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Preface

Welcome to the Tenth International Conference on Parsing Technologies, IWPT 2007, in the beautiful
city of Prague.

IWPT’07 continues the tradition of biennial workshops on parsing technology organized by SIGPARSE,
the Special Interest Group on Parsing of the Association for Computational Linguistics (ACL). The first
workshop, in Pittsburgh and Hidden Valley, was followed by workshops in Cancun (Mexico) in 1991;
Tilburg (Netherlands) and Durbuy (Belgium) in 1993; Prague and Karlovy Vary (Czech Republic) in
1995; Boston/Cambridge (Massachusetts) in 1997; Trento (Italy) in 2000; Beijing (China) in 2001; Nancy
(France) in 2003; and Vancouver (Canada) in 2005.

Over the years the IWPT Workshops have become the major forum for researchers in natural language
parsing. They have also given rise to four books on parsing technologies.

For the first time this year, IWPT is organised as a co-located event with the main ACL conference and
with EMNLP and many other workshops. We would like to thank Alon Lavie, Priscilla Rasmussen and
the ACL committee and local organisers for their help and support in organising this event.

Parsing technologies are relevant for almost all applications in Natural Language Processing. We are
fortunate to have Stuart Shieber from Harvard University as our invited speaker to explore the links
between sychronous grammars and issues related to machine translation and parsing.

This year’s programme features for the first time invited presentations by organisers of co-located events
who are also members of the IWPT Programme Committee. Joakim Nivre makes a connection with
learning dependency grammars in the CONLL-07 shared task, and the organisers of the Deep Linguistic
Processing workshop discuss the ways in which broad coverage parsing systems can be developed for
linguistically expressive grammars.

I would to thank all the programme committee members for their careful and timely work, especially
those that took up extra rewiewing obligations at very short notice. Special thanks go to Paola Merlo, the
programme chair, for organising the reviewing, designing the workshop programme and producing the
proceedings. The scientific programme includes 14 full papaer and 3 short papers out of 31 submissions
(of which 6 short papers). They cover all topics in parsing, from efficiency issues and complextiy of
algorithms to accurate supervised and unsupervised learning techniques for parsing.

Harry Bunt
IWPT 2007 General Chair
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Using Self-Trained Bilexical Preferences to Improve Disambiguation
Accuracy

Gertjan van Noord
University of Groningen
vannoord@let.rug.nl

Abstract

A method is described to incorporate bilex-
ical preferences between phrase heads, such
as selection restrictions, in a Maximum-
Entropy parser for Dutch. The bilexical
preferences are modelled as association rates
which are determined on the basis of a very
large parsed corpus (about 500M words).
We show that the incorporation of such self-
trained preferences improves parsing accu-
racy significantly.

1 Motivation

In parse selection, the task is to select the correct
syntactic analysis of a given sentence from a set
of parses generated by some other mechanism. On
the basis of correctly labelled examples, supervised
parse selection techniques can be employed to ob-
tain reasonable accuracy. Although parsing has im-
proved enormously over the last few years, even the
most successful parsers make very silly, sometimes
embarassing, mistakes. In our experiments with a
large wide-coverage stochastic attribute-value gram-
mar of Dutch, we noted that the system sometimes
is insensitive to the naturalness of the various lexical
combinations it has to consider. Although parsers
often employ lexical features which are in principle
able to represent preferences with respect to word
combinations, the size of the training data will be
too small to be able to learn the relevance of such
features successfully.

In maximum-entropy parsing, the supervised
parsing technique that we use in our experiments, ar-
bitrary features can be defined which are employed

1

to characterize different parses. So it is possible to
construct features for any property that is thought
to be important for disambiguation. However, such
features can be useful for disambiguation only in
case the training set contains a sufficient number of
occurrences of these features. This is problematic,
in practice, for features that encode bilexical prefer-
ences such as selection restrictions, because typical
training sets are much too small to estimate the rele-
vance of features representing cooccurrences of two
words. As a simple example consider the ambiguous
Dutch sentence

(1) Melk drinkt de baby niet
Milk drinks the baby not

The standard model of the parser we experimented
with employs a wide variety of features including
syntactic features and lexical features. In particu-
lar, the model also includes features which encode
whether or not the subject or the object is fronted in
a parse. Since subjects, in general, are fronted much
more frequently than objects, the model has learnt
to prefer readings in which the fronted constituent
is analysed as the subject. Although the model also
contains features to distinguish whether e.g. milk
occurs as the subject or the object of drink, the
model has not learnt a preference for either of these
features, since there were no sentences in the train-
ing data that involved both these two words.

To make this point more explicit, we found that in
about 200 sentences of our parsed corpus of 27 mil-
lion sentences mi 1k is the head of the direct object
of the verb drink. Suppose that we would need at
least perhaps 5 to 10 sentences in our training corpus

Proceedings of the 10th Conference on Parsing Technologies, pages 1-10,
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in order to be able to learn the specific preference
between milk and drink. The implication is that
we would need a (manually labeled!) training cor-
pus of approximately 1 million sentences (20 mil-
lion words). In contrast, the disambiguation model
of the Dutch parser we are reporting on in this paper
is trained on a manually labeled corpus of slightly
over 7,000 sentences (145,000 words). It appears
that semi-supervised or un-supervised methods are
required here.

Note that the problem not only occurs for artifi-
cial examples such as (1); here are a few mis-parsed
examples actually encountered in a large parsed cor-
pus:

(2) a. Campari moet u gedronken hebben

Campari must have drunk you
You must have drunk Campari

b. De wijn die Elvis zou hebben gedronken als
hij wijn zou hebben gedronken
The wine Elvis would have drunk if he had
drunk wine
The wine that would have drunk Elvis if he
had drunk wine

c. De paus heeft tweehonderd daklozen te eten
gehad
The pope had twohunderd homeless people
for dinner

In this paper, we describe an alternative approach
in which we employ pointwise mutual informa-
tion association score in the maximum entropy dis-
ambiguation model. Pointwise mutual information
(Fano, 1961) was used to measure strength of selec-
tion restrictions for instance by Church and Hanks
(1990). The association scores used here are esti-
mated using a very large parsed corpus of 500 mil-
lion words (27 million sentences). We show that the
incorporation of this additional knowledge source
improves parsing accuracy. Because the association
scores are estimated on the basis of a large corpus
that is parsed by the parser that we aim to improve
upon, this technique can be described as a somewhat
particular instance of self-training. Self-training has
been investigated for statistical parsing before. Al-
though naively adding self-labeled material to ex-
tend training data is normally not succesfull, there
have been successful variants of self-learning for

parsing as well. For instance, in McClosky et al.
(2006) self-learning is used to improve a two-phase
parser reranker, with very good results for the clas-
sical Wall Street Journal parsing task.

Clearly, the idea that selection restrictions ought
to be useful for parsing accuracy is not new. How-
ever, as far as we know this is the first time that au-
tomatically acquired selection restrictions have been
shown to improve parsing accuracy results. Related
research includes Abekawa and Okumura (2006)
and Kawahara and Kurohashi (2006) where statis-
tical information between verbs and case elements
is collected on the basis of large automatically anal-
ysed corpora.

2 Background: Alpino parser

The experiments are performed using the Alpino
parser for Dutch. In this section we briefly describe
the parser, as well as the corpora that we have used
in the experiments described later.

2.1 Grammar and Lexicon

The Alpino system is a linguistically motivated,
wide-coverage grammar and parser for Dutch in the
tradition of HPSG. It consists of over 600 gram-
mar rules and a large lexicon of over 100,000 lex-
emes and various rules to recognize special con-
structs such as named entities, temporal expressions,
etc. The grammar takes a ‘constructional’ approach,
with rich lexical representations and a large number
of detailed, construction specific rules. Both the lex-
icon and the rule component are organized in a mul-
tiple inheritance hierarchy. Heuristics have been im-
plemented to deal with unknown words and word se-
quences, and ungrammatical or out-of-coverage sen-
tences (which may nevertheless contain fragments
that are analysable). The Alpino system includes a
POS-tagger which greatly reduces lexical ambiguity,
without an observable decrease in parsing accuracy
(Prins, 2005).

2.2 Parser

Based on the categories assigned to words, and
the set of grammar rules compiled from the HPSG
grammar, a left-corner parser finds the set of all
parses, and stores this set compactly in a packed
parse forest. All parses are rooted by an instance



of the top category, which is a category that general-
izes over all maximal projections (S, NP, VP, ADVP,
AP, PP and some others). If there is no parse cover-
ing the complete input, the parser finds all parses for
each substring. In such cases, the robustness com-
ponent will then select the best sequence of non-
overlapping parses (i.e., maximal projections) from
this set.

In order to select the best parse from the com-
pact parse forest, a best-first search algorithm is ap-
plied. The algorithm consults a Maximum Entropy
disambiguation model to judge the quality of (par-
tial) parses. Since the disambiguation model in-
cludes inherently non-local features, efficient dy-
namic programming solutions are not directly appli-
cable. Instead, a best-first beam-search algorithm is
employed (van Noord and Malouf, 2005; van Noord,
2006).

2.3 Maximum Entropy disambiguation model

The maximum entropy model is a conditional model
which assigns a probability to a parse ¢ for a given
sentence s. Furthermore, f;(¢) are the feature func-
tions which count the occurrence of each feature ¢ in
a parse t. Each feature ¢ has an associated weight ;.
The score ¢ of a parse ¢ is defined as the sum of the
weighted feature counts:

o(t) = > Afilt)

If ¢t is a parse of s, the actual conditional proba-
bility is given by the following, where 7'(s) are all
parses of s:

exp(¢(t))
ZuET(s) exp(¢(u) )

However, note that if we only want to select the
best parse we can ignore the actual probability, and it
suffices to use the score ¢ to rank competing parses.

The Maximum Entropy model employs a large set
of features. The standard model uses about 42,000
different features. Features describe various prop-
erties of parses. For instance, the model includes
features which signal the application of particular
grammar rules, as well as local configurations of
grammar rules. There are features signalling spe-
cific POS-tags and subcategorization frames. Other

P(t|s) =

features signal local or non-local occurrences of ex-
traction (WH-movement, relative clauses etc.), the
grammatical role of the extracted element (subject
vs. non-subject etc.), features to represent the dis-
tance of a relative clause and the noun it modifies,
features describing the amount of parallelism be-
tween conjuncts in a coordination, etc. In addition,
there are lexical features which represent the co-
occurrence of two specific words in a specific de-
pendency, and the occurrence of a specific word as a
specific dependent for a given POS-tag. Each parse
is characterized by its feature vector (the counts for
each of the 42,000 features). Once the model is
trained, each feature is associated with its weight A
(a positive or negative number, typically close to 0).
To find out which parse is the best parse according
to the model, it suffices to multiply the frequency
of each feature with its corresponding weight, and
sum these weighted frequencies. The parse with the
highest sum is the best parse. Formal details of the
disambiguation model are presented in van Noord
and Malouf (2005).

2.4 Dependency structures

Although Alpino is not a dependency grammar in
the traditional sense, dependency structures are gen-
erated by the lexicon and grammar rules as the value
of a dedicated feature dt. The dependency struc-
tures are based on CGN (Corpus Gesproken Ned-
erlands, Corpus of Spoken Dutch) (Hoekstra et al.,
2003), D-Coi and LASSY (van Noord et al., 2006).
Such dependency structures are somewhat idiosyn-
cratic, as can be observed in the example in figure 1
for the sentence:

(3) waar en wanneer dronk Elvis wijn?
where and when did Elvis drink wine?

2.5 Evaluation

The output of the parser is evaluated by comparing
the generated dependency structure for a corpus sen-
tence to the gold standard dependency structure in a
treebank. For this comparison, we represent the de-
pendency structure (a directed acyclic graph) as a
set of named dependency relations. The dependency
graph in figure 1 is represented with the following
set of dependencies:



whq
R e
whd body
1
: svl
conj
cnj crd cnj %j 1
mod
adv vg adv 1 verb name noun
waarg en wanneer» drinks Elviy wijng

Figure 1: Dependency graph example. Reentrant
nodes are visualized using a bold-face index. Root
forms of head words are explicitly included in sepa-
rate nodes, and different types of head receive a dif-
ferent relation label such as hd, crd (for coordina-
tion), whd (for WH-phrases) etc. In this case, the
WH-phrase is both the whd element of the top-node,
as well as a mod dependent of drink.

crd/cnj(en, waar)
whd/body(en, drink)
hd/obj1(drink,wijn)

crd/cnj(en, wanneer)
hd/mod(drink,en)
hd/su(drink,Elvis)

Comparing these sets, we count the number of de-
pendencies that are identical in the generated parse
and the stored structure, which is expressed tradi-
tionally using f-score (Briscoe et al., 2002). We pre-
fer to express similarity between dependency struc-
tures by concept accuracy:

% Dy

CA=1- - ;
max(>-; DL, >, Dy)

where D; is the number of dependencies produced
by the parser for sentence i, D, is the number of
dependencies in the treebank parse, and Dy is the
number of incorrect and missing dependencies pro-
duced by the parser.

The standard version of Alpino that we use here
as baseline system is trained on the 145,000 word
Alpino treebank, which contains dependency struc-
tures for the cdbl (newspaper) part of the Eind-
hoven corpus. The parameters for training the model
are the same for the baseline model, as well as the
model that includes the self-trained bilexical prefer-
ences (introduced below). These parameters include

#sentences 100% 30,000,000

#words 500,000,000

#sentences without parse  0.2% 100,000
#sentences with fragments 8% 2,500,000
#single full parse  92% 27,500,000

Table 1: Approximate counts of the number of sen-
tences and words in the parsed corpus. About 0,2%
of the sentences did not get a parse, for computa-
tional reasons (out of memory, or maximum parse
time exceeded).

the Gaussian penalty, thresholds for feature selec-
tion, etc. Details of the training procedure are de-
scribed in van Noord and Malouf (2005).

2.6 Parsed Corpora

Over the course of about a year, Alpino has been
used to parse most of the TwWNC-02 (Twente News-
paper Corpus), Dutch Wikipedia, and the Duch part
of Europarl. TwNC consists of Dutch newspaper
texts from 1994 - 2004. We did not use the ma-
terial from Trouw 2001, since part of that mate-
rial is used in the test set used below. We used
the 200 node Beowulf Linux cluster of the High-
Performance Computing center of the University of
Groningen. The dependency structures are stored in
XML. The XML files can be processed and searched
in various ways, for instance, using XPATH, XSLT
and Xquery (Bouma and Kloosterman, 2002). Some
quantitative information of this parsed corpus is
listed in table 1. In the experiments described be-
low, we do not distinguish between full and frag-
ment parses; sentences without a parse are obviously
ignored.

3 Bilexical preferences

3.1 Association Score

The parsed corpora described in the previous sec-
tion have been used in order to compute association
scores between lexical dependencies. The parses
constructed by Alpino are dependency structures. In
such dependency structures, the basic dependencies
are of the form r(wy,w2) where r is a relation such
as subject, object, modifier, prepositional comple-
ment, ..., and w; are root forms of words.

Bilexical preference between two root forms wq



tokens 480,000,000
types 100,000,000
types with frequency > 20 2,000,000

Table 2: Number of lexical dependencies in parsed
corpora (approximate counts)

bijltje  gooi-neer 13
duimschroef  draai_aan 13
peentje  zweet 13

traantje  pink_weg 13

boontje  dop 12

centje  verdien_bij 12
champagne fles  ontkurk 12
dorst les 12

Table 3: Pairs involving a direct object relationship
with the highest pointwise mutual information score.

and ws is computed using an association score based
on pointwise mutual information, as defined by Fano
(1961) and used for a similar purpose in Church and
Hanks (1990), as well as in many other studies in
corpus linguistics. The association score is defined
here as follows:

fr(wi, w2))
fr(w, ) f((5 w2))

where f(X) is the relative frequency of X. In the
above formula, the underscore is a place holder for
an arbitrary relation or an arbitrary word. The as-
sociation score I compares the actual relative fre-
quency of w; and wsy with dependency r, with
the relative frequency we would expect if the
words were independent. For instance, to compute
I(hd/objl(drink,melk)) we lookup the number
of times drink occurs with a direct object out of all
462,250,644 dependencies (15,713) and the number
of times me 1k occurs as a dependent (10,172). If we
multiply the two corresponding relative frequencies,
we get the expected relative frequency (0.35) for
hd/obj1(drink, melk), which is about 560 times
as big as the actual frequence, 195. Taking the log
of this gives us the association score (6.33) for this
bi-lexical dependency. Note that pairs that we have
seen fewer than 20 times are ignored. Mutual in-
formation scores are unreliable for low frequencies.
An additional benefit of a frequency threshold is a
manageable size of the resulting data-structures.
The pairs involving a direct object relationship
with the highest scores are listed in table 3. The

I(r(wy,wy) = log

biertje small glass of beer 8
borreltje  strong alcoholic drink 8
glaasje small glass 8
pilsje small glass of beer 8
pintje small glass of beer 8
pint glass of beer 8
wijntje small glass of wine 8
alcohol alcohol 7
bier beer 7

Table 4: Pairs involving a direct object relationship
with the highest pointwise mutual information score
for the verb drink.

overlangs  snijd_door 12
welig  tier 12
dunnetjes doe_over 11
stief_moederlijk  bedeel 11
on_zedelijk  betast 11
stierlijk  verveel 11
cum laude  studeer_.af 10
hermetisch  grendel_af 10
ingespannen  tuur 10
instemmend  knik 10
kostelijk  amuseer 10

Table 5: Pairs involving a modifier relationship be-
tween a verb and an adverbial with the highest asso-
ciation score.

highest scoring nouns that occur as the direct object
of drink are listed in table 4.

Selection restrictions are often associated only
with direct objects. We include bilexical association
scores for all types of dependencies. We found that
association scores for other types of dependencies
also captures both collocational preferences as well
as weaker cooccurrence preferences. Some exam-
ples including modifiers are listed in table 5. Such
preferences are useful for disambiguation as well.
Consider the ambiguous Dutch sentence

(4) omdat we lauw bier dronken
because we drank warm beer
because we drank beer warmly

The adjective 1auw (cold, lukewarm, warm) can be
used to modify both nouns and verbs; this latter pos-
sibility is exemplified in:

(5) We hebben lauw gereageerd
We reacted indifferently
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Figure 2: Dependency structure produced for coor-
dination

3.2 Extending pairs

The CGN dependencies that we work with fail to re-
late pairs of words in certain syntactic constructions
for which it can be reasonably assumed that bilexi-
cal preferences should be useful. We have identified
two such constructions, namely relative clauses and
coordination, and for these constructions we gener-
alize our method, to take such dependencies into ac-
count too.
Consider coordinations such as:

(6) Bier of wijn drinkt Elvis niet
Beer or wine, Elvis does not drink

The dependency structure of the intended analysis
is given in figure 2. The resulting set of dependen-
cies for this example treats the coordinator as the
head of the conjunction:

hd/objl(drink, of)

crd/cnj(of, wijn)
hd/mod(drink,niet)

crd/cnj(of,bier)
hd/su(drink,elvis)

So there are no direct dependencies between the verb
and the individual conjuncts. For this reason, we
add additional dependencies (A, C') for every pair
of dependency r(A, B), crd/cnj(B, C).

Relative clauses are another syntactic phe-
nomenon where we extend the set of dependencies.
For a noun phrase such as:

(7) Wijn die Elvis niet dronk
Wine which Elvis did not drink

there is no direct dependency between wijn and
drink, as can be seen in the dependency structure

np
AN
. rel
WiJNno
rhd/\
1 body
pron ssub
- su mod hd
1
Ot:)LJ name adv verb
Elvis, niets drinky

Figure 3: Dependency structure produced for rela-
tive clause

given in figure 3. Sets of dependencies are extended
in such cases, to make the relation between the noun
and the role it plays in the relative clause explicit.

3.3 Using association scores as features

The association scores for all dependencies are used
in our maximum entropy disambiguation model as
follows. The technique is reminiscent of the inclu-
sion of auxiliary distributions in stochastic attribute-
value grammar (Johnson and Riezler, 2000).

Recall that a maximum entropy disambiguation
model exploits features. Features are properties of
parses, and we can use such features to describe any
property of parses that we believe is of importance
for disambiguation. For the disambiguation model,
a parse is fully characterized by a vector of feature
counts.

We introduce features z(t, r) for each of the ma-
jor POS labels t (verb, noun, adjective, adverb, ...)
and each of the dependency relations r. The ‘count’
of such a feature is determined by the association
scores for actually occuring dependency pairs. For
example, if in a given parse a given verb v has a
direct object dependent n, then we compute the as-
sociation of this particular pair, and use the resulting
number as the count of that feature. Of course, if
there are multiple dependencies of this type in a sin-
gle parse, the corresponding association scores are
all summed.

To illustrate this technique, consider the depen-
dency structure given earlier in figure 2. For this



example, there are four of these new features with a
non-zero count. The counts are given by the corre-
sponding association scores as follows:

z(verb, hd/su)
z(verb, hd/mod)
z(verb, hd/obj1)

I(hd/su(drink,elvis))
I(hd/mod(drink,niet))
I(hd/objl(drink,of))
I(hd/objl(drink,bier))

(

(

(

+ o+

I(hd/objl(drink,wijn))
z(conj,crd/cnj) = I(crd/enj(of,bier))
+ I(crd/cnj(of,wijn))

It is crucial to observe that the new features do not
include any direct reference to actual words. This
means that there will be only a fairly limited number
of new features (depending on the number of tags ¢
and relations r), and we can expect that these fea-
tures are frequent enough to be able to estimate their
weights in training material of limited size.

Association scores can be negative if two words in
a lexical dependency occur less frequently than one
would expect if the words were independent. How-
ever, since association scores are unreliable for low
frequencies (including, often, frequencies of zero),
and since such negative associations involve low fre-
quencies by their nature, we only take into account
positive association scores.

4 Experiments

We report on two experiments. In the first exper-
iment, we report on the results of tenfold cross-
validation on the Alpino treebank. This is the ma-
terial that is standardly used for training and test-
ing. For each of the sentences of this corpus, the
system produces atmost the first 1000 parses. For
every parse we compute the quality by comparing
its dependency structure with the gold standard de-
pendency structure in the treebank. For training, at-
most 100 parses are selected randomly for each sen-
tence. For (tenfold cross-validated) testing, we use
all available parses for a given sentence. In order to
test the quality of the model, we check for each given
sentence which of its atmost 1000 parses is selected
by the disambiguation model. The quality of that
parse is used in the computation of the accuracy, as
listed in table 6. The column labeled exact measures
the proportion of sentences for which the model se-
lected the best possible parse (there can be multiple

fscore errred. exact CA

% % % %

baseline  74.02 0.00 16.0 73.48
oracle 91.97 100.00 100.0 91.67
standard 87.41 74.60 520 87.02
+self-training  87.91  77.38  54.8 87.51

Table 6: Results with ten-fold cross-validation on
the Eindhoven-cdbl part of the Alpino treebank. In
these experiments, the models are used to select a
parse from a given set of atmost 1000 parses per sen-
tence.

best possible parses). The baseline row reports on
the quality of a disambiguation model which simply
selects the first parse for each sentence. The oracle
row reports on the quality of the best-possible dis-
ambiguation model, which would (by magic) always
select the best possible parse (some parses are out-
side the coverage of the system, and some parses are
generated only after more than 1000 inferior parses).
The error reduction column measures which part of
the disambiguation problem (difference between the
baseline and oracle scores) is solved by the model.!

The results show a small but clear increase in
error reduction, if the standard model (without the
association score features) is compared with a (re-
trained) model that includes the association score
features. The relatively large improvement of the ex-
act score suggests that the bilexical preference fea-
tures are particularly good at choosing between very
good parses.

For the second experiment, we evaluate how well
the resulting model performs in the full system. First
of all, this is the only really convincing evalua-
tion which measures progress for the system as a
whole by virtue of including bilexical preferences.
The second motivation for this experiment is for
methodological reasons: we now test on a truly
unseen test-set. The first experiment can be criti-

"Note that the error reduction numbers presented in the ta-
ble are lower than those presented in van Noord and Malouf
(2005). The reason is, that we report here on experiments in
which parses are generated with a version of Alpino with the
POS-tagger switched on. The POS-tagger already reduces the
number of ambiguities, and in particular solves many of the
‘easy’ cases. The resulting models, however, are more effec-
tive in practice (where the model also is applied after the POS-
tagger).



prec rec fscore CA

% % % %

standard 90.77 90.49 90.63 90.32
+self-training  91.19 90.89 91.01 90.73

Table 7: Results on the WR-P-P-H part of the D-Coi
corpus (2267 sentences from the newspaper Trouw,
from 2001). In these experiments, we report on the
full system. In the full system, the disambiguation
model is used to guide a best-first beam-search pro-
cedure which extracts a parse from the parse forest.
Difference in CA was found to be significant (using
paired T-test on the per sentence CA scores).

cized on methodological grounds as follows. The
Alpino Treebank was used to train the disambigua-
tion model which was used to construct the large
parsed treebank from which we extracted the counts
for the association scores. Those scores might some-
how therefore indirectly reflect certain aspects of the
Alpino Treebank training data. Testing on that data
later (with the inclusion of the association scores) is
therefore not sound.

For this second experiment we used the WR-P-P-
H (newspaper) part of the D-Coi corpus. This part
contains 2256 sentences from the newspaper Trouw
(2001). In table 7 we show the resulting f-score and
CA for a system with and without the inclusion of
the z(¢,r) features. The improvement found in the
previous experiment is confirmed.

5 Conclusion and Outlook

One might wonder why self-training works in the
case of selection restrictions, at least in the set-up
described above. One may argue that, in order to
learn that milk is a good object for drink, the parser
has to analyse examples of drink milk in the raw data
correctly. But if the parser is capable of analysing
these examples, why does it need selection restric-
tions? The answer appears to be that the parser
(without selection restrictions) is able to analyse the
large majority of cases correctly. These cases in-
clude the many easy occurrences where no (diffi-
cult) ambiguities arise (case marking, number agree-
ment and other syntactic characteristics often force a
single reading). The easy cases outnumber the mis-
parsed difficult cases, and therefore the selection re-

strictions can be learned. Using these selection re-
strictions as additional features, the parser is then
able to also get the difficult, ambiguous, cases right.

There are various aspects of our method that
need further investigation. First of all, existing
techniques that involve selection restrictions (e.g.,
Resnik (1993)) typically assume classes of nouns,
rather than individual nouns. In future work we
hope to generalize our method to take classes into
account, where the aim is to learn class membership
also on the basis of large parsed corpora.

Another aspect of the technique that needs fur-
ther research involves the use of a threshold in estab-
lishing the association score, and perhaps related to
this issue, the incorporation of negative association
scores (for instance for cases where a large number
of cooccurrences of a pair would be expected but
where in fact none or very few were found).

There are also some more practical issues that
perhaps had a negative impact on our results. First,
the large parsed corpus was collected over a period
of about a year, but during that period, the actual
system was not stable. In particular, due to various
improvements of the dictionary, the root form of
words that was used by the system changed over
time. Since we used root forms in the computation
of the association scores, this could be harmful in
some specific cases. A further practical issue con-
cerns repeated sentences or even full paragraphs.
This happens in typical newspaper material for
instance in the case of short descriptions of movies
that may be repeated weekly for as long as that
movie is playing. Pairs of words that occur in
such repeated sentences receive association scores
that are much too high. The method should be
adapted to take this into account, perhaps simply by
removing duplicated sentences.

Clearly, the idea that selection restrictions ought
to be useful for parsing is not new. However, as far
as we know this is the first time that automatically
acquired selection restrictions have been shown to
improve parsing accuracy results.
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Examples

Here we list a number of examples, which suggest
that selection restrictions can also be important for
dependencies, other than direct objects.

High scoring pairs involving a subject relation-
ship with a verb:

alarmbel rinkel
champagnekurk knal
gij echtbreek
haan kraai
kikker kwaak
rups  verpop
vonk overspring
zweet parel
belletje rinkel
brievenbus  klepper

High scoring pairs involving a modifier relation-
ship with a noun:



in vitro
Hubble
zelfrijzend
bezittelijk
ingegroeid
knapperend
levendbarend
onbevlekt
ongeblust

fertilisatie
ruimtetelescoop
bakmeel
voornaamwoord
teennagel
haardvuur
hagedis
ontvangenis
kalk

High scoring pairs involving a predicative com-
plement relationship with a verb:

beetgaar
beuk
schuimig
suf

suf
doormidden
ragfijn
stuk

au serieux
in duigen
lam

kook
murw
klop
peins
pieker
scheur
hak
bijt
neem
val
leg

High scoring pairs involving an apposition rela-

tionship with a noun:

jongensgroep
communicatiesysteem
blindeninstituut
haptonoom
gebedsgenezeres
rally

tovenaar
aartsengel
keeperstrainer
basketbalcoach
partizaan

Boyzone
C2000

De Steffenberg
Ted Troost
Greet Hofmans
Parijs-Dakar
Gandalf
Gabriel

Joep Hiele
Ton Boot

Tito

High scoring pairs involving a measure phrase re-

lationship with an adjective:

10

graadje
lichtjaar
mijlenver
niets
eindje
graad
illusie
kilogram
onsje
maatje
knip

erger
verwijderd
verwijderd
liever
verderop
warmer
armer
wegend
minder

te groot
waard
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Abstract

This paper describes an effective approach
to adapting an HPSG parser trained on the
Penn Treebank to a biomedical domain. In
this approach, we train probabilities of lex-
ical entry assignments to words in a tar-
get domain and then incorporate them into
the original parser. Experimental results
show that this method can obtain higher
parsing accuracy than previous work on do-
main adaptation for parsing the same data.
Moreover, the results show that the combi-
nation of the proposed method and the exist-
ing method achieves parsing accuracy that is
as high as that of an HPSG parser retrained
from scratch, but with much lower training
cost. We also evaluated our method in the
Brown corpus to show the portability of our
approach in another domain.

Introduction

et al., 2006) trained on the WSJ section of the Penn
Treebank (Marcus et al., 1994) to a biomedical do-
main. Our method re-trains a probabilistic model of
lexical entry assignments to words in a target do-
main, and incorporates it into the original parser.
The model of lexical entry assignments is a log-
linear model re-trained with machine learning fea-
tures only of word n-grams. Hence, the cost for the
re-training is much lower than the cost of training
the entire disambiguation model from scratch.

In the experiments, we used an HPSG parser orig-
inally trained with the Penn Treebank, and evaluated
a disambiguation model re-trained with the GENIA
treebank (Kim et al., 2003), which consists of ab-
stracts of biomedical papers. We varied the size of
a training corpus, and measured the transition of the
parsing accuracy and the cost required for parameter
estimation. For comparison, we also examined other
possible approaches to adapting the same parser. In
addition, we applied our approach to the Brown cor-
pus (Kucera and Francis, 1967) in order to examine

Domain portability is an important aspect of the apPortability of our approach.

plicability of NLP tools to practical tasks. There-

The experimental results revealed that by sim-

fore, domain adaptation methods have recently beéy re-training the probabilistic model of lexical en-
proposed in several NLP areas, e.g., word sense digy assignments we achieve higher parsing accuracy
ambiguation (Chan and Ng, 2006), statistical parghan with a previously proposed adaptation method.
ing (Lease and Charniak, 2005; McClosky et al.In addition, combined with the existing adaptation
2006), and lexicalized-grammar parsing (Johnsomethod, our approach achieves accuracy as high as
and Riezler, 2000; Hara et al., 2005). Their aim wathat obtained by re-training the original parser from
to re-train a probabilistic model for a new domain ascratch, but with much lower training cost. In this
low cost, and more or less successfully improved theaper, we report these experimental results in detail,
accuracy for the domain.
In this paper, we propose a method for adaptingntry assignments contribute to domain adaptation.
an HPSG parser (Miyao and Tsuijii, 2002; Ninomiya In recent years, it has been shown that lexical in-
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formation plays a very important role for high accu- Lexical Entries
racy of lexicalized grammar parsing. Bangalore and [sBsonr ] [S5aea e | [SioT: H
Joshi (1999) indicated that, correct disambiguation John has come
with supertagging, i.e., assignment of lexical entries
before parsing, enabled effective LTAG (Lexical-
ized Tree-Adjoining Grammar) parsing. Clark and
Curran (2004a) showed that supertagging reduced
cost for training and execution of a CCG (Combina-
tory Categorial Grammar) parser while keeping ac-

SUBCAT <verb> SUBCAT <noun>

Grammar Rule

HEAD }
[SUBCAT <[2]>

[HEAD ] [HEAD ]

SUBCAT <[1}> SUBCAT <[2}>

HEAD rzoun] [HEAD verb ] [HEAD verb ]

curacy. Clark and Curran (2006) showed that a CCG SUBCAT <>1 L SUBCAT <vert>J - L SUBCAT <nour>
parser trained on data derived from lexical category John has come
sequences alone was only slightly less accurate than ‘_HE:b

one trained on complete dependency structures. Ni- | S580AT o
nomiya et al. (2006) also succeeded in significantly HEAD ] [HEAD@’b ]

SUBCAT <> SUBCAT <verb> SUBCAT <noun>.

improving speed and accuracy of HPSG parsing by

using supertagging probabilities. These results indi- John has come

cate that the probability of lexical entry assignments

is essential for parse disambiguation. Figure 1: Parsing a sentencéohn has comeg
Such usefulness of lexical information has also F1er0ues

been shown for domain adaptation methods. Lease SUBCAT <>

and Charniak (2005) showed how existing domain-

specific lexical resources on a target domain may be [HERD et o]

leveraged to augment PTB-training: part-of-speech

tags, dictionary collocations, and named-entities. HEAD v | [HEAD ey ] [HEAD It ]

SUBCAT <> SUBCAT <verb> SUBCAT <noun>

Our findings basically follow the above results. The
contribution of this paper is to provide empirical re-
sults of the relationships among domain variationF
probability of lexical entry assignment, training dat
size, and training cost. In particular, this paper em-
pirically shows how much in-domain corpus is re-
quired for satisfiable performance. lexical entries express word-specific characteristics.
In Section 2, we introduce an HPSG parser andihe structures of sentences are explained using com-
describe an existing method for domain adaptatiofinations of grammar rules and lexical entries.
In Section 3, we show our methods of re-training Figure 1 shows an example of HPSG parsing of
a lexical disambiguation model and incorporatinghe sentenceJohn has comeFirst, as shown at the
it into the original model. In Section 4, we exam-top of the figure, an HPSG parser assigns a lexical
ine our method through experiments on the GENI&ntry to each word in this sentence. Next, a gram-
treebank. In Section 5, we examine the portabilitynar rule is assigned and applied to lexical entries. At
of our method through experiments on the Browihe middle of this figure, the grammar rule is applied
corpus. In Section 6, we showed several recent r& the lexical entries forfas’ and “come” We then

John has come

igure 2: An HPSG parse tree for a sentendehh
as comg

searches related to domain adaptation. obtain the structure represented at the bottom of the
figure. After that, the application of grammar rules
2 An HPSG Parser is done iteratively, and then we can finally obtain the

parse tree as is shown in Figure 2. In practice, since
HPSG (Pollard and Sag, 1994) is a syntactic théwo or more parse candidates can be given for one
ory based on lexicalized grammar formalism. Irsentence, a disambiguation model gives probabili-
HPSG, a small number of grammar rules describiges to these candidates, and a candidate given the
general construction rules, and a large number diighest probability is then chosen as a correct parse.
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The HPSG parser used in this study is Ninomiy
et al. (2006), which is based d&nju (Miyao and
Tsuijii, 2005). Lexical entries of Enju were extracte
from the Penn Treebank (Marcus et al., 1994), which

Fable 1: Features for the probabilities of lexical en-
OIIry selection

surrounding words~ w_jwows (word trigram)
surrounding POS tags p_ap_1pop1p2 (POS 5-gram)

consists of sentences collected from The Wall Street—combinations W_ 110, W, P10, Patlo,
Journal (Miyao et al., 2004). The disambiguation D1Wo, PoP1P2P3, P—2P—1P0,
model of Enju was trained on the same treebank. P=1PoP1, PopLP2, P=2P—1,

P—1Po, PoP1, P1P2

The disambiguation model of Enju is based on
a feature forest model (Miyao and Tsujii, 2002),

which is a log-linear model (Berger et_ f_;ll., 1996) OTharsing accuracy as high as Miyao and Tsuijii (2005),
packed forest structure. The probabilipys (1{w),  \yith around four times faster parsing speed.
of producing the_parsg restulfor a given sentence Johnson and Riezler (2000) suggested the pos-
w = (w1,...,wy) is defined as sibility of the method for adapting a stochastic
unification-based grammar including HPSG to an-
other domain. They incorporated auxiliary distribu-
tions as additional features for an original log-linear
Z, = Z lem(li|w,i) - Qayn (E]) model, and then attempted to assign proper weights
teT(w) i to the new features. With this approach, they suc-
wherel = (I;,...,1,) is a list of lexical entries as- ceeded in decreasing to a degree indistinguishable

signed tow, p..(li|w,i) is a probabilistic model Sentences for a target grammar.

giving the probability that lexical entrly is assigned ~ Our previous work proposed a method for adapt-
to word w;, gsyn(#|1) is an unnormalized log-linear ing an HPSG parser trained on the Penn Treebank
model of tree construction and gives the possibilto & biomedical domain (Hara et al., 2005). We
ity that parse candidateis produced from lexical re-trained a disambiguation model of tree construc-
entriesl, and7'(w) is a set of parse candidates astion, i.e., gsyn, for the target domain. In this ap-
signed tow. With a treebank of a target domain asProach, gsy, of the original parser was used as a
training data, model parametersygf, andg;,, are reference distributiorfJelinek, 1998) of another log-
estimated so as to maximize the log-likelihood of théinear model, and the new model was trained using a

1 .
p(tw) = o T pree Gslw, 1) - gy (11,

training data. target treebank. Since re-training used only a small
Probabilistic modep,.,, is defined as a log-linear treebank of the target domain, the cost was small and
model as follows. parsing accuracy was successfully improved.
) i : : :
s ) = 1 exp Z)\jfj(liawyi) , 3 Re tra_lnlng ofa Dlsqmblguatlon Model
wi - of Lexical Entry Assignments

biguation model of lexical entry assignments for the
target domain and then incorporate it into the origi-
where L(w;) is a set of lexical entries which cannal parser. Since Enju includes the disambiguation
be assigned to worda;. Before training this model, model of lexical entry assignments pag,, we can
L(w;) for all w; are extracted from the training tree-implement our method in Enju by training another
bank. The feature functiofy(/;, w, ) represents the disambiguation model;, (/;|w,i) of lexical entry
characteristics of;, w andw;, while corresponding assignments for the biomedical domain, and then re-
); is its weight. For the feature functions, instead oplacing the originap;., with the newly traineg;,, .
using unigram features adopted in Miyao and Tsujii In this paper, forp; ., we train a disambigua-
(2005), Ninomiya et al. (2006) used “word trigram”tion modelp;c, mi.(l;|w,7) of lexical entry assign-
and “POS 5-gram” features which are listed in Taments. pje;_miz IS @ maximum entropy model and
ble 1. With the revised Enju model, they achievedhe feature functions for it is the same mg, as

) Our idea of domain adaptation is to train a disam-

Zui= Y exp (Z Aj fi(li, w, i)

;€L (w;) J
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given in Table 1. With these feature functions, we The “baseline” method does no adaptation to the
train pie..miz ON the treebanks both of the originalbiomedical domain, and therefore gives lower pars-
and biomedical domains. ing accuracy for the domain than for the original do-
In the experiments, we examine the contributiomain. This method is regarded as the baseline of
of our method to parsing accuracy. In addition, wehe experiments. The “GENIA only” method relies
implement several other possible methods for consolely on the treebank for the biomedical domain,
parison of the performances. and therefore it cannot work well with the small tree-
bank. The “Mixture” method is a kind of smoothing
method using all available training data at the same

GENIA only: execute the same method of trainingiMe, and therefore the method can give the highest
the disambiguation model of Enju, using only2ccuracy of the thre'e, Whlch_would be regarded as
the GENIA treebank the ideal accuracy with the naive methods. However,

training this model is expected to be very costly.

Mixture: execute the same method of training the The “baseline (lex),” “GENIA only (lex),” and
disambiguation model of Enju, using both of“Mixture (lex)” approaches rely solely on models of
the Penn Treebank and the GENIA treebank (Rxical entry assignments, and show lower accuracy
kind of smoothing method) than those that contain both of models of lexical en-

HMTO5: execute the method proposed in our pret—ry assignments an'o'l tree cc_)ns_tructions.' These ap-

. proaches can be utilized as indicators of importance
vious work (Hara et al., 2005) .
of combining the two types of models.

Our method: replace p;., in the original model ~ Our previous work (Hara et al., 2005) showed that
With pjes—miaz, While |eavingqsyn asitis the model trained with the “HMTO05” method can

give higher accuracy than the “baseline” method,

Our method (GENIA): replacep,., in the original  eyen with the small amount of the treebanks in the
model withpie; —genia, Which is a probabilistic piomedical domain. The model also takes much less
model of lexical entry assignments trained only.ost to train than with the “Mixture” method. How-
with the GENIA treebank, while leavings,.  ever, they reported that the method could not give as
asitis high accuracy as the “Mixture” method.

baseline: use the original model of Enju

Our method + GENIA: replaceplez.ln the original 4 Experiments with the GENIA Corpus
model Withp;e,—mix andQSyn with dsyn—genia>
which is a disambiguation model of tree con4.1  Experimental Settings

struction trained with the GENIA treebank . . :
uet I w We implemented the models shown in Section 3,

Our method + HMTO5: replacep,., in the orig- and then evaluated the performance of them. The
inal model With pje;—mix and gs,, with the original parser, Enju, was developed on Section 02-
model re-trained with our previous method21 of the Penn Treebank (39,832 sentences) (Miyao
(Hara et al., 2005) (the combination of ourand Tsujii, 2005; Ninomiya et al., 2006). For
method and the “HMT05” method) training those models, we used the GENIA tree-

_ _ _ ~ bank (Kim et al., 2003), which consisted of 1,200
baseline (lex):use onlyp,., as a disambiguation gpgiracts (10,848 sentences) extracted from MED-
model LINE. We divided it into three sets of 900, 150, and

GENIA only (Iex): use onlypies genia @S a disam- 150 abstracts (8,127, 1,361, anc! 1,360 sentgnces),
biguation model, which is a brobabilistic mOOIeIand these sets were used res_pectlvely as training, de-
of lexical entry assignments trained only Withvelopmept, and final _evalgatlon data. The method
the GENIA treebank of Gaussian MAP estimation (Chen and Rosenfeld,

1999) was used for smoothing. The meta parameter

Mixture (lex): use onlyp;.._mi» @S a disambigua- o of the Gaussian distribution was determined so as

tion model to maximize the accuracy on the development set.
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Figure 3: Corpus size vs. accuracy for various methods

In the following experiments, we measured thesize of the training set and the training time among
accuracy of predicate-argument dependencies dme given models respectively. Table 2 and Table 3
the evaluation set. The measure is labeled pre@ghow the parsing performance and the training cost
sion/recall (LP/LR), which is the same measure agbtained when using 900 abstracts of the GENIA
previous work (Clark and Curran, 2004b; Miyao andreebank. Note that Figure 4 does not include the
Tsuijii, 2005) that evaluated the accuracy of lexicalresults of the “Mixture” method because only the
ized grammars on the Penn Treebank. method took too much training cost as shown in
. Table 3. It should also be noted that training time
The features for the examined approaches Werﬁ Fiqure 4 includes time required for both trainin
all the same as the original disambiguation model" "'9ure cludes time required for both fraining

. “ » and development tests. In Table 2, accuracies with
In our previous work, the features for “HMTO05

models other than “baseline” showed the significant

were tuned to some extent. We evened out the feg.— ) o . o
. . ifferences from “baseline” according to stratified
tures in order to compare various approaches under

the same condition. The lexical entries for trainingShummg test (Cohen, 19.95) with p-valug.05.
In the rest of this section we analyze these exper-

each model were extracted from the treebank used

for training the model of lexical entry assignments.'!nental resu!ts by fogusmg malnly'on the contribu-
tion of re-training lexical entry assignment models.

