribution, with a minimal amount of search. Theamong daughter hypotheses, where each index
basic algorithm is a specialized graph search througlenotes the-th best instantiation (hypothesis) of
the forest, with local contexts of optimization corre-the daughter at positiof. If we restrict ME fea-
sponding to packed nodes. tures to a depth of one (i.e. without grandparent-

Each such node represents local combinatoricf!9): then given the additive nature of ME scores

and two key notions in the selective unpacking pran complete derivations, it can be guaranteed that

cedure are the concepts of @composingn edge YPothesized trees including an edges an im-
locally into candidate ways of instantiating it, andMediate daughter must use the best instantiation of
of (b) nested contexts of local search for ranked N their own best instantiation. Assuming a bi-
hypothesegi.e. uninstantiated edges) about candif@'y rule, the corresponding hypothesis would use

date subtrees. See Figure 2 for examples of the dgdaughter indices of0 0). The second-best instan-
composition of edges. Given one decompositionjatlon, in turn, can be obtained from moving to the

i.e. a vector of candidate daughters for a particuS€cond-best hypothesis foneof the elements in the
lar rule—there can be multiple ways of instanti-(ight-hand side of the) decomposition, e.g. indices
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(0 1) or (1 0) in the binary example. Hypotheses area representative feature type, and ‘downward’ exten-
associated with ME scores and ordered within eactions, which we discuss for the example of lexical
nested context by means of a local priority queua-gram features.
(stored in the original representative edge, for con- A naive approach to selective unpacking with
venience). Therefore, nested local optimizations regrandparenting might be extending the cross-
sult in a top-down, breadth-first, exaetbest search multiplication of local ambiguity to trees of more
through the packed forest, while avoiding exhaustivéhan depth one. However, with multiple levels of
cross-multiplication of packed nodes. grandparenting this approach would greatly increase
Figure 3 shows the unchanged pseudo-code #fe combinatorics to be explored, and it would pose
Carroll & Oepen (2005). The main functionthe puzzle of overlapping local contexts of opti-
hypothesize-edge() controls both the ‘horizontal’ and mization. Choices made among the alternates for
‘vertical’ search, initializing the set of decompo-one packed node would interact with other ambi-
sitions and pushing initial hypotheses onto the loguity contexts in their internal nodes, rather than
cal agenda when called on an edge for the firgnerely at the leaves of their decompositions. How-
time (lines 11-17). For each call, the procedur@ver, it is sufficient to keep the depth of decompo-
retrieves the current next-best hypothesis from thitions to minimal sub-trees and rather contextual-
agenda (line 18), generates new hypotheses by dde each decomposition as a whole. Assuming our
vancing daughter indices (while skipping over consample forest and set of decompositions from Fig-
figurations seen earlier) and calling itself recursivelyre 2, let([1](4]) :[6] — ([10]) denote the decomposi-
for each new index (lines 19-26), and, finally, artion of nodefg] in the context ofi4] and (1] as its
ranging for the resulting hypothesis to be cached fdmmediate parents. When descending through the
later invocations on the saneelgeandi values (line  forest,hypothesize-edge() can, without significant ex-
27). Note that unification (imstantiate-hypothesis()) ~ tra cost, maintain a vectd? = (p, ... po) of par-
is only invoked on complete, top-level hypothesesgnts of the current node, far-level grandparenting.
as our structural ME features can actually be evaFor each packed node, the bookkeeping elements of
uatedprior to building each full feature structure. the graph search procedure need to be contextual-
However, as Carroll & Oepen (2005) suggest, thized on P, viz. (a) the edge-local priority queue,
procedure could be adapted to perform instantiatiotd) the record of index vectors hypothesized already,
of sub-hypotheses within each local search, shourhd (c) the cache of previous instantiations. Assum-
additional features require it. For better efficiencyjng each is stored in an associative array, then all
the instantiate-hypothesis() routine applies dynamic references t@dge.agenda in the original procedure
programming (i.e. memoization) to intermediate recan be replaced bytige.agenda[P], and likewise for

sults. other slots. With these extensions in place, the orig-
inal control structure of nested, on-demand creation
5 Generalizing the Algorithm of hypotheses and dynamic programming of partial