We compared the performances of the given moda/e first observe the results with the naive or existing
els from various angles, by focusing mainly on theapproaches. On the basis of these results, we evalu-
accuracy against the cost. For each of the modelste the impact of our method. We then explore the
we measured the accuracy transition according ombination of our method with other methods, and
the size of the GENIA treebank for training and acanalyze the errors for our future research.
cording to the training time. We changed the size . . o
of the GENIA treebank for training: 100, 200, 300,42 Exploring Naive or Existing Approaches
400, 500, 600, 700, 800, and 900 abstracts. Figuk¥ithout adaptation, Enju gave the parsing accuracy
3 and 4 show the F-score transition according to thef 86.39 in F-score, which was 3.42 point lower than
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Figure 4: Training time vs. accuracy for various methods

that Enju gave for the original domain, the Penrthe other hand, when we compared the “HMT05”
Treebank. This is the baseline of the experiments. method with the “GENIA only” method, for the

Figure 3 shows that, for less than about 4,5051 gﬁ; dsiflezsoée;gealt;rslglntgr]]ec?(r;pEulfli Aﬂ;(rall H r'::';?}i d
training sentences, the “GENIA only” method could_m y y

not obtain as high parsing accuracy as the “baseling? PArsing accuracy and training cost.
method. This result would indicate that the training;.3  |mpact of Re-training a Lexical
data would not be sufficient for re-training the whole Disambiguation Model

disambiguation model from scratch.  However, i hen we focused on our method, it could constantly

we prepared more than about 4,500 sentences, tgﬁle higher accuracy than the “baseline” and the

method could give higher accuracy than baseIme“HMTOS” methods. These results would indicate

with low training cost (see Figure 4). On the other L P
hand, the “Mixture” method could obtain the high_that, for an individual method, re-training a model of

: ) lexical entry assignments might be more critical to
est level of the parsing accuracy for any size of th y g g

GENIA treebank. However, Table 3 shows that this omain adaptatlo_n . than re-training that of tree con-
: o struction. In addition, for the small treebank, our
method required too much training cost. It would be . . . .y
) . . method could give as high accuracy as the “Mixture
a major barrier for further challenges for improve- . S
. . o method with much lower training cost. Our method
ment with various additional parameters. e .
would be a very satisfiable approach when applied
The “HMTO05” method could give higher accu- with a small treebank. It should be noted that the re-
racy than the “baseline” method for any size of thérained lexical model could not solely give the ac-
training sentences although the accuracy was loweuracy as high as our method (see “Mixture (lex)”
than the “Mixture” method. The method could alsan Figure 3). The combination of a re-trained lexi-
be carried out in much smaller training time andtal model and a tree construction model would have
lower cost than the “Mixture” method. These pointgyiven such a high performance.

would be the benefits of the “HMTO05” method. On When we compared the training time for our
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Table 2: Parsing accuracy and time for various methods

For GENIA Corpus For Penn Treebank
LP LR F-score| Time LP LR F-score Time
baseline 86.71| 86.08| 86.39 | 476 sec.| 89.99 | 89.63| 89.81 675 sec.
GENIA only 88.99 | 87.91| 88.45 | 242sec.| 72.07 | 45.78 | 55.99 | 2,441 sec.
Mixture 90.01| 89.87| 89.94 | 355sec.| 89.93| 89.60| 89.77 767 sec.
HMTO05 88.47| 87.89| 88.18 | 510sec.| 88.92| 88.61| 88.76 778 sec.
Our method 89.11| 88.97| 89.04 | 327 sec.| 89.96 | 89.63 | 89.79 713 sec.
Our method (GENIA) | 86.06 | 85.15| 85.60 | 542 sec.| 70.18 | 44.88 | 54.75 | 3,290 sec.
Our method + GENIA| 90.02 | 89.88| 89.95 | 320sec.| 88.11| 87.77| 87.94 718 sec.
Our method + HMTO5| 90.23 | 90.08 | 90.15 | 377 sec.| 89.31| 88.98 | 89.14 859 sec.
baseline (Iex) 85.93| 85.27| 85.60 | 377 sec.| 87.52 | 87.13| 87.33 553 sec.
GENIA only (lex) 87.42| 86.28 | 86.85 | 197 sec.| 71.49| 45.41| 55.54 | 1,928 sec.
Mixture (lex) 88.43 | 88.18 | 88.31 | 258 sec.| 87.49 | 87.12| 87.30 585 sec.
90
Table 3: Training cost of various methods
80
Training time | Memory used W

baseline Osec.| 0.00GByte =70

GENIA only 14,695 sec.| 1.10 GByte o

Mixture 238,576 sec| 5.05 GByte )

HMTO5 21,833 sec.| 1.10 GByte o ----PTB

Our method 12,957 sec.| 4.27 GByte S 50

Our method (GENIA) 1,419 sec.| 0.94 GByte —®— GENIA

Our method + GENIA 42,475 sec.| 4.27 GByte

Our method + HMTO5| 31,637 sec.| 4.27 GByte 40 A~ GENIA + PTB

baseline (lex) Osec.| 0.00 GByte 30

GENIA only (lex) 1,434 sec.| 1.10 GByte

Mixture (lex) 13,595 sec| 4.27 GByte 0 2000 4000 6000 8000

# of used sentences

Figure 5: Corpus size vs. coverage of each training
method with the one for the “HMTO05” method, set for the GENIA corpus
our method required less time than the “HMTO05”
method. This would be because our method required
only the re-training of the very simple model, that is,
a probabilistic model of lexical entry assignments.

Table 4: Coverage of each training set

. % of covered sentences
It should be noted that our method would not Training set for GENIA | forPTB
work only with in-domain treebank. The “Our STEE’;‘{A”gebE”k ;S-gggﬁ) gi-?ggﬁ)
” “ ” reepan . (1] . (1]
method (GENIA)” and the “GENIA only (Iex)"  GeniA treebank + PTB treebank 82.74% | 84.86 %

methods could hardly give as high parsing accuracy
as the “baseline” method. Although, for the larger

size_of th_e GE.NlA treebank, the meth?ds CQUI%A Effectiveness of Combining Lexical and
obtain a little hlghe_zr accuracy 'Fhan the “baseline Syntactic Disambiguation Models
method, the benefit was very little. These results
would indicate that only the treebank in the targetVhen we compared the “Our method + HMTO05"
domain would be insufficient for adaptation. Fig-and “Our method + GENIA’ methods with the
ure 5 shows the coverage of each training corpus féMixture” method, the former two models could
the GENIA treebank, which would also support thegive as the high parsing accuracies as the latter one
above observation. It shows that the GENIA treefor any size of the training corpus. In particular,
bank could not solely cover so much sentences iior the maximum size, the “Our method + HMT05”
the GENIA corpus as the combination of the Penmodels could give a little higher parsing accuracy
Treebank and the GENIA treebank. than the “Mixture” method. This difference was
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Table 5: Errors in various methods

Total errors = Common errors with baseline Specific errors
GENIA only 2,889 = 1,906 (65.97%) + 983 (34.03%)
Mixture 2,653 = 2,177 (82.06%) + 476 (17.94%)
HMTO05 3,063 = 2,470 (80.64%) + 593 (19.36%)
Our method 2,891 = 2,405 (83.19%) + 486 (16.81%)
Our method (GENIA) 3,153 = 2,070 (65.65%) + 1,083 (34.35%)
Our method + GENIA| 2,650 = 2,056 (77.58%) + 594 (22.42%)
Our method + HMTO05 2,597 = 1,943 (74.82%) + 654 (25.18%)
baseline 3,542

Total errors = Common errors with baseline (lex) +  Specifiomrsr
GENIA only (lex) 3,320 = 2,509 (75.57%) + 811 (24.43%)
Mixture (lex) 3,100 = 2,769 (89.32%) + 331 (10.68%)
baseline (lex) 3,757

mances in the point that the former could obtain

Table 6: Types of disambiguation errors high parsing accuracy with less training time than

# of errors the latter. This would come from the fact that the

Error cause Only for : . .
Common paseline| Adapted  latter method traineds,,, genia SOlely with lexical
Attachment ambiguity entries in the GENIA treebank, while the former one
prepositional phrase 12 12 6 trainedqs,, with rich lexical entries borrowed from
relative clause 0 1 0 yn * . .
adjective 4 2 2 Qrez—miz- RiCh lexical entries would decrease un-
adverb 11 3 1 known lexical entries, and therefore would improve
verb phrase 0 3 the effectiveness of making the feature forest model.
subordinate clause 0 2 0 ) A ] ;
Argument/modifier distinction On the other hand, the difference in lexical entries
to-infinitive | 0] 0] 7_ would not seem to affect so much on the contribu-
Lexical ambiguity tion of tree construction model to the parsing accu-
preposition/modifier 0 3 0 .
verb subcategorization framé 5 0 6 racy. In our experiments, the parameters for a tree
$articiple/adiective 0 2 0 construction model such as feature functions were
est set errors . . . .

ok | 7T 0] o not adjus'_[ed thorou_ghly, WhICh m!ght possibly blur
Other types of error causes the benefits of the rich lexical entries.
Comma 10 8 4
Noun phrase identification 21 5 8 45 Error Analysis
Coordination/insertion 6 3 5 ’
é‘;’}‘;’:‘)”‘)”” resolution ? 1 (2) Table 5 shows the comparison of the number of er-

rors for various models with that for the original
model in parsing the GENIA corpus. For each of
the methods, the table gives the numbers of common
shown to be significant according to stratified shuferrors with the original Enju model and the ones
fling test with p-value< 0.10, which might suggest specific to that method. If possible, we would like
the beneficial impact of the “Our method + HMTO5" our methods to decrease the errors in the original
method. In addition, Figure 4 and Table 3 shovwenju model while not increasing new errors. The ta-
that training the “Our method + HMTOS5” or “Our ple shows that our method gave the least percentage
method + GENIA" model required much less timeof newly added errors among the approaches except
and PC memory than training the “Mixture” model.for the methods utilizing only lexical entry assign-
According to the above observation, we would benents models. On the other hand, the “Our method
able to say that the “Our method + HMTO05” methody HMTO5"” approach gave over 25 % of newly added
might be the most ideal among the given methods.errors, although we considered above that the ap-

The “Our method + HMTO05” and “Our method proach gave the best performance.
+ GENIA" methods showed the different perfor- In order to explore this phenomenon, we observed
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the errors for the “Our method + HMTO05” and the

. - . Table 7: Domains in the Brown corpus
baseline models, and then classified them into sev- P

eral types. Table 6 shows manual classification of 'é‘ge' gggfl?:r‘ — sen;eztz:gs
causes of errors for the two models in 50 sentences. cG  belles lettres 2546
In the classification, one error often propagated and gf general flctldog e fict 3’21;4215
: ; : } mystery and detective fiction ,
resulted in multiple errors of'predlcate argument de CM  science fiction 615
pendencies. The numbers in the table include such cN  adventure and western fiction 3,521
double counting. It would be desirable that the er-  CP  romance and love story 3,089
in the rightmost column were less than the ones —or—umor 812
rorsin 9 Al total of all the above domains 19,395

in the middle column, which means that the “Our
method + HMTO05” approach did not produce more

errors specific to the approach than the baseline. For the target of adaptation, we utilized the do-

With the “Our method + HMTOS" approach, p,5in containing all of these 8 domains as a total fic-
errors for “attachment ambiguity” decreased as g, gomain (labelled “All") as well as the individual
whole. Errors for “comma” and lexical ambiguities ;o< As in the experiments with the GENIA Tree-
of “preposition/modifier” and “participle/adjective” bank, we divided sentences for each domain into
also decreased. For these attributes, the appro%rgee parts, 80% for training, 10% for develepment
could learn in the training phase lexical properties Qg ang 109 for final test. For the “All” domain, we
continuous words with the lexical entry assignment,oqeq all training sets, all development test sets,
model, and syntactic relations of separated wordg, | 5| fina| test sets for the 8 domains respectively.

with the tree construction model. On the other hand, Table 8 and 9 show the parsing accuracy and train-

the errors for “to-infinitive argument/modifier dis- ing time for each domain with the various methods

tm(.:t',(,m an'd verb §ubcategor|zat|on frame amb":?hown in Section 3. The methods are fundamen-
guity” considerably increased. These two types q

errors have close relation to each other because taIIy the same as in the experiments with the GE-
. . - A corpus except that the target corpus is replaced
failure to recognize verb subcategorization frames

with the Brown corpus. In order to avoid confusion,

tends to cause the failure to recognize the syntactic, replaced “GENIA” in the names of the meth-

rolethof the to—|nf|n|t|ve?.tWe muEt research furtherOCIS with “Brown” Each of the bold numbers in
On INese efrors in our future work. Table 8 means that it was the best accuracy given

When we focused on “noun phrase |dent|f|cafor the target domain. It should be noted that the

tion,” most of the errors did not differ between“CM,, and “CR” domain contains very small tree-

the two models. In the blomedlcgl domain, ther%ank, and therefore we must consider that the results
would be many technical terms which could not b?/vith these domains would not be so useful

correctly identified solely with the disambiguation
model, which would possibly result in such Manys > Evaluation of Portability of Our Method
untouched errors. In order to properly cope with
these terms, we might have to introduce some kindd/hen we focus on the "ALL" domain, the ap-
of dictionaries or named entity recognition methodsproaches other than the baseline succeeded to give
higher parsing accuracy than the baseline. This
5 Experiments with the Brown Corpus would show that these approaches were effective not
only for the GENIA corpus but also for the Brown
corpus. The “Mixture” method gave the highest ac-
We applied our methods to the Brown corpusuracy which was 3.41 point higher than the base-
(Kucera and Francis, 1967) and examined the porténe. The “Our method + HMTO05” approach also
bility of our method. The Brown corpus consists ofgave the accuracy as high as the “Mixture” method.
15 domains, and the Penn Treebank gives bracketbdaddition, as is the case with the GENIA corpus,
version of the corpus for the 8 domains containinghe approach could be trained with much less time
19,395 sentences (Table 7). than the “Mixture” method. Not only for these two

5.1 Brown Corpus
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Table 8: Parsing accuracy for the Brown corpus

F-score
ALL CF CG CK CL CM CN CP CR
baseline 83.09 || 85.75| 85.38| 81.12 | 77.53| 85.30 | 82.84 | 85.18 | 76.63
Brown only 84.84 | 77.65| 78.92| 75.72 | 70.56 | 50.02 | 78.38 | 79.10 | 50.34
Mixture 86.50 | 86.59 | 85.94 | 82.49 | 78.66 | 84.82 | 84.28 | 86.85 | 76.45
HMTO5 83.79 | 85.80 | 84.98 | 81.48 | 76.91 | 85.25| 83.50 | 85.66 | 77.15
Our method 86.14 | 86.73 | 85.74 | 82.77 | 77.95| 85.40 | 84.23 | 86.90 | 76.71

Our method (GENIA) || 84.71 | 78.49 | 79.63 | 75.43 | 70.86 | 50.24 | 78.49 | 79.69 | 51.82
Our method + GENIA|| 86.00 || 86.12 | 85.41 | 83.22 | 77.10 | 83.39 | 84.21| 85.77 | 76.91
Our method + HMTO5|| 86.44 || 86.76 | 85.85 | 82.90 | 77.70 | 85.61 | 84.43 | 86.87 | 77.48

baseline (lex) 82.19] 84.69| 83.85] 80.25| 76.32| 83.42| 81.29 | 84.13| 77.33
Brown only (lex) 83.92 || 77.12| 77.81 | 75.06 | 70.35| 49.95| 77.06 | 78.84 | 50.63
Mixture (lex) 85.29 || 85.47 | 84.18 | 81.88 | 77.22| 83.98 | 82.67 | 85.65| 77.58

Table 9: Consumed time for various methods for the Brownusrp

Consumed time for training (sec.)

ALL CF CG CK CL CM CN CP CR
baseline 0 0 0 0 0 0 0 0 0
Brown only 42,614 4,115 3,763 2,478 2,162 925 2,362 2,695 1,226
Mixture 383,557 190,449| 159,490 | 156,299 210,357 | 131,335| 170,108 | 224,045| 184,251
HMTO5 30,933 6,003 4,830 4,186 5,010 1,681 4,411 5,069 1,588
Our method 15,912 11,053 10,988 11,151 10,782 10,158 11,075 10,594 | 10,284
Our method (Brown) 3,273 312 373 310 249 46 321 317 86

Our method + Brown || 130,434| 24,633| 21,848| 20,171| 19,184| 11,995| 19,164| 20,922| 13,461
Our method + HMTO5|| 54,355| 17,722| 16,627 | 15,229| 14,914| 12,226| 15,760| 16,175| 11,724

baseline (lex) 0 0 0 0 0 0 0 0 0
Brown only (lex) 3,001 317 373 308 251 47 321 317 86
Mixture (lex) 21,148 11,128 | 11,251| 11,094| 10,728| 10,466| 11,151| 10,897 10,537

methods, the experimental results for the “All” do-lexical entry coverage between the “CL’ and the
main showed the tendency similar to the GENIlAother domains. As mentioned in the error analysis
corpus as a whole, except for the less improvemennt Section 4, the model of tree construction might
with the “HMTO05” method. affect the performance in some way. In our future
When we focus on the individual domains, ourwork’ we m_ust clarify the_ mechanism of this result
A . and would like to further improve the performance.
method could successfully obtain higher parsing ac-
curacy than the baseline_ for all the domains. Mpre6 Related Work
over, for the “CP” domain, our method could give
the highest parsing accuracy among the methodsor recent years, domain adaptation has been stud-
These results would support the portability of reied extensively. This section explores how our re-
training the model for lexical entry assignment. Thesearch is relevant to the previous works.
“Our method + HMTO05"” approach, which gave the Our previous work (Hara et al., 2005) and this
highest performance for the GENIA corpus, alsaesearch mainly focused on how to draw as much
gave accuracy improvement for the all domaindenefit from a smaller amount of in-domain anno-
while it did not give so much impact for the “CL” tated data as possible. Titov and Henderson (2006)
domain. The “Mixture” approach, which utilized also took this type of approach. They first trained a
the same lexical entry assignment model, could olprobabilistic model on original and target treebanks
tain 0.94 point higher parsing accuracy than thand used it to define a kernel over parse trees. This
“Our method + HMTO5” approach. Table 10, whichkernel was used in a large margin classifier trained
shows the lexical coverage with each domains, do@sm a small set of data only from the target domain,
not seem to indicate the noteworthy difference imnd the classifier was then used for reranking the top
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Table 10: Coverage of each training set for the Brown corpus

Training set % of covered sentences for the target corpus

9 ALL CF CG CK CL CM CN CP CR
Target treebank 74.99 % | 49.13 % | 50.00% | 47.97 % | 49.08 % | 29.66 % | 53.51 % | 64.01% | 8.57%
PTB treebank | 70.02% | 72.09 % | 68.93 % | 66.42 % | 68.87 % | 78.62 % | 70.00 % | 77.59 % | 47.14 %
Target + PTB 79.77% | 7471 % | 71.47 % | 71.59 % | 70.45% | 80.00% | 72.70 % | 80.39 % | 52.86 %

parses on the target domain. then succeeded to achieve accuracy improvement.

On the other hand, several studies have explordd'® Second approach is to expand lexical entries for
how to draw useful information from unlabelled in-& target domain. Szolovits (2003) extended a lexical

domain data. Roark and Bacchiani (2003) adaptedcgctionary for a target domain by predicting lexical
lexicalized PCFG by using maximum posteriori information for words. They transplanted lexidad
(MAP) estimation for handling unlabelled ao|a|0»[a_discernibilityof words in an original domain into a
tion data. In the field of classifications, Blitzer et alarget domain. Pyysalo et al. (2004) showed the ex-
(2006) utilized unlabelled corpora to extract featureBerimental results that this approach improved the
of structural correspondences, and then adaptedPgrformance of a parser for Link Grammar. Since
POS-tagger to a biomedical domain. Steedman 8t' re-trained model of lexical entry assignments
al. (2003) utilized a co-training parser for adaptaas shown to be unable to cope with this problem
tion and showed that co-training is effective everoperly (shown in Section 4), the combination of
across domains. McClosky et al. (2006) adapted #€ above approaches with our approach would be
re-ranking parser to a target domain by self-trainin§XPected to bring further improvement.

the parser with unlabelled data in the target domain’ Conclusions

Clegg and Shepherd (2005) combined several ex-

isting parsers with voting schemes or parse selegis paper presented an effective approach to adapt-
tion, and then succeeded to gain the improvemef{g an HPSG parser trained on the Penn Treebank
of performance for a biomedical domain. Althougho 3 biomedical domain. We trained a probabilis-
unsupervised methods can exploit large in-domaific model of lexical entry assignments in a target
data, the above studies could not obtain the acCdomain and then incorporated it into the original
racy as high as that for an original domain, eveparser. The experimental results showed that this
with the sufficient size of the unlabelled corporagpproach obtains higher parsing accuracy than the
On the other hand, we showed that our approacdkisting approach of adapting the structural model
could achieve this goal with about 6,500 labellecyjone. Moreover, the results showed that, the com-
sentences. However, when 6,500 labelled can not Bgation of our method and the existing approach
prepared, it might be worth while to explore the poroy|d achieve parsing accuracy that is as high as that
tentiality of combining the above unsupervised angptzined by re-training an HPSG parser for the target
our supervised methods. domain from scratch, but with much lower training
When we focuses on biomedical domains, thereost. With this model, the parsing accuracy for the
have also been various works which coped witharget domain improved by 3.84 f-score points, us-
domain adaptation. Biomedical sentences containg a domain-specific treebank of 8,127 sentences.
many technical terms which cannot be easily recodg=xperiments showed that 6,500 sentences are suffi-
nized without expert knowledge, and this damagegent for achieving as high parsing accuracy as the
performances of NLP tools directly. In order to solveébaseline for the original domain.
this problem, two types of approaches have been In addition, we applied our method to the Brown
suggested. The first approach is to utilize existingorpus in order to evaluate the portability of our
domain-specific lexical resources. Lease and Chamethod. Experimental results showed that the pars-
niak (2005) utilized POS tags, dictionary collocaing accuracy for the target domain improved by 3.35
tions, and named entities for parser adaptation, ariescore points. On the other hand, when we focused

21



on some individual domains, that combination apM. Johnson and S. Riezler. 2000. Exploiting auxiliary

proach could not give the desirable results. distributions in stochastic unification-based grammars.
In future work, we would like to explore further " Proc. 1stNAACL

performance improvement of our approach. For thé D. Kim, T. Ohta, Y. Teteisi, and J. Tsujii. 2003. GE-

first step, domain-specific features such as namedN!A corpus - a semantically annotated corpus for bio-

entities could be much help for solving unsuccess- textmining. Bioinformatics 19(suppl. 1):i180-i182.

ful recognition of technical terms. H. Kucera and W. N. Francis. 1967Computational
Analysis of Present-Day American EnglistBrown
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Abstract

We compare the accuracy of a statisti-
cal parse ranking model trained from a
fully-annotated portion of the Susanne
treebank with one trained from unla-
beled partially-bracketed sentences de-
rived from this treebank and from the
Penn Treebank. We demonstrate that
confidence-based semi-supervised tech-
niques similar to self-training outperform
expectation maximization when both are
constrained by partial bracketing. Both
methods based on partially-bracketed
training data outperform the fully su-
pervised technique, and both can, in
principle, be applied to any statistical
parser whose output is consistent with
such partial-bracketing. We also explore
tuning the model to a different domain
and the effect of in-domain data in the
semi-supervised training processes.

1 Introduction

Extant statistical parsers require extensive and
detailed treebanks, as many of their lexical and
structural parameters are estimated in a fully-
supervised fashion from treebank derivations.
Collins (1999) is a detailed exposition of one
such ongoing line of research which utilizes the
Wall Street Journal (WSJ) sections of the Penn
Treebank (PTB). However, there are disadvan-
tages to this approach. Firstly, treebanks are ex-
pensive to create manually. Secondly, the richer
the annotation required, the harder it is to adapt
the treebank to train parsers which make differ-
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ent assumptions about the structure of syntac-
tic analyses. For example, Hockenmeier (2003)
trains a statistical parser based on Combinatory
Categorial Grammar (CCG) on the WSJ PTB,
but first maps the treebank to CCG derivations
semi-automatically. Thirdly, many (lexical) pa-
rameter estimates do not generalize well be-
tween domains. For instance, Gildea (2001) re-
ports that WSJ-derived bilexical parameters in
Collins’ (1999) Model 1 parser contribute about
1% to parse selection accuracy when test data
is in the same domain, but yield no improve-
ment for test data selected from the Brown Cor-
pus. Tadayoshi et al. (2005) adapt a statistical
parser trained on the WSJ PTB to the biomed-
ical domain by retraining on the Genia Corpus,
augmented with manually corrected derivations
in the same format. To make statistical parsing
more viable for a range of applications, we need
to make more effective and flexible use of extant
training data and minimize the cost of annota-
tion for new data created to tune a system to a
new domain.

Unsupervised methods for training parsers
have been relatively unsuccessful to date, in-
cluding expectation maximization (EM) such as
the inside-outside algorithm (IOA) over PCFGs
(Baker, 1979; Prescher, 2001). However, Pereira
and Schabes (1992) adapted the IOA to apply
over semi-supervised data (unlabeled bracket-
ings) extracted from the PTB. They constrain
the training data (parses) considered within the
IOA to those consistent with the constituent
boundaries defined by the bracketing. One ad-
vantage of this approach is that, although less
information is derived from the treebank, it gen-
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eralizes better to parsers which make different
representational assumptions, and it is easier,
as Pereira and Schabes did, to map unlabeled
bracketings to a format more consistent with
the target grammar. Another is that the cost
of annotation with unlabeled brackets should be
lower than that of developing a representation-
ally richer treebank. More recently, both Riezler
et al. (2002) and Clark and Curran (2004) have
successfully trained maximum entropy parsing
models utilizing all derivations in the model con-
sistent with the annotation of the WSJ PTB,
weighting counts by the normalized probability
of the associated derivation. In this paper, we
extend this line of investigation by utilizing only
unlabeled and partial bracketing.

We compare the performance of a statisti-
cal parsing model trained from a detailed tree-
bank with that of the same model trained with
semi-supervised techniques that require only un-
labeled partially-bracketed data. We contrast
an IOA-based EM method for training a PGLR
parser (Inui et al., 1997), similar to the method
applied by Pereira and Schabes to PCFGs, to a
range of confidence-based semi-supervised meth-
ods described below. The IOA is a generaliza-
tion of the Baum-Welch or Forward-Backward
algorithm, another instance of EM, which can be
used to train Hidden Markov Models (HMMs).
Elworthy (1994) and Merialdo (1994) demon-
strated that Baum-Welch does not necessarily
improve the performance of an HMM part-of-
speech tagger when deployed in an unsuper-
vised or semi-supervised setting. These some-
what negative results, in contrast to those of
Pereira and Schabes (1992), suggest that EM
techniques require fairly determinate training
data to yield useful models. Another motiva-
tion to explore alternative non-iterative meth-
ods is that the derivation space over partially-
bracketed data can remain large (>1K) while
the confidence-based methods we explore have a
total processing overhead equivalent to one iter-
ation of an IOA-based EM algorithm.

As we utilize an initial model to annotate ad-
ditional training data, our methods are closely
related to self-training methods described in the
literature (e.g. McClosky et al. 2006, Bacchi-
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ani et al. 2006). However these methods have
been applied to fully-annotated training data
to create the initial model, which is then used
to annotate further training data derived from
unannotated text. Instead, we train entirely
from partially-bracketed data, starting from the
small proportion of ‘unambiguous’ data whereby
a single parse is consistent with the annota-
tion. Therefore, our methods are better de-
scribed as semi-supervised and the main focus
of this work is the flexible re-use of existing
treebanks to train a wider variety of statistical
parsing models. While many statistical parsers
extract a context-free grammar in parallel with
a statistical parse selection model, we demon-
strate that existing treebanks can be utilized to
train parsers that deploy grammars that make
other representational assumptions. As a result,
our methods can be applied by a range of parsers
to minimize the manual effort required to train
a parser or adapt to a new domain.

§2 gives details of the parsing system that are
relevant to this work. §3 and §4 describe our
data and evaluation schemes, respectively. §5
describes our semi-supervised training methods.
86 explores the problem of tuning a parser to a
new domain. Finally, §7 gives conclusions and
future work.

2 The Parsing System

Sentences are automatically preprocessed in a
series of modular pipelined steps, including to-
kenization, part of speech (POS) tagging, and
morphological analysis, before being passed to
the statistical parser. The parser utilizes a man-
ually written feature-based unification grammar
over POS tag sequences.

2.1 The Parse Selection Model

A context-free ‘backbone’ is automatically de-
rived from the unification grammar! and a gen-
eralized or non-deterministic LALR(1) table is

This backbone is determined by compiling out the
values of prespecified attributes. For example, if we com-
pile out the attribute PLURAL which has 2 possible val-
ues (plural or not) we will create 2 CFG rules for each
rule with categories that contain PLURAL. Therefore,
no information is lost during this process.



constructed from this backbone (Tomita, 1987).
The residue of features not incorporated into
the backbone are unified on each reduce action
and if unification fails the associated derivation
paths also fail. The parser creates a packed
parse forest represented as a graph-structured
stack.? The parse selection model ranks com-
plete derivations in the parse forest by com-
puting the product of the probabilities of the
(shift /reduce) parse actions (given LR state and
lookahead item) which created each derivation
(Inui et al., 1997).

Estimating action probabilities, consists of
a) recording an action history for the correct
derivation in the parse forest (for each sen-
tence in a treebank), b) computing the fre-
quency of each action over all action histories
and c) normalizing these frequencies to deter-
mine probability distributions over conflicting
(i.e. shift/reduce or reduce/reduce) actions.

Inui et al. (1997) describe the probability
model utilized in the system where a transition
is represented by the probability of moving from
one stack state, o;_1, (an instance of the graph
structured stack) to another, ;. They estimate
this probability using the stack-top state s;_1,
next input symbol /; and next action a;. This
probability is conditioned on the type of state
si—1. Ss and S, are mutually exclusive sets
of states which represent those states reached
after shift or reduce actions, respectively. The
probability of an action is estimated as:

Si—1 € Ss
5i-1 €Sy

Therefore, normalization is performed over all
lookaheads for a state or over each lookahead
for the state depending on whether the state is
a member of S or S,, respectively (hereafter
the I function). In addition, Laplace estimation
can be used to ensure that all actions in the

P(l;, ailsi—1)

P(l;,ai,04|l0i-1) =~ { P(ailsi-1,1;)

2The parse forest is an instance of a feature forest as
defined by Miyao and Tsujii (2002). We will use the term
‘node’ herein to refer to an element in a derivation tree
or in the parse forest that corresponds to a (sub-)analysis
whose label is the mother’s label in the corresponding CF
‘backbone’ rule.

25

table are assigned a non-zero probability (the
I1, function).

3 Training Data

The treebanks we use in this work are in one of
two possible formats. In either case, a treebank
T consists of a set of sentences. Each sentence
t is a pair (s, M), where s is the automatically
preprocessed set of POS tagged tokens (see §2)
and M is either a fully annotated derivation, A,
or an unlabeled bracketing U. This bracketing
may be partial in the sense that it may be com-
patible with more than one derivation produced
by a given parser. Although occasionally the
bracketing is itself complete but alternative non-
terminal labeling causes indeterminacy, most of-
ten the ‘flatter’ bracketing available from ex-
tant treebanks is compatible with several alter-
native ‘deeper’ mostly binary-branching deriva-
tions output by a parser.

3.1 Derivation Consistency

Given t = (s, A), there will exist a single deriva-
tion in the parse forest that is compatible (cor-
rect). In this case, equality between the deriva-
tion tree and the treebank annotation A iden-
tifies the correct derivation. Following Pereira
and Schabes (1992) given t = (s,U), a node’s
span in the parse forest is wvalid if it does not
overlap with any span outlined in U, and hence,
a derivation is correct if the span of every node
in the derivation is valid in U. That is, if no
crossing brackets are present in the derivation.
Thus, given t = (s,U), there will often be more
than one derivation compatible with the partial
bracketing.

Given the correct nodes in the parse forest
or in derivations, we can then extract the cor-
responding action histories and estimate action
probabilities as described in §2.1. In this way,
partial bracketing is used to constrain the set of
derivations considered in training to those that
are compatible with this bracketing.

3.2 The Susanne Treebank and
Baseline Training Data

The Susanne Treebank (Sampson, 1995) is uti-
lized to create fully annotated training data.



This treebank contains detailed syntactic deriva-
tions represented as trees, but the node label-
ing is incompatible with the system grammar.
We extracted sentences from Susanne and auto-
matically preprocessed them. A few multiwords
are retokenized, and the sentences are retagged
using the POS tagger, and the bracketing de-
terministically modified to more closely match
that of the grammar, resulting in a bracketed
corpus of 6674 sentences. We will refer to this
bracketed treebank as S, henceforth.

A fully-annotated and system compatible
treebank of 3543 sentences from S was also
created. We will refer to this annotated tree-
bank, used for fully supervised training, as B.
The system parser was applied to construct
a parse forest of analyses which are compati-
ble with the bracketing. For 1258 sentences,
the grammar writer interactively selected cor-
rect (sub)analyses within this set until a sin-
gle analysis remained. The remaining 2285 sen-
tences were automatically parsed and all consis-
tent derivations were returned. Since B contains
more than one possible derivation for roughly
two thirds of the data the 1258 sentences (paired
with a single tree) were repeated twice so that
counts from these trees were weighted more
highly. The level of reweighting was determined
experimentally using some held out data from
S. The baseline supervised model against which
we compare in this work is defined by the func-
tion I7(B) as described in §2.1. The costs of
deriving the fully-annotated treebank are high
as interactive manual disambiguation takes an
average of ten minutes per sentence, even given
the partial bracketing derived from Susanne.

3.3 The WSJ PTB Training Data

The Wall Street Journal (WSJ) sections of the
Penn Treebank (PTB) are employed as both
training and test data by many researchers in
the field of statistical parsing. The annotated
corpus implicitly defines a grammar by provid-
ing a labeled bracketing over words annotated
with POS tags. We extracted the unlabeled
bracketing from the de facto standard training
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sections (2-21 inclusive).® We will refer to the
resulting corpus as W and the combination (con-
catenation) of the partially-bracketed corpora S
and W as SW.

3.4 The DepBank Test Data

King et al. (2003) describe the development
of the PARC 700 Dependency Bank, a gold-
standard set of relational dependencies for 700
sentences (from the PTB) drawn at random
from section 23 of the WSJ (the de facto stan-
dard test set for statistical parsing). In all the
evaluations reported in this paper we test our
parser over a gold-standard set of relational de-
pendencies compatible with our parser output
derived (Briscoe and Carroll, 2006) from the
PARC 700 Dependency Bank (DepBank, hence-
forth).

The Susanne Corpus is a (balanced) subset of
the Brown Corpus which consists of 15 broad
categories of American English texts. All but
one category (reportage text) is drawn from dif-
ferent domains than the WSJ. We therefore, fol-
lowing Gildea (2001) and others, consider S, and
also the baseline training data, B, as out-of-
domain training data.

4 The Evaluation Scheme

The parser’s output is evaluated using a rela-
tional dependency evaluation scheme (Carroll,
et al., 1998; Lin, 1998) with standard measures:
precision, recall and F;. Relations are organized
into a hierarchy with the root node specifying an
unlabeled dependency. The microaveraged pre-
cision, recall and F; scores are calculated from
the counts for all relations in the hierarchy which
subsume the parser output. The microaveraged
I score for the baseline system using this eval-
uation scheme is 75.61%, which — over similar
sets of relational dependencies — is broadly com-
parable to recent evaluation results published by
King and collaborators with their state-of-the-
art parsing system (Briscoe et al., 2006).

3The pipeline is the same as that used for creating S
though we do not automatically map the bracketing to
be more consistent with the system grammar, instead,
we simply removed unary brackets.



4.1 Wilcoxon Signed Ranks Test

The Wilcoxon Signed Ranks (Wilcoxon, hence-
forth) test is a non-parametric test for statistical
significance that is appropriate when there is one
data sample and several measures. For example,
to compare the accuracy of two parsers over the
same data set. As the number of samples (sen-
tences) is large we use the normal approximation
for z. Siegel and Castellan (1988) describe and
motivate this test. We use a 0.05 level of sig-
nificance, and provide z-value probabilities for
significant results reported below. These results
are computed over microaveraged F) scores for
each sentence in DepBank.

5 Training from Unlabeled
Bracketings

We parsed all the bracketed training data us-
ing the baseline model to obtain up to 1K top-
ranked derivations and found that a significant
proportion of the sentences of the potential set
available for training had only a single deriva-
tion compatible with their unlabeled bracket-
ing. We refer to these sets as the unambiguous
training data () and will refer to the remaining
sentences (for which more than one derivation
was compatible with their unlabeled bracketing)
as the ambiguous training data (o). The avail-
ability of significant quantities of unambiguous
training data that can be found automatically
suggests that we may be able to dispense with
the costly reannotation step required to gener-
ate the fully supervised training corpus, B.
Table 1 illustrates the split of the corpora into
mutually exclusive sets v, a, ‘no match’ and
‘timeout’. The latter two sets are not utilized
during training and refer to sentences for which
all parses were inconsistent with the bracketing
and those for which no parses were found due
to time and memory limitations (self-imposed)
on the system.? As our grammar is different
from that implicit in the WSJ PTB there is a
high proportion of sentences where no parses
were consistent with the unmodified PTB brack-

4As there are time and memory restrictions during

parsing, the SW results are not equal to the sum of those
from S and W analysis.
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Corpus | 7| |a| No Match Timeout
S 1097 4138 1322 191
w 6334 15152 15749 1094
SW 7409 19248 16946 1475

Table 1: Corpus split for S, W and SW.

eting. However, a preliminary investigation of
no matches didn’t yield any clear patterns of
inconsistency that we could quickly ameliorate
by simple modifications of the PTB bracketing.
We leave for the future a more extensive investi-
gation of these cases which, in principle, would
allow us to make more use of this training data.
An alternative approach that we have also ex-
plored is to utilize a similar bootstrapping ap-
proach with data partially-annotated for gram-
matical relations (Watson and Briscoe, 2007).

5.1 Confidence-Based Approaches

We use v to build an initial model. We then
utilize this initial model to derive derivations
(compatible with the unlabeled partial brack-
eting) for « from which we select additional
training data. We employ two types of selection
methods. First, we select the top-ranked deriva-
tion only and weight actions which resulted in
this derivation equally with those of the initial
model (C7). This method is similar to ‘Viterbi
training’” of HMMs though we do not weight
the corresponding actions using the top parse’s
probability. Secondly, we select more than one
derivation, placing an appropriate weight on
the corresponding action histories based on the
initial model’s confidence in the derivation. We
consider three such models, in which we weight
transitions corresponding to each derivation
ranked r with probability p in the set of size n
either using %, % or p itself to weight counts.®
For example, given a treebank T with sentences
t = (s,U), function P to return the set of
parses consistent with U given ¢ and function A
that returns the set of actions given a parse p,
then the frequency count of action aj in C, is

°In §2.1 we calculate action probabilities based on fre-
quency counts where we perform a weighted sum over
action histories and each history has a weight of 1. We
extend this scheme to include weights that differ between
action histories corresponding to each derivation.



determined as follows:
_ Tl 1P 1
| ak [= Zi:l Zj:l,akEA(pij) J

These methods all perform normalization over
the resulting action histories using the training
function I; and will be referred to as C,,, C,
and C), respectively. C), is a ‘uniform’ model
which weights counts only by degree of ambi-
guity and makes no use of ranking information.
C, weights counts by derivation rank, and C),
is simpler than and different to one iteration of
EM as outside probabilities are not utilized. All
of the semi-supervised functions described here
take two arguments: an initial model and the
data to train over, respectively.

Models derived from unambiguous training
data, v, alone are relatively accurate, achiev-
ing indistinguishable performance to that of the
baseline system given either W or SW as train-
ing data. We utilize these models as initial mod-
els and train over different corpora with each of
the confidence-based models. Table 2 gives re-
sults for all models. Results statistically signifi-
cant compared to the baseline system are shown
in bold print (better) or italic print (worse).
These methods show promise, often yielding sys-
tems whose performance is significantly better
than the baseline system. Method C, achieved
the best performance in this experiment and re-
mained consistently better in those reported be-
low. Throughout the different approaches a do-
main effect can be seen, models utilizing just S
are worse, although the best performing models
benefit from the use of both S and W as training
data (i.e. SW).