results can be retained, and for each packed node
Carroll & Oepen (2005) offer no solution for selec-with multiple parents[§] in our sample forest) there
tive unpacking with larger context ME features. Yetwill be parallel, contextualized partitions of opti-
both Toutanova et al. (2005) and our own experimization. Thus, extra combinatorics introduced in
ments (described in Section 7 below) suggest th#tis generalized procedure are confined to only such
properties of larger contexts and especially grandiodes, which (intuitively at least) appears to estab-
parenting can greatly improve parse selection adish the lower bound of added search needed—while
curacy. The following paragraphs outline how tokeeping the algorithm non-approximative. Section 7
generalize the basic selective unpacking procedurprovides empirical data on the degradation of the
while retaining its key properties: exaetbest enu- procedure in growing levels of grandparenting and
meration with minimal search. Our generalization othe number of.-best results to be extracted from the
the algorithm distinguishes between ‘upward’ conforest.
texts, with grandparenting with dominating nodes as Finally, we turn to enlarged feature contexts that
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capture information from noddselowthe elements Including additional properties from non-local sub-
of a local decomposition. Consider the examplérees (for example higher-order-grams and head
of feature type 3 in Table 1p-grams (of vari- lexicalization) is a straightforward extension of this
ous size) over properties of the yield of the parsescheme, replacing our per-edge left- and rightmost
tree. For now we only consider lexical-grams. periphery symbols with a generalized vector of ex-
For an edge: dominating a sub-string of words ternally relevant, internal properties. In addition
(wj ... witn—1) there will ben — 1 bi-grams inter- to traditional (head) lexicalization as we have just
nal to e, and two bi-grams that interact witty; ; discussed it, such extended ‘downward’ properties
and w;+,—which will be determined by the left- on decompositions—percolated from daughters to
and right-adjacent edgesddn a complete tree. The mothers and cross-multiplied as appropriate—could
internal bi-grams are unproblematic, and we can agaclude metrics of constituent weight too, for exam-
sume that ME weights corresponding to these fegle to enable the ME model to prefer ‘balanced’ co-
tures have been included in the sum of weights agrdination structures.
sociated tce. Seeing that may occur in multiple However, given that Toutanova et al. (2005) ob-
trees, with different sister edges, the selective unain only marginally improved parse selection accu-
packing procedure has to take this variation into adacy from the inclusion ofi-gram (and other lexical)
count when evaluating local contexts of optimizaiME features, we have left the implementation of lex-
tion. icalization and empirical evaluation for future work.
Let ,e, denote an edge, with  andy as the
lexical types of its leftmost and rightmost daugh6 Failure Caching and Propagation
ters, respectively. Returning to our sample forest,
assume lexicalizationgZ0]; and,[Z3, (each span- As we pointed out at the end of Section 4, during
ning only one word), with3 # ~. Obviously, when the unpacking phase, unification is only replayed in
decomposingd as (8][6), its ME score, in turn, will  instantiate-hypothesis() on the top-level hypotheses. It
depend on the choice made in the expansioflof IS only at this step that inconsistencies in the local
the sequence&,[8l,, 46)s) and (.8l ,[6},) will dif- ~ combinatorics are discovered. However, such a dis-
fer in (at least) the scores associated with the bFovery can be used to improve the unpacking rou-
grams <Ck ﬁ) VS. <Oé ')’> According|y, when evalu- tine by (a) avoiding further unification on hypothe-
ating candidate decompositions[df the number of ses that have already failed to instantiate, (b) avoid-
hypotheses that need to be considered is doubldflg creating new hypotheses based on failed sub-
as an immediate consequence, there can be uphgpotheses. This requires some changes to the rou-
eight distinct lexicalized variants for the decompodinesinstantiate-hypothesis() andhypothesize-edge(), as
sition [ — (@[@)) further up in the tree. It may look Well as an extra boolean marker for each hypothesis.
as if combinatorics will cross-multiply throughout The extended instantiate-hypothesis() Starts by
the tree—in the worst case returning us to an exshecking whether the hypothesis is already marked
ponential number of hypotheses—but this is fortuas failed. If it is not so marked, the routine recur-
nately not the case: regarding the external bi-grangively instantiates all sub-hypotheses. Any failure
of [, node[6] no longer participates in its left- or will again lead to instant return. Otherwise, unifica-
rightmost periphery, so variation internal[is not tion is used to create a new edge from the outcome of
a multiplicative factor at this level. This is essenthe sub-hypothesis instantiations. If this unification
tially the observation of Langkilde (2000), and heffails, the current hypothesis is marked. Moreover,
bottom-up factoring of.-gram computation is eas- all its ancestor hypotheses are also marked (by re-
ily incorporated into our top-down selective unpack<ursively following the pointers to the direct parent
ing control structure. Atthe point whengpothesize- hypotheses) as they are also guaranteed to fail.
edge() invokes itself recursively (line 23 in Figure 3), Correspondingly, hypothesize-edge() needs to
its return value is now a set of lexicalized alternates;heck the instantiation failure marker to avoid re-
and hypothesis creation (in line 26) can take into adurning hypotheses that are guaranteed to fail. If
count the local cross-product of all such alternationa hypothesis coming out of the agenda is already
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marked as failed, it will be used to create new hy- Configuration | GP | Coverage| Time (s)
potheses (withadvance-indices()), but dropped af- greedy best-first 91.6% 3889
terward. Subsequent hypotheses will be poppegxhaustive unpacking 84.5% 4673
from the agenda until either a hypothesis that is not 94.3% 2245
marked as failed is returned, or the agenda is empty. 94.3% 2529
Moreover, hypothesize-edge() also needs to avoid selective unpacking 94.3% 3964
creating new hypotheses based on failed sub- 94.2% 3199
hypotheses. When a failed sub-hypothesis is found, 4 94.2% 3502
the creation of the new hypothesis is skipped. But