5.2 EM

Our EM model differs from that of Pereira and
Schabes as a PGLR parser adds context over
a PCFG so that a single rule can be applied
in several different states containing reduce ac-
tions. Therefore, the summation and normaliza-
tion performed for a CFG rule within IOA is in-
stead applied within such contexts. We can ap-
ply I (our PGLR normalization function with-
out Laplace smoothing) to perform the required
steps if we output the action history with the
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| Model | Prec] Rec| Fi | P(2)Y]
Baseline 77.05 74.22| 75.61 -
T2(7(5)) 76.02 73.40 77.69] 0.0294
Ci(IL(v(9)), a(S)) 77.05 74.22] 75.61| 0.4960
Cn(IL(4(S)), a(S)) 77.51 74.80 76.13] 0.0655
Cr(IL(7(9)), a(S)) 7773 74.93 76.33) 0.0154
Co(IL(7(S)), a(S)) 76.45 73.01] 75.16] 0.2090)
T.(7 () 77.01] 74.31] 75.64] 0.1039
Ci(IL(v(W)), (W) 76.90 74.23 75.55| 0.2546
Co(IL(v(W)),(W)) [T77.85 75.07 76.43 0.0017
Cr(IL(vy(W)), (W) 77.88 75.04] 76.43 0.0011
Co(IL(v(W)), a(W)) 77.400 74.75 76.05] 0.1335)
I (v(SW)) 77.09 74.35 75.70| 0.1003
Cy(IL(v(SW)), a(SW))[ 76.86 74.21] 75.51] 0.2483
Cn(Ir(v(SW)), a(SW))| 77.88 75.05 76.44] 0.0048
Cr(IL(y(SW)), a(SW))[78.01 75.13 76.54] 0.0007
Cp(Ir(v(SW)), a(SW))[ 77.54 74.95 76.23| 0.0618

Table 2: Performance of all models on DepBank.
Irepresents the statistical significance of the sys-
tem against the baseline model.

corresponding normalized inside-outside weight
for each node (Watson et al., 2005).

We perform EM starting from two initial mod-
els; either a uniform probability model, I,(), or
from models derived from unambiguous train-
ing data, . Figure 1 shows the cross entropy
decreasing monotonically from iteration 2 (as
guaranteed by the EM method) for different cor-
pora and initial models. Some models show an
initial increase in cross-entropy from iteration 1
to iteration 2, because the models are initial-
ized from a subset of the data which is used to
perform maximisation. Cross-entropy increases,
by definition, as we incorporate ambiguous data
with more than one consistent derivation.

Performance over DepBank can be seen in
Figures 2, 3, and 4 for each dataset S, W and
SW, respectively. Comparing the C,. and EM
lines in each of Figures 2, 3, and 4, it is evident
that C,. outperforms EM across all datasets, re-
gardless of the initial model applied. In most
cases, these results are significant, even when
we manually select the best model (iteration)
for EM.

The graphs of EM performance from itera-
tion 1 illustrate the same ‘classical’ and ‘initial’
patterns observed by Elworthy (1994). When
EM is initialized from a relatively poor model,
such as that built from S (Figure 2), a ‘classical’
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Figure 1: Cross Entropy Convergence for vari-
ous training data and models, with EM.

pattern emerges with relatively steady improve-
ment from iteration 1 until performance asymp-
totes. However, when the starting point is better
(Figures 3 and 4), the ‘initial’ pattern emerges
in which the best performance is reached after a
single iteration.

6 Tuning to a New Domain

When building NLP applications we would want
to be able to tune a parser to a new domain
with minimal manual effort. To obtain training
data in a new domain, annotating a corpus with
partial-bracketing information is much cheaper
than full annotation. To investigate whether
such data would be of value, we considered W
to be the corpus over which we were tuning and
applied the best performing model trained over
S, Cr(IL(y(S)), a(S)), as our initial model. Fig-
ure 5 illustrates the performance of C,. compared
to EM.

Tuning using C, was not significantly differ-
ent from the model built directly from the entire
data set with C,., achieving 76.57% as opposed
to 76.54% F1 (see Table 2). By contrast, EM
performs better given all the data from the be-
ginning rather than tuning to the new domain.
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Figure 3: Performance over W for C, and EM.
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Figure 4: Performance over SW for C, and EM.

C'. generally outperforms EM, though it is worth
noting the behavior of EM given only the tun-
ing data (W) rather than the data from both do-
mains (SW). In this case, the graph illustrates a
combination of Elworthy’s ‘initial’ and ‘classical’
patterns. The steep drop in performance (down
to 69.93% F) after the first iteration is proba-
bly due to loss of information from S. However,
this run also eventually converges to similar per-
formance, suggesting that the information in S
is effectively disregarded as it forms only a small
portion of SW, and that these runs effectively
converge to a local maximum over W.

Bacchiani et al. (2006), working in a similar
framework, explore weighting the contribution
(frequency counts) of the in-domain and out-of-
domain training datasets and demonstrate that
this can have beneficial effects. Furthermore,
they also tried unsupervised tuning to the in-
domain corpus by weighting parses for it by
their normalized probability. This method is
similar to our €, method. However, when we
tried unsupervised tuning using the WSJ and
an initial model built from S in conjunction with
our confidence-based methods, performance de-
graded significantly.
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Figure 5: Tuning over the WSJ PTB (W) from
Susanne Corpus (5).

7 Conclusions

We have presented several semi-supervised
confidence-based training methods which have
significantly improved performance over an ex-
tant (more supervised) method, while also re-
ducing the manual effort required to create
training or tuning data. @ We have shown
that given a medium-sized unlabeled partially
bracketed corpus, the confidence-based models
achieve superior results to those achieved with
EM applied to the same PGLR parse selection
model. Indeed, a bracketed corpus provides flex-
ibility as existing treebanks can be utilized de-
spite the incompatibility between the system
grammar and the underlying grammar of the
treebank. Mapping an incompatible annotated
treebank to a compatible partially-bracketed
corpus is relatively easy compared to mapping
to a compatible fully-annotated corpus.

An immediate benefit of this work is that
(re)training parsers with incrementally-modified
grammars based on different linguistic frame-
works should be much more straightforward —
see, for example Oepen et al. (2002) for a good
discussion of the problem. Furthermore, it sug-
gests that it may be possible to usefully tune



a parser to a new domain with less annotation
effort.

Our findings support those of Elworthy (1994)
and Merialdo (1994) for POS tagging and sug-
gest that EM is not always the most suit-
able semi-supervised training method (espe-
cially when some in-domain training data is
available). The confidence-based methods were
successful because the level of noise introduced
did not outweigh the benefit of incorporating
all derivations compatible with the bracketing
in which the derivations contained a high pro-
portion of correct constituents. These findings
may not hold if the level of bracketing available
does not adequately constrain the parses consid-
ered — see Hwa (1999) for a related investigation
with EM.

In future work we intend to further investigate
the problem of tuning to a new domain, given
that minimal manual effort is a major prior-
ity. We hope to develop methods which required
no manual annotation, for example, high preci-
sion automatic partial bracketing using phrase
chunking and/or named entity recognition tech-
niques might yield enough information to sup-
port the training methods developed here.

Finally, further experiments on weighting the
contribution of each dataset might be beneficial.
For instance, Bacchiani et al. (2006) demon-
strate imrpovements in parsing accuracy with
unsupervised adaptation from unannotated data
and explore the effect of different weighting of
counts derived from the supervised and unsu-
pervised data.
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Abstract

We introduce a set of 1,000 gold standard
parse trees for the British National Corpus
(BNC) and perform a series of self-training
experiments with Charniak and Johnson’s
reranking parser and BNC sentences. We
show that retraining this parser with a com-
bination of one million BNC parse trees
(produced by the same parser) and the orig-
inal WSJ training data yields improvements
of 0.4% on WSJ Section 23 and 1.7% on the
new BNC gold standard set.

1 Introduction

Given the success of statistical parsing models
the Wall Street Journal (WSJ) section of the Pen
Treebank (PTB) (Charniak, 2000; Collins, 2003, fo
example), there has been a change in focus in rec

years towards the problem of replicating this succes
on genres other than American financial news st%
ries. The main challenge in solving the parser adap

tation problem are the resources required to co
struct reliable annotated training examples.
A breakthrough has come in the form of researc

by McClosky et al. (2006a; 2006b) who show tha{
self-training can be used to improve parser perfor.

mance when combined with a two-stage rerankin
parser model (Charniak and Johnson, 2005). Se
training is the process of training a parser on its ow
output, and earlier self-training experiments usin
generative statistical parsers did not yield encou

aging results (Steedman et al., 2003). McClosky e We parse the BNC (Burnard, 2000) in its entirety
es

al. (2006a; 2006b) proceed as follows: sentenc

*Now affiliated to Lalic, Université Paris 4 La Sorbonne.
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from the LA Times newspaper are parsed by a first-
stage generative statistical parser trained on some
seed training data (WSJ Sections 2-21) andrthe
best parse trees produced by this parser are reranked
by a discriminative reranker. The highest ranked
parse trees are added to the training set of the parser
and the parser is retrained. This self-training method
gives improved performance, not only on Section
23 of the WSJ (an absolute f-score improvement of
0.8%), but also on test sentences from the Brown
corpus (Francis and Kucera, 1979) (an absolute f-
score improvement of 2.6%).

In the experiments of McClosky et al. (2006a;
2006b), the parse trees used for self-training come
from the same domain (American newspaper text)
as the parser’s original seed training material. Bac-
Chiani et al. (2006) find that self-training is ef-
Rctive when the parse trees used for self-training
(VYSJ parse trees) come from a different domain to
he seed training data and from the same domain as
Re test data (WSJ sentences). They report a per-
rmance boost of 4.2% on WSJ Section 23 for a
enerative statistical parser trained on Brown seed
data when it is self-trained using 200,000 WSJ parse
gees. However, McCloskey et al. (2006b) report a

rop in performance for their reranking parser when
he experiment is repeated in the opposite direction,
.e. with Brown data for self-training and testing,
nd WSJ data for seed training. In contrast, we re-
ort successful in-domairself-training experiments

ith the BNC data as self-training and test material,

%nd with the WSJ-trained reranking parser used by

I\'t/IcCIoskey et al. (2006a; 2006b).

1We refer to data as beirig-domain if it comes from the

same domain as the test data anttof-domain if it does not.

rsing Technologies, pages 33-35,
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using the reranking parser of Charniak and Johnsanent data in this work. Because they contain verbs
(2005). 1,000 BNC sentences are manually annevhich do not occur in the parser’s training set, they
tated for constituent structure, resulting in the firsare likely to represent a hard test for WSJ-trained
gold standard set for this corpus. The gold standajphrsers. The PTB bracketing guidelines (Bies et al.,
set is split into a development set of 500 parse tred$995) and the PTB itself were used as references by
and a test set of 500 parse trees and used in a setlee BNC annotator. Functional tags and traces were
of self-training experiments: Charniak and Johnnot annotated. The annotator noticed that the PTB
son’s parser is retrained on combinations of WSparse trees sometimes violate the PTB bracketing
treebank data and its own parses of BNC sentencesilidelines, and in these cases, the annotator chose
These combinations are tested on the BNC devdhe analysis set out in the guidelines. It took approx-
opment set and Section 00 of the WSJ. An optimadmately 60 hours to build the gold standard set.
combination is chosen which achieves a Parseval la- o ]

belled bracketing f-score of 91.7% on Section 23 Self-Training Experiments

and 85.6% on the BNC gold standard test set. F@tharniak and Johnson’s reranking parser (June 2006
Section 23 th_|s is an absolutellmprovement of 0.4%ersion) is evaluated against the BNC gold stan-

on the baseline results of this parser, and for thgard development set. Labelled precision (LP), re-

BNC data this is a Statistica”y Signiﬁcant improve'ca” (LR) and f-score measu'%mr this parser are

ment of 1.7%. shown in the first row of Table 1. The f-score of
83.7% is lower than the f-score of 85.2% reported
2 The BNC Data by McClosky et al. (2006b) for the same parser on

. - Brown corpus data. This difference is reasonable
The BNC is a 100-million-word balanced part-of-gince there is greater domain variation between the
speech-tagged corpus of written and transcribe@;sj and the BNC than between the WSJ and the

spoken English. Written text comprises 90% of thgsrqyn corpus, and all BNC gold standard sentences
BNC: 75% non-fictional and 25% fictional. To fa- ;ontain verbs not attested in WSJ Sections 2-21.

cilitate parsing with a WSJ-trained parser, SOme ré- \ye retrain the first-stage generative statistical

versible transformations were applied to the BNGyarser of Charniak and Johnson using combinations
data, e.g. British Engllsh spellings were con\{ertegf BNC trees (parsed using the reranking parser)
to American English and neutral quotes disamang wsj treebank trees. We test the combinations
biguated. The reranking parser of Charniak angp, the BNC gold standard development set and on
Johnson (2005) was used to parse the BNC. 99.8(5 5 Section 00. Table 1 shows that parser accu-
of the & million BNC sentences obtained a parsgqcy increases with the size of the in-domain self-

with an average parsing speed of 1.4s per sentenCgaining materiaP The figures confirm the claim of

A gold standard set of 1,000 BNC sen_tences WadcClosky et al. (2006a) thaself-training with a
constructed by one annotator by correcting the ouferanking parsing model is effective for improving
put of the first stage of Chamiak and Johnson'parser accuracy in general, and the claim of Gildea
reranking parser. The sentences included in the gofdp01) thattraining on in-domain data is effective
standard were chosen at random from the BNC, sulyr parser adaption. They confirm theef-training
ject to the condition that they contain a verb whichpn in-domain data is effective for parser adaptation.
does not occur in the training sections of the WS§he WSJ Section 00 results suggest that, in order
section of the PTB (Marcus et al., 1993). A decito maintain performance on the seed training do-
sion was made to select sentences for the gold staigin, it is necessary to combine BNC parse trees
dard set which differ from the sentences in the WS3—; _

.. . d f findina different All scores are for the second stage of the parsing process,
training Se‘_:t'ons’ and one way 0_ g f.e. the evaluation takes place after the reranking. Alleva
sentences is to focus on verbs which are not attestech is carried out using the Parseval labelled bracketiegics,
in the WSJ Sections 2-21. It is expected that thegth eval b and parameter filaew. prm

Id standard parse trees can be used as traini The notationbnc500K+5ws refers to a set of 500,000
go p Bzgrser output parse trees of sentences taken randomly fi@m t
data although they are used only as test and develagNC concatenated with five copies of WSJ Sections 2-21.
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sefmaning | Lo Fon P S SR O training data, we predict that the novel verbs in the
- 836 837 837 [ 916 [ 905 [ 91.0 BNC gold standard set add to the variety of train-
bnc50k 83.7 | 83.7 | 83.7 | 90.0 | 88.0 | 89.0 . . . .
bncsOk+1ws] | 84.4 | 84.4 | 84.4 | 91.6 | 90.3 | 91.0 ing material, and will further help parser adaptation
bnc250k 84.7 | 845 | 846 | 91.1 | 89.3 | 90.2 :

bne2sok+Sws] | 850 | 849 | 850 | 918 | 905 | 912 from the WSJ domain —a matter for further research.
bnc500k+5ws;j 852 | 851 | 852 | 919 | 904 | 91.2

Encﬁggg;lgwsj 22'@ gg.; ggé 31'3 gg.g 31'3 Acknowledgments We thank the IRCSET Em-
nc +bws . . . . . . .y . .

bnclOOOk+1OW]sj 86.1 | 85.9 | 86.0 | 92.0 | 90.5 | 91.3 bark Initiative (basic research grant SC/02/298
bne1000k+A0ws]| 855 | 855 | 855 L 919 | 906 | 91.3 and postdoctoral fellowship P/04/232), Science
- , 84.0‘ 83.7‘ 83.9 91.8‘ 90.9‘ 913 Foundation Ireland (Principal Investigator grant
bnc1000k+10wsj| 85.7 | 85.4 | 85.6 | 923 | 91.1 | 91.7

04/IN.3/1527) and the Irish Centre for High End

Table 1: In-domain Self-Training Results Computing for supporting this research.
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Abstract

As the organizers of the ACL 2007 Deep
Linguistic Processing workshop (Baldwin et
al., 2007), we were asked to discuss our per-
spectives on the role of current trends in
deep linguistic processing for parsing tech-
nology. We are particularly interested in
the ways in which efficient, broad coverage
parsing systems for linguistically expressive
grammars can be built and integrated into
applications which require richer syntactic
structures than shallow approaches can pro-
vide. This often requires hybrid technolo-
gies which use shallow or statistical methods
for pre- or post-processing, to extend cover-
age, or to disambiguate the output.

1 Introduction

Our talk will provide a view on the relevance of deep
linguistic processing for parsing technologies from
the perspective of the organizers of the ACL 2007
Workshop on Deep Linguistic Processing (Baldwin
et al., 2007). The workshop was conceived with the
broader aim of bringing together the different com-
putational linguistic sub-communities which model
language predominantly by way of theoretical syn-
tax, either in the form of a particular theory (e.g.
CCG, HPSG, LFG, TAG, the Prague School) or a
more general framework which draws on theoretical
and descriptive linguistics. These “deep linguistic
processing” approaches differ from shallower meth-
ods in that they yield richer, more expressive, struc-
tural representations which capture long-distance
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dependencies or the underlying predicate-argument
structure directly.

Aspects of this research have often had their own
separate fora, such as the ACL 2005 workshop on
deep lexical acquisition (Baldwin et al., 2005), as
well as the TAG+ (Kallmeyer and Becker, 2006),
Alpino (van der Beek et al., 2005), ParGram (Butt
et al., 2002) and DELPH-IN (Oepen et al., 2002)
projects and meetings. However, the fundamental
approaches to building a linguistically-founded sys-
tem and many of the techniques used to engineer
efficient systems are common across these projects
and independent of the specific grammar formal-
ism chosen. As such, we felt the need for a com-
mon meeting in which experiences could be shared
among a wider community, similar to the role played
by recent meetings on grammar engineering (Wint-
ner, 2006; Bender and King, 2007).

2 Thepromiseof deep parsing

Deep linguistic processing has traditionally been
concerned with grammar development (for use in
both parsing and generation). However, the linguis-
tic precision and complexity of the grammars meant
that they had to be manually developed and main-
tained, and were computationally expensive to run.
In recent years, machine learning approaches
have fundamentally altered the field of natural lan-
guage processing. The availability of large, manu-
ally annotated, treebanks (which typically take years
of prior linguistic groundwork to produce) enabled
the rapid creation of robust, wide-coverage parsers.
However, the standard evaluation metrics for which
such parsers have been optimized generally ignore

Proceedings of the 10th Conference on Parsing Technologies, pages 36-38,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



much of the rich linguistic information in the orig-
inal treebanks. It is therefore perhaps only natural
that deep processing methods, which often require
substantial amounts of manual labor, have received
considerably less attention during this period.

But even if further work is required for deep
processing techniques to fully mature, we believe
that applications that require natural language under-
standing or inference, among others, will ultimately
need detailed syntactic representations (capturing,
e.g., bounded and unbounded long-range dependen-
cies) from which semantic interpretations can eas-
ily be built. There is already some evidence that
our current deep techniques can, in some cases, out-
perform shallow approaches. There has been work
demonstrating this in question answering, targeted
information extraction and the recent textual entail-
ment recognition task, and perhaps most notably in
machine translation; in this latter field, after a period
of little use of linguistic knowledge, deeper tech-
niques are beginning to lead to better performance,
e.g. by redefining phrases by syntactic “treelets”
rather than contiguous word sequences, or by explic-
itly including a syntactic component in the probabil-
ity model, or by syntactic preprocessing of the data.

3 Closing the divide

In the past few years, the divide between “deep”,
rule-based, methods and “shallow”, statistical, ap-
proaches, has begun to close from both sides. Re-
cent advances in using the same treebanks that have
advanced shallow techniques to extract more expres-
sive grammars or to train statistical disambiguators
for them, and in developing framework-specific tree-
banks, have made it possible to obtain similar cov-
erage, robustness, and disambiguation accuracy for
parsers that use richer structural representations. As
witnessed by many of the papers in our workshop
(Baldwin et al., 2007), a large proportion of current
deep systems have statistical components to them,
e.g., as pre- or post-processing to control ambigu-
ity, as means of acquiring and extending lexical re-
sources, or even use machine learning techniques
to acquire deep grammars automatically. From the
other side of the divide, many of the purely statistical
approaches are using progressively richer linguistic
features and are taking advantage of these more ex-
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pressive features to tackle problems that were tradi-
tionally thought to require deep systems, such as the
recovery of traces or semantic roles.

4 Thecontinued need for research on deep
processing

Although statistical techniques are becoming com-
monplace even for systems built around hand-
written grammars, there is still a need for further
linguistic research and manual grammar develop-
ment. For example, supervised machine-learning
approaches rely on large amounts of manually anno-
tated data. Where such data are available, develop-
ers of deep parsers and grammars can exploit them
to determine frequency of certain constructions, to
bootstrap gold standards for their systems, and to
provide training data for the statistical components
of their systems such as parse disambiguators. But
for the majority of the world’s languages, and even
for many languages with large numbers of speakers,
such corpora are unavailable. Under these circum-
stances, manual grammar development is unavoid-
able, and recent progress has allowed the underlying
systems to become increasingly better engineered,
allowing for more rapid development of any given
grammar, as well as for overlay grammars that adapt
to particular domains and applications and for port-
ing of grammars from one language to another.

Despite recent work on (mostly dependency
grammar-based) multilingual parsing, it is still the
case that most research on statistical parsing is done
on English, a fixed word-order language where sim-
ple context-free approximations are often sufficient.
It is unclear whether our current models and al-
gorithms carry over to morphologically richer lan-
guages with more flexible word order, and it is possi-
ble that the more complex structural representations
allowed by expressive formalisms will cease to re-
main a luxury.

Further research is required on all aspects of
deep linguistic processing, including novel linguis-
tic analyses and implementations for different lan-
guages, formal comparisons of different frame-
works, efficient parse and learning algorithms, better
statistical models, innovative uses of existing data
resources, and new evaluation tools and methodolo-
gies. We were fortunate to receive so many high-



quality submissions on all of these topics for our
workshop.

5 Conclusion and outlook

Deep linguistic processing brings together a range of
perspectives. It covers current approaches to gram-
mar development and issues of theoretical linguis-
tic and algorithmic properties, as well as the appli-
cation of deep linguistic techniques to large-scale
applications such as question answering and dialog
systems. Having industrial-scale, efficient parsers
and generators opens up new application domains
for natural language processing, as well as inter-
esting new ways in which to approach existing ap-
plications, e.g., by combining statistical and deep
processing techniques in a triage process to pro-
cess massive data quickly and accurately at a fine
level of detail. Notably, several of the papers ad-
dressed the relationship of deep linguistic process-
ing to topical statistical approaches, in particular in
the area of parsing. There is an increasing inter-
est in deep linguistic processing, an interest which
is buoyed by the realization that new, often hybrid,
techniques combined with highly engineered parsers
and generators and state-of-the-art machines opens
the way towards practical, real-world application of
this research. We look forward to further opportu-
nities for the different computational linguistic sub-
communities who took part in this workshop, and
others, to continue to come together in the future.
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Abstract

The C&C CCG parser is a highly efficient
linguistically motivated parser. The effi-
ciency is achieved using a tightly-integrated
supertagger, which assigns CCG lexical cat-
egories to words in a sentence. The integra-
tion allows the parser to request more cat-
egories if it cannot find a spanning anal-
ysis. We present several enhancements to
the CKY chart parsing algorithm used by the
parser. The first proposal is chart repair,
which allows the chart to be efficiently up-
dated by adding lexical categories individu-
ally, and we evaluate several strategies for
adding these categories. The second pro-
posal is to add constraints to the chart which
require certain spans to be constituents. Fi-
nally, we propose partial beam search to fur-
ther reduce the search space. Overall, the
parsing speed is improved by over 35% with
negligible loss of accuracy or coverage.

1 Introduction

A recent theme in parsing research has been the
application of statistical methods to linguistically
motivated grammars, for example LFG (Kaplan et
al., 2004; Cahill et al., 2004), HPSG (Toutanova
et al., 2002; Malouf and van Noord, 2004), TAG
(Sarkar and Joshi, 2003) and ccG (Hockenmaier
and Steedman, 2002; Clark and Curran, 2004b). The
attraction of linguistically motivated parsers is the
potential to produce rich output, in particular the
predicate-argument structure representing the under-
lying meaning of a sentence. The disadvantage of
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such parsers is that they are typically not very effi-
cient, parsing a few sentences per second on com-
modity hardware (Kaplan et al., 2004). The C&C
CCG parser (Clark and Curran, 2004b) is an order
of magnitude faster, but is still limited to around 25
sentences per second.

The key to efficient CCG parsing is a finite-state
supertagger which performs much of the parsing
work (Bangalore and Joshi, 1999). CCG is a lex-
icalised grammar formalism, in which elementary
syntactic structures — in CCG’s case lexical cate-
gories expressing subcategorisation information —
are assigned to the words in a sentence. CCG su-
pertagging can be performed accurately and effi-
ciently by a Maximum Entropy tagger (Clark and
Curran, 2004a). Since the lexical categories contain
so much grammatical information, assigning them
with low average ambiguity leaves the parser, which
combines them together, with much less work to do
at parse time. Hence Bangalore and Joshi (1999), in
the context of LTAG parsing, refer to supertagging as
almost parsing.

Clark and Curran (2004a) presents a novel
method of integrating the supertagger and parser:
initially only a small number of categories, on av-
erage, is assigned to each word, and the parser at-
tempts to find a spanning analysis using the CKY
chart-parsing algorithm. If one cannot be found, the
parser requests more categories from the supertagger
and builds the chart again from scratch. This process
repeats until the parser is able to build a chart con-
taining a spanning analysis.!

"Tsuruoka and Tsujii (2004) investigate a similar idea in the
context of the CKY algorithm for a PCFG.

Proceedings of the 10th Conference on Parsing Technologies, pages 39-47,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



The supertagging accuracy is high enough that
the parser fails to find a spanning analysis using the
initial category assignment in approximately 4% of
Wall Street Journal sentences (?). However, parsing
this 4%, which largely consists of the longer sen-
tences, is disproportionately expensive.

This paper describes several modifications to the
C&C parser which improve parsing efficiency with-
out reducing accuracy or coverage by reducing the
impact of the longer sentences. The first involves
chart repair, where the CKY chart is repaired when
extra lexical categories are added (according to the
scheme described above), instead of being rebuilt
from scratch. This allows an even tighter integra-
tion of the supertagger, in that the parser is able to
request individual categories. We explore methods
for choosing which individual categories to add, re-
sulting in an 11% speed improvement.

The next modification involves parsing with con-
straints, so that certain spans are required to be con-
stituents. This reduces the search space consider-
ably by eliminating a large number of constituents
which cross the boundaries of these spans. The best
set of constraints results in a 10% speed improve-
ment over the original parser. These constraints are
general enough that they could be applied to any
constituency-based parser. Finally, we experiment
with several beam strategies to reduce the search
space, finding that a partial beam which operates on
part of the chart is most effective, giving a further
6.1% efficiency improvement.

The chart repair and constraints interact in an in-
teresting, and unexpected, manner when combined,
giving a 35.7% speed improvement overall without
any loss in accuracy or coverage. This speed im-
provement is particularly impressive because it in-
volves techniques which only apply to 4% of Wall
Street Journal sentences.

2 The CCG Parser

Clark and Curran (2004b) describes the CCG parser.
The grammar used by the parser is extracted from
CCGbank, a ccG version of the Penn Treebank
(Hockenmaier, 2003). The grammar consists of 425
lexical categories plus a small number of combi-
natory rules which combine the categories (Steed-
man, 2000). A Maximum Entropy supertagger first
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assigns lexical categories to the words in a sen-
tence, which are then combined by the parser using
the combinatory rules. A log-linear model scores
the alternative parses. We use the normal-form
model, which assigns probabilities to single deriva-
tions based on the normal-form derivations in CCG-
bank. The features in the model are defined over
local parts of the derivation and include word-word
dependencies. A packed chart representation allows
efficient decoding, with the Viterbi algorithm find-
ing the most probable derivation.

The supertagger uses a log-linear model to de-
fine a distribution over the lexical category set for
each word and the previous two categories (Ratna-
parkhi, 1996) and the forward backward algorithm
efficiently sums over all histories to give a distribu-
tion for each word. These distributions are then used
to assign a set of lexical categories to each word (?).
The number of categories in each set is determined
by a parameter [3: all categories are assigned whose
forward-backward probabilities are within 3 of the
highest probability category (?). If the parser can-
not then find a spanning analysis, the value of 3 is
reduced — so that more lexical categories are as-
signed — and the parser tries again. This process re-
peats until an analysis spanning the whole sentence
is found.

In our previous work, when the parser was unable
to find a spanning analysis, the chart was destroyed
and then rebuilt from scratch with more lexical cate-
gories assigned to each word. However, this rebuild-
ing process is wasteful because the new chart is al-
ways a superset of the old one and could be created
by just updating the previous chart. We describe the
chart repair process in Section 3 which allows addi-
tional categories to be assigned to an existing chart
and the CKY algorithm run over just those parts of
the chart which require modification.

2.1 Chart Parsing

The parser uses the CKY chart parsing algorithm
(Kasami, 1965; Younger, 1967) described in Steed-
man (2000). The CKY algorithm applies naturally to
CCG since the grammar is binary. It builds the chart
bottom-up, starting with the lexical categories span-
ning single words, incrementally increasing the span
until the whole sentence is covered. Since the con-
stituents are built in order of span size, at every stage



all the sub-constituents which could be used to cre-
ate a particular new constituent are already present
in the chart.

The charts are packed by grouping together equiv-
alent chart entries, which allows a large number of
derivations to be represented efficiently. Entries are
equivalent when they interact in the same manner
with both the generation of subsequent parse struc-
ture and the statistical parse selection. In practice,
this means that equivalent entries have the same
span; form the same structures, i.e. the remain-
ing derivation plus dependencies, in any subsequent
parsing; and generate the same features in any sub-
sequent parsing.

The Viterbi algorithm is used to find the most
probable derivation from a packed chart. For each
equivalence class of individual entries, we record the
entry at the root of the subderivation which has the
highest score for the class. The equivalence classes
are defined so that any other individual entry can-
not be part of the highest scoring derivation for the
sentence. The highest-scoring subderivations can
be calculated recursively using the highest-scoring
equivalence classes that were combined to create the
individual entry.

Given a sentence of n words, we define pos €
{0,...,n — 1} to be the starting position of an en-
try in the chart (represented by a CCG category) and
span € {1,...,n} its length. Let cell(pos, span)
be the set of categories which span the sentence from
pos to pos + span. These will be combinations of
categories in cell(pos, k) and cell(pos+k, span—k)
forall k € {1,..., span —1}. The chart is a two di-
mensional array indexed by pos and span. The valid
(pos, span) pairs correspond to pos + span < n,
that is, to spans that do not extend beyond the end
of the sentence. The squares represent valid cells in
Figure 1. The span from position 3 with length 4,
i.e. cell(3,4), is marked with a diamond in Figure 2.

3 Chart Repair

The parser interacts with the supertagger by decreas-
ing the value of the 8 parameter when a spanning
analysis cannot be found for a sentence. This has
the effect of adding more lexical categories to the
chart. Instead of rebuilding the chart from scratch
when new categories are added, it can be repaired
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cell with a new
category added

affected cells

! ®

Figure 1: Cells affected by chart repair.

by modifying cells that are affected by the new cat-
egories. Considering the case where a single lexical
category is added to the ith word in an n word sen-
tence, the new category can only affect the cells that
satisfy pos < i and pos + span > i. These cells are
shown in Figure 1 for the word at position 3.

The number of affected cells is (n—pos)(pos+1),
and so the average over the sentence is approxi-
mately %fg‘*l(n —p)(p+1)dp ~ %ﬁ cells. The
total number of cells in the chart is w The chart
can therefore be repaired bottom up, in CKY order,
by updating a third of the cells on average.

Additional lexical categories for a word are in-
serted into the corresponding cell in the bottom row,
with the additional categories being marked as new.
For each cell C' in the second row, each pair of cells
A and B is considered whose spans combine to cre-
ate the span of C. In the original CKY, all categories
from A are combined with all categories from B. In
chart repair, categories are only combined if at least
one of them is new, because otherwise the result is
already in C'. The categories added to C' are marked,
and the process is repeated for all affected cells in
CKY order.

Chart repair speeds up parsing for two reasons.
First, it reuses previous computations and eliminates
wasteful rebuilding of the chart. Second, it allows
lexical categories to be added to the chart one at a
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Figure 2: Cells affected by adding a constraint.

time until a spanning derivation is found. In the orig-
inal approach extra categories were added in bulk by
changing the 3 level, which significantly increased
the average ambiguity. Chart repair allows the min-
imum amount of ambiguity to be added for a span-
ning derivation to be found.

The C&C parser has a predefined limit on the num-
ber of categories in the chart. If this is exceeded
before a spanning analysis is found then the parser
fails on the sentence. Our new strategy allows a
chart containing a spanning analysis to be built with
the minimum number of categories possible. This
means that some sentences can now be parsed that
would have previously exceeded the limit, slightly
increasing coverage.

3.1 Category selection

The order in which lexical categories are added to
the chart will impact on parsing speed and accu-
racy, and so we evaluate several alternatives. The
first ordering (3 VALUE) is by decreasing [ value,
where the (3 value is the ratio between the probabil-
ity of the most likely category and the probability of
the given category for that word.> The second or-
dering (PROB) is by decreasing category probability

*We are overloading the use of (3 for convenience. Here, (3
refers to the variable ratio dependent on the particular category,
whereas the (3 value used in supertagging is a cutoff applied to
the variable ratio.
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as assigned by the supertagger using the forward-
backward algorithm.

We also investigated ordering categories using in-
formation from the chart. Examining the sentences
which required chart repair showed that, when a
word is missing the correct category, the cells af-
fected (as defined in Section 3) by the cell are often
empty. The CHART ordering uses this observation to
select the next lexical category to assign. It selects
the word corresponding to the cell with the high-
est number of empty affected cells, and then adds
the highest probability category not in the chart for
that word. Finally, we included a RANDOM ordering
baseline for comparison purposes.

4 Constraints

The set of possible derivations can be constrained
if we know in advance that a particular span is re-
quired to be the yield of a single constituent in the
correct parse. A constraint on span p reduces the
search space because p must be the yield of a single
cell. This means that cells with yields that cross the
boundary of p cannot be part of a correct derivation,
and do not need to be considered (the grey cells in
Figure 2). In addition, if a cell yields p as a prefix or
suffix (the hashed cells in Figure 2) then it also has
constraints on how it can be created.

Figure 2 shows an example constraint requiring
words 3-6 to be a constituent, which corresponds to
p = cell(3,4). Consider cell(3,7): it yields words
3-9 and so contains p as the prefix. Normally it can
be created by combining cell(3,1) with cell(4, 6),
or cell(3, 2) with cell(5, 5), and so on up to cell(3, 6)
with cell(9, 1). However the first three combinations
are not allowed because the second child crosses the
boundary of p. This gives a lower limit for the span
of the left child. Similarly, if p is the suffix of the
span of a cell then there is a lower limit on the span
of the right child.

As the example demonstrates, a single constraint
can eliminate many combinations, reducing the
search space significantly, and thus improving pars-
ing efficiency.

4.1 Creating Constraints

How can we know in advance that the correct deriva-
tion must yield specific spans, since this appears to
require knowledge of the parse itself? We have ex-



plored constraints derived from shallow parsing and
from the raw sentence. Our results demonstrate that
simple constraints can reduce parsing time signifi-
cantly without loss of coverage or accuracy.

Chunk tags were used to create constraints. We
experimented with both gold standard chunks from
the Penn Treebank and also chunker output from the
C&C chunk tagger. The tagger is very similar to the
Maximum Entropy POS tagger described in Curran
and Clark (2003). Only NP chunks were used be-
cause the accuracy of the tagger for other chunks is
lower. The Penn Treebank chunks required modi-
fication because CCGbank analyses some construc-
tions differently. We also created longer NPs by con-
catenating adjacent base NPs, for example in the case
of possessives.

A number of punctuation constraints were used
and had a significant impact especially for longer
sentences. There are a number of punctuation rules
in CCGbank which absorb a punctuation mark by
combining it with a category and returning a cate-
gory of the same type. These rules are very produc-
tive, combining with many constituent types. How-
ever, in CCGbank the sentence final punctuation is
always attached at the root. A constraint on the first
n — 1 words was added to force the parser to only
attach the sentence final punctuation once the rest of
the sentence has been parsed.

Constraints are placed around parenthesised and
quoted phrases that usually form constituents be-
fore attaching elsewhere. Constraints are also placed
around phrases bound by colons, semicolons, or hy-
phens. These constraints are especially effective
for long sentences with many clauses separated by
semicolons, reducing the sentence to a number of
smaller units which significantly improves parsing
efficiency.

In some instances, adding constraints can be
harmful to parsing efficiency and/or accuracy. Lack
of precision in the constraints can come from noisy
output from NLP components, e.g. the chunker, or
from rules which are not always applicable, e.g.
punctuation constraints. We find that the punctua-
tion constraints are particularly effective while the
gold standard chunks are required to gain any ben-
efit for the NP constraints. Adding constraints also
has the potential to increase coverage because the re-
duced search space means that longer sentences can
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be parsed without exceeding the pre-defined limits
on chart size.

5 Selective Beam Search

Beam search involves greedy elimination of low
probability partial derivations before they can form
complete derivations. It is used in many parsers to
reduce the search space, for example Collins (2003).
We use a variable width beam where all categories
c in a particular cell C that satisfy score(c) <
max{score(z)|x € C} — B, for some beam cut-
off B, are removed. The category scores score(c)
are log probabilities.

In the C&C parser, the entire packed chart is con-
structed first and then the spanning derivations are
marked. Only the partial derivations that form part
of spanning derivations are scored to select the best
parse, which is a small fraction of the categories in
the chart. Because the categories are scored with
a complex statistical model with a large number of
features, the time spent calculating scores is signif-
icant. We found that applying a beam to every cell
during the construction of the chart was more expen-
sive than not using the beam at all. When the beam
was made harsh enough to be worthwhile, it reduced
accuracy and coverage significantly.

We propose selective beam search where the
beam is only applied to spans of particular lengths.
The shorter spans are most important to cull because
there are many more of them and removing them has
the largest impact in terms of reducing the search
space. However, the supertagger already acts like
a beam at the lexical category level and the parser
model has fewer features at this level, so the beam
may be more accurate for longer spans. We there-
fore expect the beam to be most effective for spans
of intermediate length.

6 Experiments

The parser was trained on CCGbank sections 02-21
and section 00 was used for development. The per-
formance is measured in terms of coverage, F-score
and parsing time. The F-score is for labelled depen-
dencies compared against the predicate-argument
dependencies in CCGbank. The time reported in-
cludes loading the grammar and statistical model,
which takes around 5 seconds, and parsing the 1913



sentences in section 00.

The failure rate (opposite of coverage) is broken
down into sentences with length < 40 and > 40
because longer sentences are more difficult to parse
and the C&C parser already has very high coverage
on shorter sentences. There are 1784 1-40 word sen-
tences and 129 41+ word sentences. The average
length and standard deviation in the 41+ set are 50.8
and 31.5 respectively.

All experiments used gold standard POS tags.
Original and REPAIR do not use constraints. The
NP(GOLD) experiments use Penn Treebank gold
standard NP chunks to determine an upper bound
on the utility of chunk constraints. The times re-
ported for NP(C&C) using the C&C chunker include
the time to load the chunker model and run the chun-
ker (around 1.3 seconds). PUNCT adds all of the
punctuation constraints.

Finally the best system was compared against the
original parser on section 23, which has 2257 sen-
tences of length 1-40 and 153 of length 41+. The
maximum length is only 65, which explains the high
coverage for the 41+ section.

6.1 Chart Repair Results

The results in Table 1 show that chart repair gives
an immediate 11.1% improvement in speed and a
small 0.21% improvement in accuracy. 96.1% of
sentences do not require chart repair because they
are successfully parsed using the initial set of lexi-
cal categories supplied by the supertagger. Hence,
11% is a significant improvement for less than 4%
of the sentences.

We believe the accuracy was improved (on top of
the efficiency) because of the way the repair process
adds new categories. Adding categories individually
allows the parser to be influenced by the probabil-
ities which the supertagger assigns, which are not
directly modelled in the parser. If we were to add
this information from the supertagger into the parser
statistical model directly we would expect almost
no accuracy difference between the original method
and chart repair.

Table 2 shows the impact of different category
ordering approaches for chart repair (with PUNCT
constraints). The most effective approach is to use
the information from the chart about the proportion
of empty cells, which adds half as many categories
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METHOD | secs % F-SCORE CATS
RANDOM | 70.2 -16.2 86.57 23.1
(8 VALUE | 60.4 — 86.66 15.7
PROB 60.1 0.5 86.65 14.3
CHART 57.2 53 86.61 7.0

Table 2: Category ordering for chart repair.

on average as the  value and probability based ap-
proaches. All of our approaches significantly out-
perform randomly selecting extra categories. The
CHART category ordering is used for the remaining
experiments.

6.2 Constraints Results

The results in Table 1 show that, without chart re-
pair, using gold standard noun phrases does not im-
prove efficiency, while using noun phrases identi-
fied by the C&C chunker decreases speed by 10.8%.
They both also slightly reduce parsing accuracy.
The number of times the parsing process had to be
restarted with the constraints removed, was more
costly than the reduction of the search space. This
is unsurprising because the chunk data was not ob-
tained from CCGbank and the chunker is not ac-
curate enough for the constraints to improve pars-
ing efficiency. The most frequent inconsistencies
between CCGbank and chunks extracted from the
Penn Treebank were fixed in a preprocessing step as
explained in Section 4.1, but the less frequent con-
structions are still problematic.

The best results for parsing with constraints (with-
out repair) were with both punctuation and gold
standard noun phrase constraints, with 20.5% im-
provement in speed and 0.42% in coverage, but an
F-score penalty of 0.3%. This demonstrates the pos-
sible efficiency gain with a perfect chunker — the
corresponding results with the C&C chunker are still
worse than without constraints. The best results
without a decrease in accuracy use only punctuation
constraints, with 10.4% increase in speed and 0.37%
in coverage. The punctuation constraints also have
the advantage of being simple to implement.

The best overall efficiency gain was obtained
when punctuation and gold standard noun phrases
were used with chart repair, with a 45.4% improve-
ment in speed and 0.63% in coverage, and a 0.4%
drop in accuracy. The best results without a drop in



METHOD secs % F-SCORE COVER n <40 n>40
Original 88.3 — 86.54 98.85 0.392 11.63
REPAIR 785 11.1 86.75 99.01 0.336 10.08
NP(GOLD) 88.4  -0.1 86.27 99.06 0.224 10.85
NP(C&C) 97.8 -10.8 86.31 99.16 0.224 9.30
PUNCT 79.1 104 86.56 99.22 0.168 9.30
NP(GOLD) + PUNCT 69.8  20.5 86.24 99.27 0.168 8.53
NP(C&C) + PUNCT 97.0 9.9 86.31 99.16 0.168 10.08
NP(GOLD) + REPAIR 65.0 264 86.04 99.37 0.224 6.20
NP(C&C) + REPAIR 775 122 86.35 99.37 0.224 6.20
PUNCT + REPAIR 572 352 86.61 99.48 0.168 5.43
NP(GOLD) + PUNCT + REPAIR | 48.2 454 86.14 99.48 0.168 5.43
NP(C&C) + PUNCT + REPAIR | 63.2 284 86.43 99.53 0.163 3.88

Table 1: Parsing performance on section 00 with constraints and chart repair

METHOD secs % F-SCORE COVER n <40 n >40
Original 88.3 — 86.54 98.85 0.392 11.63
PUNCT 79.1 104 86.56 99.22 0.168 9.30
REPAIR 78.5 11.1 86.75 99.01 0.336 10.08
PUNCT + REPAIR 572 352 86.61 99.48 0.168 5.43
PUNCT + REPAIR + BEAM | 52.4 40.7 86.56 99.48 0.168 5.43

Table 3: Best performance on Section 00

accuracy were with only punctuation constraints and
chart repair, with improvements of 35.2% speed and
0.63% coverage. Coverage on both short and long
sentences is improved — the best results show a 43%
and 67% decrease in failure rate for sentence lengths
in the ranges 1-40 and 41+ respectively.

6.3 Partial Beam Results

We found that using the selective beam on 1-2 word
spans had negligible impact on speed and accuracy.
Using the beam on 3—4 word spans had the most im-
pact without accuracy penalty, improving efficiency
by another ~5%. Experiments with the selective
beam on longer spans continued to improve effi-
ciency, but with a much greater penalty in F-score,
e.g. a further ~5% at a cost of 0.5% F-score for 3-6
word spans. However, we are interested in efficiency
improvements with negligible cost to accuracy.

6.4 Overall Results

Table 3 summarises the results for section 00. The
chart repair and punctuation constraints individually
increase parsing efficiency by around 10%. How-
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ever, the most interesting result is that in combina-
tion they increase efficiency by over 35%. This is
because the cost of rebuilding the chart when the
constraints are incorrect has been significantly re-
duced by chart repair. Finally, the use of the selec-
tive beam gives modest improvement of 5.5%. The
overall efficiency gain on section 00 is 40.7% with
an additional 0.5% coverage, halving both the num-
ber of short and long sentences that fail to be parsed.

Table 4 shows the performance of the punctuation
constraints, chart repair and selective beam system
on section 23. The results are consistent with sec-
tion 00, showing a 30.9% improvement in speed and
0.29% in coverage, with accuracy staying at roughly
the same level. The results show a consistent 35-
40% reduction in parsing time and a 40-65% reduc-
tion in parse failure rate.

7 Conclusion

We have introduced several modifications to CKY
parsing for CCG that significantly increase parsing
efficiency without an accuracy or coverage penalty.



METHOD secs % F-SCORE COVER n <40 n >40
Original 91.3 — 86.92 99.29 0.621 1.961
PUNCT + REPAIR + BEAM | 58.7 35.7 86.82 99.58 0.399 0.654

Table 4: Best performance on Section 23

Chart repair improves efficiency by reusing the
chart from the previous parse attempts. This allows
us to further tighten the parser-supertagger integra-
tion by adding one lexical category at a time until a
spanning derivation is found. We have also explored
several approaches to selecting which category to
add next. We intend to further explore strategies
for determining which category to add next when a
parse fails. This includes combining chart and prob-
ability based orderings. Chart repair alone gives an
11.1% efficiency improvement.

Constraints improve efficiency by avoiding the
construction of sub-derivations that will not be used.
They have a significant impact on parsing speed and
coverage without reducing the accuracy, provided
the constraints are identified with sufficient preci-
sion. Punctuation constraints give a 10.4% improve-
ment, but NP constraints require higher precision NP
chunking than is currently available for CCGbank.

Constraints and chart repair both manipulate the
chart for more efficient parsing. Adding categories
one at a time using chart repair is almost a form of
agenda-based parsing. We intend to explore other
methods for pruning the space and agenda-based
parsing, in particular A* parsing (Klein and Man-
ning, 2003), which will allow only the most proba-
ble parts of the chart to be built, improving efficiency
while still ensuring the optimal derivation is found.

When all of our modifications are used parsing
speed increases by 35-40% and the failure rate de-
creases by 40-65%, both for sentences of length 1-40
and 41+, with a negligible accuracy penalty. The re-
sult is an even faster state-of-the-art wide-coverage
CCG parser.
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Abstract tion over competing hypotheses. Parse selection ap-
proaches for these frameworks often use discrimi-
native Maximum Entropy (ME) models, where the
probability of each parse tree, given an input string,
is estimated on the basis of select properties (called
features) of the tree (Abney, 1997; Johnson, Ge-
man, Canon, Chi, & Riezler, 1999). Such features,
in principle, are not restricted in their domain of
locality, and enable the parse selection process to
take into account properties that extend beyond lo-
cal contexts (i.e. sub-trees of depth one).

We extend a recently proposed algorithm for
n-best unpacking of parse forests to deal ef-
ficiently with (a) Maximum Entropy (ME)
parse selection models containing important
classes of non-local features, and (b) forests
produced by unification grammars contain-
ing significant proportions of globally incon-
sistent analyses. The new algorithm empir-
ically exhibits a linear relationship between
processing time and the number of analyses
unpacked at all degrees of ME feature non-
locality; in addition, compared with agenda-
driven best-first parsing and exhaustive pars-
ing with post-hoc parse selection it leads to
improved parsing speed, coverage, and ac-
curacy!

There is a trade-off in this set-up between the ac-
curacy of the parse selection model, on the one hand,
and the efficiency of the search for the best solu-
tion(s), on the other hand. Extending the context size
of ME features, within the bounds of available train-
ing data, enables increased parse selection accuracy.
However, the interplay of the core parsing algo-
1 Background—Motivation rithm and the probabilistic ranking of alternate (sub-
)hypotheses becomes considerably more complex

Te.ch.nology for_natural language analysis using IIné]nd costly when the feature size exceeds the domain
guistically precise grammars has matured to a leve

. . c%f locality (of depth-one trees) that is characteristic
of coverage and efficiency that enables parsing o :
of phrase structure grammar-based formalisms. One

large amounts of running text. Research groups

. . . . current line of research focuses on finding the best
working within grammatical frameworks like CCG balance between parsing efficiency and parse selec-
(Clark & Curran, 2004), LFG (Riezler et al., 2002), parsing y andp

and HPSG (Malouf & van Noord, 2004; Oepen; it S e 0 PP 8818 FERE S, S0 B
Flickinger, Toutanova, & Manning, 2004; Miyao, P

Ninomiya, & Tsujii, 2005) have successfully in- ffort.

tegrated broad-coverage computational grammars This paper explores a range of techniques, com-
with sophisticated statistical parse selection model8ining a broad-coverage, high-efficiency HPSG
The former delineate the space of possible analyarser with a series of parse selection models with
ses, while the latter provide a probability distribu-varying context size of features. We sketch three
general scenarios for the integration: (a) a baseline

TThe first author warmly acknowledges the guidance of hi . - .
PhD advisors, Valia Kordoni and Hans Uszkoreit. We are grategequemIal configuration, where all results are enu-

ful to Ulrich Callmeier, Berthold Crysmann, Dan Flickinger merated first, and subsequently ranked; (b) an in-
and Erik Velldal for many discussions and their support. Weerleaved but approximative solution, performing a

thank Ron Kaplan, Martin Kay, and Bob Moore for provid- q h f best list of Its: and
ing insightful information about related approaches, hiyt¢he greedy search for an-best list of results; and (c) a

XLE and CLE parsers. two-phase approach, where a complete packed for-
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est is created and combined with a specialized graph subjh
search procedure to selectively enumerate results |jn
(globally) correct rank order. Although conceptu-

ally simple, the second technique has not previously hspec th'rd‘sgf'n‘verb
been evaluated for HPSG parsing (to the best of ouyr detthe le  singnoun v_unerg_le
knowledge). The last of these techniques, which wge | | ) Ik

arks

call selective unpackingvas first proposed by Car- the n.intrle

roll & Oepen (2005) in the context of chart-based dgg

generation. However, they only provide an account

of the algorithm for local ME properties and assertigyre 1: Sample HPSG derivation tree for the sentethee

that the technique should generalize to larger cormlog barks Phrasal nodes are labeled with identifiers of gram-

texts straightforwardly. This paper describes thigar rules, and (pre-terminal) lexical nodes with class reafoe
L . . L. .types of lexical entries.

generalization of selective unpacking, in its appli-

cation to parsing, and demonstrates that the move .

from features that resemble a context-free domaiﬁ?”o_wed by relevant background on parse sglectmn.

of locality to features of, in principle, arbitrary con-  Figure 1 shows an example ERG derivation tree.

text size can indeed be based on the same a|gorithl‘ﬁ,terna| tree nodes are labeled with identifiers of
but the required extensions are non-trivial. grammar rules, and leaves with lexical entries. The

The structure of the paper is as follows. Secderivation tree provides complete information about

tion 2 summarizes our forma”sm, grammars usedhe actual HPSG analysis, in the sense that it can be
parse selection approach, and training and test datdgwed as a recipe for computing it. Lexical entries
Section 3 discusses the range of possibilities fand grammar rules alike are ultimately just feature
structuring the process of statistical, grammar-basegructures, complex and highly-structured linguistic
parsing, and Sections 4 to 6 describe our approad&tegories. When unified together in the configura-
to efficientn-best parsing. We present experimentalion depicted by the derivation tree, the resulting fea-
results in Section 7, compare our approach to previlire structure yields an HPSG sign, a detailed repre-

ous ones (Section 8), and finally conclude. sentation of the syntactic and semantic properties of
the input string. Just as the full derivation denotes a
2 Overall Set-up feature structure, so do its sub-trees, and for gram-

While couched in the HPSG framework. the techMars like the ERG and GG each such structure will

niques explored here are applicable to the largdiP"tain hundreds of feature —value pairs.

class of unification-based grammar formalisms. We Because of the lexicalized nature of HPSG (and
make use of the DELPH-INreference formalism, Similar frameworks) our parsers search for well-
as implemented by a variety of systems, includingormed derivations in a pure bottom-up fashion.
the LKB (Copestake, 2002) and PET (CallmeierOther than that, there are no hard-wired assumptions
2002). For the experiments discussed here, waboutthe order of computation, i.e. the specific pars-
adapted the open-source PET parsing engine iRg strategy. Our basic set-up closely mimics that of
conjunction with two publicly available grammars,O€epen & Carroll (2002), where edges indexed by
the English Resource Grammar (ERG; Flickingersub-string positions in a chart represent the nodes of
2000) and the DFKI German Grammar (GG; Mulletthe tree, recording both a feature structure (as its cat-
& Kasper, 2000, Crysmann, 2005). Our parse se&gory label) and the identity of the underlying lexi-
lection models were trained and evaluated on HPS@&l entry or rule in the grammar. Multiple edges de-
treebanks that are distributed with these grammargved for identical sub-strings can be ‘packed’ into a
The following paragraphs summarize relevant propsingle chart entry in case their feature structures are

erties of the structures manipulated by the parsetompatible, i.e. stand in an equivalence or subsump-

—Y . _ _ tion relation. By virtue of having each edge keep
Deep Linguistic Processing with HPSG, an open- k-point to its d ht d the i diat
source repository of grammars and processing tools; sé%ac -pointers 1o Iis daughter edges—the immediate

‘http://ww. del ph-in. net/". sub-nodes in the tree whose combination resulted in
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the mother edge—the parse forest provides a comFype Sample Features

plete ancexplicitencoding of all possible resultsina 1 (0 subjh hspec third_sg_fin_verb)

maximally compact forn?. A simple unpacking pro- 1 (1 A subjh hspec third_sg_fin_verb)

cedure is obtained from the cross-multiplication of 1 (O hspec det_the_le sing_noun)

all local combinatorics, which is directly amenable 1 (1 subjh hspec det_the_le sing_noun)

to dynamic programming. 1 (2 A subjh hspec det_the_le sing_noun)

Figure 2 shows a hypothetical forest (on the left), 2 (0 subjh third_sg_fin_verb)

where sets of edges exhibiting local ambiguity have 2 (0 subjh hspce)
2 |
2
3
3
3

been packed into a single ‘representative’ edge, viz. 1 subjh hspec det_the_le)

the one in each set with one or more incoming dom- 1 subjh hspec sing_noun)

inance arcs. Confirming the findings of Oepen & 1 n_intr_le dog)

Carroll (2002), in our experiments packing under 2 det_the_le n_intr_le dog)

feature structure subsumption is much more effec- 3 < det_the_le n_intr_le dog)

tive than packing under mere equivalence, i.e. for

each pair of edges (over identical sub-strings) thdiable 1: Examples of structural features extracted from the

stand in a subsumption relation, a technique th%Frivation tree in Figure 1. Th&ype column indicates the
! emplate corresponding to each sample feature; the intbger

Oepen & Carroll (2002) termed retro-active packstarts each feature indicates the degree of grandpare(itige
ing ensures that the more general of the two edgeésse of type 1 and 2 features)igram size (type 3 features).

s . he symbolsA and < denote the root of the tree and left pe-
remains in the chart. When packing under subsumﬂbhery of the yield, respecively.
tion, however, some of the cross-product of local

am biguities in the forest may not _be globally CONeature functiong; can test for arbitrary structural
sistent. Assume for example that, in Figure 2, edg

A o operties of analyses, and their value typically is
(6] and(g] subsuméz] and(s), respectively; combining the number of times a specific property is present

and[9] into the same tree during unpacking can iqn t;. Toutanova, Manning, Flickinger, & Oepen

principle fail. Thus, unpacking effectively needs to(2005) propose an inventory of features that per-

deterministically replay unifications, but this extrac . well in HPSG parse selection: currently we re-

expense in our experience is negligible when €OMkirict ourselves to the best-performing of these, of

pared to the decreased cost of constructing the fotrﬁe form illustrated in Table 1, comprising depth-
est under subsumption. ’

thi v in ad dltn S?ct!on 3 we argue-th%e sub-trees (or portions of these) with grammar-

IS VEry property, in addition to Increasing parsingio ) jgentifiers as node labels, plus optionally
efficiency, interacts beneficially with parse selectlo% chain of one or more dominating nodes (i.e. lev-
and on-demand enumeration of results in rank ordeé1S of grandparents). If a grandparents c.hellin is

Following (Johnson et al., 1999), a Condltlonl"‘Ipresent then the feature is non-local. For expository

][VIE mOdel of the pC:Obab'“t'(.eS of treeft; f 'ft”} purposes, Table 1 includes another feature type,
or a_ string s, an a_ssummg a sgt 0 ?aturegrams over leaf nodes of the derivation; in Section 5
functions {f1 ... f,,} with corresponding weights

3 VoY is defined as- below we speculate about the incorporation of these
(M- A}, is defined as: (and similar) features in our algorithm.
exp ;A f;(ti)

> k—1€xXp Y A fi(tk)
Tproperty of parse forests is not a prerequisite of théA\t an abstract level, given a grammar and an associ-

chart parsing framework. The basic CKY procedure (Kasam@t€d ME parse selection model, there are three basic
1965), for example, as well as many unification-based aelaptgvays of combining them in order to find the single

tions (e.g. the Core Language Engine; Moore & Alshawi, 1992)be5t, or small set ofi-best results
merely record the local category of each edge, which is suffi- . : N : ) i
cient for the recognition task and simplifies the search. How The first way is a naive sequential set-up, in which

ever, reading out complete trees from the chart, then, atsounthe parser first enumerates the full set of analyses,

to a limited form of search, going back to the rules of the gram ¢ f h using th del d
mar itself to (re-)discover decomposition relations amohgrt  COMPULES & SCore Tor eéach using the model, and re-

entries. turns the highest-ranking results. For carefully

p(ti]s) (1) 3 Interleaving Parsing and Ranking
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Figure 2: Sample forest and sub-node decompositions: avafe forest (on the left) indicate packing of edges undéssmp-
tion, i.e. edge#d], [7], [9], and[11] arenot in the chart proper. During unpacking, there will be mukiptays of instantiating a
chart edge, each obtained from cross-multiplying alter@ughter sequences locally. The elements of this craghipr we call
decompositionand they are pivotal points both for stochastic scoring@mhmic programming in selective unpacking. The table
on the right shows all non-leaf decompositions for our exianmcked forest: given two ways of decomposiélgthere will be
three candidate ways of instantiati@jand six for{4], respectively, for a total of nine full trees.

crafted grammars and inputs of average complexitweights on a partial solution as its agenda score, ef-
the approach can perform reasonably well. fectively, means that sub-trees with low scores ‘sink’
Another mode of operation is to organize thdo the bottom of the agenda; highly-ranked partial
parser’s search according to an agenda (i.e. prioriggonstituents, in turn, instigate the immediate cre-
gueue) that assigns numeric scores to parsing movaton of larger structures, and ideally the bottom-up
(Erbach, 1991). Each such move is an application @fgenda-driven search will greedily steer the parser
the fundamental rule of chart parsing, combining atowards full analyses with high scores. Given its
active and a passive edge, and the scores represbatristic nature, this procedure cannot guarantee
the expected ‘figure of merit' (Caraballo & Char-that itsn-best list of results corresponds to the glob-
niak, 1998) of the resulting structure. Assuming ally correct rank order, but it may in practice come
parse selection model of the type sketched in Seceasonably close to it. While conceptually simple,
tion 2, we can determine the agenda priority for greedy best-first search does not combine easily with
parsing move according to the (unnormalized) MEmbiguity packing in the chart: (a) at least when
score of the derivation (sub-)tree that would resulpacking under subsumption, it is not obvious how
from its successful execution. Note that, unlike ifo accurately compute the agenda score of packed
probabilistic context-free grammars (PCFGs), MEhodes, and (b) to the extent that the greedy search
scores of partial trees do not necessarily decrease a®ids exploration of dis-preferred local ambigu-
the tree size increases; instead, the distribution dtfy, the need for packing should be greatly reduced.
feature weights is in the rande oo, +00), centered Unfortunately, in scoring bottom-up parsing moves,
around0, where negative weights intuitively corre- ME features involving grandparenting are not ap-
spond to dis-preferred properties. plicable, leading to a second potential source of re-
This lack of monotonicity in the scores associateduced parse selection accuracy. In Section 7 below,
with sub-trees, on the one hand, is beneficial, in thaye provide an empirical evaluation of both the naive
performing a greedy best-first search becomes pragequential and greedy best-first approaches.
tical: in contrast, with PCFGs and their monoton-
ically decreasing probabilities on larger sub-trees4  Selective Unpacking
once the parser finds the first full tree the chart nec-
essarily has been instantiated almost completely. Garroll & Oepen (2005) observe that, at least for
the other hand, the same property prohibits the applgrammars like the ERG, the construction of the
cation of exact best-first techniques liké B8earch, parse forest can be very efficient (with observed
because there is no reliable future cost estimate; polynomial complexity), especially when packing
this respect, our set-up differs fundamentally fronedges under subsumption. Their selective unpacking
that of Klein & Manning (2003) and related PCFGprocedure, originally proposed for the forest created
parsing work. Using the unnormalized sum of MEby a chartgenerator aims to unpack the-best set
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1 procedureselectively-unpack-edge(edge, n) =
2 results « (); i+ 0;
3 do
4 hypothesis < hypothesize-edge(edge,i); i i + 1;
5 if (new « instantiate-hypothesis(hypothesis)) then
6 n < n — 1; results < results @ (new);
7 while (hypothesis andn > 1)
8 return results;
9 procedure hypothesize-edge(edge, i) =
10 if (edge.hypotheses]i]) return edge.hypothesesi];
11 if (i=0) then
12 for each(decomposition in decompose-edge(edge)) do
13 daughters < (); indices — ()
14 for each(edge in decomposition.rhs) do
15 daughters «— daughters @ (hypothesize-edge(edge, 0));
16 indices « indices @ (0);
17 new-hypothesis(edge, decomposition, daughters, indices);
18 if (hypothesis < edge.agenda.pop()) then
19 for each(indices in advance-indices(hypothesis.indices)) do
20 if (indices € hypothesis.decomposition.indices) then continue
21 daughters «— ();
22 for each(edge in hypothesis.decomposition.rhs) each(i in indices) do
23 daughter «— hypothesize-edge(edge, i);
24 if (not daughter) then daughters < (); break
25 daughters «— daughters @ (daughter);
26 if (daughters) then new-hypothesis(edge, hypothesis.decomposition, daughters, indices)
27 edge.hypotheses[i] < hypothesis;
28 return hypothesis;
29 procedurenew-hypothesis(edge, decomposition, daughters, indices) =
30 hypothesis < new hypothesis(decomposition, daughters, indices);
31 edge.agenda.insert(score-hypothesis(hypothesis), hypothesis);
32 decomposition.indices < decomposition.indices U {indices};

Figure 3: Selective unpacking procedure, enumerating:thest realizations for a top-level reseligefrom a packed forest. An
auxiliary functiondecompose-edge() performs local cross-multiplication as shown in the exaaph Figure 2. Another utility
function not shown in pseudo-codeadvance-indices(), a ‘driver’ routine searching for alternate instantiasaf daughter edges,
e.g.advance-indices((02 1)) — {(121) (03 1) (02 2)}. Finally, instantiate-hypothesis() is the function that actually builds
result trees, replaying the unifications of constructiawsnfthe grammar (as identified by chart edges) with the feagtructures
of daughter constituents.

of full trees from the forest, guaranteeing the globating each daughter: a parallel index vecfor=
ally correct rank order according to the probability(ig ... i,) serves to keep track of ‘vertical’ search
distribution, with a minimal amount of search. Theamong daughter hypotheses, where each index
basic algorithm is a specialized graph search througlenotes the-th best instantiation (hypothesis) of
the forest, with local contexts of optimization corre-the daughter at positiof. If we restrict ME fea-
sponding to packed nodes. tures to a depth of one (i.e. without grandparent-

Each such node represents local combinatoricf!9): then given the additive nature of ME scores

and two key notions in the selective unpacking pran complete derivations, it can be guaranteed that

cedure are the concepts of @composingn edge YPothesized trees including an edges an im-
locally into candidate ways of instantiating it, andMediate daughter must use the best instantiation of
of (b) nested contexts of local search for ranked N their own best instantiation. Assuming a bi-
hypothesegi.e. uninstantiated edges) about candif@'y rule, the corresponding hypothesis would use

date subtrees. See Figure 2 for examples of the dgdaughter indices of0 0). The second-best instan-
composition of edges. Given one decompositionjatlon, in turn, can be obtained from moving to the

i.e. a vector of candidate daughters for a particuS€cond-best hypothesis foneof the elements in the
lar rule—there can be multiple ways of instanti-(ight-hand side of the) decomposition, e.g. indices
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(0 1) or (1 0) in the binary example. Hypotheses area representative feature type, and ‘downward’ exten-
associated with ME scores and ordered within eactions, which we discuss for the example of lexical
nested context by means of a local priority queua-gram features.
(stored in the original representative edge, for con- A naive approach to selective unpacking with
venience). Therefore, nested local optimizations regrandparenting might be extending the cross-
sult in a top-down, breadth-first, exaetbest search multiplication of local ambiguity to trees of more
through the packed forest, while avoiding exhaustivéhan depth one. However, with multiple levels of
cross-multiplication of packed nodes. grandparenting this approach would greatly increase
Figure 3 shows the unchanged pseudo-code #fe combinatorics to be explored, and it would pose
Carroll & Oepen (2005). The main functionthe puzzle of overlapping local contexts of opti-
hypothesize-edge() controls both the ‘horizontal’ and mization. Choices made among the alternates for
‘vertical’ search, initializing the set of decompo-one packed node would interact with other ambi-
sitions and pushing initial hypotheses onto the loguity contexts in their internal nodes, rather than
cal agenda when called on an edge for the firgnerely at the leaves of their decompositions. How-
time (lines 11-17). For each call, the procedur@ver, it is sufficient to keep the depth of decompo-
retrieves the current next-best hypothesis from thitions to minimal sub-trees and rather contextual-
agenda (line 18), generates new hypotheses by dde each decomposition as a whole. Assuming our
vancing daughter indices (while skipping over consample forest and set of decompositions from Fig-
figurations seen earlier) and calling itself recursivelyre 2, let([1](4]) :[6] — ([10]) denote the decomposi-
for each new index (lines 19-26), and, finally, artion of nodefg] in the context ofi4] and (1] as its
ranging for the resulting hypothesis to be cached fdmmediate parents. When descending through the
later invocations on the saneelgeandi values (line  forest,hypothesize-edge() can, without significant ex-
27). Note that unification (imstantiate-hypothesis()) ~ tra cost, maintain a vectd? = (p, ... po) of par-
is only invoked on complete, top-level hypothesesgnts of the current node, far-level grandparenting.
as our structural ME features can actually be evaFor each packed node, the bookkeeping elements of
uatedprior to building each full feature structure. the graph search procedure need to be contextual-
However, as Carroll & Oepen (2005) suggest, thized on P, viz. (a) the edge-local priority queue,
procedure could be adapted to perform instantiatiotd) the record of index vectors hypothesized already,
of sub-hypotheses within each local search, shourhd (c) the cache of previous instantiations. Assum-
additional features require it. For better efficiencyjng each is stored in an associative array, then all
the instantiate-hypothesis() routine applies dynamic references t@dge.agenda in the original procedure
programming (i.e. memoization) to intermediate recan be replaced bytige.agenda[P], and likewise for

sults. other slots. With these extensions in place, the orig-
inal control structure of nested, on-demand creation
5 Generalizing the Algorithm of hypotheses and dynamic programming of partial

results can be retained, and for each packed node
Carroll & Oepen (2005) offer no solution for selec-with multiple parents[§] in our sample forest) there
tive unpacking with larger context ME features. Yetwill be parallel, contextualized partitions of opti-
both Toutanova et al. (2005) and our own experimization. Thus, extra combinatorics introduced in
ments (described in Section 7 below) suggest th#tis generalized procedure are confined to only such
properties of larger contexts and especially grandiodes, which (intuitively at least) appears to estab-
parenting can greatly improve parse selection adish the lower bound of added search needed—while
curacy. The following paragraphs outline how tokeeping the algorithm non-approximative. Section 7
generalize the basic selective unpacking procedurprovides empirical data on the degradation of the
while retaining its key properties: exaetbest enu- procedure in growing levels of grandparenting and
meration with minimal search. Our generalization othe number of.-best results to be extracted from the
the algorithm distinguishes between ‘upward’ conforest.
texts, with grandparenting with dominating nodes as Finally, we turn to enlarged feature contexts that
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capture information from noddselowthe elements Including additional properties from non-local sub-
of a local decomposition. Consider the examplérees (for example higher-order-grams and head
of feature type 3 in Table 1p-grams (of vari- lexicalization) is a straightforward extension of this
ous size) over properties of the yield of the parsescheme, replacing our per-edge left- and rightmost
tree. For now we only consider lexical-grams. periphery symbols with a generalized vector of ex-
For an edge: dominating a sub-string of words ternally relevant, internal properties. In addition
(wj ... witn—1) there will ben — 1 bi-grams inter- to traditional (head) lexicalization as we have just
nal to e, and two bi-grams that interact witty; ; discussed it, such extended ‘downward’ properties
and w;+,—which will be determined by the left- on decompositions—percolated from daughters to
and right-adjacent edgesddn a complete tree. The mothers and cross-multiplied as appropriate—could
internal bi-grams are unproblematic, and we can agaclude metrics of constituent weight too, for exam-
sume that ME weights corresponding to these fegle to enable the ME model to prefer ‘balanced’ co-
tures have been included in the sum of weights agrdination structures.
sociated tce. Seeing that may occur in multiple However, given that Toutanova et al. (2005) ob-
trees, with different sister edges, the selective unain only marginally improved parse selection accu-
packing procedure has to take this variation into adacy from the inclusion ofi-gram (and other lexical)
count when evaluating local contexts of optimizaiME features, we have left the implementation of lex-
tion. icalization and empirical evaluation for future work.
Let ,e, denote an edge, with  andy as the
lexical types of its leftmost and rightmost daugh6 Failure Caching and Propagation
ters, respectively. Returning to our sample forest,
assume lexicalizationgZ0]; and,[Z3, (each span- As we pointed out at the end of Section 4, during
ning only one word), with3 # ~. Obviously, when the unpacking phase, unification is only replayed in
decomposingd as (8][6), its ME score, in turn, will  instantiate-hypothesis() on the top-level hypotheses. It
depend on the choice made in the expansioflof IS only at this step that inconsistencies in the local
the sequence&,[8l,, 46)s) and (.8l ,[6},) will dif- ~ combinatorics are discovered. However, such a dis-
fer in (at least) the scores associated with the bFovery can be used to improve the unpacking rou-
grams <Ck ﬁ) VS. <Oé ')’> According|y, when evalu- tine by (a) avoiding further unification on hypothe-
ating candidate decompositions[df the number of ses that have already failed to instantiate, (b) avoid-
hypotheses that need to be considered is doubldflg creating new hypotheses based on failed sub-
as an immediate consequence, there can be uphgpotheses. This requires some changes to the rou-
eight distinct lexicalized variants for the decompodinesinstantiate-hypothesis() andhypothesize-edge(), as
sition [ — (@[@)) further up in the tree. It may look Well as an extra boolean marker for each hypothesis.
as if combinatorics will cross-multiply throughout The extended instantiate-hypothesis() Starts by
the tree—in the worst case returning us to an exshecking whether the hypothesis is already marked
ponential number of hypotheses—but this is fortuas failed. If it is not so marked, the routine recur-
nately not the case: regarding the external bi-grangively instantiates all sub-hypotheses. Any failure
of [, node[6] no longer participates in its left- or will again lead to instant return. Otherwise, unifica-
rightmost periphery, so variation internal[is not tion is used to create a new edge from the outcome of
a multiplicative factor at this level. This is essenthe sub-hypothesis instantiations. If this unification
tially the observation of Langkilde (2000), and heffails, the current hypothesis is marked. Moreover,
bottom-up factoring of.-gram computation is eas- all its ancestor hypotheses are also marked (by re-
ily incorporated into our top-down selective unpack<ursively following the pointers to the direct parent
ing control structure. Atthe point whengpothesize- hypotheses) as they are also guaranteed to fail.
edge() invokes itself recursively (line 23 in Figure 3), Correspondingly, hypothesize-edge() needs to
its return value is now a set of lexicalized alternates;heck the instantiation failure marker to avoid re-
and hypothesis creation (in line 26) can take into adurning hypotheses that are guaranteed to fail. If
count the local cross-product of all such alternationa hypothesis coming out of the agenda is already
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marked as failed, it will be used to create new hy- Configuration | GP | Coverage| Time (s)
potheses (withadvance-indices()), but dropped af- greedy best-first 91.6% 3889
terward. Subsequent hypotheses will be poppegxhaustive unpacking 84.5% 4673
from the agenda until either a hypothesis that is not 94.3% 2245
marked as failed is returned, or the agenda is empty. 94.3% 2529
Moreover, hypothesize-edge() also needs to avoid selective unpacking 94.3% 3964
creating new hypotheses based on failed sub- 94.2% 3199
hypotheses. When a failed sub-hypothesis is found, 4 94.2% 3502
the creation of the new hypothesis is skipped. But

the index vectorf may not be simply discarded. Table 2: Coverage on the ERG for different configurationshwi
h . h h o —. fixed resource consumption limits (of 100k passive edge§0r 3
Otherwise hypotheses based atvance-indices() seconds). In all cases, up to ten ‘best’ results were sedyche

will not be reachable in the search. On the othesind Coverageshows the percentage of inputs that succeed to
hand, simply adding evel’ydvance-indices(f) onto Parse within the available resourcEmeshows the end-to-end
- . . .. . . processing time for each batch.
the pending creation list is not efficient either in the
case where multiple sub-hypotheses fail. (2)_ :
To solve the problem, we compute a failure vec- o gready best-first

= . 5] exhaustive unpacking )
tor I' = <f0 e fn>, Wherefj Is1 When the Sub' o selective unpackmg
hypothesis at positior is known as failed, and 4 — | x forest creation
otherwise. If a sub-hypothesis at positipis failed 3
then all the index vectors having valug at posi-
tion 5 must also fail. By putting the result df+ F
on the pending creation list, we can safely skip the )
failed rows of sub-hypotheses, while not losing the © I
reachability of the others. As an example, suppose ° 15 25 35
we have a ternary index vectds 1 2) for which a String Length (Number of Input Tokens)
new hypothesis is to be created. By checking the inkigure 4: Parsing times for different configurations usihg t
stantiation failure marker of the sub-hypotheses, WERG, in all three cases searching for up to ten results, witho
find that the first and the third sub-hypotheses are dft Use of grandparenting.

ready marked. The failure recording vector will then _ _ o .
be(101). By putting (413) = (312) +(101) 8,000 items) was used in training the various ME

on to the pending hypothesis creation list, the failefa'se disambiguation models. For the experiment
sub-hypotheses are skipped. with GG, we designated a 2825-item portion of the

We evaluate the effects of instantiation failure®FK! Verbmobil treebank for our tests, and trained
caching and propagation below in Section 7. ME models on the remaining 10,000 utterances. At
only 7.4 words, the average sentence length is much
7 Empirical Results shorter in the Vertmobil data.

We ran seven different configurations of the parser

To evaluate the performance of the selective unpaclzu itterent search strategies and (un-)packing
ing algorithm, we carried out a series of empiricalmechanisms_

evaluations with the ERG and GG, in combination

with a modified version of the PET parser. When e Agenda driven greedy-best parsing using the
running the ERG we used as our test set Jhi ME score without grandparenting features; no
section of the LOGON treebahkwhich contains local ambiguity packing;

1603 items with an average sentence length of 14.6

words. The remaining LOGON treebank (of around ® Local ambiguity packing with exhaustive un-
- packing, without grandparenting features;
3The treebank is comprised of several booklets of

WN PP OOOo

2_

(generated by [incr tsdb()] at 23-mar-2007 (12:44 h))
I

edited, instructional texts on backcountry activities iorN “The data in this treebank is taken from transcribed appoint-
way. The data is available from the LOGON web site atment scheduling dialogues; sektt p://gg. df ki . de/’
‘http://ww. enmt ee. net . for further information on GG and its treebank.
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O-(lsg) i GP—4 Configuration | Exact Match | Top Ten
/ random choice 11.34 43.06

0.08 GP—3 no grandparenting 52.52 68.38

0.06 4 / - greedy best-first 51.79 69.48

Gp=2 grandparenting[1] 56.83 85.33

0.04 ‘W@/é/e/é/e/@ GP=1 grandparenting[2] 56.55 84.14

0.02 *@/;_U/‘/*’;’/k//:/*’f GP=0 grandparenting[3] 56.37 84.14

grandparenting[4] 56.28 84.51

0007717 717 1T T T T T 1

1 10 20 30 40 50 60 70 80 90 100 Table 3: Parse selection accuracy for various levels ofdpar
enting. Theexact matctcolumn shows the percentage of cases
in which the correct tree, according to the treebank, wakedn
highest by the model; conversely, ttap tencolumn indicates
how often the correct tree was among the ten top-ranking re-
sults.

Maximum Number of Trees to Unpack (n)

Figure 5: Mean times for selective unpacking of all test gem
for n-best parsing with the ERG, for varying and grandpar-
enting (GP) levels

- : . less than 25 words. With sentences longer than 25
* Local ambiguity packing and selective unpaCki/vords the packing mechanism helps the parser to
ing for n-best parsing, witl) through4 levels ’ P g P P

of grandparenting (GP) features. overtqke greedy. bes.t-flrst parsing, although the ex-
haustive unpacking time also grows fast.

As a side-effect of differences in efficiency, some With the selective unpacking algorithm presented

i . . in the previous sections, unpacking time is reduced,
configurations could not complete parsing all sen-

. ] . ehnd grows only slowly as sentence length increases.
tences given reasonable memory constraints (Wh"ianacking up to ten results, when contrasted with
we set at a limit of 100k passive edges or 300 se '

o ) he timings for forest creation (i.e. the first parsing
onds processing time per item). The overall cover- T g
. : . . . phase) in Figure 4, adds a near-negligible extra cost
age and processing time of different configuration ) .
. . o the total time required for both phases. Moreover,
onJH4 are given in Table 2.

) ] ) Figure 5 shows that with selective unpacking,nas
The correlation between processing time and CO\s increased, unpacking time grows roughly linearly

erageis mtere_st_lng. However, |tmak_es Fhe efﬂmencyor all levels of grandparenting (albeit always with
comparison difficult as parser behavior is not clearl%m initial delay in unpacking the first result)

defined when the memory limit is exceeded. To cir- Table 4 summarizes a number of internal parser

cumvent this problem, in the following experiments < rements using the ERG with different pack-

we average only over those 1362 utterances froriﬂg/unpacking settings. Besides the difference in

?]H4that complet(_e parsing within the resource IImItprocessing time, we also see a significant difference
in all seven configurations. Nevertheless, it muslh “space” between exhaustive and selective un-
be noted that this restriction potentially reduces effi-aCking Also. the difference itunifications” and
ciency differences b?tw?e” conflggratloqs, as so ‘gopies” indicates that with our selective unpacking
of the more cha_lllenglng inputs (which typically Ieadalgorithm, these expensive operations on typed fea-
to the largest differences) are exclgdeq. _ ture structures are significantly reduced.

Figure 4 compares the processing time of differ- | ety for increased processing time (and
ent configurations. The difference is much morg,r4ing| loss in coverage) when using grandparent-
significant for longer sentences (i.e. with more tharihg features, Table 3 shows some large improve-
15 words). If the parser unpacks exhaustively, thg,ents in parse selection accuracy (although the pic-
time for unpacking grows with sentence length at §,¢ is ess clear-cut at higher-order levels of grand-

quickly increasing rate. In such cases, the eﬂidencﬁfarenting’i). A balance point between efficiency
gain with ambiguity packing in the parsing phas

is mostly lost in the unpacking phase. The graph *The models were trained using the open-soarcev pack-
age (Malouf, 2002), using default hyper-parameters focatl-

shows that greedy bQSt-flrSt parslng without paCkmg?urations, viz. a convergence threshold16f®, variance of
outperforms exhaustive unpacking for sentences @fe prior of10~*, and frequency cut-off of. It is likely that
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. . Unifications | Copies | Space | Unpack | Total

Configuration GP #) #) (Kbyte) (s) (s)
greedy best-first 0 1845 527 2328 - 0.12
exhaustive unpacking 0 2287 795 8907 0.01 0.12
<15 0 1912 589 8109 0.00 0.12
- 1 1913 589 8109 0.01 0.12
words | - selective unpacking | 2 1914 589 8109 0.01 | 0.12
3 1914 589 8110 0.01 0.12
4 1914 589 8110 0.02 0.13
greedy best-first 0 25233 5602 24646 - 1.66
exhaustive unpacking 0 39095 15685 | 80832 0.85 1.95
0 17489 4422 33326 0.03 1.17
> 15 1 17493 4421 | 33318 | 005 | 1.21
words | - selective unpacking | 2 17493 4421 | 33318 | 009 | 1.25
3 17495 4422 33321 0.13 1.27
4 17495 4422 33320 0.21 1.34

Table 4: Contrasting the efficiency of various (un-)packsadgtings in use with ERG on short (top) and medium-lengthti)
inputs; in each configuration, up to ten trees are extradtktfication and Copiesis the count of top-level FS operations, where
only successful unifications require a subsequent copyrfwheating a new edgellnpackandTotal are unpacking and total parse
time, respectively.

and accuracy can be made according to applicatidh Discussion
needs.

Finally, we compare the processing time of the he approach ta-best parsing described in this pa-
selective unpacking algorithm with and without in-P€r takes as its point of departure recent work of Car-
stantiation failure caching and propagation (as de®!l & Oepen (2005), which describes an efficient al-
scribed in Section 4 above). The empirical result§Orithm for unpacking:-best trees from a forest pro-
for GG are summarized in Table 5, showing clearifluced by a chart-based sentence generator and con-
that the technique reduced unnecessary hypothed@#1ing local ME properties with associated weights.
and instantiation failures. The design philosophy of? @n @lmost contemporaneous study, but in the con-
the ERG and GG differ. During the first, forest cre-{€Xt Of parsing with treebank grammars, Huang &
ation phase, GG suppresses a number of features {qfiand (2005) develop a series of increasingly effi-
the HPSG sense, not the ME sense) that can actuafiight @lgorithms for unpacking-best results from
constrain the combinatorics of edges. This mov@ Weighted hypergraph representing a parse forest.
makes the packed forest more compact, but it imtn€ algorithm of Carroll & Oepen (2005) and the
plies that unification failures will be more frequentfin@l one of Huang & Chiang (2005) are essentially
during unpacking. In a sense, GG thus moves pa@guivalent, gn_d turn out to be refqrmulations of an
of the search for globally consistent derivations intéPProach originally described by Jiménez & Marzal
the second phase, and it is possible for the forest {§000) (although expressed there only for grammars
contain ‘result’ trees that ultimately turn out to beln Chomsky Normal Form).
incoherent. Dynamic programming of instantiation N this paper we have considered ME properties
failures makes this approach tractable, while retairihat extend beyond immediate dominance relations,

ing the general breadth-first characteristic of the sextending up to 4 levels of grandparenting. Pre-

lective unpacking regime. vious work has either assumed properties that are

restricted to the minimal parse fragments (i.e. sub-
further optimization of hyper-parameters for individuandig-  trees of depth one) that make up the packed repre-
urations would moderately improve model performance, €spe tati G & Joh 2002 has tak
cially for higher-order grandparenting levels with largemmbers sentation (Geman ohnson, ), or has taken a

of features. more relaxed approach by allowing non-local prop-
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, . Unifications | Copies | Hypotheses | Space | Unpack | Total
Configuration (#) (#) (#) (Kbyte) | (ms) | (ms)
greedy best-first 5980 1447 - 9202 - 400

selective, no caching 5535 1523 1245 27188 70 410
selective, with cache 4915 1522 382 27176 10 350

Table 5: Efficiency effects of the instantiation failure by and propagation with GG, without grandparenting. Aditistics are
averages over the 1941 items that complete within the resdowunds in all three configurationshnification, Copies Unpack
andTotal have the same interpretation as in Table 4, Hydothesess the average count of hypothesized sub-trees.

erties but without addressing the problem of how tgorithm is efficient in that it empirically exhibits a
efficiently extract the top-ranked trees from a packetinear relationship between processing time and the
forest (Miyao & Tsuijii, 2002). number of analyses unpacked, at all degrees of ME

Probably the work closest in spirit to our approactieature non-locality. It improves over previous work
is that of Malouf & van Noord (2004), who use anin providing the only exact procedure for retrieving
HPSG grammar comparable to the ERG and GGy-best analyses from a packed forest that can deal
non-local ME features, and a two-phase parse fowith features with extended domains of locality and
est creation and unpacking approach. However, thekith forests created under subsumption. Our algo-
unpacking phase uses a beam search to find a godithm applies dynamic programming to intermediate
(single) candidate for the best parse; in contrast—results and local failures in unpacking alike.

for ME models contain'ing the types of non-local The experiments compared the new algorithm
features that are most important for accurate par§giy, paseline systems representing other possible
selection—we avoid an approximative searchefid ;504 ches to parsing with ME models: (a) a single
ficiently identify exactlythe n-best parses. _ phase of agenda-driven parsing with on-line prun-

When parsing with context free grammars, a (Sinjng pased on intermediate ME scores, and (b) two-
gle) parse can be retrieved from a parse forest ighase parsing with exhaustive unpacking and post-
time linear in the length of the input string (Bil- ¢ ranking of complete trees. The new approach

lot & Lang, 1989). However, as discussed in SeCspowed better speed, coverage, and accuracy than
tion 2, when parsing with a unification-based gramg,e paselines.

mar and packing under feature structure subsump-

tion, the cross-product of some local ambiguities Although we have dealt with the non-local ME
may not be globally consistent. This means that adeatures that in previous work have been found to be
ditional unifications are required at unpacking timeth® most important for parse selection (i.e. grand-
In principle, when parsing with a pathological gramJC)arenting and n-grams), this does not exhaust the
mar with a high rate of failure, extracting a singlefu” range of features that could possibly be useful.
consistent parse from the forest could take exponefr©" €xample, it may be the case that accurately re-
tial time (see Lang (1994) for a discussion of this isS0Iving some kinds of ambiguities can only be done
sue with respect to Indexed Grammars). In the cadwth reference to particular parts—or combinations
of GG, a high rate of unification failure in unpacking©f parts—of the HPSG feature structures represent-
is dramatically reduced by our instantiation failure"d the analysis of a complete constituent. To deal

caching and propagation mechanism. with such cases we are currently designing an exten-
sion to the algorithms described here which would
9 Conclusions and Future Work add a ‘controlled’ beam search, in which the size of

the beam was limited by the interval of score adjust-
We have described and evaluated an algorithm fanents for ME features that could only be evaluated
efficiently computing then-best analyses from a once the full linguistic structure became available.
parse forest produced by a unification grammar, witithis approach would involve a constrained amount
respect to a Maximum Entropy (ME) model con-of extra search, but would still produce the exaet
taining two classes of non-local features. The albest trees.
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Abstract

This paper describes a log-linear model with
an n-gram reference distribution for accurate
probabilistic HPSG parsing. In the model,
the n-gram reference distribution is simply
defined as the product of the probabilities
of selecting lexical entries, which are pro-
vided by the discriminative method with ma-
chine learning features of word and POS
n-gram as defined in the CCG/HPSG/CDG
supertagging. Recently, supertagging be-
comes well known to drastically improve
the parsing accuracy and speed, but su-
pertagging techniques were heuristically in-
troduced, and hence the probabilistic mod-
els for parse trees were not well defined.
We introduce the supertagging probabilities
as a reference distribution for the log-linear
model of the probabilistic HPSG. This is the
first model which properly incorporates the
supertagging probabilities into parse tree’s
probabilistic model.