the index vectorf may not be simply discarded. Table 2: Coverage on the ERG for different configurationshwi
h . h h o —. fixed resource consumption limits (of 100k passive edge§0r 3
Otherwise hypotheses based atvance-indices() seconds). In all cases, up to ten ‘best’ results were sedyche

will not be reachable in the search. On the othesind Coverageshows the percentage of inputs that succeed to
hand, simply adding evel’ydvance-indices(f) onto Parse within the available resourcEmeshows the end-to-end
- . . .. . . processing time for each batch.
the pending creation list is not efficient either in the
case where multiple sub-hypotheses fail. (2)_ :
To solve the problem, we compute a failure vec- o gready best-first

= . 5] exhaustive unpacking )
tor I' = <f0 e fn>, Wherefj Is1 When the Sub' o selective unpackmg
hypothesis at positior is known as failed, and 4 — | x forest creation
otherwise. If a sub-hypothesis at positipis failed 3
then all the index vectors having valug at posi-
tion 5 must also fail. By putting the result df+ F
on the pending creation list, we can safely skip the )
failed rows of sub-hypotheses, while not losing the © I
reachability of the others. As an example, suppose ° 15 25 35
we have a ternary index vectds 1 2) for which a String Length (Number of Input Tokens)
new hypothesis is to be created. By checking the inkigure 4: Parsing times for different configurations usihg t
stantiation failure marker of the sub-hypotheses, WERG, in all three cases searching for up to ten results, witho
find that the first and the third sub-hypotheses are dft Use of grandparenting.

ready marked. The failure recording vector will then _ _ o .
be(101). By putting (413) = (312) +(101) 8,000 items) was used in training the various ME

on to the pending hypothesis creation list, the failefa'se disambiguation models. For the experiment
sub-hypotheses are skipped. with GG, we designated a 2825-item portion of the

We evaluate the effects of instantiation failure®FK! Verbmobil treebank for our tests, and trained
caching and propagation below in Section 7. ME models on the remaining 10,000 utterances. At
only 7.4 words, the average sentence length is much
7 Empirical Results shorter in the Vertmobil data.