Introduction

sophisticated grammar formalisms, such as head-
driven phrase structure grammar (HPSG) (Pollard
and Sag, 1994), combinatory categorial grammar
(CCQG) (Steedman, 2000) and lexical function gram-
mar (LFG) (Bresnan, 1982). They are preferred
because they give precise and in-depth analyses
for explaining linguistic phenomena, such as pas-
sivization, control verbs and relative clauses. The
main difficulty of developing parsers in these for-
malisms was how to model a well-defined proba-
bilistic model for graph structures such as feature
structures. This was overcome by a probabilistic
model which provides probabilities of discriminat-
ing a correct parse tree among candidates of parse
trees in alog-linear modelor maximum entropy
model(Berger et al., 1996) with many features for
parse trees (Abney, 1997; Johnson et al., 1999; Rie-
zler et al., 2000; Malouf and van Noord, 2004; Ka-
plan et al., 2004; Miyao and Tsuijii, 2005). Follow-
ing this discriminative approach, techniques for effi-
ciency were investigated for estimation (Geman and
Johnson, 2002; Miyao and Tsujii, 2002; Malouf and
van Noord, 2004) and parsing (Clark and Curran,
2004b; Clark and Curran, 2004a; Ninomiya et al.,
2005).

For the last decade, fast, accurate and wide-coverageAn interesting approach to the problem of parsing
parsing for real-world text has been pursued iefficiency was using supertagging (Clark and Cur-
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ran, 2004b; Clark and Curran, 2004a; Wang, 2003iertagging probabilities into parse tree’s probabilis-
Wang and Harper, 2004; Nasr and Rambow, 2004ic model. We compared our model with the proba-
Ninomiya et al., 2006; Foth et al., 2006; Foth andilistic model for phrase structures (Miyao and Tsu-
Menzel, 2006), which was originally developed foijii, 2005). This model uses word and POS unigram
lexicalized tree adjoining grammars (LTAG) (Ban-for its reference distribution, i.e., the probabilities of
galore and Joshi, 1999). Supertagging is a proceasigram supertagging. Our model can be regarded
where words in an input sentence are tagged witlis an extension of a unigram reference distribution
‘supertags,” which are lexical entries in lexicalizedo an n-gram reference distribution with features that
grammars, e.g., elementary trees in LTAG, lexicahre used in supertagging. We also compared with a
categories in CCG, and lexical entries in HPSG. Thprobabilistic model in (Ninomiya et al., 2006). The
concept of supertagging is simple and interestingrobabilities of their model are defined as the prod-
and the effects of this were recently demonstrated wnct of probabilities of supertagging and probabilities
the case of a CCG parser (Clark and Curran, 2004aj the probabilistic model for phrase structures, but
with the result of a drastic improvement in the parstheir model was trained independently of supertag-
ing speed. Wang and Harper (2004) also demoming probabilities, i.e., the supertagging probabili-
strated the effects of supertagging with a statistties are not used for reference distributions.

cal constraint dependency grammar (CDG) parser

by showing accuracy as high as the state-of-the-aft HPSG and probabilistic models

parsers, and Foth et al. (2006) and Foth and Menzgb g (pollard and Sag, 1994) is a syntactic theory
(2006) reported that accuracy was significantly iMp e on lexicalized grammar formalism. In HPSG,

prov_ed by incorporating the _supertagging p_roba_bilié small number of schemata describe general con-
ties into manually tuned Weighted CDG. Ninomiyagy,ction rules, and a large number of lexical entries
et al. (2006) showed the parsing model using only, <5 \word-specific characteristics. The structures
supertagging probabilities could achieve accuracy 3 sentences are explained using combinations of
high as the probabilistic model for phrase structure§.namata and lexical entries. Both schemata and

termined by supertags as is claimed by Bangalotg, g ang constraints represented by feature struc-
and Joshi (1999). However, supertaggers themselv&ﬁes are checked withnification

were heuristically used as an external tagger. TheyAn example of HPSG parsing of the sentence

filter out unlikely lexical entries just to help parsing“Spring has confeis shown in Figure 1. First
(Clark and Curran, 2004a), or the probabilistic M0dz 41 of the lexical entries forhas and ‘:comé '

els for phrase structures were trained independently  ifieq with a daughter feature structure of the
of the supertagger’s probabilistic models (Wang anfhq 4. complement Schema. Unification provides
Harper, 2004; Ninomiya et al., 2006). In the case Gf\e phrasal sign of the mother. The sign of the
supertagging of Weighted CDG (Foth et al., 2006),qr constituent is obtained by repeatedly applying
!oaramef[ers for We|ghted CDG ar_e manually tune chemata to lexical/phrasal signs. Finally, the parse
i.e., their model is not a well-defined probablllstlcresult is output as a phrasal sign that dominates the

mode. _ .. . sentence.
We propose a log-linear model for probabilistic Given a seiV of words and a sef of feature

HPSG parsing in which the supertagging probabilgi,ctres, an HPSG is formulated as a tugle—
ities are introduced as a reference distribution fO{L R), where

the probabilistic HPSG. The reference distribution is
simply defined as the product of the probabilities of
selecting lexical entries, which are provided by the , : _ _
discriminative method with machine leaming fea- %S & set of schemata; i.e..c Ris a partial

tures of word and part-of-speech (POS) n-gram as function: 7 x 7 — F.

defined in the CCG/HPSG/CDG supertagging. Thi§iven a sentence, an HPSG computes a set of
is the first model which properly incorporates the suphrasal signs, i.e., feature structures, as a result of

L={l=(w F)lweW,F e F}isasetof
lexical entries, and

61



COMPS <>
COMPS <>

FE’;’ TR H to sentencev. Because the number of parse can-
didates is exponentially related to the length of the

oo SRR sentence, the estimation is intractable for long sen-
[S%?ipéij [ES%JPEEEJ m[égﬁfpé@ﬂ tences. To make the model estimation tractable, Ge-
QJ h\ | man and Johnson (Geman and Johnson, 2002) and
rin as come . N
’ FEQ? verb J Miyao and Tsuijii (Miyao and Tsujii, 2002) proposed
°°M<; . a dynamic programming algorithm for estimating
-SU _ect- eal . .
[HEAD v%bJ p(T|w). Miyao and Tsujii (2005) also introduced a
SuUBJ <[> . . oy .
COMPS <> preliminary probabilistic modeb,(7'|w) whose es-
— o[ [ V%be? :O[T.EAD 2] timation does not require the parsing of a treebank.
SUBJ <> SuBJ <[> 21| suBJ <[> . . . . . .
comps <>]  Lcomps <z>] ~Lcowps <> This model is introduced asraference distribution

Sprlng hls Cor‘ne (Jelinek, 1998; Johnson and Riezler, 2000) of the
probabilistic HPSG model; i.e., the computation of

parse trees given low probabilities by the model is

omitted in the estimation stage (Miyao and Tsuijii,

2005), or a probabilistic model can be augmented

parsing. Note that HPSG is one of the lexicalizethy several distributions estimated from the larger

grammar formalisms, in which lexical entries deterand simpler corpus (Johnson and Riezler, 2000). In

mine the dominant syntactic structures. (Miyao and Tsujii, 2005)p(T'|w) is defined as the
Previous studies (Abney, 1997; Johnson et alproduct of probabilities of selecting lexical entries

1999; Riezler et al., 2000; Malouf and van Noordwith word and POS unigram features:

2004; Kaplan et al., 2004; Miyao and Tsujii, 2005)

defined a probabilistic model of unification-based (Miyao and Tsuijii (2005)’s model)

grammars including HPSG ad@y-linear modelor

Figure 1: HPSG parsing.

maximum entropy modéBerger et al., 1996). The et (TIW) = po(T L \
probability that a parse resuff is assigned to a Punires (T|w) = po(Tlw) 7~ Z wfulT
given sentencev = (wy, ..., wy) IS

Tw = Zpo T |w) exp A fu(T
(Probabilistic HPSG)

o(T'|w) = li|w;),
Phpsg(T|W) *fexp (Z,\ufu ) Po( | ) EP( ‘ )

wherel; is a lexical entry assigned to woud; in

T = Zexp (Z /\ufu(T’)> , T andp(l;|w;) is the probability of selecting lexical
I u entryl; for w;.
where), is a model parametef,, is a feature func-  In the experiments, we compared our model with

tion that represents a characteristic of parse Tfee other two types of probabilistic models using a su-
and Z,, is the sum over the set of all possible parspertagger (Ninomiya et al., 2006). The first one is
trees for the sentence. Intuitively, the probabilitithe simplest probabilistic model, which is defined
is defined as the normalized product of the weightwith only the probabilities of lexical entry selec-
exp(A,) when a characteristic correspondingftp tion. It is defined simply as the product of the prob-
appears in parse resdlt The model parameters,, abilities of selecting all lexical entries in the sen-
are estimated using numerical optimization methodence; i.e., the model does not use the probabilities
(Malouf, 2002) to maximize the log-likelihood of of phrase structures like the probabilistic models ex-
the training data. plained above. Given a set of lexical entriés,a

However, the above model cannot be easily estsentencew = (wy,...,w,), and the probabilistic
mated because the estimation requires the compumodel of lexical entry selectiom(l; € L|w,1), the
tation of p(T'|w) for all parse candidates assignedirst model is formally defined as follows:
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HEAD verb

fron= <S, has, VBZ, {ggﬁp;ﬁ@; } > de

............................... head-comp, 1, 0, , &, G,y
k{ HEAD verb .' :EQ? :ﬁg) fbinary SPi, SYL, hwl7 hpl7 hll7
{SUBJ <> } fbmary: 1, VP, has, VBZ, |Coyps <vps SPr, SYr, hwr, hpT7 hi,

COMPS H
o ...........-". 1, VP, come, VBN, 25/;? :ﬁ&i funary = <77 sY, hwa hpa hl>
COMPS =
subject-hea = froot = (sy, hw, hp, hl>
ggg? Vg]fb : flem = <wi,pi7 l7«>
<1/>
COMPS <>

Fopt _ Wi—1, Wi, Wit1,
- S a -
s Pi—2,Pi—1,Pi; Pi+1, Pi+2

........................

2 FSQ? :;)urj FLEJQ? Z;S } ) FLEJQJD Z%E} r name of the applied schema
i |comps<>| i ilcomps <> COMPS <> d distance between the head words of the daughters
............................ \ \ % whether a comma exists between daughters
| \ ¢ and/or inside daughter phrases
has'VBZ come/VBN sp  number of words dominated by the phrase
¢ = <spring. NN, |HEaD o sy  symbol of the phrasal category
te™ <SPring, NN, |2 ps < |~ hw  surface form of the head word

hp  part-of-speech of the head word
hl lexical entry assigned to the head word

Figure 2: Example of features. w;  i-th word
Di part-of-speech fow;
li lexical entry forw;

Ninomiya et al. (2006)’'s model 1
(Ninomiya etal. (2006)'s model 1) Table 1: Feature templates.

n

Pmodell (T|W) = Hp(ll ‘W, ’L)7

=1
al. (2006)’'s model 1 and 3. The features used in our
model and their model are combinations of the fea-
ture templates listed in Table 1 and Table 2. The
feature templategy;,,qr, and fu,qry are defined for
'constituents at binary and unary branchgs,: is a
feature template set for the root nodes of parse trees.
f1ex is a feature template set for calculating the uni-
gram reference distribution and is used in Miyao and
1 Tsujii (2005)'s model. f,p1q4 is a feature template
Zo P <Z ’\“f“(li’w’i)> set for calculating the probabilities of selecting lex-

“ ical entries in Ninomiya et al. (2006)’s model 1 and

L 3. The feature templates ify, ., are word trigrams

Zu =) exp (Z Aufull ’W”)> ; and POS 5-grams. An example of features applied

. ' , , . to the parse tree for the senten&pting has conie
whereZ,, is the sum over all possible lexical entrieSs <hown in Figure 2

for the wordw;.

The second model is a hybrid model of supertag-
ging and the probabilistic HPSG. The probabilitie%
are given as the product of Ninomiya et al. (2006)’s
model 1 and the probabilistic HPSG.

wherel; is a lexical entry assigned to wotg in T
andp(l;|w, 1) is the probability of selecting lexical
entryl; for w;.

The probabilities of lexical entry selection
p(l;|w, 1), are defined as follows:

(Probabilistic model of lexical entry selection)

p(lilw, i) =

Probabilistic HPSG with an n-gram
reference distribution

(Ninomiya et al. (2006)’s model 3) In this section, we propose a probabilistic model
with an n-gram reference distribution for probabilis-
tic HPSG parsing. This is an extension of Miyao
and Tsujii (2005)’s model by replacing the unigram
In the experiments, we compared our model witheference distribution with an n-gram reference dis-
Miyao and Tsujii (2005)’s model and Ninomiya ettribution. Our model is formally defined as follows:

Pmodel3 (T|W) = Pmodell (T‘W)phPSQ (T‘W)
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combinations of feature templates finary model and their model, the parameters for lexical en-

(r,d, c, hw, hp, hl), (r,d, c, hw, hp), (r,d, ¢, hw, hl), . _ .

(r,d, c, sy, hw), (r, ¢, sp, hw, hp, hl), (r, ¢, sp, hw, hp), tries (= the parameters pf,,oqei1 (T|W)) are first es-

(r, ¢, sp, hw, W), (r, c, sp, sy, hw), (r,d, ¢, hp, hi}, timated from the word and POS sequences indepen-
(r.d,c, hp), (r,d, c, hl), (r,d, c, sy), (r, c, sp, hp, hl), dently of the parameters for phrase structures. That
<T7 c7 Sp7 hp>7 <T, C7 Sp7 hl>7 <T7 c, Sp? Sy>

is, the estimated parameters for lexical entries are
combinations of feature templates fiifnary the same in both models, and hence the probabilities
(s hw, hp, hl), (r, haw, hp), (r, hw, hl), (r, sy, hw), Of Pmoder1 (T|w) of both models are the same. Note
(r, hp, KLY, (r, hp), (r, hl), (r, sy) ; . ;

that the parameters for lexical entries will never be
combinations of feature templates ffo: updated after this estimation stage; i.e., the parame-
(hw, hp, hl), (hw, hp), (hw, hl), ters for lexical entries are not estimated in the same
(sy, hw), (hp, hl), (hp), (hl), (sy) . .

time with the parameters for phrase structures. The

combinations of feature templates f0r. difference of our model and their model is the esti-
(wi, pi, L), {pis ) mation of parameters for phrase structures. In our
combinations of feature templates iz, model, given the probabilities for lexical entries, the
(wi1), (wi), (wis1), parameters for phrase structures are estimated so as
213;_21>,7$§7<11>@%2;§1>)f+1>7<pi+2>’<pi+3>' to maximize the entire probabilistic model (= the
(Di—1, w3, (pi, wi), (Pit1, ws), product of the probabilities for lexical entries and
(Pis Pi+1, Dit2, Pita)s (Pi-2,Pi-1, i), the probabilities for phrase structures) in the train-
éﬁiiﬁfﬁ@ff>+?pp;i>l> (Pit1, Pita) ing corpus. In their model, the parameters for phrase

structures are trained without using the probabili-

Table 2: Combinations of feature templates.  tjes for lexical entries, i.e., the parameters for phrase
structures are estimated so as to maximize the prob-
abilities for phrase structures only. That is, the pa-

rameters for lexical entries and the parameters for
Prref(T|wW) = phrase structures are trained independently in their
> model.

(Probabilistic HPSG with an n-gram reference distribution)

Miyao and Tsujii (2005)’s model also uses a ref-

1
mpmodell (T|W) exp (Z Aufu(T’)
erence distribution, but with word and POS unigram

u

Znref = features, as is explained in the previous section. The
) ) only difference between our model and Miyao and
> pmodert(T'[w)exp | > Xufu(T') |- Tsuijii (2005)'s model is that our model uses se-
T’ u

guences of word and POS tags as n-gram features
for selecting lexical entries in the same way as su-
pertagging does.
In our model, Ninomiya et al. (2006)'s model 1
is used as a reference distribution. The probabilié Experiments

tic model of lexical entry selection and its feature

templates are the same as defined in Ninomiya et §¢ €valuated the speed and accuracy of parsing
(2006)'s model 1. by using Enju 2.1, the HPSG grammar for English

The formula of our model is the same as Ni{Miyao etal., 2005; Miyao and Tsujii, 2005). The

nomiya et al. (2006)'s model 3. But, their modell_eXicon of the grammar was extracted from Sec-

is not a probabilistic model with a reference distrilons 02-21 of the Penn Treebank (Marcus et al,

bution. Both our model and their model consist of-224) (39,832 sentences). The graﬁrg\mar consisted
the probabilities for lexical entries @oqer1 (T]w)) of 3,797 lexical entries for 10,536 wordsT he prob-

and the probabilities for phrase structures (= the rest *An HPSG treebank is automatically generated from the

of each formula). The only difference between oupPenn Treebank. Those lexical entries were generated by apply-
. . . Ing lexical rules to observed lexical entries in the HPSG tree-

model and their model is the way of how to traingan (Nakanishi et al., 2004). The lexicon, however, included

model parameters for phrase structures. In both outany lexical entries that do not appear in the HPSG treebank.
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No. of tested sentences  Total No. of sentences  Avg. length of tested sentences
Section 23 2,299 (100.00%) 2,299 22.2
Section 24 1,245 (99.84%) 1,247 23.0

Table 3: Statistics of the Penn Treebank.

Section 23 (Gold POSs)
LP LR LF upP UR UF Avg. time

) () %) () (%) (%) (ms)
Miyao and Tsujii (2005)'s mode] 87.26 8650 86.88 90.73 89.93 90.33 604
Ninomiya et al. (2006)'s model 1 87.23 86.47 86.85 90.05 89.27 89.66 129
Ninomiya et al. (2006)'s model 3 89.48 88.58 89.02 9233 91.40 91.86 152
our model T 89.78 89.28 8953 9258 92.07 9232 234
our model 2 90.03 89.60 89.82 92.82 92.37 92.60 1379

Section 23 (POS tagger)
LP LR LF upP UR UF Avg. time

%) ) (%) (%) (%) (%) (ms)
Miyao and Tsujii (2005)’'s model 84.96 84.25 84.60 89.55 88.80 89.17 674
Ninomiya et al. (2006)’'s model 1 85.00 84.01 8450 88.85 87.82 88.33 154
Ninomiya et al. (2006)’'s model 3 87.35 86.29 86.82 91.24 90.13 90.68 183
Matsuzaki et al. (2007)’'s model | 86.93 86.47 86.70 - - - 30
our model 1 87.28 87.05 87.17 91.62 91.38 91.50 260
our model 2 87.56 87.46 87.51 91.88 91.77 91.82 1821

Table 4: Experimental results for Section 23.

abilistic models were trained using the same portioand Curran, 2004b; Miyao and Tsuijii, 2005). The
of the treebank. We used beam thresholding, globaekperiments were conducted on an AMD Opteron
thresholding (Goodman, 1997), preserved iterativeerver with a 2.4-GHz CPU. Section 22 of the Tree-
parsing (Ninomiya et al., 2005) and quick checlbank was used as the development set, and the per-
(Malouf et al., 2000). formance was evaluated using sentences: df00

We measured the accuracy of the predicata¥ords in Section 23. The performance of each
argument relations output of the parser. Amodel was analyzed using the sentences in Section
predicate-argument relation is defined as a tupi# of < 100 words. Table 3 details the numbers
(o, wy,, a,w,), Whereo is the predicate type (e.g., and average lengths of the tested sentenceskiio
adjective, intransitive verb)y;, is the head word of Words in Sections 23 and 24, and the total numbers
the predicateq is the argument labeMODARG, Of sentences in Sections 23 and 24.

ARG1, ..., ARG4), andw, is the head word of  The parsing performance for Section 23 is shown
the argument. Labeled precision (LP)/labeled ren Table 4. The upper half of the table shows the per-
call (LR) is the ratio of tuples correctly identified formance using the correct POSs in the Penn Tree-
by the parsér Unlabeled precision (UP)/unlabeledbank, and the lower half shows the performance us-
recall (UR) is the ratio of tuples without the pred-ing the POSs given by a POS tagger (Tsuruoka and
icate type and the argument label. This evaluatiohsujii, 2005). LF and UF in the figure are labeled
scheme was the same as used in previous evaluatidnscore and unlabeled F-score. F-score is the har-
of lexicalized grammars (Hockenmaier, 2003; Clarknonic mean of precision and recall. We evaluated
our model in two settings. One is implemented with
The HPSG treebank is used for training the probabilistic moded narrow beam width (‘our model 1’ in the figure),

for lexical entry selection, and hence, those lexical entries th%[nd the other is implemented with a wider beam
do not appear in the treebank are rarely selected by the proba- ) . ! )
bilistic model. The ‘effective’ tag set size, therefore, is aroundVidth (‘our model 2’ in the figuré) ‘our model
1,361, the number of lexical entries without those never-seen
lexical entries. 3The beam thresholding parameters for ‘our model 1’ are
2When parsing fails, precision and recall are evaluated, ako = 10, Ao = 5, a)ast = 30,80 = 5.0, A8 = 2.5, Bj55t =
though nothing is output by the parser; i.e., recall decreasd$.0,50 = 10,Ad = 5,535t = 30, ko = 5.0,Ar =
greatly. 2.5, K|agt = 15.0, 6o = 6.0, A0 = 3.5, andfjz5t = 20.0.
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Figure 3: F-score versus average parsing time for sentences in Sectiorz2dD6fwords.

1’ was introduced to measure the performance withosed a technique for efficient HPSG parsing with
balanced F-score and speed, which we think appreupertagging and CFG filtering. Their results with
priate for practical use. ‘our model 2’ was intro-the same grammar and servers are also listed in the
duced to measure how high the precision and réewer half of Table 4. They achieved drastic im-
call could reach by sacrificing speed. Our modprovement in efficiency. Their parser ran around 6
els increased the parsing accuracy. ‘our model limes faster than Ninomiya et al. (2006)'s model 3,
was around 2.6 times faster and had around 2.@btimes faster than ‘our model 1" and 60 times faster
points higher F-score than Miyao and Tsujii (2005)'shan ‘our model 2. Instead, our models achieved
model. ‘our model 2’ was around 2.3 times slowebetter accuracy. ‘our model 1’ had around 0.5 higher
but had around 2.9 points higher F-score than MiyaB-score, and ‘our model 2’ had around 0.8 points
and Tsujii (2005)’'s model. We must admit that thehigher F-score. Their efficiency is mainly due to
difference between our models and Ninomiya et aklimination of ungrammatical lexical entries by the
(2006)'s model 3 was not as great as the differ€FG filtering. They first parse a sentence with a
ence from Miyao and Tsujii (2005)’s model, but ‘ourCFG grammar compiled from an HPSG grammatr,
model 1’ achieved 0.56 points higher F-score, andnd then eliminate lexical entries that are not in the
‘our model 2’ achieved 0.8 points higher F-scoreparsed CFG trees. Obviously, this technique can
When the automatic POS tagger was introduced, Biso be applied to the HPSG parsing of our mod-
score dropped by around 2.4 points for all models.els. We think that efficiency of HPSG parsing with
We also compared our model with Matsuzaki eour models will be drastically improved by applying
al. (2007)'s model. Matsuzaki et al. (2007) pro-this technique.
The termss and§ are the thresholds of the number of phrasal The average parsmg t'lme and labeled F-score
signs in the chart cell and the beam width for signs in the chaUrves of each probabilistic model for the sentences
cell. The termsxy and 3 are the thresholds of the number andin Section 24 of< 100 words are graphed in Fig-
S o e et Wil o yre 3. The graph clearly shows the difference of
0 are the initial values. The parser iterates parsing until it su@Ur model and other models. As seen in the graph,
ceeds to generate a parse tree. The parameters increase for gsgh model achieved higher F-score than other model
iteration by the terms prefixed h¥, and parsing finishes when H/ghen beam threshold was widen. This implies that

the parameters reach the terms with suffixes last. Details of t -
parameters are written in (Ninomiya et al., 2005). The bear@ther models were probably difficult to reach the F-

thresholding paﬂrameters fOAréOUf mOdegz' are = 18, A(;Oé = score of ‘our model 1’ and ‘our model 2’ for Section

6, gt = 42,00 = 9.0,A8 = 3.0, 85t = 21.0,00 = . .

18, 80 = 6, dnst = 42, r0 = 9.0, Ak = 3.0, rjqe = 21.0. 23 €ven ifwe changed the beam thresholding param-
In ‘our model 2', the global thresholding was not used. eters. However, F-score of our model dropped eas-
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ily when we narrow down the beam threshold, compoints higher F-score than Miyao and Tsujii (2005)’s
pared to other models. We think that this is mainlynodel and around 0.56 points higher F-score than
due to its bad implementation of parser interfaceghe Ninomiya et al. (2006)’s model 3. When we sac-
The n-gram reference distribution is incorporatedifice parsing speed, our model achieved around 2.9
into the kernel of the parser, but the n-gram feapoints higher F-score than Miyao and Tsuijii (2005)’s
tures and a maximum entropy estimator are definedodel and around 0.8 points higher F-score than Ni-
in other modules; n-gram features are defined in momiya et al. (2006)’s model 3. Our model achieved
grammar module, and a maximum entropy estimatdrigher F-score because parameters for phrase struc-
for the n-gram reference distribution is implementedures in our model are trained with the supertagging
with a general-purpose maximum entropy estimatgrobabilities, which are not in other models.

module. Consequently, strings that represent the n-

gram information are very frequently changed into

feature structures and vice versa when they go in arll%eferences

out of the kernel of the parser. On the other hand, NBteven P. Abney. 1997. Stochastic attribute-value gram-
nomiya et al. (2006)’s model 3 uses the supertagger mars.Computational Linguistic23(4):597-618.

as an external module. Once the parser acquires tgnivas Bangalore and Aravind Joshi. 1999. Supertag-
supertagger’s outputs, the n-gram information never ging: An approach to almost parsinG.omputational
goes in and out of the kernel. This advantage of Ni- Linguistics 25(2):237-265.

nomiya et al. (2006)'s model can apparently be imadam Berger, Stephen Della Pietra, and Vincent Della
plemented in our model, but this requires many parts Pietra. 1996. A maximum entropy approach to nat-
of rewriting of the implemented parser. We estimate ural language processing.omputational Linguistics
that the overhead of the interface is around from 50 22(1):39-71.

to 80 ms/sentence. We think that re-implementatiofoan Bresnan. 1982.The Mental Representation of
of the parser will improve the parsing Speed as esti- Grammatical RelationsMIT Press, Cambridge, MA.
mated. In Figure 3, the line of our model crosses thgtephen Clark and James R. Curran. 2004a. The impor-
line of Ninomiya et al. (2006)’s model. If the esti- tance of supertagging for wide-coverage CCG parsing.
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Abstract

Writing aids such as spelling and grammar
checkers are often based on texts by adult writ-
ers and are not sufficiently targeted to support
children in their writing process. This paper
reports on the development of a writing tool
based on a corpus of Swedish text written by
children and on the parsing methods developed
to handle text containing errors. The system
uses finite state techniques for finding gram-
mar errors without actually specifying the error.
The ‘broadness’ of the grammar and the lexical
ambiguity in words, necessary for parsing text
containing errors, also yields ambiguous and/or
alternative phrase annotations. We block some
of the (erroneous) alternative parses by the or-
der in which phrase segments are selected,
which causes bleeding of some rules and more
‘correct’ parsing results are achieved. The
technique shows good coverage results for
agreement and verb selection phenomena.

1 Introduction

Writing on a computer in school often involves
making a fair copy from a handwritten draft. Al-
though a computer is an excellent means for the
writing process, especially the linguistic tools are
not used adequately. Spelling and grammar correc-
tors are in general developed for and adapted to
adult writers and have difficulties to support chil-
dren in their writing development and give no
space for acquisition or training. Errors in texts
written by school children are more frequent and
the distribution of the error types is different from
adult writers.
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This paper reports on the development of a finite
state system for finding grammar errors, called Fi-
niteCheck, based on a corpus of Swedish text writ-
ten by school children. The system applies descrip-
tions of correct language use in the detection proc-
ess of grammatical violations and contains no rules
describing the nature of the erroneous segments the
system searches for. The approach (following
Karttunen et al., 1996) for finding errors involves
developing automata that represent two ‘positive’
grammars with varying degree of detail and then
subtracting the detailed one from the general one.
The difference between the automata corresponds
to a grammar for errors.

2 Grammar Checkers

2.1 Current Systems

Whereas spelling checkers are standard in most
word processors, grammar checking is a rather re-
cent technology, especially for Swedish. Different
methods and techniques have been applied to han-
dle nonsense words and thus operate on isolated
words as most spelling correctors do. Both statisti-
cal and rule-based methods and also algorithms
that to some extent take into consideration the sur-
rounding context (i.e. context-sensitive errors) or
how a word is pronounced have been used for
spelling correction (cf. Kukich, 1992).

Grammar checkers involve techniques and solve
problems above the single word level and require
syntactic, semantic or even discourse analysis (see
Section 2.2). Grammar checking techniques started
to develop first in the 1980’s with products mainly
for English (see Jensen et al, 1993; Vernon, 2000)
but also for other languages, e.g. French (Chanod,
1996), Dutch (Vosse, 1994), Czech (Kirschner,
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1994), Spanish and Greek (Bustamente and Leon,
1996). Computer-based grammar checking for
Swedish is fairly recent and has primarily focused
on the needs of adult writers. The first product re-
lease of such a writing aid was in November 1998
with the tool Grammatifix (Arppe, 2000; Birn,
2000), now part of the Swedish Microsoft Office
2000. Two other research groups developed
grammar checking prototypes: Granska (Knutsson,
2001; Domeij, 2003) and Scarrie (Ségvall Hein,
1999).

2.2  Methods and Techniques

Many of the grammar checking systems are com-
mercial products and technical documentation is
often minimal or even absent. Critigue (known
until 1984 as Epistle) is an exception, a system
developed in collaboration with IBM within the
Programming Language for Natural Language
Processing (PLNLP) project (Jensen et al., 1993).
This tool is based on a parser using Augmented
Phrase Structure Grammar (ACFG) and produces
a complete analysis for all sentences (even un-
grammatical) by application of relaxation rules
when parsing fails on the first try or parse fitting
procedure identifying the head and its constituents
(Heidorn, 1993; Jensen et al., 1993). This approach
of providing analysis of all sentences had influ-
enced other grammar formalisms such as Con-
straint Grammar (Karlsson et al., 1995) or Func-
tional Dependency Grammar (Jarvinen and Ta-
panainen, 1998). The methods of rule relaxation
and parse fitting had an impact on the development
of other grammar checking systems.

The three Swedish tools use different technol-
ogy to analyze unrestricted text and detect gram-
mar errors. The lexical analysis in Grammatifix is
based on the morphological analyzer SWETWOL,
designed according to the principles of two-level
morphology (Karlsson, 1992). The part-of-speech
assignment applies the Swedish Constraint Gram-
mar (SWECG), a surface-syntactic parser applying
context-sensitive disambiguation rules (Birn,
1998). Errors are detected by partial parsing and
relaxation on rules, regarding certain word se-
quences as phrases despite grammar errors in them.

Granska combines probabilistic and rule-based
methods, where specific error rules (around 600)
and local applied rules detect ungrammaticalities in
free text. The lexical analyzer applies Hidden
Markov Models and a rule matching system analy-
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ses the tagged text searching for grammatical vio-
lations defined in the detection rules and produces
error description and a correction suggestion for
the error (Carlberger & Kann, 1999).

The grammar checker in Scarrie is based on a
previously developed parser, the Uppsala Chart
Parser (UCP), a procedural, bottom-up parser, ap-
plying a longest path strategy (Ségvall Hein,
1983). The parsing strategy of erroneous input is
based on constraint relaxation and application of
local error rules. The grammar is in other words
underspecified to a certain level, allowing feature
violations and parsing of ungrammatical word se-
quences (Wedbjer Rambell, 1999).

The Swedish approaches to detection of gram-
mar errors vary from chart-based methods in Scar-
rie, application of constraint grammars in Gram-
matifix, to a combination of probabilistic and rule-
based methods in Granska. Scarrie and Granska
identify erroneous patterns by partial analysis,
whereas Grammatifix produces full analysis for
both grammatical and ungrammatical sentences.
All the tools define (wholly or to some extent) ex-
plicit error rules describing the nature of the error
they search for. In the process of error detection
they either proceed sentence by sentence, requiring
recognition of sentence boundaries, or they rely in
their rules on for instance capitalization conven-
tions.

2.3 Error Coverage

Current grammar checking systems are restricted
to a small set of all possible writing errors, con-
cerning mostly syntactic analysis. The choice of
what types of errors are detected in the Swedish
tools is based on analysis of errors in writing of
certain groups of writers (e.g. professional writers,
writers at work). The coverage of error types is
very similar between the systems, including errors
in noun phrase agreement and agreement in predi-
cative complement, pronoun case after preposition,
word order, errors in verbs, etc.

Observations with children writing on a com-
puter in school (Hard af Segerstad & Sofkova
Hashemi, 2006; Sofkova Hashemi, forthcoming)
and performance tests of the Swedish tools on texts
written by school children (Sofkova Hashemi,
2003) show that grammar checkers do not suffi-
ciently support school children in their writing de-
velopment. The grammatical mistakes found in
texts written by children display different fre-



quency and distribution than in adults and the text
structure as whole is different. Main clauses are
often joined together without conjunctions and
punctuation marks often delimit larger textual units
than syntactic sentences. Sentence boundaries and
capitalization are something the Swedish tools rely
on in their detection process, which may have im-
pact on the coverage results. Although the systems
cover many of the types of errors found in school
texts, they detect around 12% of all writing errors
(Sofkova Hashemi, 2003) (see Section 6). Per-
formance on text data such as newspaper texts and
student compositions evaluated within the frames
of the separate projects shows a much higher cov-
erage of error detection on average 58% (Birn,
2000; Knutsson, 2001; Sagvall Hein et al., 1999).

3  The Training Data
3.1 The Child Data Corpus

FiniteCheck, the grammar error detector reported
in this paper, is based on a corpus of Swedish text
written by school children. This Child Data corpus
of 29 812 words (3 373 word types) is composed
of computer written and hand written essays writ-
ten by children between 9 and 13 years of age. In
general, the text structure of the compositions re-
veals clearly the influence of spoken language and
performance difficulties in spelling, segmentation
of words, the use of capitals and punctuation, with
fairly wide variation both by individual and age. In
total, 260 instances of grammatical errors were
found in 134 narratives.

3.2 The Error Types

The most frequent grammatical violation concerns
the omission of finite verb inflection (42% of all
errors), i.e. when the main finite verb in a clause
lacks the appropriate present or past tense endings:

(1) Pd natten *vakna jag av att brandlarmet tjot
in the-night wake[untensed] I from that fire-
alarm howled
— In the night I woke up from that the fire-
alarm went off.

The correct form of the verb vakna ‘wake’ should
be in the past tense, i.e. vaknade ‘woke’. This type
of error arises from the fact that the writing is
highly influenced by spoken language. In spoken
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Swedish regular weak verbs in the past tense often
lack the appropriate ending and the spoken form
then coincides with the infinitive (and for some
verbs also imperative) form of the verb.

Other frequent grammar problems concern extra
inserted or missing words in sentences (22%), here
the preposition 7 ‘in’ is missing:

(2) Gunnar var pda semester *_ norge och dkte

skidor.

Gunnar was on vacation _ Norway and went
skis

— Gunnar was on vacation in Norway and
skied.

word choice errors (11%), here the verb att vara
lika ‘to be alike’ requires the particle ¢/l ‘to’ in
combination with the noun phrase sdttet ‘the-
manner’ and not pd ‘on’ as the writer uses:

(3) vi  var vildigt lika sdittet
we were very like on the-manner
— We were very alike in the manners.

errors in noun phrase agreement (6%), here the
correct form of the noun phrase requires the noun
to be definite as in den ndrmsta handduken ‘the
nearest towel’:

(4) jag tar den nirmsta *handduk och slinger
den i vasken
I take the[def] nearest[def] towel [indef] and
throw it in the sink
— I take the nearest towel and throw it into the
sink.

errors in verb chains (3%), here the auxiliary verb
should be followed by an infinitive, ska bli ‘will
become’, but in this case the present tense is used:

(5) Men kom ihdg att det inte ska *blir ndgon
riktig brand.
but remember that it not will becomes[pres]
some real fire
— But remember that there will not be a real
fire.

Other grammar errors occurred less than ten times
in the whole corpus, including reference errors,
agreement between subject and predicative com-



plement, definiteness in single nouns, pronoun
form, errors in infinitive phrases, word order.

Punctuation problems are also included in the
analyses. In general, the use of punctuation varies
from no usage at all (mostly among the youngest
children) to rather sparse marking. In the following
example the main clauses are joined together and
the boundary between the sentences is not marked:

(6) nasse blev arg han gick och la sig med dom
andra syskonen.
nasse became angry he went and lay himself
with the other siblings
— Nasse got angry. He went and lay down
with the other siblings.

The finite verb problem, verb form in verb chains
and infinitive phrases and agreement problems in
noun phrase are the four types of errors detected by
the current system, FiniteCheck.

4 System architecture

The framework for detection of grammar errors in
FiniteCheck is built as a network of finite state
transducers compiled from regular expressions in-
cluding operators defined in the Xerox Finite State
Tool (XFST) (Karttunen et al.,, 1997). Each
automaton in the network composes with the result
of previous application and in principle all the
automata can be composed into a single transducer.

There are in general two types of transducers in
use: one that annotates text in order to select cer-
tain segments and one that redefines or refines ear-
lier decisions. Annotations of any kind are handled
by transducers defined as finite state markers that
add reserved symbols into text and mark out syn-
tactical segments, grammar errors, or other patterns
aimed at selections. Finite state filters are used for
refinement and/or revision of earlier decisions.

The system runs under UNIX in a simple Emacs
environment used for testing and development of
finite state grammars. The environment shows the
results of an XFST-process run on the current
Emacs buffer in a separate buffer. An XFST-mode
allows for menus to be used and recompile files in
the system.

The sequenced finite state transducers of
FiniteCheck are divided in four main modules:
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the lexicon lookup, the grammar, the parser and
the error finder — see Figure 1.

text input

Lexicon

~160000w [T~
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Figure 1: The system architecture
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4.1 The Lexicon Lookup

The lexicon of around 160, 000 word forms, is
built as a finite state transducer, using the Xerox
tool Finite State Lexicon Compiler (Karttunen,
1993). The lexicon is composed from two re-
sources and takes a string and maps inflected sur-
face form to a tag containing part-of-speech and
feature information, e. g. applying the transducer to
the string kvinna ‘woman’ will return [nn utr sin
ind nom]. The morphosyntactic tags follow di-
rectly the relevant string or token. More than one
tag can be attached to a string, since no contextual
information is taken into account. The morphosyn-
tactic information in the tags is further used in the
grammars of the system. The set of tags follows
the Stockholm-Umed Corpus project conventions
(Ejerhed et al, 1992), including 23 category classes
and 29 feature classes that were extended with 3
additional categories. Below is an example of a
lookup on the example sentence in (5):

(7) Men[kn] kom[qmvb prt akt][vb prt akt]
ihag[ab][pl] att[sn][ie] det[pn neu sin def
sub/obj] [dt neu sin def] inte[ab] ska[vb prs
akt][mvb prs akt] blir[vb prs akt] ndgon[dt utr
sin ind][pn utr sin ind sub/obj] riktig[jj pos utr
sin ind nom] brand[nn utr sin ind nom]



4.2 The Grammar

The grammar module includes two grammar sets
with (positive) rules reflecting the grammatical
structure of Swedish, differing in the level of de-
tail. The broad grammar is especially designed to
handle text with ungrammaticalities and the lin-
guistic descriptions are less accurate accepting
both valid and invalid patterns. The narrow
gramar is fine and accurate and accepts only the
grammatical segments. For example, the regular
expression in (8) belongs to the broad grammar set
and recognizes potential verb clusters (VC) (both
grammatical and ungrammatical) as a pattern con-
sisting of a sequence of two or three verbs in com-
bination with (zero or more) adverbs:

(8) define VC [Verb Adv* Verb (Verb)];

This automaton accepts all the verb cluster exam-
ples in (9), including the ungrammatical instance
(9¢) (marked by an asterisk ‘*’), where a finite
verb follows a (finite) auxiliary verb.

(9) a. kan inte springa ‘can not run’
b. skulle ha sprungit ‘“would have run [sup]’
c. *ska blir ‘will be [pres]’

Corresponding rules in the narrow grammar set
represented by the regular expressions in (10) take
into account the internal structure of a verb cluster
and define the grammar of modal auxiliary verbs
(Mod) followed by (zero or more) adverb(s), and
either a verb in infinitive form (VerbInf) as in
(10a), or a temporal verb in infinitive (PerfInf) and
a verb in supine form (VerbSup), as in (10b).
These rules thus accept only the grammatical seg-
ments in (9) and will not include example (9¢). The
actual grammar of grammatical verb clusters is a
little bit more complex.

(10) a. define VC1 [Mod Adv* Verblnf];
b. define VC2 [Mod Adv* PerfInf VerbSup];

43  The parser

The various kinds of constituents are marked out in
a text using a lexical-prefix-first method, i.e. pars-
ing first from left margin of a phrase to the head
and then extending the phrase by adding on com-
plements. The actual parsing (based on the broad
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grammar definitions) is incremental in a similar
fashion as the methods described in Ait-Mohtar
and Chanod (1997), where the output from one
layer serves as input to the next, building on the
segments. The system recognizes the head phrases
in certain order in the first phase (verbal head,
prepositional head, adjective phrase) and then ap-
plies the second phase in the reverse order and ex-
tends the phrases with complements (noun phrase,
prepositional phrase, verb phrase). The parsing
method is described in detail in Section 5.

4.4  Error Detection

The error finder is a separate module in the system,
which means that the grammar and parser could
potentially be used directly in a different applica-
tion. The nets of this module correspond to the dif-
ference between the two grammars, broad and nar-
row.

By subtracting the narrow grammar from the
broad grammar we create machines that will find
ungrammatical phrases in a text. For example, the
regular expression in (11) identifies verb clusters
that violate the narrow grammar of modal verb
clusters (VC1 or VC2, defined in (10)) by subtract-
ing these rules from the more general (overgenerat-
ing) rule in the broad grammar (VC, defined in (8))
within the boundaries of a verb cluster (‘<vc>’,
‘</vc>"), that have been previously marked out in
the parsing stage.

(11) define VCerror [ "<vc>" [VC - [VC] |
VC2]] "<ve>" ]

By application of a marking transducer in (12), the
found error segment is annotated directly in the
text as in example (13).

(12) define markVCerror [VCerror ->
"<Error verb after Vaux>" ... "</Error>"];

(13) Men <vp> <vpHead> kom ihdg </vpHead>
</vp> att <np> det </np> <vp> <vpHead> inte
<Error verb after Vaux> <vc> ska blir </vc>
</Error> </vpHead> <np> nagon <ap> riktig
</ap> brand </np> </vp>



5 Parsing

5.1  Parsing procedure

The rules of the (underspecified) broad grammar
are used to mark syntactic patterns in a text. A par-
tial, lexical-prefix-first, longest-match, incremental
strategy is used for parsing. The parsing procedure
is partial in the sense that only portions of text are
recognized and no full parse is provided for. Pat-
terns not recognized by the rules of the (broad)
grammar remain unchanged. The maximal in-
stances of a particular phrase are selected by appli-
cation of the left-to-right-longest-match replace-
ment operator.

The segments are built on in cascades in the
sense that first the heads are recognized, starting
from the left-most edge to the head (so called /exi-
cal-prefix) and then the segments are expanded in
the next level by addition of complement con-
stituents. The regular expressions in (14) compose
the marking transducers of separate segments into
a three step process.

(14)  define parsel[markVPhead .o.
markPPhead .0. AP];

define parse2 [markNP];

define parse3 [markPP .0. markVP];

First the verbal heads, prepositional heads and
adjective phrases are recognized by composition in
that order (parsel). This output serves then as in-
put to the next level, where the adjective phrases
are extended and noun phrases are recognized and
marked (parse2). This output in turn serves as in-
put to the last level, where the whole prepositional
phrases and verb phrases are recognized in that
order (parse3). During and after this parsing anno-
tation, some phrase types are further expanded
with post-modifiers, split segments are joined and
empty results are removed.

The ‘broadness’ of the grammar and the lexical
ambiguity in words, necessary for parsing text con-
taining errors, also yields ambiguous and/or alter-
native phrase annotations. We block some of the
(erroneous) alternative parses by the order in
which phrase segments are selected, which causes
bleeding of some rules (i.e. the parsing order de-
stroys application of another parsing rules; a fea-
ture mostly used of the ordering of phonological
rules) and more ‘correct’ parsing results are
achieved. The order in which the labels are in-
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serted into the string influences the segmentation
of patterns into phrases. Further ambiguity resolu-
tion is provided for by filtering automata.

5.2 The Heuristics of Parsing Order

Reordering rules used in parsing allows us to re-
solve certain ambiguities. For example, marking
verbal heads before noun phrases will prefer a verb
phrase interpretation of a string over a noun phrase
interpretation and avoid merging constituents of
verbal heads into noun phrases and yielding noun
phrases with too-wide range.

For instance, marking first the sentence in (15)
for noun phrases will interpret the pronoun De
‘they’ as a determiner and the verb sdg ‘saw’, that
is exactly as in English homonymous with the
noun ‘saw’, as a noun and merges these two con-
stituents to a noun phrase as shown in (16). De sdg
will subsequently be marked as ungrammatical,
since a number feature mismatch occurs between
the plural De ‘they’ and singular sdg ‘saw’.

(15)  De sdg ledsna ut
they looked sad out
- They seemed sad.
(16)  <np>De sdg </np> <np>ledsna </np>ut .

Composing the marking transducers by first mark-
ing the verbal head and then the noun phrase will
instead yield the more correct parse. Although the
alternative of the verb being parsed as verbal head
or a noun remains (i.e. sdg ‘saw’ is still tagged as a
noun in a noun phrase), the pronoun De ‘they’ is
now marked correctly as a separate noun phrase
and not merged together with the main verb into a
noun phrase:

(17) <np> De </np> <vpHead> <np> sidg </np>
</vpHead> <np> ledsna </np> ut .

The output at this stage is then further refined
and/or revised by application of filtering transduc-
ers. Earlier parsing decisions depending on lexical
ambiguity are resolved (e.g. adjectives parsed as
verbs) and phrases extended (e.g. with postnominal
modifiers). Other structural ambiguities, such as
verb coordinations or clausal modifiers on nouns,
are also taken care of.



This ordering strategy is not absolute however,
since the opposite scenario is possible where pars-
ing noun phrases before verbal heads is more suit-
able, as for instance in example (18) below, where
the string det oppna fonstret ‘the open window’
will be split in three separate noun phrase segments
when applying the order of parsing verbal heads
before noun phrases, due the homonymity between
an adjective and an infinitive or imperative verb
form (19).

(18)  han tittade genom det oppna fonstret
he looked through the open window
- He looked through the open window

(19) <np> han </np><vpHead> tittade </vpHead>
genom <np> det </np> <vpHead> <np>
Oppna </np> </vpHead> <np> fonstret </np>

We analyzed the ambiguity frequency in the Child
Data corpus and found that occurrences of nouns
recognized as verbs are more frequent than the op-
posite. On this ground, we chose the strategy of
marking verbal heads before marking noun
phrases. In the case of the opposite scenario, the
false parsing can be revised and corrected by an
additional filter (see Section 5.3).

A similar problem occurs with homonymous
prepositions and nouns. For instance, the string vid
is ambiguous between an adjective (‘wide’) and a
preposition (‘by’) as shown in example (20) and
influences the order of marking prepositional heads
and noun phrases. Parsing prepositional heads be-
fore noun phrases is more suitable for preposition
occurrences as shown in (22) in order to prevent
the preposition from being merged as part of a
noun phrase, as in (21):

(20)  Jag satte mig vid bordet
I sat me by the-table
— I sat down at the table.

(21) <np> Jag </np> satte <np> mig </np> <np>
<ppHead> vid </ppHead> bordet </np>

(22) <np> Jag </np> satte <np> mig </np>

<ppHead> <np> vid </np> </ppHead> <np>
bordet </np>
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5.3  Further Ambiguity Resolution

Nouns, adjectives and pronouns are homonymous
with verbs and might then be interpreted by the
parser as verbal heads. Adjectives homonymous
with prepositions can be analyzed as prepositional
heads. These parsing decisions can be redefined at
a later stage by application of filtering transducers.

As exemplified in (19) above, the consequence
of parsing verbal heads before noun phrases may
yield noun phrases that are split into parts, due to
the fact that adjectives are interpreted as verbs. The
filtering transducer in (23) adjusts such segments
and removes the erroneous (inner) syntactic tags
(i.e. replaces them with the empty string ‘0’) so
that only the outer noun phrase markers remain and
converts the split phrase in to one noun phrase
yielding (24).

(23) define adjustNPAdj [
"</np><vpHead><np>" -> 0 || Det _ APPhr
"</np></vpHead>" NPPhr,,
"<np></vpHead><np>" -> 0 ||
"</np><vpHead><np>" APPhr _];

Det

24) <np> han </np> <vpHead> tittade </vpHead>
p p p
genom <np> det 6ppna fonstret </np>

The regular expression consists of two replacement
rules that apply in parallel. They are constrained by
the surrounding context of a preceding determiner
(Det) and a subsequent adjective phrase (APPhr)
and a noun phrase (NPPhr) in the first rule, and a
preceding determiner and an adjective phrase in
the second rule.

5.4 Parsing Expansion and Adjustment

The text is now annotated with syntactic tags and
some of the segments have to be further expanded
with postnominal attributes and coordinations. In
the current system, partitive prepositional phrases
are the only postnominal attributes taken care of.
The reason is that grammatical errors were found
in these constructions.

By application of the filtering transducer in (25)
the example text in (26) with the partitive noun
phrase en av dom gamla husen ‘one of the old
houses’ split into a noun phrase followed by a
prepositional head that includes the partitive
preposition av ‘of’ and yet another noun phrase



from the parsing stage (27) is merged to form a
single noun phrase, as shown in (28). This automa-
ton removes the redundant inner syntactic markers
by application of two replacement rules, con-
strained by the right or left context. The replace-
ment occurs simultaneously by application of par-
allel replacement.

(25)  define adjustNPPart [
"</np><ppHead>" -> 0 || _ PPart
"</ppHead><np>",,

"</ppHead><np>" -> 0 ||
"</np><ppHead>" PPart _|;
(26)  Virginia hade 6ppnat en tygaffir i en av

dom gamla husen.

Virginia had opened a fabric-store in one
of the old houses[def].

- Virginia had opened a fabric-store in one
of the old houses.

(27) <np> Virginia </np> <vp><vpHead> <vc>
hade d6ppnat </ve> </vpHead> <np> en tyg-
affar </np> i <np> en </np> <ppHead> av
</ppHead> <np> dom <ap> gamla </ap>
husen </np> .

(28) <np> Virginia </np> <vp> <vpHead> <vc>
hade d6ppnat </ve> </vpHead> <np> en tyg-
affar </np> 1 <NPPart> en av dom <ap> gamla
</ap> husen </np>

Other filtering transducers are used for refining the
parsing result and eliminate incomplete parsing
decisions such as prepositional heads without a
following noun phrase.

6 The System Performance

6.1 Result on Child Data

The implemented error detector, FiniteCheck, can-
not at present be considered as a fully developed
grammar checking tool, but still even with its re-
stricted lexicon and small grammar the results are
promising. So far the technique was used to detect
agreement errors in noun phrases, selection of
finite and non-finite verb forms in main and subor-
dinate clauses and infinitival complements. The
implementation proceeded in two steps. In the first
phase we devoted all effort to detection of the
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grammar errors, working mostly with the errors
and not paying much attention to the text as a
whole. The second phase involved blocking of the
resultant false alarms found in the first stage.

In Table 1 we show the final results of error de-
tection in the training corpus of Child Data. There
were altogether 15 agreement errors in noun
phrase, 110 errors in the form of finite verb, 7 er-
rors in the verb form after an auxiliary verb and 4
errors in verbs after infinitive marker.

No.
Prorope  JEwos | A AL R PF
ﬁl%reement in 15 15 62 | 100% 19% 33%
¢ inite verb 10| 96 126 | 87% 43%  58%
Verb form 7 6 47 86% 11% 20%
after aux. verb
Verb form
after inf. mar- 4 4 0] 100% 100% 100%
ker
Total 136 | 121 235 89% 34% 49%

Table 1. Performance of FiniteCheck on Child Data:
correct alarms (CA), false alarms (FA), recall (R), pre-
cision (P), F-value (F).

FiniteCheck detected all the agreement errors in
noun phrases and all erroneous verb forms after an
infinitive marker, only a portion of other errors in
verb form was missed. The precision of the system
is rather low, primarily due the ambiguity of the
texts and the number of alarms marking other er-
rors such as segmentation or spelling errors. This
side-effect is difficult to eliminate totally and gives
rather rise to new questions of how to handle also
these types of writing problems that concern spell-
ing rather than grammar.

The three Swedish grammar checkers mentioned
above in Section 2: Grammatifix, Granska and
Scarrie, have been tested on the Child Data. The
result of their performance is shown in Figure 2,
below, together with the results of FiniteCheck.

These three tools are designed to detect errors in
text different from the nature of the Child Data and
thus not surprisingly the accuracy rates are in over-
all low. The total recall rate for the four error types
covered by FiniteCheck is between 9% and 21% in
these three tools and precision varies between 16%
to 35%. Errors in noun phrases seem to be better
covered than verb errors.




In the case of Grammatifix, errors in verbs are not
covered at all. Half of the noun phrase errors were
identified and only five errors in the finite verb
form. Granska covered all four error types and de-
tected at most half of the errors for three of these
types. However, only seven instances of errors in
finite verb form were identified. Scarrie had diffi-
culties with errors in verb form after infinitive
marker that were not detected at all. Errors in noun
phrase were the best detected type.

Grammatifix
M Granska
Scarrie
M FiniteCheck

Performance (%)

89
49
40 35
31 34
30
21 23

20 18 16 1 18

0

Recall Precision F-value

Figure 2: Performance of All Systems on Child Data

The detection performance of these three tools on
Child Data is in general half that good in compari-
son to our detector and the fact that the error type
with worst coverage (finite verbs) is the one most
frequent among children indicates clearly the need
for specialized grammar checking tools for chil-
dren.

No.

Error type Errors CA FA R P F
Agreement 17| 14 6 | 82% 70% 76%
in NP

Finite verb 5| 5 1 |100% 83% 91%
form

Verb form

after aux. 1 1 1 100% 50% 67%
verb

Total 23] 20 8 87% T1% 78%

Table 2. Performance of FiniteCheck on Text Written
by Adult: correct alarms (CA), false alarms (FA), recall
(R), precision (P), F-value (F).

The three Swedish grammar checkers were also
tested on this adult text, that reflects more the text
type these tools are designed for. The results pre-
sented in Figure 3 show an average recall rate of
52% for the three Swedish grammar checkers, Fi-
niteCheck scored 87%. These tools had difficulties
to detect the verb form errors, whereas most of the
errors in noun phrase agreement were found. The
opposite scenario applies for precision, where Fi-
niteCheck had slightly worse rate (71%) than
Grammatifix and Granska, which had a precision
above 90%. Scarrie’s precision was 65%. In the
combined measure of recall and precision (F-
value) our system obtained 78%, which is slightly
better in comparison to the other tools that had
70% or less in F-value.

100

93 92

6.2 Result on Text Written by Adult % LA .
The current system was also tested on a text of : P (Y
1 070 words written by an adult, one of the demon- £ o & N .
stration texts used by Granska. The performance of g 50 > 48 Grammatifix
FiniteCheck on this text is presented in Table 2. g 40 ¥ Sranska
We found 17 noun phrase agreement errors, 5 er- = 30 M FiniteCheck
rors in the form of finite verb and 1 error in the 20
verbform after an auxiliary verb in the text. Fi- 10
niteCheck found all the verb form errors and most 0

Recall Precision F-value

of the agreement errors, ending in a recall value of
87%. False alarms occurred also only in the
agreement errors, resulting in a precision rate of
71% and an F-value of 78%.

Figure 3: Performance of All Systems on Text Written
by Adult
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7  Conclusion

The simple finite state technique of subtraction
presented in this paper, has the advantage that the
grammars one needs to write to find errors are
always positive grammars rather than grammars
written to find specific errors. Thus, covering the
valid rules of language means that the rule sets re-
main quite small and practically no prediction of
errors is necessary.

The approach aimed further at minimal informa-
tion loss in order to be able to handle text contain-
ing errors. The degree of ambiguity is maximal at
the lexical level, where we choose to attach all
lexical tags to strings. At higher levels, structural
ambiguity is treated by parsing order, grammar
extension and some other heuristics. There is an
essential problem of ambiguity resolution on com-
plement decisions that remains to be solved. Se-
quences of words grammatical in one context and
ungrammatical in another are treated the same. The
system overinterprets and gives rise to false
alarms, mostly due the application of longest-
match, but more seriously information indicating
an error may be filtered out by erroneous segmen-
tation and errors overlooked. A ‘higher’ mech-
anism is needed in order to solve these problems
that takes into consideration the complement dis-
tribution and solves these structural dependencies.

The linguistic accuracy of the system is compa-
rable to other Swedish grammar checking tools,
that actually performed worse on the Child Data.
The low performance of the Swedish tools on
Child Data motivates clearly the need for adapta-
tion of grammar checking techniques to children.
The other tools obtained in general much lower
recall values and although the error type of particu-
lar error was defined, the systems had difficulties
to identify the errors, probably due problems to
handle such a disrupted structure with many ad-
joined sentences and high error frequency.

Further, the robustness and modularity of this
system makes it possible to perform both error de-
tection and diagnostics and that the grammars can
be reused for other applications that do not neces-
sarily have anything to do with error detection,
e. g. for educational purposes, speech recognition,
and for other users such as dyslectics, aphasics,
deaf and foreign speakers.
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Abstract

We try to improve the classifier-based de-
terministic dependency parsing in two
ways: by introducing a better search
method based on a non-deterministic nbest
algorithm and by devising a series of lin-
guistically richer models. It is experimen-
tally shown on a ConLL 2007 shared task
that this results in a system with higher per-
formance while still keeping it simple
enough for an efficient implementation.

1 Introduction

This work tries to improve the deterministic de-
pendency parsing paradigm introduced in (Coving-
ton 2001, Nivre 2003, Nivre and Hall, 2005) where
parsing is performed incrementally in a strict left-
to-right order and a machine learned classifier is
used to predict deterministically the next parser
action. Although this approach is very simple, it
achieved the state-of-art parsing accuracy. How-
ever, there are still some problems that leave fur-
ther room for improvement:

(1) A greedy algorithm without backtracking
cannot ensure to find the optimal solution. In the
course of left-to-right parsing, when further con-
text is seen, the previous decisions may be wrong
but a deterministic parser cannot correct it. The
usual way of preventing early error “commitment”
is to enable a k-best or beam-search strategy
(Huang and Chiang 2005, Sagae and Lavie 2006).

(2) A classifier based approach (e.g. using SVM
or memory based learning) is usually linguistically
naive, to make it applicable to multiple languages.
However, a few studies (Collins 1999, Charniak et
al 2003, Galley et al 2006) have shown that lin-
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guistically sophisticated models can have a better
accuracy at parsing, language modeling, and ma-
chine translation, among others.

In this paper we explore ways to improve on the
above-mentioned deterministic parsing model to
overcome the two problems. The rest of the paper
is organized as follows. Section 2 argues for a
search strategy better at finding the optimal solu-
tion. In section 3 we built a series of linguistically
richer models and show experimental results dem-
onstrating their practical consequences. Finally we
draw our conclusions and point out areas to be ex-
plored further.

2 Dependency Parsing Enhancements

In the classifier-based approach as in Nivre (2003)
a parse tree is produced by a series of actions
similar to a left-to-right shift-reduce parser. The
main source of errors in this method is the
irrevocability of the parsing action and a wrong
decision can therefore lead to further inaccuracies
in later stages. So it cannot usually handle garden-
path sentences. Moreover, each action is usually
predicted using only the local features of the words
in a limited window, although dynamic features of
the local context can be exploited (Carreras 2006).
To remedy this situation, we just add a scoring
function and a priority queue which records nbest
partial parses. The scoring function is defined on
the parsing actions and the features of a partial
parse. It can be decomposed into two subfunctions:
score(a,y)=parsing_cost(a,y) + Im(y)
where a is parsing actions and y is partial parses,
and parsing cost (parsing_cost) is used to imple-
ment certain parsing preferences while the lingus-
tic model score (Im) is usually modeled in the lin-
guistic (in our case, dependency model) framework.
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In the usual nbest or beam-search implementation
(e.g. Huang and Chiang 2005, Sagae and Lavie
2006), only Im is present.

We give justification of the first term as follows:
Many probability functions need to know the de-
pendency label and relative distance between the
dependent and the head. However, during parsing
sometimes this head-binding can be very late. This
means a right-headed word may need to wait very
long for its right head, and so a big partial-parse
gueue is needed, while psychological evidence
suggests that there is some overhead involved in
processing every word and a word tends to attach
locally. By modeling parsing cost we can first use
a coarse probability model to guide the nbest par-
tial results in order not to defer the probability cal-
culation. As parsing progresses, more information
becomes available; we can have a better estimation
of our linguistic probability model to rectify the
inaccuracy.

This use of a coarse scoring mechanism to guide
the early parsing for possible later rectification of
the decision is a novel feature of our parsing
framework and enables better searching of the so-
lution space. To implement it, we just remember
the exact score of the every major decision (wait,
add a dependent or attach a head) in parsing, and
re-score when more context is available. Compared
with (Charniak 2005), our parsing process requires
only one pass.

Thus, we can strike a balance between accuracy,
memory and speed. With a moderately-sized n
(best partial results), we can reduce memory use
and get higher speed to get a same accuracy. An
added advantage is that this idea is also useful in
other bottom-up parsing paradigms (not only in a
dependency framework).

In a word, our main innovation is the use of a
parsing cost to influence the search paths, and the
use of an evolving Im function to enable progres-
sively better modeling. The nbest framework is
general enough to make this a very simple modifi-
cation to the basic algorithm of Nivre (2003).

3 Better Linguistic Modeling

In our modeling we combine different linguistic
models by using many probability functions:
Im(y)=Z logP(w;i,w;,x,y) =~ W*log P
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where w are the trained weight vector and P is a
vector of probability functions. In our system we
considered the following functions:

P1: function measuring the probability of a head
and a dependent. This is the base function in most
dependency parsing framework.

P2: function calculating the subcategorization
frame probability;

P3: function calculating the semantic frame us-
ing a Chinese FrameNet (Liu 2006).

P4: function measuring the semantic affinity be-
tween a head and a dependent using resources such
as Hownet (Dong 2003).

P5: Other Chinese specific probability functions
defined on the features of the head, the dependents,
the partial parse and the input.

Model P2 is a probability function on pseudo
subcategorization frames (as a concatenation of all
the dependents’ labels) as we don’t know the dis-
tinction of arguments and adjuncts in the depend-
ency Treebank. We used a Markovian subcategori-
zation scheme with left and right STOP delimiters
to ease the data sparseness. And as a first approxi-
mation, we also experimented with a model where
each label can only be used a certain times in a
direction. This model is called P2’ in Table 4.

Other functions (P3-P5) are also very useful
with its different linguistic content. Model P5 actu-
ally contains a lot of Chinese-specific functions,
e.g. between a sentence-final particle and a verb.

We designed a series of experiments to show to
effectiveness of each model. We use the Chinese
training data of the ConLL 2007 shared task. We
divided the training data by a 9:1 split. Table 1
shows the statistics.

Training testing
sentences 51777 5180
Words 302943 34232

Table 1. Experimental data
In the baseline model, we train a simple probability
function between a head and a dependent using
deleted interpolation. For nbest=1, we have a
deterministic model.

LAS UAS time
Deterministic | 41.64 % 44,11 % 8s
nbest = 50 71.30 % 76.34 % 72s
nbest =500 71.90 % 76.99 % 827s

Table 2. baseline systems
It can be seen (Table 3) that combing different
linguistic information can lead to significant in-




crease of the accuracy. However, different models
have different contributions. Our experiments con-
firm with Collins’s result in that subcategorization
carries very important linguistic content.

LAS UAS time
P1 71.90% | 76.99% | 827s
P1+ P2’ 7345% | 78.44% | 832s
P1+ P2 +P2 77.92% | 82.42% | 855s
P1+ P2+ P3 79.13% | 83.57% 1003s
P1-4 81.21% | 85.78% 1597s
P1-5 83.12% | 87.03% | 2100s
Verb valency 85.32% |89.12% | -
DE refinement 85.98% 90.20% -

Table 3. systems with different linguistic models

3.1 Relabeling of the parse treebank

Sometimes the information needed in the modeling

is not in the data explicitly. Implicit information

can be made explicit and accessible to the parser.
In the Chinese Treebank the relation label is

often determined by the head word’s semantic type.

We tried the relabeling of coarse POS info of the
verb in a effort to detect its valency; and refine-
ment of the auxiliary word [¥] DE (as error analy-
sis shows it is the where the most errors occur).
Results are in Table 3.

We also tried refinement of the relation label by
using the two connected words. However, this does
not improve the result. Automatic linguistic model-
ing using latent label (Matsuzaki 2005) can also be
attempted but is not yet done.

4  Conclusions

In this paper we showed that simple classifier-
based deterministic dependency parsing can be
improved using a more flexible search strategy
over an nbest parsing framework and a variety of
linguistically richer models. By incorporating dif-
ferent linguistic knowledge, the parsing model can
be made more accurate and thus achieves better
results.

Further work to be done includes ways to com-
bine machine learning based on the automatic fea-
ture selection with manual linguistic modeling: an
interactive approach for better synergistic model-
ing (where the machine proposes and the human
guides). Various a priori models can be tried by the
machine and patterns inherent in the data can be
revealed to the human who can then explore more
complex models.
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Symbolic Preference Using Simple Scoring

Paula S. Newman
newranp@cm or g

(Newman, 2007). The parser combines a pre-
existing, efficient shallow parser with an overlay
parser that builds on the emitted chunks. The over-
lay parser is "retro" in that the grammar is redate
to ATNs (Augmented Transition Networks) origi-
nated by Woods (1970).

RH delivers single "best" parses providing syn-
tactic categories, syntactic functions, head festur
and other information (Figure 1). The parenthe-
sized numbers following the category labels in the
figure are preference scores, and are explained fur
ther on. While the parses are not quite as detaile
as those obtained using "deep" grammars, the
missing information, mostly relating to long dis-
tance dependencies, can be added at far lesscost i
a post-parse phase that operates only on a single
best parse. Methods for doing so, for stochastic
parser output, are described by Johnson (2002) and
Cabhill et al (2004).

The hybrid parser exceeds most stochastic pars-
ers in speed, and approaches them in accuracy,
even based on limited manual "training” on a par-
ticular idiom, so the preference system is a suc-
cessful one (see Section 6), and continues to im-
prove.

The RH preference system builds on earlier
methods. The major difference is a far simpler

Despite the popularity of stochastic parsers, SyrﬁCOI'ing system, which has considerably facilitated
bolic parsing still has some advantages, but is n@verlay parser development. Also, the architecture
practical without an effective mechanism for seallows the use of large numbers of preference tests
lecting among alternative analyses. Without it, agvithout impacting parser speed. Finally, the treat-
cept/fail grammar rules must either be overlynent of coordination exploits the lookaheads af-
strong or admit very large numbers of parses. . forded by the shallow parser to license or bar-alte
Symbolic parsers have recently been augmentgative appositive readings.
by stochastic post-processors for output disam- Section 2 below discusses symbolic preference
biguation, which reduces their independence frogystems in general, and section 3 provides an over-
corpora. Both the LFG XLE parser (Kaplan et.aView of RH parser structure. Section 4 describes
2004), and the HPSG LinGO ERG parser (Todhe organization of the RH preference system and
tanova et al. 2005) have such additions. the simplified scoring mechanism. Section 5 dis-
This paper examines significant aspects of @Usses the training approach and Section 6 pro-
purely symbolic alternative: the preference andides some experimental results. Section 7 sum-
pruning system of the RH (Retro-Hybrid) parsefarizes, and indicates directions for further work.

Abstract

Despite the popularity of stochastic parsers,
symbolic parsing still has some advantages,
but is not practical without an effective
mechanism for selecting among alternative
analyses. This paper describes the symbolic
preference system of a hybrid parser that
combines a shallow parser with an overlay
parser that builds on the chunks. The hy-
brid currently equals or exceeds most sto-
chastic parsers in speed and is approaching
them in accuracy. The preference system is
novel in using a simple, three-valued scor-
ing method (-1, O, or +1) for assigning
preferences to constituents viewed in the
context of their containing constituents.
The approach addresses problems associ-
ated with earlier preference systems, and
has considerably facilitated development. It
is ultimately based on viewing preference
scoring as an engineering mechanism, and
only indirectly related to cognitive princi-
ples or corpus-based frequencies.

1 Introduction
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Figure 1. Output Parse Tree fé&tumsfeld micromanaged daily briefings and rodegttahod
over people.* indicates head. Mouseover shows head featorésrficromanaged”.

2 Background: Symbolic Preference 2.2 Implementations

Abstractly, symbolic preference systems can be
thought of as regarding a set of possible parses as
Preference-based parsing balances necessagbllection of spanning trees over a network of po-
permissive syntactic rules by preference rules th&ntial relationships, with each edge having a nu-
promote more likely interpretations. One of theneric value, and attempting to find the highest
earliest works in the area is by Wilks (1975)scoring treé.

which presented a view of preference as based onHowever, for syntactic parsers, in contrast with
semantic templates. Throughout the 1980's thegiependency parsers, it is convenient to associate
was a considerable amount of work devoted t§cores with constituents as they are built, for-con
finding general principles, often cognitively ori-sistency with the parser structure, and to permit
ented, for preference rules, and then to devisgthin-parse pruning. A basic model for a prefer-
mechanisms for using them in practical systemance system assigns preference scores to rules. For
Hobbs and Bear (1990) provide a useful summagyrule

of the evolved principles. Slightly restated, #hes C — ¢, ¢, ..., G

2.1 Principles

principles are: the preference scoreS(CC)of a resultant con-
1. Prefer attachments in the "most restrictivgtituentCCis the sum:
context". PS(cg) + PS(cg) + +PS(cq)
2. If that doesn't uniquely determine the result, + TRS (C, ¢cco, ..., CG)
attach low and parallel, and finally _ where PS(cg) is the non-contexted score of con-
3. Adjust the above based on considerations efituentcg, and the total relationship scoF&Sis a
punctuation value that assesses the relationships among the sib

Principle 1 suggests that the preference for |ihg constituents o€C. The computation of TRS
constituent in a construction should depend on thpends on the parser approach. For a top-down
extent to which the constituent meets a narrow sgarser, TRSmay be the sum of contexted relation-
of expectations. Most of the examples given byhip score€RS for example:

Hobbs and Bear use either (a) sub-categorizationTRS = CRS (gC) +CRS (c¢lC, cg), +
information, e.g., preferring the attachment of a CRS (GfC, cg, CQ) + .....

prepositional phrase to a head that expects thiat pa + CRS (¢|C, cq,....CG1)

ticular preposition, or (b) limited semantic infor-where eaclCRS (cg¢_ ) evaluateg in the context
mation, for example, preferring the attachment of @f the prior content of the constitueBC and the
time expression to an event noun. categoryC..

Principle 2 implies that in the absence of coor- Few publications specify details of how prefer-
dination, attachment should be low, and in thence scores are assigned and combined. For exam-
presence of coordination, parallel constituentsle, Hobbs and Bear (1990) say only that "When a
should be preferred. Principle 3 relates primarily
to the effect of commas in modifying attachment The idea has also been used directly in stochastic pars-
preferences. ers that consider all possible attachments, for example,

by McDonald et al. (2005).
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non-terminal node of a parse tree is constructed,managed" is dispreferred because the verb is not
is given an initial score which is the sum of thédentified as transitive. Here, the correct regdin
scores of its child nodes. Various conditions arsurvives because there are no higher scoring ones.
checked during the construction of the node and, Bsit in some situations, if such a dispreference
a result, a score of 20, 10, 3, -3, -10, or -20 tway were given a large negative score, the parser could
added to the initial score.” be forced into very odd readings not compensated

McCord (1993), however, carefully describedor by other factors.
how the elements ofFRSare computed in his slot
grammar system. Each elementue is the sum of 24 COrpus-Based Preference
the results of up to 8 optional, typed tests, iedat In the early 1990's, the increasing availabilityd an
to structural, syntactic, and semantic conditiongise of corpora, together with a sense that multi-
One of these tests, relating to coordination, is lavel symbolic preference scores were based on ad-
complex test involving 7 factors assessing parallehoc judgments, led to experiments and systems that
ism. used empirical methods to obtain preference

. . weights. Examples of this work include a system
2.3 Multi-Level Contexted Scoring by Liu et al (1990), and experiments by Hindle and
The scores assigned by symbolic preference syReoth (1993), and Resnik and Hearst (1993).
tems to particular relationships or combinations These efforts had mixed success, suggesting that
usually indicate not just whether they are prefitrrewhile multi-level preference scores are problem-
or dispreferred, but to what degree. For exan®pleatic, integrating some corpus data does not solve
score of 1 might indicate that a relationship ithe problems. In light of later developments, this
good, and 2 that it is better. might be expected. Full-scale contemporary sto-

Such multi-level scores create problems in turchastic parsers use a broad range of interacting fe
ing parsers to remove undesirable interactiongjres to obtain their fine-grained results; frequen
both in the grammar and the preference systeies of particular relationships are just one aspec
Even for interactions foreseen in advance, one
must remember or find out the sizes of the prefef-> OT-based Preference
ences involved, to decide how to compensat® more recent approach to symbolic preference
Yamabana et al. (1993) give as an example a bedapts optimality theory to parser and generator
tom-up parser, where an S constituent with a trapreference. Optimality Theory (OT) was origi-
sitive verb head but lacking an object is initiallynally developed to explain phonological rules
given a strong negative preference, but when it {®rince and Smolensky, 1993). In that use, poten-
discovered that the constituent actually functiongal rules are given one "optimality mark" for each
as a relative clause, the appropriate compensatiesinstraint they violate. The marks, all implicitly
must be found. (Their solution uses a vector afegative, are ranked by level of severity. A best
preference scores, with the vector positions correule R is one for which (a) the most severe level of
sponding to specific types of preference featuresonstraint violatiorL is < the level violated by any
together with an accumulator. It allows the conhtemther rule, and (b) if other rules also violatediy
of vector elements to be erased based on subgenstraints, the number of such violations ighe
guently discovered compensating features.) number of violations byR.

For unforeseen interactions, for example when a As adapted for use in the XLE processor for
review of parser outputs finds that the best perseLFG (Frank et al. 1998) optimality marks are asso-
not given the highest preference score, multi-levelated with parser and generator outputs. Positive
contexted scoring requires complex tracing of thearks are added, and also labeled inter-mark posi-
contribution of each score to the total, remembetions within the optimality mark ranking. The la-
ing at each point what the score should be, to deeled positions influence processor behavior. For
termine the necessary adjustments. generation, they are used to disprefer infelicitous

A different sort of problem of multi-level scor- strings accepted in a parse direction. And for pars
ing stems from the unavoidable incompleteness of

information. For example, in Figure 1, the attact® pccord (1993) also includes some corpus-based in-
ment of an object to the "guessed” verb "microformation, but to a very limited extent.
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ing they can be used to disprefer (actually ignoreyith identifications of (sometimes alternative)
rarely-applicable rules, in order to reduce parggped dependences among the chunk heads (Ait-
time (Kaplan et al, 2004). Mokhtar et al. 2002, Gala 2004). But because the
However, because the optimality marks arXIP dependency analysis for English was not
global, a single dispreference can rule out arrentimature at the time that work on RH began, and
parse. To partially overcome this limitation, a-furbecause a classic parse tree annotated by syntactic
ther extension (see XLE Online Documentationfunctions is more convenient for some
allows direct comparisons of alternative readingapplications, we focused on the output chunks.
for the same input extent. A different optimality XIP is astonishingly fast, contributing very little
mark can be set for each reading, and the usetofparse times (about 20%). It consists of the XIP
one such mark in the ranking can be conditiongutocessor, plus grammars for a number of
on the presence of another particular mark for tHanguages. The grammar for a particular language
same extent. For example, a conditional dispreferensists of:
ence can be set for an adjunct reading if an arg{®&) a finite-state lexicon producing alternative
ment reading also exists. The extension does not part-of-speech and morphological analyses for
address more global interactions, and is said {Fors each token, together with bit-expressed

et al. 2005) to be used mostly as a pre-filternt | subcategorization and control features, and
the readings disambiguated by a follow-on stochas- (some) semantic features,
tic process. (b) a substitutable tagger identifying the most

_ _ _ probable part of speech for each token, and

2.6 A Slightly Different View (c) sequentially applied rule sets that extend and
A slightly different view of preference—based pars- modify lexical information, disambiguate tags,
ing is that the business of a preference systeim is  identify named entities and other multiwords,
work in tandem with a permissive syntactic gram- and produce output chunks and inter-chunk
mar, to manipulate outcomes. head dependences (the latter not used in the

The difference focuses on the pragmatic role of hybrid).
preference in coercing the parser. In this ligihe, Work on the hybrid parser has included large
principles of section 2.1 are guidelines for debirescale extensions to the XIP English rule sets.
outcomes, not bases for judging the goodness o%% L ocator phase
relationship or setting preference values. Instead, P
preference values should be set based on their &he locator phase accumulates and analyses some
fectiveness in isolating best parses. Also, in thisf the shallow parser results to expedite the
light, the utility of a preference system lies nogrammar and preference tests of the overlay parser.
only in its contribution to accuracy, but alsoie i  For preference tests, for any input position, the
software-engineering convenience. These considesitions of important leftward and rightward
erations led to the simpler, more practical scoringpkens are identified. These "important" tokens
system of the RH overlay parser, described in seicclude commas, and leftward phrase heads that
tion 4 below, in which contexted preference scorawright serve as alternative attachment points.

CRScan have one of only 3 values, -1, 0, or +1. Special attention is given to coordination, a
constant source of inefficiency and inaccuracy for
3 Background: The RH Parser all parsers. To limit this problem, an input strisg

. . ivided into spans ending at coordinating conjunc-
The RH parser consists of three major components .
ions, and the chunks following a span are exam-

E}ggg}iﬂ. bﬁL()svg: ;23 t?]gacl)l\?e\;\;laparzeige? med'atmﬂwed to determine what kinds of coordination might
P ' y P ' be present in the span. For example, if a chunk
3.1 Shallow Parser following a sparSpis a noun phrase, and there are

no verbs in the input following that noun phrase,

The shallow parser used, XIP, was developed l%l S ; e
.only noun phrase coordination is considered within
XRCE (Xerox Research Center Europe). It ign™ Ajso with heuristic exceptions, the locator

actually a full parser, whose per-sentence OUtphhase gisallows searching for appositives within
consists of a single tree of basic chunks, together
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long sequences of noun and prepositional phrasesBefore an output network is returned from an
ending with a coordinating conjunction. invocation of the control mechanism, it is pruned
to remove lower-scoring paths, and cached.

Output from the overlay parser is a single tree
The overlay parser uses a top-down grammaéifigure 1) derived from a highest scoring full path
expressed as a collection of ATN-like grammafi.e. final state) of a topmost output network. If
networks. A recursive control mechanism traversdbere are several highest scoring paths, low attach
the grammar networks depth-first to buildconsiderations select a "best" one. The preference
constituents. The labels on the grammar netwogcores shown in Figure 1 in parentheses after the
arcs represent specialized categories, and @a&tegory labels are the scores at the succeeding
associated with tests that, if successful, eith&tates of the underlying output networks.
return a chunk or reinvoke the control to attempt
to build a constituents for the category. The kabe?  Preference System

specific tests include both context-free tests, a%y path in an output network has the form:
tests taking into account the current context. For S, Ref, S, Rej S, Ref S, '

details see (Newman, 2007). whereSis a state, anfef labels an arc, and refer-

If an invocation of the control is successtul, i, o5 either a basic chunk, or a final state of an-
returns aroutput network containing One or Moré oy output network. A st:a@ has total prefer-
paths, with each path representing an alternatl\é(?]ce scor@PS(i)where:

sequence of immediate children of the constituent. _

o *» TPS(Q=0
An example output networls shown in figure 2. TPS(i), i>0=
Each arc of the network references either a basic ST
chunk, or a final state of a subordinate output net PS ;PS(. I-lt)h+ PS(R)EH?[RS,[(EGI ¢ th
work. Unlike the source grammar networks, the ( gi IS 9} non-cgnbexe rs]corg Oh €
output networks do not contain cycles or converg- constituent reference . Ref, that is, the

score at the referenced final state.

ing arcs, so states represent unique paths. . CRS(Ref is th texted faef. |
The states contain both (a) information about (Ref is the contexted score fdref, in
the context of the network category and the

material already encountered along the path, in- X , 4
cluding syntactic functions and head features, and _ P&th ending at the previous state i-1

(b) a preference score for the path to that point, FOr €xample, iRef refers to a noun phrase con-
Thus the figure 2 network represents tws'dered a second object within a path, and the syn-

alternative noun phrases, one represented by tic head along the path does not expect a second

path containing OSand OS, and one containing OPICt,CRS(Ref might be (-1). _
0S, OS, and OS State OS contains the Each valueCRSis limited to values in {-1, O,

preference score (+1), because attaching a locatiyel: Therefore, no judgment is needed to decide
pp to a feature of the landscape is preferred. the degree to which a contexted reference is to be

dispreferred or preferred. Also, if the desiredspa
result does not receive the highest overall sdbre,

3.3 Overlay Parser

From | To Cat Synfun | Reference : . -

0S | 0S | NP HEAD | NPChunk is relatively easy to trace the reason. Pruning (se
(The park below) can be disabled and all parses can be dis-

0S, 0S | PP NMOD | Final state of played, as in Figure 1, which shows the scores
PP net for TPS(i) in parentheses after the category labels for
(in Paris) eachRef (with zero scores not shown). Then, if

States Score Final? TPS(i) > (TPS(i-1) + PS(R&f

0S 0 No it is clear that the contexted reference is prefixrr

0S 0 Yes If multi-level contexted scoring were used instead,

0S +1 Yes it would be necessary to determine whether the

Figure 2. Output network for "The park in Paris” reference was preferred to exactly the right degree
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Test Block | Length Indexed By The test blocks are expressed in procedural
Type I ndependent? code. This has allowed the parser to be developed
Coordinate | 'Y Parent syncat without advance prediction of the types of infor-
Subcat Y No index mation needed for the tests, and also has contrib-
EN1 Y synfun uted some efficiency. The blocks, usually short
TAG1 Y syncat but occasionally long, generally consist of ordered
EN2 N synfun (if-then-else) subtests.