We ran seven different configurations of the parser

To evaluate the performance of the selective unpaclzu itterent search strategies and (un-)packing
ing algorithm, we carried out a series of empiricalmechanisms_

evaluations with the ERG and GG, in combination

with a modified version of the PET parser. When e Agenda driven greedy-best parsing using the
running the ERG we used as our test set Jhi ME score without grandparenting features; no
section of the LOGON treebahkwhich contains local ambiguity packing;

1603 items with an average sentence length of 14.6

words. The remaining LOGON treebank (of around ® Local ambiguity packing with exhaustive un-
- packing, without grandparenting features;
3The treebank is comprised of several booklets of

WN PP OOOo

2_

(generated by [incr tsdb()] at 23-mar-2007 (12:44 h))
I

edited, instructional texts on backcountry activities iorN “The data in this treebank is taken from transcribed appoint-
way. The data is available from the LOGON web site atment scheduling dialogues; sektt p://gg. df ki . de/’
‘http://ww. enmt ee. net . for further information on GG and its treebank.
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O-(lsg) i GP—4 Configuration | Exact Match | Top Ten
/ random choice 11.34 43.06

0.08 GP—3 no grandparenting 52.52 68.38

0.06 4 / - greedy best-first 51.79 69.48

Gp=2 grandparenting[1] 56.83 85.33

0.04 ‘W@/é/e/é/e/@ GP=1 grandparenting[2] 56.55 84.14

0.02 *@/;_U/‘/*’;’/k//:/*’f GP=0 grandparenting[3] 56.37 84.14

grandparenting[4] 56.28 84.51

0007717 717 1T T T T T 1

1 10 20 30 40 50 60 70 80 90 100 Table 3: Parse selection accuracy for various levels ofdpar
enting. Theexact matctcolumn shows the percentage of cases
in which the correct tree, according to the treebank, wakedn
highest by the model; conversely, ttap tencolumn indicates
how often the correct tree was among the ten top-ranking re-
sults.

Maximum Number of Trees to Unpack (n)

Figure 5: Mean times for selective unpacking of all test gem
for n-best parsing with the ERG, for varying and grandpar-
enting (GP) levels

- : . less than 25 words. With sentences longer than 25
* Local ambiguity packing and selective unpaCki/vords the packing mechanism helps the parser to
ing for n-best parsing, witl) through4 levels ’ P g P P

of grandparenting (GP) features. overtqke greedy. bes.t-flrst parsing, although the ex-
haustive unpacking time also grows fast.

As a side-effect of differences in efficiency, some With the selective unpacking algorithm presented

i . . in the previous sections, unpacking time is reduced,
configurations could not complete parsing all sen-

. ] . ehnd grows only slowly as sentence length increases.
tences given reasonable memory constraints (Wh"ianacking up to ten results, when contrasted with
we set at a limit of 100k passive edges or 300 se '

o ) he timings for forest creation (i.e. the first parsing
onds processing time per item). The overall cover- T g
. : . . . phase) in Figure 4, adds a near-negligible extra cost
age and processing time of different configuration ) .
. . o the total time required for both phases. Moreover,
onJH4 are given in Table 2.

) ] ) Figure 5 shows that with selective unpacking,nas
The correlation between processing time and CO\s increased, unpacking time grows roughly linearly

erageis mtere_st_lng. However, |tmak_es Fhe efﬂmencyor all levels of grandparenting (albeit always with
comparison difficult as parser behavior is not clearl%m initial delay in unpacking the first result)

defined when the memory limit is exceeded. To cir- Table 4 summarizes a number of internal parser

cumvent this problem, in the following experiments < rements using the ERG with different pack-

we average only over those 1362 utterances froriﬂg/unpacking settings. Besides the difference in

?]H4that complet(_e parsing within the resource IImItprocessing time, we also see a significant difference
in all seven configurations. Nevertheless, it muslh “space” between exhaustive and selective un-
be noted that this restriction potentially reduces effi-aCking Also. the difference itunifications” and
ciency differences b?tw?e” conflggratloqs, as so ‘gopies” indicates that with our selective unpacking
of the more cha_lllenglng inputs (which typically Ieadalgorithm, these expensive operations on typed fea-
to the largest differences) are exclgdeq. _ ture structures are significantly reduced.

Figure 4 compares the processing time of differ- | ety for increased processing time (and
ent configurations. The difference is much morg,r4ing| loss in coverage) when using grandparent-
significant for longer sentences (i.e. with more tharihg features, Table 3 shows some large improve-
15 words). If the parser unpacks exhaustively, thg,ents in parse selection accuracy (although the pic-
time for unpacking grows with sentence length at §,¢ is ess clear-cut at higher-order levels of grand-

quickly increasing rate. In such cases, the eﬂidencﬁfarenting’i). A balance point between efficiency
gain with ambiguity packing in the parsing phas

is mostly lost in the unpacking phase. The graph *The models were trained using the open-soarcev pack-
age (Malouf, 2002), using default hyper-parameters focatl-

shows that greedy bQSt-flrSt parslng without paCkmg?urations, viz. a convergence threshold16f®, variance of
outperforms exhaustive unpacking for sentences @fe prior of10~*, and frequency cut-off of. It is likely that
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. . Unifications | Copies | Space | Unpack | Total

Configuration GP #) #) (Kbyte) (s) (s)
greedy best-first 0 1845 527 2328 - 0.12
exhaustive unpacking 0 2287 795 8907 0.01 0.12
<15 0 1912 589 8109 0.00 0.12
- 1 1913 589 8109 0.01 0.12
words | - selective unpacking | 2 1914 589 8109 0.01 | 0.12
3 1914 589 8110 0.01 0.12
4 1914 589 8110 0.02 0.13
greedy best-first 0 25233 5602 24646 - 1.66
exhaustive unpacking 0 39095 15685 | 80832 0.85 1.95
0 17489 4422 33326 0.03 1.17
> 15 1 17493 4421 | 33318 | 005 | 1.21
words | - selective unpacking | 2 17493 4421 | 33318 | 009 | 1.25
3 17495 4422 33321 0.13 1.27
4 17495 4422 33320 0.21 1.34

Table 4: Contrasting the efficiency of various (un-)packsadgtings in use with ERG on short (top) and medium-lengthti)
inputs; in each configuration, up to ten trees are extradtktfication and Copiesis the count of top-level FS operations, where
only successful unifications require a subsequent copyrfwheating a new edgellnpackandTotal are unpacking and total parse
time, respectively.

and accuracy can be made according to applicatidh Discussion
needs.

Finally, we compare the processing time of the he approach ta-best parsing described in this pa-
selective unpacking algorithm with and without in-P€r takes as its point of departure recent work of Car-
stantiation failure caching and propagation (as de®!l & Oepen (2005), which describes an efficient al-
scribed in Section 4 above). The empirical result§Orithm for unpacking:-best trees from a forest pro-
for GG are summarized in Table 5, showing clearifluced by a chart-based sentence generator and con-
that the technique reduced unnecessary hypothed@#1ing local ME properties with associated weights.
and instantiation failures. The design philosophy of? @n @lmost contemporaneous study, but in the con-
the ERG and GG differ. During the first, forest cre-{€Xt Of parsing with treebank grammars, Huang &
ation phase, GG suppresses a number of features {qfiand (2005) develop a series of increasingly effi-
the HPSG sense, not the ME sense) that can actuafiight @lgorithms for unpacking-best results from
constrain the combinatorics of edges. This mov@ Weighted hypergraph representing a parse forest.
makes the packed forest more compact, but it imtn€ algorithm of Carroll & Oepen (2005) and the
plies that unification failures will be more frequentfin@l one of Huang & Chiang (2005) are essentially
during unpacking. In a sense, GG thus moves pa@guivalent, gn_d turn out to be refqrmulations of an
of the search for globally consistent derivations intéPProach originally described by Jiménez & Marzal
the second phase, and it is possible for the forest {§000) (although expressed there only for grammars
contain ‘result’ trees that ultimately turn out to beln Chomsky Normal Form).
incoherent. Dynamic programming of instantiation N this paper we have considered ME properties
failures makes this approach tractable, while retairihat extend beyond immediate dominance relations,

ing the general breadth-first characteristic of the sextending up to 4 levels of grandparenting. Pre-