TAG2 N syncat 4.2 Preferencetest scope

Table 1. Preference Test Block Types _
A contexted preference test can refer to material o

4.1 Preferencetest organization three levels of the developing parse tree: (a) the
To compute the contexted scaBRSfor a refer- syntactic category of the parent (available because
ence, relevant tests are applied until either (a)% the top-down parser direction) (b) information
score of -1 is obtained, which is usedGRSfor about the current output network path, including
the reference, or (b) the tests are exhaustedheln head features, already-encountered syntactic func-

latter caseCRSis the higher of the values {0, +1} tions, and a small collection of special-purpose
returned by any test. information, and (c) information about the refer-

For purposes of efficiency, the preference tes@1c€d constituent, specifically its head and eolist
are divided into typed blocks, as shown in Table {he immediately contained syntactic functions. The
At most one block of each type can be applied tolgsts can also reference lookahead information fur-
reference. Four of the blocks contain tests that aished by the locator phase. This material isi-suff
independent of referenced constituent length. Th&EnNt for most purposes. Limiting the kind of ref-
are applied at most once for a returned output n&€nced information, particularly not permitting

work and the results are assumed for all pathe TRCCESS to sibling constituents or deep elements of
other two blocks are length dependent. the referenced constituent, contributes to perform-

Referring to Table 1, the length-independent cMc€-
ordinate _tests are applied only to non-first sidin 4 5 Pruning
of coordinated constituents. The parent category
indicates the type of constituents being coordihaté3efore an output network is completed, it is pruned
and selects the appropriate test block. Tests i@ remove lower-scoring output network paths.
these blocks focus on the semantic consistency of\8Y path with the same length as another but with
coordinated sibling with the first one. a lower score is pruned. Also, paths having other

Subcategorization tests are applied to prepodgngths but considerably lower preference scores
tional, particle, and clausal dependents of the cuhan the best-scoring path are often pruned as well
rent head. These tests consist to a large extent401
bit-vector implemented operations, comparing the’
expected dependent types of the head with lexichp illustrate how the simple scores and modular
features of the prospective dependent. The te¢ests are used to detect and repair problems in the
are made somewhat more complex because @Eference system, Figure 1 shows, as noted be-
various exceptions, such as (a) temporal and lodgre, that the attachment of an object to the geeess
tive phrases, and (b) the presence of a nearer p@rb "micromanaged” is dispreferred. In this case
tential head also expecting the dependent type. the probable reason is the lack of a transitive fea

The other test block types are selected and dewe for the verb. To check this, we would look at
cessed either by the syntactic category or the syiie FN1 test block for OBJ and find that in fad th
tactic function of the reference, depending on th€st assigns (-1) in this case. The required modif
focus of the test. The length-dependent tests ipation is best made by adding a transitive feature
clude tests of noun-phrases within coordinations guessed verbs.
determine whether post modifiers should be ap- But there is another problem here: the attach-
plied to the individual phrase or to the coordioati ment of the pp "over people” is not given a positiv
as a whole. preference. Checking the FN1 test block for

Usage Example
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VMOD and the TAGL1 test block for PP finds that a subject and a verb when there is no comma
there is in fact no subtest that prefers combingtio  within the subject).

of motion verbs and "over". While this doesn'tb) Tests for probably incomplete constituents,
cause trouble in the example, it could if thereever  based on the chunk types that follow them.

a prior object in the verb phrase. A subtest ¢ su(c) Tests for unexpected arguments, except in

categorization feature could be added. some circumstances. For example, "benefac-
o tive" indirect objects ("John baked Mary a
5 Training the Preference System cake") are dispreferred if they are not in ap-

To obtain the preference system, an initial set of propriate semantic classes.
o > P ystem, . Also, a large, complex collection of positive and
tests is identified, based primarily on subcategori

sation considerations. and then refined and en_egative tests, based on syntactic and semantic fac
tended based on maﬁual "training” on large nunl'S &re used to distinguish among coordinated and
9 9 asopositive readings, and among alternative attach-

bers of documents. Several problem situation o
ments of appositives.

_result i_n changes to the system, besides randomlf the addition or modification of preference
inspection of scores. tests does not solve a particular problem, then
(@) the best parse identified is not th.e correct on bme more basic changes can be made, such as the
Zg?i;gﬁﬁaujﬁethgrCt?égzcl:}s%a;%;ﬁ;m ;?gehﬁmroduction of new semantic classes. And, in rare
the same Q'Jscore’ was considered "besg' becaliases, new features are added to output network
) ) S&tes in order to make properties of non-head con-
of low-attach considerations.

(b) The best parse obtained is the correct one, b[slé{tuents encountered along a path available for

there are manv other parses with the sameSting both further along the path and in the de-
y P . elopment of higher-level constituents. An exam-
score, suggesting a need for refinement, bothy_ . . .
; . .ple is the person and number of syntactic subjects,
to improve performance and to avoid errors i

related circumstances when the correct aréallowing contexted preference tests for finite verb
" " P p%rases to check for subject consistency.
does not "float" to the top.

(c) No parse is returned for an input, because @f1 Relationship to " supervised" training
imposed space constraints, which indirectl . . .
control the amount of time that can be spent t o illustrate the relationship between the above
obtain a parse symbolic training method for preference scoring

In some cases the above problems can be sol\).?e'?ld corpus-basgd methods, perhgps the e_asiest way
by adjusting the base grammar, or by extendir‘g tokcgrggfre f':hto an a(ilapta;tlo_n_ (COII'QE gntd
lexical information to obtain the appropriate pref- oark, bl ) ?c b(te percep rgn tralnmg m(?tho d(')
erences. For example, the preference scoring pr&Bg probiem ot obtaining a best parse (either di-
lems of Figure 1 can be corrected by adding suBQCtIy’ or for parse ref‘?‘”k'”g)’ because the two
categorization information, as described above. methods are analogous in a number_ O.f ways.

In other cases, one or more modifications to the The basic ade_lpted perceptron training assumes a
preference system are made, adding positive te nerator f””C“OP produ_cmg parses for inputs.
to better distinguish best parses, adding negati ch such parse is associated with a vector of fea-

tests to disprefer incorrect parses, and/or re‘f;inirf[ur? values that_extﬁre_ss tr:e number (%fhtlr?est the
existing tests to narrow or expand applicability. eature appears in the input or parse. € Tesiture

Positive tests often just give credit to expecte sed are those identified by Roark (2001) for a top

structures not previously considered to require re own stoc_hgstlc parser. . .

ognition beyond acceptance by the gramma(.. T.he training method obtains a we_|ght yecWr

Negative tests fall into many classes, such as: _|n|t|a[ly 0) for the fgature values, by_ |terat|ng_JI-

(a) Tests for "ungrammatical" phenomena thatfIOIe times over pairsx, y> wherex, is a training
should not be ruled out entirely by the gram'—npUt’ andy; is the correct parse fof. For each

mar. These include lack of agreement, lack d}air, the best current pargeor x produced by the
' nerator, with feature value vectd(z), is se-

expected punctuation, and presence of une €

: %ﬁted based on the current value W ( V(z)).
ected punctuation (such as a comma betwe i e
P punctuation (su en if z#y, Wis incremented by/(y;), and dec-
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remented by(z). After training, the weights iV The second extrapolation is to the LFG XLE
are divided by the number of training steps (# inparser (Kaplan et al. 2004) for English, consisting
puts * # iterations). of a highly developed symbolic parser and gram-
The method is analogous to the RH manuahar, an OT-based preference component, and a
training process for preference in a number aftochastic back end to select among remaining al-
ways. First, the features used were developed fiarnative parser outputs. Two sets of values are
suitability to a top-down parser, for example takin given for XLE, one obtained using the full English
into account superordinate categories at sevegglammar, and one obtained using a reduced gram-
levels, some lexical information associated witlmar ignoring less-frequently applicable rules. The
non-head, left-side siblings of a node, and sonextrapolation indicates that the coverage of RH is
right-hand lookahead. Although only one suguite good for a symbolic parser with limited train
perordinate category is routinely used in RH preing on an idiom.
erence tests, in order to allow caching of output While the most important factor in RH parser
networks for a category, the preference system apeed is the enormous speed of the shallow parser,
lows for and occasionally uses the promotion dhe preference and pruning approach of the overlay
non-head features of nested constituents to provigarser make contributions to both speed and cover-
similar capability. age. This can be seen in Table 2 by the difference
Also, the feature weights obtained by the pebetween RH parser results with and without prun-
ceptron training method can be seen to focus d@mg. Pruning increases coverage because without it
patterns_that actually mattar distinguishing cor- more parses exceed imposed resource limits.
rect from incorrect parses, as does RH preferenceTable 3 compares accuracy. The values for
training. Intuitively, the difference is that wail Collins and Sagae/Lavie are based on comparison
symbolic training for RH explicitly pinpoints pat- with treebank data for the entire section 23. How-
terns that distinguish among parses, the perceptrever, because RH does not produce treebank-style
training method accomplishes something similalags, the RH values are based only on a random

by postulating some more general features as nega-

tive or positive based on particular examples, but Time No full parse|

allowing the iterations over a large training set t Sagae/Lavie | ~ 4 min 1.1%

filter out potentially indicative patterns that dot | RH Prune 5 min 14 sec 10.8%

actually serve as such. RH NoPrune| 7 min5 sec 13.9 %
These analogies highlight the fact that prefef-collins m3 16 min 6%

ence system training, whether symbolic or corpuSx| E reduced| ~24 minutes | unknown

based, is ultimately an empirical engineering exef| g full ~80 minutes | ~21%

cise.

6 Some Experimental Results

Table 2. Speeds arttktrapolated speeds

Fully F-score | Avg cross

Tables 2, 3, and 4 summarize some recent results accurate bkts
as obtained by testing on Wall Street Journal s€Csagae/Lavie | unknwh 86% unknwn
tion 23 of the Penn Treebank (Marcus et al. 1994)cqlins Lol | 33.6% | 88.2% | 1.05
The RH results were obtained by about 8 weeks 0FlinsNoLbl | 35.4% | 894% | 1.05
manual training on the genre. RH NoLbl 46% 36 % 59

Table 2 compares speed and coverage for RH :
and Collins Model3 (Collins, 1999) run on the Table 3. Accuracy Comparison
same CPU. The table also extrapolates the results
to two other parsers, based on reported compari- Average Median
sons with Collins. One extrapolation is to a veryRH Base 137.10 11
fast stochastic parser by Sagae and Lavie (2006RH Pref 5.04 2

The comparison indicates that the RH parser speedTable 4. Highest Scoring Parses per Input

is close to that of the best contemporary parsers.
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100-sentence sample from section 23, and com- erence scores facilitate finding the sources of
pared using a different unlabeled bracketing stan- the problems and potential methods of solv-
dard. For details see Newman (2007). For non- ing them.
parsed sentences the chunks are bracketed. AccuThis approach to symbolic preference has facili-
racy is not extrapolated to XLE because availablated development and maintenance of the RH
measurements give f-scores (&all80%) for de- parser, and has enabled the production of results
pendency relations rather than for bracketed cowith a speed and accuracy comparable to the best
stituents. stochastic parsers, even with limited training an a
As a partial indication of the role and effectiveidiom.
ness of the RH preference system, if non-parsedAn interesting question is why this very simple
sentences are ignored, the percentage of fully-acapproach does not seem to have been used previ-
rate bracketings shown in Table 3 rises to amusly. Part of the answer may lie in the lack of
proximately 46/89 = 51.6% (it is actually largerexplicit recognition that symbolic preference scor-
because coverage is higher on the 100-sentering is ultimately an engineering problem, and is
sample). As further indication, Table 4 comparegnly indirectly based on cognitive principles or
for section 23, the average and median number approximations to frequencies of particular rela-
parses per sentence obtained by the base gramiti@nships.
alone (RH Base), and the base grammar plus theOngoing development of the RH preference sys-
preference system (RH Préf)The table demon- tem includes continuing refinement based on
strates that the preference system is a cruciakpar"manual” training, and continuing expansion of the
component. Also, the median of 2 parses per seset of semantic features used as the parser is ap-
tence obtained using the preference system eplied to new domains. Additional development
plains why the fallback low-attach strategy is suowill also include more encoding of, and attention

cessful in many cases. to, the expected semantic features of arguments.
Experiments are also planned to examine the accu-
7 Summary and Directions racy/performance tradeoffs of using additional

, o _ o context information in the preference tests.
The primary contribution of this work is in demon-

stra_lting the feasibility_ of a vastly simplified sym References
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Synchronous Grammarsand Transducers:
Good News and Bad News

Stuart M. Shieber
School of Engineering and Applied Sciences
Harvard University
Cambridge MA 02138
USA
shi eber @eas. harvard. edu

Much of the activity in linguistics, especially On the positive side, some new results have
computational linguistics, can be thought of as chaintegrated the two branches through the formal-
acterizing not languages simpliciter but relationganguage-theoretic construct of the bimorphism. |
among languages. Formal systems for characterig¢ll present some background on this integration,
ing language relations have a long history with twand briefly describe two applications of synchronous
primary branches, based respectively on tree trangrammars: to tree-adjoining grammar semantics and
ducers and synchronous grammars. Both have setnsyntax-aware statistical machine translation.
increasing use in recent work, especially in machine On the negative side, algorithms for making use of
translation. Indeed, evidence from millennia of exthese formalisms are computationally complex, per-
perience with bilingual dictionaries argues for syn-haps prohibitively so. | will close with a plea for
chronous grammars as an appropriate substrate foovel research by the parsing technology commu-
statistical machine translation systems. nity in making the systems practical.
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Are Very Large Context-Free Grammars Tractable?

Pierre Boullier & Benoit Sagot
INRIA-Rocquencourt
Domaine de Voluceau, Rocquencourt BP 105
78153 Le Chesnay Cedex, France
{Pierre.Boul li er, Benoit. Sagot j@nria.fr

Abstract virtually all Tree Adjoining Grammars (TAG, see

e.g., (Schabes et al., 1988)) used in NLP applica-
In this paper, we present a method which, in  tions can (almost) be seen as lexicalized Tree In-
practice, allows to use parsers for languages sertion Grammars (TIG), which can be converted
defined by very large context-free grammars  into strongly equivalent CFGs (Schabes and Waters,
(over a million symbol occurrences). The  1995). Hence, the parsing techniques and tools de-
idea is to split the parsing process in two  scribed here can be applied to most TAGs used for
passes. A first pass computes a sub-grammar NLP, with, in the worst case, a light over-generation
which is a specialized part of the large gram-  which can be easily and efficiently eliminated in a
mar selected by the input text and various  complementary pass. This is indeed what we have
filtering strategies. The second pass is a tra- achieved with a TAG automatically extracted from
ditional parser which works with the sub-  (villemonte de La Clergerie, 2005)’s large-coverage
grammar and the input text. This approach factorized French TAG, as we will see in Section 4.
is validated by practical experiments per-  Even (some kinds of) non CFGs may benefit from
formed on a Earley-like parser running on  the ideas described in this paper.

a test set with two large context-free gram- The reason why the run-time of context-free (CF)
mars. parsers for large CFGs is damaged relies on a theo-
_ retical result. A well-known result is that CF parsers
1 Introduction may reach a worst-case running time@f| G| x n?)

where|G]| is thesizeof the CFG and: is thelength

More and more often, in real-word natural lan- & ' =T
guage processing (NLP) applications based upd?'f the source text. In typical NLP applications

grammars, these grammars are no more written Wich mainly work at the sentence level, the length
hand but are automatically generated, this has se%t & Sentence does not often go beyond a value of
eral consequences. This paper will consider one 6fY 120’ while its average length is around 20-30
these consequences: the generated grammars n{égfds In these conditions, the size of the grammarr,
be very large. Indeed, we aim to deal with grammard€SPite its linear impact on the complexity, may be
that have, say, over a million symbol occurrenced1® Prevailing factor: in (Joshi, 1997), the author re-
and several hundred thousands rules. Traditiong_?arks that “the real limiting factor in practice is the
parsers are not usually prepared to handle thefiz€ Of the grammar™. _ _
either because these grammars are simply too big ' "€ idea developed in this paper is to split the

(the parser's internal structures blow up) or the tim827SiNg process in two passes. A first pass called
spent to analyze a sentence becomes prohibitive. fIt€ring pass computes a sub-grammar which is the

This paper will con_centratg on context-free gram-  ithese two notions will be defined precisely later on.
mars (CFG) and their associated parsers. However, 2At least for French, English and similar languages.
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sub-part of the large input grammar selected by the, with A € N anda € V*.

input sentence and various filtering strategies. The For a given stringa € V*, its size (length)
second pass is a traditional parser which works witls noted|«|. As an example, for the input string
the sub-grammar and the input sentence. The pur= a; - - - ay, a; € T, we havgw| = n. The empty
pose is to find a filtering strategy which, in typicalstring is denoted and we havéz| = 0. The sizgG|
practical situations, minimizes on the average thef a CFGG is defined by|G| = > 4, ,cp |Ac].

total run-time of the filtering pass followed by the For G, on strings ofl’*, we define the binary re-

parser pass. lation derive noted=>, by 71 Ay ‘=% yiavs if
A filtering pass may be seen as a (filtering) func- G

. . — a € P and~y;,y, € V*. The subscriptG
tion that uses the mput.sentence to select a suélf even the superscript — o may be omitted. As
grammar Ol.Jt of a large |np.ut CFG. Our hope, usstuaI, its transitive (resp. reflexive transitive) clo-
ing such a filter, is that the time saved by the parser . n . .
pass which uses a (smaller) sub-grammar will notire 1S “Otedg’ (resp. ?)' We callderivationany
totally be used by the filter pass to generate this susequence of the formy =z e A complete
grammar. derivationis a derivation which starts with the ax-

It must be clear that this method cannot improvéom and ends with a terminal string. In that case
the worst-case parse-time because there exists grawe haveS :;> 0l :;> w, and~ is asentential form

mars for which the sub-grammar selected by the fil- 1,4 string languagedefined (generated, recog-

tering pass is the input grammar itself. In such &zeq) py( is the set of all the terminal strings that
case, the filtering pass is simply a waste of time. Ouére derived from the axiomZ(G) = {w | S EN
purpose in this paper is to argue that this technique G

may profit from typical grammars used in NLP. Tow,w € T"}. We say that a CFG is empty iff its
do that we put aside the theoretical view point anéfnguage is empty.

we will consider instead the average behaviour of A nonterminal symboH is nullableiff it can de-
our processors. rive the empty string (i.e.4 :Zg ). A CFG ise-free

More precisely we will study on two large NL iff its nonterminal symbols are non-nullable.
CFGs the behaviour of our filtering strategies on a A CFG isreducediff every symbol of every pro-
set of test sentences. The purpose being to chooggction is a symbol of at least one complete deriva-
the bestfiltering strategy, if any. By best, we meantion. A reduced grammar is empty iff its production
the one which, on the average, minimizes the totaet is empty P = ). We say that a non-empty
run-time of both the filtering pass followed by thereduced grammar is icanonical formiff its vocab-
parsing pass. ulary only contains symbols that appear in the pro-
Useful formal notions and notations are recalleductions ofP.34
in Section 2. The filtering strategies are presented Two CFGsG and G’ are weakly equivalentff
in Section 3 while the associated experiments at@ey generate the same string language. They are
reported in Section 4. This paper ends with sometrongly equivalentff they generate the same set of

concluding remarks in Section 5. structural descriptions (i.e., parse trees). It is a well
o known result (See Section 3.2) that every CEG
2 Preliminaries can be transformed in time linear w.r{G| into a

strongly equivalent (canonical) reduced CEG

2.1 Context-free grammars ) ) . o~
For a given input stringy € T*, we define its

A CFG G is a quadruplg N, T, P, S) whereNis

a non-empty finite set afonterminal symbo)sI” is Swe may say that the canonical form of the empty reduced
. . . . grammar is({S}, 0, 0, S) though the axiont does not appear

a finite set ofterminal symbols P is a finite set of i, any production.

(context-free rewritingyules (or production$ and “Note that the pai(P, S) completely defines areduced CFG

S is a distinguished nonterminal symbol called th§= (N, T, Pﬁ}) 'LT {Cgf}logcal f?}“{“ Sllng(e we h’;‘(\m‘ =){(Xo |

. e . - 0 — € , = i 0o — 1 Xp c

gxmm The setsV andT" are .dISjOII’\t and’ = NUT PA1<1i<p}—N.Thus, inthe sequel, we often note simply

is thevocabulary The rules inP have the formA — G = (P, S) grammars in canonical form.
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rangesas the setR” = {[i..j] | 1 < i < j < configurations, notedf—x by (q,tx) : (¢, x), iff

w + 1} If w = witws € T is a terminal string, (¢,1,¢) € 8. If w'w” € T*, we callderivationany
and ift € T U {e} is a (terminal or empty) sym- sequence of the forry’, w'w’) : : (", w").

bol, theinstantiation of ¢ in w is the triple noted o _ A
If w € T, theinitial configurationis notedc, and

t[i..j] whereli..j] is a range withi = |wy| +1and | _ ) _ >

j =i+ |t|. More generally, thénstantiationof the is the pair(qo, w). A final _conflguratlonls notedc s

terminal stringws in w; waws is notedws|i..j] with ~ and has the fomtgy, <) with ¢y € I A complete
derivationis a derivation which starts with, and

i = |w1| +1andj = i+ |we|. Obviously, the in- e _ _
stantiation ofw itself is thenw([1..1 + |w]]. ends in a final configuratios;. In that case we have

Let us consider an input string = wiywows co = cy.

S0 A
and a CFGG. If V\f have a complete derivation Tp¢ language £(A) defined (generated recog-
d=S5 =;> w1 Aws =;>a wiaws =;> wiwaws, We nized by the FSAA is the set of all terminal strings

: + w for which there exists a complete derivation. We
see that4 deriveswsy (we haveA = ws). More- . e . )

_ _ S a say that an FSA is empty iff its language is empty.
over, in this complete derivation, we also know aryo FSAsA and A’ areequivalentiff they defined
range inR", namely/[i..j], which covers the sub- {ne same language.
string wp which is derived byA (i = |wi| + 1 An FSA ise-freeiff its transition relation has the
andj_ = i+ |wa). 'This is represented by the-  form s = {(gi,t.4))|ai-q; € Q,t € T}, except per-
stantiated nonterminal symbdl[i..j]. In fact, each a5 for a distinguished transition, theransition
symbol which appears in a complete derivation may;nich has the formgo, e, q;), ¢; € F and allows

be transformed into its instantiated counterpart. Wg,q empty string to be in£(A). Every FSA can be

thus talk of instantiated productions or (complete).ansformed into an equivalentfree FSA.

instantiated derivations. For a giyen input text AnFSAA = (Q, %, 5, qo, F) is reducediff every

and a CFGG, let P be the set of instantiated pro- gjement of5 appears in a complete derivation. A

ductions that appears in all complete instantiatefhq,ced FSA is empty iff we have = (. We say

derivations? The pair(P, S[1..|w| +1]) is the(re-  hat 5 non-empty reduced FSA iséanonical form

duced) shared parse foreistcanonical fornf iff its set of stateg) and its set of terminal symbols

32 only contain elements that appear in the transition

relationd.” It is a well known result that every FSA

A finite-state automatoFSA) is the 5-tupled = A can be transformed in time linear witH | into an

(Q,%,6,q, F) whereQ is a non empty finite set equivalent (canonical) reduced FS#.

of states ¥ is a finite set otterminal symbolsé is . _

the transition relatiod = {(g;,t,q;)|qi,q; € Q A 2-3 Inputstrings and input DAGs

t € T U{e}}, qo is a distinguished element @@ In many NLP applicatiorfsthe source text cannot

called theinitial stateand F" is a subset of) whose be considered as a single string of terminal symbols

elements are callefinal states The size of4 is  but rather as a finite set of terminal strings. These

defined byl A| = |d]. sets are finite languages which can be defined by
As usual, we define bothanfigurationas an ele- particular FSAs. These particular type of FSAs are

ment of@ x T andderivea binary relation between called directed-acyclic graphgDAGSs). In a DAG

~ SFor example, in the previous complete derivation__ (@20, qO’F).’ the.mltlal .stateqo 's 1 and we

d, let the right-ﬁand sidec be the (vocabulary) string assume that there is a single final stafg” = {f})’

X;--- X --- X, in which each symbolX, derives the ter- () is a finite subset of the positive integers less than

minal stringz, € T* (we have X ? zp andw, = or equal tof: @ = {i|l < i < f}, X is the set of

x1- -z - - - Tp), then the instantiated productiotfio..i,] —  terminal symbols. For the transition relationwe

2.2 Finite-state automata

1,41 =d0 +|z1|, .- ok = tk—1 + k| ... ANdip = io + |w2| "We may say that the canonical form of the empty reduced

is an element of?Y . FSA is ({0}, 0,0, g0, 0) though the initial statej, does not
®The popular notion of shared forests mainly comes fron@ppear in any transition.

(Billot and Lang, 1989). 8Speech processing, lexical ambiguity representation, . ..
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require that its elements, ¢, j) are such that < j  every production inP} is used in at least one com-
(there are no loops in a DAG). Without loss of genplete derivation. Now, if this process is viewed as
erality, we will assume that DAGs atefree reduced a filtering strategy that computes a filtering function
FSAs in canonical form and that any DAGIs noted  as introduced in Section 1, it is clear that this strat-
by a triple (X, 6, f) since its initial state is always egy issize-optimaln the sense tha?; is of minimal
and its set of states g | 1 <1 < f}. size, we call it thegold strategy and the associated

For a given CFGG, the recognition of an input gold filtering function is noted. Since we do not
DAG w is equivalent to the emptiness of its inter-want that a filtering strategy looses parses, the result
section withG. This problem can be solved in time Gl = (Pdf, S) of any filtering functionf must be
linear in|G| and cubic in@Q| the number of states of such that, for every senteneg P{: is a superset of
w. PJ. In other words theecall scoreof any filtering

If the input text is a DAG, the previous notions offunction f must be of 100%. We can note that the
range, instantiations and parse forest easily generglarsing pass which generat6$ may be led by any
ize: the indiceg and; which in the string case locate filtering strategyy.
the positions of substrings are changed in the DAG As usual, theprecision scordprecision for short)
case into DAG states. For exampleAfiy..i,] —  of a filtering strategyf (w.r.t. the gold case) is, for
Xi[ig-i1] -~ Xplip—1.-i] is an instantiated produc- a givenw, defined by the quotient2! which ex-
tion of the parse forest fo&& = (N, T, P, S) and [Pol
w = (%,0, f), we haveA — X;---X, € P and
there is a path in the input DAG from statgto state
ip Via stategy, ..., ip—1.

Of course, any nonempty terminal stringe 7',
may be viewed as a DAG., 4, f) whereX = {t |
w = witwy ANt € T}, 6§ = {(i,t,i +1) | w =
witwa At € TNt = I—le]} andf = I—Hw]. If the

:S'zg[ iztr(lgggu J:? \t\?ﬁ;&p? ;trisn%, {t?f as;)c;c;ar;tgd ing strategyc, we only have to plot the times taken
_ 9 Thl’.lS’ in the se ua v’ve v;ill asjsgljme that thé)y the filtering pass and by the parsing pass to make
i];r;ns' of our’ parsers a?e né)t sirings but DAGs. As gome estimations on their average (median, decile)

. i parse times and then to decide which is the winner.
consequence the size (ength) of a sentence is the However, it may well happens that a strategy which
size of its DAG (i.e., its number of transitions). ' y PP 9y

has not received the award (with the sample of CFGs
and the test sets tried) would be the winner in an-
other context!

3.1 Gold Strategy All the following filtering strategies exhibit nec-
Let G = (N,T,P,S) be a CFGw = (5,4, f) essary conditions that any production must hold in

be an input DAG of sizen = |§| and (F,) = Ordertobeinaparse.
((Py),S[1..f]) be the reduced output parse for-
est in canonical form. FromP,), it is pos-
sible to extract a set of (reduced) uninstantiAn algorithm which takes as input any CFG
ated productionsPi = {A — X;---X, | G = (N,T,P,S) and generates as output a
Alig..ip] — Xilio..i1)Xali1..ia] - -+ Xp[ip—1.ip) € Strongly equivalentreduced CFG G’ and which
(P,)}, which, together with the axiorfi, defines a runs in O(|G|) can be found in many text books
new reduced CF@, = (PJ,S) in canonical form. (See (Hopcroft and Ullman, 1979) for example).
This grammar is called thgold grammar ofG for So as to eliminate from all our intermediate sub-
w, hence the superscrigt Now, if we useGY, to grammars all useless productions, each filtering
reparse the same input DAG, we will get the same strategy will end by a call to such an algorithm
output forest F,,). But in that case, we are sure thainamedmake-a-reduced-grammar

presses the number of useful productions selected by
f onw (for someG).

However, it is clear that we are interested in strate-
gies that aréime-optimaland size-optimal strategies
are not necessarily also time-optimal: the time taken
at filtering-time to get a smaller grammar will not
necessarily be won back at parse-time.

For a given CFQG7, an input DAGw and a filter-

3 Filtering Strategies

3.2 Themake-a-reduced-grammar Algorithm
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The make-a-reduced-grammaalgorithm works

as follows. It first finds alproductiv€ symbols. Af- S — AB 1)
terwards it finds alteachablé® symbols. A symbol S _ BA @)
is useful(otherwiseuseleskif it is both productive A = a 3)
and reachable. A productioh — X --- X, is use-

ful (otherwiseuseleskiff all its symbols are useful. A — ab (4)
A last scan over the grammar erases all useless pro- B — b (5)
duction and leaves the reduced form. Tamonical B — bc (6)

formis reached in only retaining in the nonterminal
and terminal sets of the sub-grammar the symbols _
which occur in the (useful) production set. Table 1: A simple grammar
3.3 Basic Filtering Strategy: b-filter O(|G|) time if we assume that the access to the ele-
The basic filtering strategyfilter for short) which ments of the terminal sét is performed in constant
is described in this section will always be tried thdime. Unlexicalizedproductions whose right-hand
first. Thus, its input is the coupléG,w) where sides are inV* are kept. It also rejects productions
G = (N, T, P, S) is the large initial CFG and the in- in which several terminal symbol occurs, in an order
put sentencev is a reduced DAG in canonical form which is not compatible with the linear order of the
w = (3,6, f) of sizen. It generates a reduced CFGinpult.
in canonical form noted?® = (P?, S) in which the Consider for example the set of productions
references to botlir andw are assumed. Besidesshown in Table 1 and assume that the source text
this b-filter, we will examine in Sections 3.4 and 3.5is the terminal stringib. It is clear that the-filter
two others filtering strategies namedindd. These Will erase production 6 sinceis not in the source
filters will always have as input a couplé&“,w) text.
whereG¢ = (P¢,S) is a reduced CFG in canonical The execution of theb-filter produces a (non-
form which has already been filtered by a previouseduced) CFG such thafG’| < |G|. However, it
sequence of strategies notedThey generate a re- may be the case that some production&ofire use-
duced CFG in canonical form notéd/ = (P¢/,S) less, it will thus be the task of thmake-a-reduced-
with f = a or f = d respectively. Of course it may grammaralgorithm to transforn@’ into its reduced
happens that</ is identical toG¢ if the f-filter is canonical formG? in time O(|G’|). The worst-case
not effective. A filtering strategy or a combination oftotal running time of the wholé-filter pass is thus
filtering strategies may be applied several times an@(|G| x n).
lead to a filtered grammar of the form sgjfe”de We can remark that, after the execution of the
in which the sequencii?da explicits the order in filter, the set of terminal symbols @’ is a subset
which the filtering strategies have been performedf 7' N .
We may even repeatedly applyuntil a fixed point
is reached before applyingy and thus get something
of the formGbe~a, As explained before, we assume that the input to
The idea behind thefilter is very simple and has the adjacent filtering strategyifilter for short) de-
largely been used in lexicalized formalisms parsingscribed in this section is a coupl&“, w) where
in particular in LTAG (Schabes et al., 1988) parsingG® = (N¢, T, P¢,S) is a reduced CFG in canon-
The filter rejects productions @f which contain ter- ical form. However, thes-filter would also work
minal symbols that do not occur & (i.e., that are for a non-reduced CFG. As usual, we define the

not terminal symbols of the DAG) and thus takes Symbols ofG° as the elements of the vocabulary

3.4 Adjacent Filtering Strategy: a-filter

- Ve=NeUT".
°X € Vis productive iff we haveX = w,w € T". The idea is to erase productions that cannot be
"X € V is reachable iff we havé = w1 Xws,wiw> €  part of any parses fap in using an adjacency crite-
T*. ria: if two symbols are adjacent in a rule, they must
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derive terminal symbols that are also adjacenvin Moore, 2000), hereaftdtC, is a well-known rela-

To give a (very) simple practical idea of what wetion since many parsing strategies are based upon it.
mean by adjacency criteria, let us consider again th&fe say thatX is in the LC of A and we writed . X
source string:b and the grammar defined in Table 1. %
. . : iff (A, X B)Y)|B Y PAa= e}
in which the last production has already been erased (4, X) 6 { )| B—aYie 4G 2
by theb-filter. We can writeA L X to enforce how the cou-

—aXp

The fact that theB-production ends with &and  ple (A, X) may be produced.
that the A-productions all start with am, implies  For its dual relationright-corner, noted., we say

that production 2 is in a complete parse only if thgn 4t v is in the right corner oft and we writeX s A
source text is such thdtis immediately followed

by a. Since it is not the case, production 2 can béf (X,4) € {(Y,B) [ B — oY € PAJ :(’;>
erased. e}. We canwriteX 1 A to enforce how the

More generally, consider a production of tr12e formcouple(X, A) may bggséijﬁuced.
A= - XY If for each couple(a, b) € 7" in We also define thérst (resp. last) relation noted
which a is a terminal symbol that can terminate (the{_} (resp. <o) by = {(X.t) | X € V AL €
terminal strings generated by andb is a terminal ¢ ooP- ) BY ! '
symbol that can lead (the terminal strings generated* X 7t A2 €T } (resp.—= {(X, 1) | X €
by) Y, there is no transition ohthat can followa V Atc TAX = atAz € ).
transition ora in the DAGw, it is clear that the pro- ¢
ductionA — --- XY --- can be safely erased.

Now assume that we have the following (left) .
derivation Y :*> Ylﬁl =*> Y;ﬁl s ﬁl :*> (Xv g, Y) € {(Uaﬁa V) | A— aUﬂV’y € P/\ﬂ z?

X e}. This means thak andY occur in that order in

WYplp-- P = Yplp P e right-hand side of some production and are sep-
with ay, = . If for each couple(a,?’) in which arated by a nullable string. Note thatX or Y may

a has the previous definition arid is a terminal ©Of may not be nullable. _
symbol that can lead (the terminal strings gener- On the input DAGw = (%, 4, f), we define the
ated by)Y,, there is no transition ol that can fol- immediately precedeelation noted< and we write
low a transition oru in the DAG w, the production ¢ < b for a,b € ¥ iff wiabws € L(w), w1, ws €
Yp-1 — apY;B, can be erased if it is not valid in g«
another context.

Moreover, consider a (right) derivation of the _ _
form X = X, =S ap-eeaX, = We writtea < b for a,b € X iff wiawsbws €

Xp—1—apXpPp
: =

We define theadjacentternary relation o/ x
N* x V noted « and we write X <& Y iff

Yp—lgpypﬁp

We also define therecederelation noted« and

. L(w),w;,ws, w3 € X*.We can note thak is not
o1 pXply =y apXp, iy 1
the transitive closure of.

. * 12 . .
with 3, = e. If for each couple(a’, b) in which b For each productiont — aXoX: -« X, 1 X,7

has the previous definition andis a terminal sym- 4 pc and for each symbol pairsXy, X,,) of non-
bol that can terminate (the terminal strings gene

ated by).X,, there is no transition ohthat can fol-
low a transition on’ in the DAG w, the production PUte two setsl; andA; of couples(a, b),a,b € T*
X,_1 — apX,3, can be erased if it is not valid in defined by A; = Uocicp = {(a,0) | a <
another context. Xo X g X; —¢ by and Ay = Up<icp =
In order to formalize these notions we define sev- Xip1Xp1
eral binary relations together with their (reflexive){(“’ b) [ a = Xi e Xp = b} Any
transitive closure. —
Within a CFGG = (N, T, P, S), we first define Hconsider the source strirtgab for which we haven z ¢,
left-corner noted.. Left-corner (Nederhof, 1993; but nota < c.

Rullable symbols s.t.X;--- X, 4 §*> €, wWe com-
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pair (a,b) of A; is such that the terminal symbol Z is non-empty, thug. is also non-empty?
a may terminate a phrase &, while the terminal
symbolb may lead a phrase ak,--- X,. Since "o e (left) derivation of the form

Xy and X, are not nullable is not empty. If * % X
0 P A1 Pty XoY = woawicY = woewiwY =

none of its elements$a, b) is such thata < b, the Ge Ge Ge

. . Z—aolU
pl’OdUCtIOﬂA — aXpXy ---prlXp’}/ is useless woawlwzngw gi A woawlwgwgaUﬁW :*>

and can be erased. Analogously, any gairb) of G

As is such that the terminal symbal may termi- _ o
nate a phrase akoX, - -- X,_; while the terminal in which wiwywswsws € T<*. These derivations

symbolb may lead a phrase of,,. SinceX, and contains all possible usages of the production-

X, are not nullable,A, is not empty. If none of U8 in a parse. If for every couplg:, b) € L, the
its elements(a, b) is such thata < b, the produc- Statemena < b does not hold, we can conclude that

tion A — aXoX; --- X, 1X,7 is useless and can the productionZ — aUg is not used in any parse
be erased. Of course X, -- X, 1 = e, we have and can thus be deleted.

A= Ayt Analogously, we can check that the order of ter-

The previous method has checked some adjaceginal symbols is compatible with both a production
properties inside the right-hand sides of productiong,n its right grammatical context.

The following will perform some analogous checks

but at the beginning and at the end of the right-hand L€t Z — aU 3 be a production irP® in which U

sides of productions. is non-nullable ang? :> e. If Y is a non-nullable
Let us go back to Table 1 to illustrate our pur-symbol, we compute the sét = {(a,b) | a «

pose. Recall that, with source teat, productions 6 7 |, 7 x &y s, b}. SinceG* is reduced

and 2 have already been erased. Consider produc-Z2—oUB

tion 4 whose left-hand side is aa, the terminal and sinceS < §, we are sure that the sgt’ X <

Stl’ing ab that it generates ends lby If we look for Y |S non_empty’ thuﬂ is also non_ernptyfl
the occurrences afl in the right-hand sides of the
(remaining) productions, we only find production 1 10 €ach couple(a,b) € R we can asso-
which indicates thatl is followed by B. Since the Ciate at Ieast one (right) derlvatlon of the Iorm
phrases of3 all start withb (See production 5) and XY §> Xowibwy :> Xwawibwo o
since in the source tg)btdoes not immediately fol- 1 Zwswawy b Z—;;Uﬁ el Bwswywybwg :*>
low anotherb, production 4 can be erased. Ge

In order to check that the input senteneestarts 1ol wiwswawibwg => W1a72aw5w4w?,ZU2wlbWO

and ends by valid terminal symbols, we augmenh which w5w4w3w2w1 € T. These deriva-
the adjacent relation with two elemerits ¢, S) and  tions contains all possible usages of the production
(S,¢,$) where$ is a new terminal symbol whichis 7z —. U3 in a partial parse. If for every couple
supposed to start and to end every sentefce. (a,b) € L, the statement < b does not hold, we

. LetZ _”’ chUﬁ b((eha grodwf:tlon_ IP< in Wh'(l:lhg can conclude that the productidh — U is not
IS hon-nullable an ? e. It X is a non-nullable used in any parse and can thus be deleted.

We can associate with each couple,b) €

*
woawiwawzwU Bryo = woawi Wawsw4wsbyi B2

symbol, we compute the sét — {(a,b) | a «—4
P . . Now, a call to themake-a-reduced-grammaal-
XeYLZ o U< b}. SinceGeisreduced g

Z—alUB gorithm produces a reduced CFG in canonical form
and since$ < S, we are sure that the sat & v ©  hamedGe = (N, T, P, S).