lective unpacking regime. vious work has either assumed properties that are

restricted to the minimal parse fragments (i.e. sub-
further optimization of hyper-parameters for individuandig-  trees of depth one) that make up the packed repre-
urations would moderately improve model performance, €spe tati G & Joh 2002 has tak
cially for higher-order grandparenting levels with largemmbers sentation (Geman ohnson, ), or has taken a

of features. more relaxed approach by allowing non-local prop-
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, . Unifications | Copies | Hypotheses | Space | Unpack | Total
Configuration (#) (#) (#) (Kbyte) | (ms) | (ms)
greedy best-first 5980 1447 - 9202 - 400

selective, no caching 5535 1523 1245 27188 70 410
selective, with cache 4915 1522 382 27176 10 350

Table 5: Efficiency effects of the instantiation failure by and propagation with GG, without grandparenting. Aditistics are
averages over the 1941 items that complete within the resdowunds in all three configurationshnification, Copies Unpack
andTotal have the same interpretation as in Table 4, Hydothesess the average count of hypothesized sub-trees.

erties but without addressing the problem of how tgorithm is efficient in that it empirically exhibits a
efficiently extract the top-ranked trees from a packetinear relationship between processing time and the
forest (Miyao & Tsuijii, 2002). number of analyses unpacked, at all degrees of ME

Probably the work closest in spirit to our approactieature non-locality. It improves over previous work
is that of Malouf & van Noord (2004), who use anin providing the only exact procedure for retrieving
HPSG grammar comparable to the ERG and GGy-best analyses from a packed forest that can deal
non-local ME features, and a two-phase parse fowith features with extended domains of locality and
est creation and unpacking approach. However, thekith forests created under subsumption. Our algo-
unpacking phase uses a beam search to find a godithm applies dynamic programming to intermediate
(single) candidate for the best parse; in contrast—results and local failures in unpacking alike.

for ME models contain'ing the types of non-local The experiments compared the new algorithm
features that are most important for accurate par§giy, paseline systems representing other possible
selection—we avoid an approximative searchefid ;504 ches to parsing with ME models: (a) a single
ficiently identify exactlythe n-best parses. _ phase of agenda-driven parsing with on-line prun-

When parsing with context free grammars, a (Sinjng pased on intermediate ME scores, and (b) two-
gle) parse can be retrieved from a parse forest ighase parsing with exhaustive unpacking and post-
time linear in the length of the input string (Bil- ¢ ranking of complete trees. The new approach

lot & Lang, 1989). However, as discussed in SeCspowed better speed, coverage, and accuracy than
tion 2, when parsing with a unification-based gramg,e paselines.

mar and packing under feature structure subsump-

tion, the cross-product of some local ambiguities Although we have dealt with the non-local ME
may not be globally consistent. This means that adeatures that in previous work have been found to be
ditional unifications are required at unpacking timeth® most important for parse selection (i.e. grand-
In principle, when parsing with a pathological gramJC)arenting and n-grams), this does not exhaust the
mar with a high rate of failure, extracting a singlefu” range of features that could possibly be useful.
consistent parse from the forest could take exponefr©" €xample, it may be the case that accurately re-
tial time (see Lang (1994) for a discussion of this isS0Iving some kinds of ambiguities can only be done
sue with respect to Indexed Grammars). In the cadwth reference to particular parts—or combinations
of GG, a high rate of unification failure in unpacking©f parts—of the HPSG feature structures represent-
is dramatically reduced by our instantiation failure"d the analysis of a complete constituent. To deal

caching and propagation mechanism. with such cases we are currently designing an exten-
sion to the algorithms described here which would
9 Conclusions and Future Work add a ‘controlled’ beam search, in which the size of

the beam was limited by the interval of score adjust-
We have described and evaluated an algorithm fanents for ME features that could only be evaluated
efficiently computing then-best analyses from a once the full linguistic structure became available.
parse forest produced by a unification grammar, witithis approach would involve a constrained amount
respect to a Maximum Entropy (ME) model con-of extra search, but would still produce the exaet
taining two classes of non-local features. The albest trees.
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