121t can be shown that the previous check can be performed
on(G*, w) in worst-case timé& (|G| x42|3) (recallthag>| <
n). This time reduces t@ (|G| x |X|?) if the input sentence  This statement does not hold any more if we exclude from
is not a DAG but a string. P the productions that have been previously erased during the
13This is equivalent to assume the existence in the grammaurrenta-filter. In that case, an empty set indicates that the
of asuper-productiorwhose right-hand side has the fofif§$.  productionZ — U can be erased.
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3.5 Dynamic Set Automaton Filtering matically generated CFG, the other one is the CFG
Strategy: d-filter equivalent of a TIG automatically extracted from a

In (Boullier, 2003) the author has presented iActorized TAG.

method that takes a CFG and computes a FSA __ 1he first grammar, name@”=", is a variant of
that defines a regular supersett7). However his € CFG backbone of a large-coverage LFG gram-
method would produce intractable gigantic FSASNar for French used in the French LFG parser de-
Thus he uses his method to dynamically computﬁ.\c”bed in (Boullier and Sagot, 2005). In this vari-
the FSA at parse time on a given source text. Bas@f'l the SeT’ of terminal symbols is the whole set of

on experimental results, he shows that his methdg€nch inflected forms present in thefitea large-
called dynamic set automatotDSA) is tractable. COVerage syntactic lexicon for French (Sagot et al.,

He uses it toguide an Earley parser (See (Ear-2006)' This leads to as many as 407,863 different

ley, 1970)) and shows improvements over the noF;Arminal symbols and 520,711 lexicalized prqduc-
guided version. The DSA method can directly bdons (hence, the average number of categories —
used as a filtering strategy since the states of the uffNich are here non-terminal symbols — for an in-

derlying FSA are in fact sets dfems For a CFG flected form is 1.27). Moreover, this CFG entails
G = (N,T,P,S), an item (or dotted production) a non-neglectible amount of syntactic constraints

is an element of [A — a.8] | A — af € P}. (including over-generating sub-categorization frame

A completeitem has the form{A — ~.], it indi- checkin.g), _WhiCh implie_s as manyﬁ?ﬂ = 19,028

cates that the productiod — ~ has been, in some non-lexicalized productlons. All in allGT>N has

sense, recognized. Thus, the complete items of tRe2: 739 productions. G

DSA states gives the set of productions selected by 1he second grammar, named ™, is a CFG

the DSA. This selection can be further refined if we/Nich represents a TIG. To achieve this, we applied

also use the mirror DSA which processes the sourdBoullier, 2000)'s algorithm on the unfolded version

text from right to left and if we only select completeOf (Villemonte de La Clerger!e, 20022 factorlzed

items that both belong to the DSA and to its mirror. JAG- The numberTngproductlons 6=~ Is com-
Thus, if we assume that the input to the DSA filparable to that ot . However, tl}%sée o gram-

tering strategy dfilter) is a couple(G¢, w) where mars are _completely dn‘fere_nt. Firgt '~ has much

Ge = (P*,S) is a reduced CFG in canonical form, €SS terminal and non-terminal symbols tiah~ .

we will eventually get a set of productions which isT i jrggans that thﬁ tj)vasic fiter may be less ;z;fci;cient

S .

a subset ofP°. If it is a strict subset, we then ap- 2" G than onG; ' Secon_d, the size %T’;N

ply the make-a-reduced-grammaaigorithm which |sh§nr:)rr1r1]ous (rrr:ore. tﬂaﬂ l?j twges t;?}g )

produces a reduced CFG in canonical form nameff 'c" SNOWs that right-hand sides s pro-

Ged — (Pl 5), ductions are huge (the average number of right-hand
The Section 4 will give measures that may help t&'de symbols is more than 24). This may increase

compare the practical merits of theandd-filtering the usefulness Qf _andd-ﬂltermg strategies. ,
strategies. Global quantitative data about these grammars is

shown in Table 2.
4 Experiments Both grammars, as evoked in the introduction,
have not been written by hand. On the contrary, they
The measures presented in this section have begfe automatically generated from a more abstract
taken on a 1.7GHz AMD Athlon PC with 1.5 Gb and more compact level (a meta-level over LFG for
of RAM running Linux. All parsers are written in C G7>N  and a metagrammar f67/¢). These gram-
and have been compiled with gcc 2.96 with B2  mars are not artificial grammars set up only for this
optimization flag. experiment. On the contrary, they are automatically
generated huge real-life CFGs that are variants of
grammars used in real NLP applications.
We have performed experiments with two large Our test suite is a set of 3093 French journalistic
grammars described below. The first one is an autgentences. These sentences argémerallemonde

4.1 Grammars and corpus
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L6 [N ] Jm | el [ AP | 16l ] Strategy| Average precision
GT>N | 7,862 407,863 539,739] 19,028 | 1,123,062 GT>N ‘GTIG
GTic 448 173 | 493,408| 4,338 | 12,455,767 no filter | 0.04% | 0.03%

b 62.87%| 39.43%
bd 74.53% | 66.56%
ba 77.31%| 66.94%
ba™> 77.48% | 67.48%

Table 2: Sizes of the grammaés’ > and GTI¢
used in our experiments

part of the EASy parsing evaluation campaign cor- bad 80.27%| 77.16%
pus. Raw sentences have been turned into DAGs ba®d | 80.30%| 77.41%
of inflected forms known by both grammar/lexicon gold | 100% | 100%

couplest® This step has been achieved by the pre-
syntactic processing chairx®ipe (Sagot and Boul- Table 3: Average precision of six different filtering
lier, 2005). They are all recognized by both gramstrategies on our test corpus witH >» andG*7¢.
mars!® The resulting DAGs have a median size of

28 andan averggelsae of 3.1'7' ) lier, 2003), at least as precision is concerned. We
Before entering into details, let us give here th

first important result of these experiments: it was hall see later that this is stil the case on global
. : ' arsing times. However, applying tlEfilter after
actually possible to build parsers out@f>" and b g PRYIng

GTIG and t ticiently with th i the a-filter still removes a non-neglectible amount
and to parse eticiently wi € resuing ¢ productionst’ each technique is able to eliminate

ggrserfh(wfe Sth?rlll ?etan Iate(; OT. eﬁm;r:cy reSUItS%roductions that are kept by the other one. The result
ven ne fact that we are dealing With grammarag paqe filters is suprisingly good: in average, after

whose sizes are respectively over 1,000,000 and ovgﬁ . .
N Sy filters, only approx. 20% of the productions that
12,000,000, this is in itself a very satisfying result. y app ° P

have been kept will not be successfully instantiated
4.2 Precision results in the final parse forest. Third, the adjacency filter
can be used in its one-pass mode, since almost all

_Let us recall !nformally tha_t the preC|S|on'of afllter the benefit from the full (fix-point) mode is already
ing strategy is the proportion of productions in the : S L .
resulting sub-arammar that are in the aold rammarreaChed after the first application. This is practically
. 9 9 . . . gold g d very valuable result, since the one-pass mode is
i.e., that have effectively instantiated counterparts in, .

. obviously faster than the full mode.
the final parse forest.

. . . However, all these filters do require computing
We have applied different strategies so as to COMime, and it is necessary to evaluate not only the pre-
pare their precisions. The results 67>" and ’ y ythe p

TIG . . cision of these filters, but also their execution time
G are summed up in Table 3. These results give . :
. as well as the influence they have on the global (in-
several valuable results. First, as we expected, ﬂ&?udin filtering) parsing time
basicb-filter drastically reduces the size of the gram- g 9P g '

mar. The result is even better 6f > thanks toits 4.3 Pparsing time and best filter
large number of terminal symbols. Second, both the

adjacency:-filter and the DSAd-filter efficiently re- Filter execution times for the six filtering strategies
duce the size of the grammar: 6>, thea-filter introduced in Table 3 are illustrated f&”>" in

eliminates 20% of the productions they receive a§/9ure 1. These graphics show three extremely valu-
input, a bit less for thel-filter. Indeed, theu-filter able pieces of information. First, filtering times are

performs better than thefilter introduced in (Boul- €XWémely low: the average filtering time for the
slowest filter pa>°d, i.e., basic plus full adjacency

'°As seen above, inflected forms are directly terminal symplus DSA) on 40-word sentences is around 20 ms.

bols of GT>¥, while GT1¢ uses alexiconto map these in- oo .
flected forms into its own terminal symbols, thereby possibl Second, on small sentences, filtering times are virtu-

introducing lexical ambiguity. ally zero. This is important, since it means that there
8 Approx. 15% of the original set of sentences were notrec-—

ognized, and required error recovery techniques; we dedile  ’Although not reported here, applying thebefored leads

discard them for this experiment. to the same conclusion.
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Filter execution time (seconds)
Filter execution time (seconds)
Filter execution time (seconds)

) 50 ) 50 ) 50
Sentence length Sentence length Sentence length

b-filter bd-filter ba-filter

Filter execution time (seconds)
Filter execution time (seconds)
Filter execution time (seconds)

) 50 ) 50 W 60
Sentence length Sentence length Sentence length

ba > -filter bad-filter ba™> d-filter

Figure 1: Filtering times for six different strategies witH >

is almost no fixed cost to pay when we use thesg. °: RT——

. . . T ~ DSA filter

filters (let us recall that without any filter, building £ . T e e ;
. . . . [&] ne-pass adjacency filter an ilter .-"

efficient parsers for such a huge grammar is highly} Folladacency e and DA e "

0.15 |-

problematic). Third, all these filters, at least wherg
used withGT>", are executed in a time which is g
linear w.rt. the size of the input sentence (i.e., thes
size of the input DAG). 3
The results o7 7¢ |ead to the same conclusions,é
with one exception: with this extremely huge gram—g
mar with so long right-hand sides, the basic fiIter§
is not as fast as om7>" (and not as precise, as < ol =t . . - -
we will see below, which slows down theake-a- Sentence length
reduced-grammarlgorithm since it is applied on
a larger filtered grammars). For example, the merigure 2: Global (filtering+parsing) times for six
dian execution time for the basic filter on sentencedifferent strategies witli:”? >
whose size is approximately 40 is 0.25 seconds,

to be compared with the 0.00 seconds reached on

GT>N (this zero value means a median time strictly One can see that the results are completely differ-
lower than 0.01 seconds, which is the granularity Oént, showing a strong dependency on the character-
our time measurments). istics of the grammar. In the case@f>", the huge
Figure 2 and 3 show the global (filtering+parsinghumber of terminal symbols and the reasonable av-
execution time for the 6 different filters. We only erage size of right-hand sides of productions, the ba-
show median times computed on classes of seaic filtering strategy is the best strategy: although it
tences of lengthl0i to 10(s + 1) — 1 and plotted is fast because relatively simple, it reduces the gram-
with a centeredc-coordinate {0(: + 1/2)), but re- mar extremely efficiently (it has a 60.56% precision,
sults with other percentiles or average times on th® be compared with the precision of the void filter
same classes draw the same overall picture. which is 0.04%). Hence, fo&">", our only result

0.1

0.05 |-
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‘Baslc filter only

_ Many parsers process their inputs from left to
°"e'péaﬁ:§}:§§:§§§i§ right but we can find in the literature other parsing
TR e it B3 e | strategies. In particular, in NLP, (van Noord, 1997)
and (Satta and Stock, 1994) propose bidirectional al-
gorithms. These parsers have the reputation to have
a better efficiency than their left-to-right counterpart.
This reputation is not only based upon experimental
results (van Noord, 1997) but also upon mathemat-
ical arguments in (Nederhof and Satta, 2000). This
is specially true when the productions of the CFG
strongly depend on lexical information. In that case
the parsing search space is reduced because the con-
straints associated to lexical elements are evaluated
Figure 3: Global (filtering+parsing) times for six as early as possible. We can note that our filtering
different strategies witl?” /¢ strategies try to reach the same purpose by a totally
different mean: we reduce the parsing search space
by eliminating as many productions as possible, in-

is that this basic filter does allow us to build an eﬁ"cluding possibly non-lexicalized productions whose

c:;i_pars?rf_(lit[hg mostt etff|c_|ent one) ’tht t?"’}t rE)fmeﬁjrelevance to parse the current input can not be di-
additionnal filtering strategies are not useful. rectly deduced from that input.

The p|ctur§>|]sv completely different witty . We can also remark that our results are not in con-
Contrary toG , this grammar has comparatively

¢ inal and il bol radiction with the claims of (Nederhof and Satta,
very tew te_rmlna an 'non-termlna Symbols, an 000) in which they argue that “Earley algorithm
very long right-hand sides. These two facts lea

L o nd related standard parsing techniques [...] can-
to a lower precision of the basic filter (39.43%), P g a L]

which keeps many more productions when applier&]Ot be directly extended to allow left-to-right and
orrect-prefix-property parsing in acceptable time
on GG than when applied o>, and leads, P property p g P

h lied al o the | Hicient Thbound". First, as already noted in Section 1, our
when applied aione, 1o the 1ess etlicient parser. 1Ny q4 does not work for any large CFG. In order

gives to the adjacency filter much more Opportunity, oy well, the first step of our basic strategy must

© |mp|>roye thfetglobal executlonkum(taH Howe\;er, tt_h‘?ilter out a great amount of (lexicalized) productions.
complexity of the grammar makes the construc %% do that, it is clear that the set of terminals in the

of the DSA filter relatively costly despite its preci- input text must select a small ratio of lexicalized pro-

sion, leading to the following conclusion: @#" ductions. To give a more concrete idea we advo-

(and probably on any grammar with similar CharacE:ate that the selected productions produce roughly a

teristics), the best filtering strategy is the One'pasérammar ofnormal size out of the large grammar.
adjacency strategy. In particular, this leads to an imSecond our method as a whole clearly does not pro-
provement over the work Of. (Boullier,_ 2003) WhiChcess thé input text from left-to-right and thus does
only mtroc_luced tp?GDSA filter. Inmdgntally, the not enter in the categories studied in (Nederhof and
_extrgme siz€ OG. leads tg much higher pars- Satta, 2000). Moreover, the authors bring strong evi-
'”%j'j?es’ gpp.rommat.ely 10 t|.mes hlghgr than Wlthdences that in case of polynomial-time off-line com-
G ! which is c;onsstent with the ratio betweenpilation of the grammar, left-to-right parsing cannot
the sizes of both involved grammars. be performed in polynomial time, independently of
the size of the lexicon. Once again, if our filter pass
is viewed as an off-line processing of the large input
It is a well known result in optimization techniquesgrammar, our output is not a compilation of the large
that the key to practically improve these processes ggammar, but a (compilation of a) smaller grammar,
to reduce their search space. This is also the casedpecialized in (some abstractions of) the source text
parsing and in particular in CF parsing. only. In other words their negative results do not
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necessarily apply to our specific case. 171-182, Trento, ltaly. Revised version at
The experiment campaign as been conducted in http://wwv. cogs. susx. ac. uk/ 1 ab/nl p/
using an Earley-like parsé?. We have also success- 62770l !/ cfg-resources/iwpt2000-rev2. ps.

fuly tried the coupling of our filtering strategies with Mark-Jan Nederhof and Giorgio Satta. 2000. Left-to-

a CYK parser (Kasami, 1967; Younger, 1967) as right parsing and bilexical context-free grammars. In
ost-processor. However the couplina with a GLR Proceedings of the first conference on North Ame_rican

post-p piing . chapter of the ACLpages 272—-279, San Francisco,

parser (See (Satta, 1992) for example) is perhapsCA' USA. Morgan Kaufmann Publishers Inc.

more problematic since the time taken to build up

the underlying nondeterministic LR automaton fronMark-Jan Nederhof. 1993. Generalized left-corner pars-

) . ing. In Proceedings of the sixth conference on Euro-
the sub grammar_ Cf"l_n be prohibitive. pean chapter of the AGlpages 305-314, Morristown,
Though no definitive answer can be made to the N3 Usa. ACL.

guestion asked in the title, we have shown that, in _ _
some cases, the answer is certaiyig Benoit Sagot and Pierre Boullier. 2005. From raw cor-
’ pus to word lattices: robust pre-parsing processing. In
Proceedings of L&TC 20Q05ages 348—-351, Poznah,

Poland.
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Abstract

This paper identifies two orthogonal dimen-
sions of context sensitivity, the first being
context sensitivity in concurrency and the
second being structural context sensitivity.
We present an example from natural lan-
guage which seems to require both types of
context sensitivity, and introduce partially
ordered multisets (pomsets) mcfgs as a for-
malism which succintly expresses both.

Introduction

Researchers in computer science and formal lan-
guage theory have separately investigated context
sensitivity of languages, addressing disjoint dimen-
sions of context sensitivity. Researchers in paral-
lel computing have explored the addition of con-
currency and free word order to context free lan-
guages, i.e. a concurrency context sensitivity (Gis-
cher, 1981; Warmuth and Haussler, 1984; Pratt,
1985; Pratt, 1986; Lodaya and Weil, 2000). Com-
putational linguistis have explored adding cross-
ing dependency and discontinuous constituency, i.e.
a structural context sensitivity (Seki et al., 1991;
Vijay-Shanker et al., 1987; Stabler, 1996).
Research considering the combination of two di-
mensions of expressing context sensitivity have been
sparse, e.g. (Becker et al., 1991), with research ded-
icated to this topic virtually nonexistent. Natural
languages are not well expressed by either form of
context sensitivity alone. For example, in Table 1,
sentences 1-8 are valid, but 9, 10 are invalid con-
structions of Norwegian. In addition to the cross-
ing dependency between the determiner and adverb
phrase, this example can be described by either
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Derfor ga Jens Kari kyllingen tydeligvis ikke lenger kald
Therefore gave Jens Kari the chicken evidently not longer cold
Derfor ga Jens Kari tydeligvis kyllingen ikke lenger kald

Derfor ga Jens tydeligvis Kari kyllingen ikke lenger kald

Derfor ga Jens tydeligvis Kari ikke kyllingen lenger kald

Derfor ga Jens tydeligvis Kari ikke lenger kyllingen kald

Derfor ga Jens tydeligvis ikke lenger Kari kyllingen kald

Derfor ga tydeligvis Jens ikke lenger Kari kyllingen kald

Derfor ga tydeligvis ikke Jens lenger Kari kyllingen kald

* Derfor ga Jens ikke tydeligvis Kari lenger kyllingen kald

* Derfor ga Jens ikke tydeligvis kyllingen lenger Kari kald

Table 1: Bobaljik’s paradox/shape conservation example

Bobaljik’s paradox (Bobaljik, 1999), which asserts
that relative ordering of clausal constituents are not
unambiguously determined by the phrase structure,
or shape conservation (Miiller, 2000), i.e. that lin-
ear precedence is preserved despite movement op-
erations. In other words, the two structurally con-
text sensitive components (due to the crossing de-
pendency between them) can be shuffled arbitrarily,
leading to concurrent context sensitivity.

This paper proposes pomset mcfgs as a formal-
ism for perspicuously expressing both types of con-
text sensitivity. | The rest of the paper is organized
as follows. Section 1 introduces pomsets, pomset
operations, and pomset properties. Section 2 pro-
vides a definition of pomset mcfgs by extending the
standard definition of mcfgs, defined over tuples of
strings, to tuples of pomsets. Section 3 discusses
pomset mcfg parsing.

'Other pomset based formalisms (Lecomte and Retore,
1995; Basten, 1997; Nederhof et al., 2003) have been limited
to the use of pomsets in context free grammars only.
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1 Pomsets

In this section, we define pomsets as a model for de-
scribing concurrency. A labelled partial order (LPO)
is a 4 tuple (V, X, =<, u) where V is a set of ver-
tices, 2 is the alphabet, < is the partial order on the
vertices, and p is the labelling function p:V— X.
A pomset is a LPO up to isomorphism. The con-
catenation of pomsets p and q is defined as ;(p,q)
= (VpUVy,2, U X, = U =g UVxVg,u, U pg).
The concurrency of pomsets p and q is defined
as [|(p.q) = (VpUVg.Xp U Xg,=p U Zgutip U fig).
Pomset isolation (¢) is observed only in the con-
text of concurrency. The concurrence of an isolated
pomset with another pomset is defined as ||(¢p,q) =
{vp}UVy.pa U Eg,2¢.{(Pr,Vp) }ULq), where Ap is
the set of linearizations for p, and pj is a function
which returns an element of Ap. Let ||; be a pomset
concurrency operator restricted to an arity of i. Be-
cause concurrency is both associative and commu-
tative, without isolation, ||, |ln = ||nllm = [|m+n. de-
feating any arity restrictions. Isolation allows us to
restrict the arity of the concurrency operator, guaran-
teeing that in all linearizations of the pomset, the lin-
earizations of the isolated subpomsets are contigu-
ous.”> A mildly concurrent operator ¢ ||,,, i.e. an n-
concurrent operator, is a composite operator whose
concurrency is isolated and restricted to an arity of n,
such that it operates on at most n items concurrently.

2 Pomset mcfgs

There are many (structural) mildly context sensitive
grammar formalisms, e.g. mcfg, Icfrs, mg, and they
have been shown to be equivalent (Vijay-Shanker et
al., 1987). In this section we construct mcfgs over
pomsets (instead of strings) to define grammars with
both types of context sensitivity.

A pomset mcfg G is a 7-tuple (X,N,O,PER,S)
such that 3 is a finite non-empty set of atoms, i.e.
terminal symbols, N is a finite non-empty set of non-
terminal symbols, where NNX=(), O is a set of valid
pomset operators, P is a set of i-tuples of pomsets
labelled by XUN, F is a finite set of pomset rewrit-
ing functions from tuples of elements of P into ele-
ments in P, FC{ g:P” —P | n>0 }, R is a finite set

ZPomset isolation is similar to proposals in for string iso-
lation in linear specification language (Goetz and Penn, 2000),

locking in idl-expressions (Nederhof and Satta, 2004), and in-
tegrity constraints in fo-tag (Becker et al., 1991).
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of rewrite rules which pair n-ary elements of F with
n+1 nonterminals, and SEN is the start symbol, and
d(S) = 1.

This definition extends the standard mcfg defini-
tion (Seki et al., 1991), with two main differences.
First, strings have been generalized to pomsets, i.e.
P is a set of i-tuples of pomsets instead of i-tuples of
strings. It follows that F, the set of functions, oper-
ate on tuples of pomsets instead of tuples of strings,
and so forth. Second, pomset mcfgs explicitly spec-
ify O, the set of possible operators over the pomsets,
e.g2. {;, ¢t ||2}; string mcfgs have an implied operator
set O={;} (i.e. just string concatenation).

Additionally, just as in mcfgs, where the arity of
string components are limited, we can limit the ar-
ity of the concurrency of pomsets. A n-concurrent
pomset mcfg is a pomset mcfg such that for all con-
currency operators ||; in the grammar, i<n. A pom-
set mcfg with no concurrency among its components
is a 1-concurrent pomset mcfg, just as a cfg is a 1-
mcfg.

3 Parsing

In this section we propose a strategy for parsing
pomset mcfgs, based on IDL parsing (Nederhof and
Satta, 2004). We define pomset graphs, which ex-
tend IDL graphs and pom-automata and are defined
over tuples of pomsets (or tuples of idl expressions),
rather than single pomsets or idl expressions. An in-
formal analysis of the computational complexity for
parsing pomset mcfgs follows.

Pomset graphs The construction is quite straight
forward, as pomsets themselves can already be con-
sidered as DAGs. However, in the pomset graph,
we add two vertices, the start and end vertices. We
then add precedence relations such that the start ver-
tex precedes all minimal vertices of the pomset, and
that the end vertex succeeds all maximal vertices of
the pomset. For any nonempty pomset, we define
Viin €V and V,0 CV to be the minimal and
maximal, respectively, vertices of V. Informally, no
vertex in a pomset precede V,,;, and none succeed
any in V4. Formally, V veV, v’eV,V’'#£v, V,in =
{v|W.,w)g=}tand Vo ={ v| (v,v') €= }. The
start vertex is then labelled with the empty string, ¢,
and the end vertex is labelled with o’, a symbol not
in 3.



Given a pomset p= (V,,2,=,up), a pomset
graph for p is a vertex labelled graph ~(p) =
(V,.E,uy) where V, and E are a finite set of ver-
tices and edges, where V,=V,U{v,,v.} and E= <
UVs X VininUV ez X Ve, £,=2U{€,0’}, where o’ is
a symbol not in ¥, and p1,=pp,U{(vs,€),(Ve,0)} is
the vertex labelling function. Having defined the
pomset graph, we can apply the IDL parsing algo-
rithm to the graph.

Complexity While the complexity of the mem-
bership problem for pomset languages in general
is NP-complete (Feigenbaum et al., 1993), by re-
stricting the context sensitivity of the pomset gram-
mars, polynomial time complexity is achievable.
The complexity of the parsing of IDL graphs is
O(n%%) (Nederhof and Satta, 2004) where k is the
width of the graph, and the width is a measurement
of the number of paths being traversed in parallel,
i.e. the arity of the concurrent context sensitivity.
Our intuition is that the parameterization of the com-
plexity according to the number of parallel paths
applies even when structural context sensitivity is
added. Thus for a k-concurrent m-structural mcfg,
we conjecture that the complexity is O(n3*™).

4 Conclusion

In this paper we identified two types of context sen-
sitivity, and provided a natural language example
which exhibits both types of context sensitivity. We
introduced pomset mcfgs as a formalism for describ-
ing grammars with both types of context sensitivity,
and outlined an informal proof of the its polynomial-
time parsing complexity.
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Abstract parser combinators, and Frost 2006 for a discussion
_ _ _ of their use in natural-language processing) and def-
In functional and logic programming, inite clause grammars (DCGs) respectively. For ex-

parsers can be built as modular executable ample, consider the following grammar, in which
specifications of grammars, using parser s stands for sentenceyp for nounphraseyp for
combinators and definite clause grammars verbphrase, andet for determiner:

respectively. These techniques are based on s = np vp

top-down backtracking search. Commonly np = noun | det noun

used implementations are inefficient for ‘égt z}’z,rbl ”,pt,

ambiguous languages, cannot accommodate noun ::="'i’ | 'm | 'p | b
left-recursive grammars, and require expo- verb ::="s’

nential space to represent parse trees for A set of parsers for this grammar can be con-
highly ambiguous input. Memoization is  structed in the Haskell functional programming lan-
known to improve efficiency, and work by  guage as follows, whereerm ‘orelse', and
other researchers has had some success in ‘thens are appropriately-defined higher-order
accommodating left recursion. This paper functions called parser combinators. (Note that
combines aspects of previous approaches packquotes surround infix functions in Haskell).
and presents a method by which parsers can s np ‘thenS vp

be built as modular and efficient executable np = noun ‘orelse’ (det ‘thenS noun)
specifications of ambiguous grammars vp = verb "thenS np

P o ) g g_ det =term’a ‘orelse’ term’t’
containing unconstrained left recursion. noun = term’i’' ‘orelse’ term’'mn

‘orelse' term’
‘orelse’ term’

o T

1 Introduction verb = term's’

Top-down parsers can be built as a set of mutually- Note that the parsers are written directly in the
recursive processes. Such implementations are mgatogramming language, in code which is similar in
ular in the sense that parsers for terminals and simpd¢ructure to the rules of the grammar. As such,
non-terminals can be built and tested first. Subsehe implementation can be thought of as an exe-
quently, parsers for more complex non-terminals cagcutable specification with all of the associated ad-
be constructed and tested. Koskimies (1990), antintages. In particular, this approach facilitates
Nederhof and Koster (1993) discuss this and othenodular piecewise construction and testing of com-
advantages of top-down parsing. ponent parsers. It also allows parsers to be defined
In functional and logic programming, top-downto return semantic values directly instead of inter-
parsers can be built using parser combinators (e.gediate parse results, and parsers to be parameter-
see Hutton 1992 for a discussion of the origins oized in order to accommodate context-sensitive lan-
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guages (e.g. Eijck 2003). Also, in functional pro-(such as speech recognition) it is not appropriate in
gramming, the type checker can be used to catch exther applications. According to Aho, Sethi, and
rors in parsers attributed with semantic actions.  Ullman (1986) converting a grammar to non-left re-

Parser combinators and DCGs have been used eursive form makes it harder to translate expressions
tensively in applications such as prototyping of comeontaining left-associative operators. Also, in NLP
pilers, and the creation of natural language intelit is easier to integrate semantic actions with parsing
faces to databases, search engines, and web pagesen both leftmost and rightmost parses of ambigu-
where complex and varied semantic actions areus input are being generated. For example, con-
closely integrated with syntactic processing. Howsider the first of the following grammar rules:

ever, both techniques are based on top-down re-  np = noun | np conj np
cursive descent search with backtracking. Com- ~ conj ::= "and" | "or" _
noun ::= "jim | "su" | "ali"

monly used implementations have exponential com-
plexity for ambiguous languages, cannot handle left- and its non-left-recursive weakly equivalent form:
recursion, and do not produce compact representa- np noun np’
tions of parse trees. (Note, a left-recursive grammar "’ conj np np’ | enpty
is one in which a non-terminal derives an expan-  The non-left-recursive form loses the leftmost
sionp .. headed with @ either directly or indi- parses generated by the left-recursive form. Inte-
rectly. Application of a parser for such a grammagrating semantic actions with the non-left-recursive
results in infinite descent.) These shortcomings limitule in order to achieve the two correct interpre-
the use of parser combinators and DCGs especialfgtions of input such ag"john", "and", "su",
in natural-language processing. "or", "ali"] is significantly harder than with the
The problem of exponential time complexity inleft-recursive form.
top-down parsers constructed as sets of mutually- Several researchers have recognized the impor-
recursive functions has been solved by Norvigance of accommodating left-recursive grammars in
(1991) who uses memotables to achieve polynomi&p-down parsing, in general and in the context of
complexity. Norvig's technique is similar to the useparser combinators and DCGs in particular, and have
of dynamic programming and state sets in Earley’proposed various solutions. That work is described
algorithm (1970), and tables in the CYK algorithmin detail in section 3.
of Cocke, Younger and Kasami. The basic idea in In this paper, we integrate Norvig's technique
Norvig's approach is that when a parser is appliewith aspects of existing techniques for dealing with
to the input, the result is stored in a memotable foleft recursion. In particular: a) we make use of the
subsequent reuse if the same parser is ever reappliedgth of the remaining input as does Kuno (1965),
to the same input. In the context of parser combinds) we keep a record of how many times each parser
tors, Norvig's approach can be implemented usingia applied to each input position in a way that is
functionnenoi ze to selectively “memoize” parsers. similar to the use of cancellation sets by Neder-
In some applications, the problem of left-hof and Koster (1993), ¢) we integrate memoization
recursion can be overcome by transforming thwith a technique for dealing with left recursion as
grammar to a weakly equivalent non-left-recursiveloes Johnson (1995), and d) we store “left-recursion
form. (i.e. to a grammar which derives the same sebunts” in the memotable, and encapsulate the mem-
of sentences). Early methods of doing this resultedization process in a programming construct called
in grammars that are significantly larger than the@ monad, as suggested by Frost and Hafiz (2006).
original grammars. This problem of grammar size Our method includes a new technique for accom-
has been solved by Moore (2000) who developed modating indirect left recursion which ensures cor-
method, based on a left-corner grammar transformaect reuse of stored results created through curtail-
tion, which produces non-left recursive grammarsnent of left-recursive parsers. We also modify the
that are not much larger than the originals. Howmemoization process so that the memotable repre-
ever, although converting a grammar to a weaklysents the potentially exponential number of parse
equivalent form is appropriate in some applicationgrees in a compact polynomial sized form using a
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technique derived from the chart parsing methods ofp-

: 1 ((1,2), [SubNode ("noun", (1,2))])
Kay (1980) and Tomita (1986). 3 ((3.5), [Branch [SubNode ("det”, (3,4)),
i SubNode ("noun", (4,5))]1)
As _an example use of our mfathod, consider the ((3.8). [Branch [Subneds (rmor (3 5))
following ambiguous left-recursive grammar from SubNode ("pp", (5,8))11)
. ; . . ,11), h [ SubNode ("np", .5)),
Tomita (1985) in whictpp stands for prepositional (311 [Braneh [btede o (& 2051,
phrase, angr ep for preposition. This grammar is Braneh [ onode toome 90
left recursive in the rules far andnp. Experimental 6 ((6.8), [Branch [ SubNode E: det”, gg 8%11)
. . u e noun", (7,
results using larger grammars are given later. ((6,11), [Branch [SubNode ("np”, (6,8)),
SubNode ("pp", (8,11))]])
9 ((9,11), [Branch [ SubNode ("det", (9,10))
s =npvp | s pp SubNode ("noun", (10,11))]11)
np = noun | det noun | np pp "prep”
- prep n 5 ((5,6), [Leaf "n"])
pp = prep np 8 ((8,9), [Leaf "w'])
vp = verb np ‘pp"
det ='a | 't’ 8 ((8,11),[Branch [ SubNode ("prep",(8,9)),
noun ::="'i' | 'm | 'p | ‘b SubNode (“np”, (9,11))]])
verb =g 5 ((5,8), [Branch [ SubNode ("prep", (5,6))
o s SubNode ("np", (6,8))]1])
prep ='n | 'w ((5,11), [Branch [ SubNode ("prep",(5,6))
i SubNode ("np", (6,11))1])
The Haskell code below defines a parser for theverb:
above grammar, using our combinators: oy (28 Lheat 7stD)
2 ((2,5), [Branch [SubNode ("verb", (2,3))
. . . . SubNode ("np", (3,5))]11)
s = menoi ze "s" ((np ‘thenS' vp) ((2,8), [Branch [SubNode ("verb",(2,3)),
‘orelse' (s ‘thenS' pp)) SubNode ("np", (3,8))]])
np = nmenoi ze "np" (noun ((2,11), [Branch [gugmgg (:xe[b",(gy i)l)
‘orel se' (det ‘thenS' noun) . . ("np*, (3, 11)]11)
‘orelse’ (np ‘thenS pp)) 1 ((1,5), [Branch [SubNode ("np", (1,2)),
pp = nenoi ze "pp" (prep ‘thenS np) SubNode ("vp", (2,5))11)
vp = nmenoize "vp" (verb ‘thenS' np) ((1,8), [Branch [gugmgg Eng g;g;;}
_ - " " y ) V) \ , N s
det = nenvize "det ‘ (term‘ a o Branch [SubNode ("s",  (L.5)),
orelse’ term’t ) SubNode ("pp", (5,8))11)
noun = nenoi ze "noun" (term’'i’ ((1,11), [Branch [SubNode ("np", (1,2)),
‘orelse' term’ni 5 ) [gugmgeg"vp", gié)lg)]
¢ ‘ P r anc U e ("s", , ,
,orelser term ' p SubNode ("pp", (5,11))1,
orelse' term’b’) Branch [SubNode ("s", (1,8)),
verb = nmenpi ze "verb" (term’'s’) SubNode ("pp", (8,11))]]
prep = nenoi ze "prep" (term’'n’ . .
‘orelse’ term’w) Our method has two disadvantages: a) it has

O(n*) time complexity, for ambiguous grammars,

The following shows the output when thecompared with O(f) for Earley-style parsers (Ear-
parser functions is applied to the input string €y 1970), and b) it requires the length of the input
"i sannt pwab” , representing the sentence “l saw 40 be known before parsing can commence.
man in the park with a bat”. It is a compact rep- Our method maintains all of the advantages of
resentation of the parse trees corresponding to tf@P-down parsing and parser combinators discussed
several ways in which the whole input can be parse@prller. In addition, our method accommodates ar-
as a sentence, and the many ways in which subggitrary context-free grammars, terminates correctly
quences of it can be parsed as nounphrases etc. AR correctly reuses results generated by direct and

discuss this representation in more detail in subsetildirect left recursive rules. It parses ambiguous lan-
tion 4.4. guages in polynomial time and creates polynomial-

apply s "isamt pwab" => sized representations of parse trees.
In many applications the advantages of our ap-

"noun"

L 55‘11 gg Hg;; " Im%; proach will _o.utweigh the digadvantages: In pgrticu-
7 ((7.8), [Leaf "p"]) lar, the additional time required for parsing will not
20 (10,11, [Leal "b7]) be a major factor in the overall time required when
g 552 ‘713 Hgg; jj?jj%; semantic processing, especially of ambiguous input,
9 ((9,10), [Leaf "a"]) is taken into account.
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We begin with some background material, showegnizer returns an empty set. Otherwise, it checks
ing how our approach relates to previous work byo see if the token at position in the input corre-
others. We follow that with a detailed description ofsponds to the terminal. If so, it returns a singleton
our method. Sections 5, 6, and 7 contain informadet containing + 1, otherwise it returns the empty
proofs of termination and complexity, and a briefset. For example, a basic recognizer for the termi-
description of a Haskell implementation of our al-nal’ s’ can be defined as follows (note that we use a
gorithm. Complete proofs and the Haskell code arfunctional pseudo code throughout, in order to make
available from any of the authors. the paper accessible to a wide audience. We also use

We tested our implementation on four naturala list lookup offset of 1):
language grammars from Tomita (1986), and on .
four abstract highly-ambiguous grammars. The rgt ™ © tjerm S
sults, which are presented in section 8, indicate that {3 , if j >1_input
our method is viable for many applications, espe-= {i + 1}, if jth elenment of input =t
cially those for which parser combinators and defi- - otherw se
nite clause grammars are particularly well-suited. ~ Theenpty recognizer is a function which always

We present our approach with respect to pars§HCCe€ds returning its input index in a set:
combinators. However, our method can also be im- empty | = {j}
plemented in other languages which support recur- A recognizer corresponding to a construct q
sion and dynamic data structures. in the grammar is built by combining recognizers

for p andq, using the parser combinatoer el se* .
2 Top-Down Backtracking Recognition When the composite recognizer is applied to index
j,itappliesptoj, then it applies; toj, and subse-
Top-down recognizers can be implemented as a sgfiently unites the resulting sets.:

of mutually recursive processes which search for (p ‘orelse’ q) j =unite (pj) (qij)
parses using a top-down expansion of the gran®.g, assuming that the input'issss", then
mar rules defining non-terminals while looking for (empty ‘orelse’ terms) 2 => {2, 3}

matches of terminals with tokens on the input. To- A composite recognizer corresponding to a se-
kens are consumed from left to right. Backtrackquence of recognizets g on the right hand side of
ing is used to expand all alternative right-hand-sideg grammar rule, is built by combining those recog-
of grammar rules in order to identify all possiblenizers using the parser combinatatens . When
parses. In the following we assume that the inpithe composite recognizer is applied to an ingdei

is a sequence of tokensiput, of lengthl iinput  first appliesp toj , then it applies; to each index in

the members of which are accessed through an ithe set of results returned lpy It returns the union
dexj . Unlike commonly-used implementations ofof these applications af.

parser combinators, which produce recognizers that  (p ‘thenS q) j = union (map q (p j))
manipulate subsequences of the input, we assumeg.g., assuming that the inputiissss", then
as in Frost and Hafiz (2006), that recognizers are (terms ‘thenS terms) 1 => {3}

functions which take an index as argument and  The combinators above can be used to define

which return a set of indices as result. Each indeéomposite mutua”y_recursive recognizers_ For ex-
in the result set corresponds to the position at whichmple, the grammass ::= 's’ sS sS | enpty

the recognizer successfully finished recognizing gan be encoded as follows:
sequence of tokens that began at posifion AN ss = (terms ‘thenS sS ‘thenS s9S)

empty result set indicates that the recognizer failed ‘orelse’ enpty
to recognize any sequence beginning at j. Multiple Assuming that the input isssss", the recognizer
results are returned for ambiguous input. sS returns a set of five results, the first four corre-

According to this approach, a recognizesr mt  sponding to proper prefixes of the input being rec-
for a terminalt is a function which takes an index ognized as ars. The results corresponds to the
j asinput, and if is greater tham_i nput, the rec- case where the whole input is recognized assn
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sS 1 =>{1, 2, 3, 4, 5} clarity associated with pure top-down parsing. Leer-

The method above does not terminate for Ieﬁ[nakers did not extend his method to produce com-

. . . _pact representations of trees.
recursive grammars, and has exponential tlm% ) B
complexity with respect ta i nput for non-left- 4) Nederhof and Koster (1993) introduced “can-

. Lo ellation” parsing in which grammar rules are trans-
recursive grammars. The complexity is due to th§ )
fact that recognizers may be repeatedly applied tgtr;dinmltoi D(iilGnruIe“s i%i?lai?;[ :gtc"hasDC;S ;X?:;
the same index during backtracking induced by th&ze al Is given a ‘ca . .
‘ .. argument. Each time a new non-terminal is de-
operator orel se' . We show later how complexity ", . . . .
rived in the expansion of a rule, this non-terminal

can be improved, using Norvig’'s memoization tech- : :
. b 9 g is added to the cancellation set and the resulting set
nique. We also show, in section 4.4, how the com: . .
. ‘ ‘ ‘ ‘ is passed on to the next symbol in the expansion.
binatorsterm “orel se’, and *thens' can be re- If a non-terminal is derived which is already in the
defined so that the processors create compact repre-t th -th inat | b I\I/<t ks. This tech )I/ ]
sentations of parse trees in the memotable, with o - en the parser backlracks. IS technique pre-

effect on the form of the executable specification. vents npn-termlnatlon, but Ipses SOMeE parses. To
solve this, for each non-termina) which has a left-

3 Left Recursion and Top-Down Parsing recursive alternative 1) a function is added to the
parser which places a special tokerat the front
Several researchers have proposed ways in whigfithe input to be recognized, 2) a DCG correspond-
left-recursion and top-down parsing can coexist: ing to the rulen :: = n is added to the parser, and
1) Kuno (1965) was the first to use the length oB) the new DCG is invoked after the left-recursive
the input to force termination of left-recursive de-DCG has been called. The approach accommodates
scent in top-down parsing. The minimal lengths ofeft-recursion and maintains modularity. An exten-
the strings generated by the grammar on the contigion to it also accommodates hidden left recursion
uation stack are added and when their sum exceedich can occur when the grammar contains rules
the length of the remaining input, expansion of thavith empty right-hand sides. The shortcoming of
current non-terminal is terminated. Dynamic proNederhof and Koster's approach is that it is expo-
gramming in parsing was not known at that timenential in the worst case and that the resulting code
and Kuno's method has exponential complexity. is less clear as it contains additional production rules
2) Shiel (1976) recognized the relationship beand code to insert the special tokens.
tween top-down parsing and the use of state sets5) Lickman (1995) defined a set of parser com-
and tables in Earley and SYK parsers and developdiinators which accommodate left recursion. The
an approach in which procedures corresponding toethod is based on an idea by Philip Wadler in an
non-terminals are called with an extra parameter ininpublished paper in which he claimed that fixed
dicating how many terminals they should read fronpoints could be used to accommodate left recursion.
the input. When a procedure corresponding to Bickman implemented Wadler’s idea and provided
non-terminaln is applied, the value of this extra pa-a proof of termination. The method accommodates
rameter is partitioned into smaller values which aréeft recursion and maintains modularity and clarity
passed to the component procedures on the right of the code. However, it has exponential complex-
the rule definingr. The processor backtracks whenity, even for recognition.
a procedure defining a non-terminal is applied with 6) Johnson (1995) appears to have been the first
the same parameter to the same input position. The integrate memoization with a method for dealing
method terminates for left-recursion but has expowith left recursion in pure top-down parsing. The
nential complexity. basic idea is to use the continuation-passing style
3) Leermakers (1993) introduced an approachf programming (CPS) so that the parser computes
which accommodates left-recursion through “recumultiple results, for ambiguous cases, incrementally.
sive ascent” rather than top-down search. Althougfhere appears to have been no attempt to extend
achieving polynomial complexity through memoiza-Johnson’s approach to create compact representa-
tion, the approach no longer has the modularity antions of parse trees. One explanation for this could
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be that the approach is somewhat convoluted and eshow how to accommodate direct and indirect left
tending it appears to be very difficult. In fact, John+ecursion. We end this section by showing how rec-
son states, in his conclusion, that “an implemenegnizers can be extended to parsers.
tation attempt (to create a compact representation) o
would probably be very complicated.” 4.1 Memoization

7) Frost and Hafiz (2006) defined a set of parseks in Norvig (1991) a memotable is constructed dur-
combinators which can be used to create polynomiéthg recognition. At first the table is empty. During
time recognizers for grammars with direct left recurthe process it is updated with an entry for each rec-
sion. Their method stores left-recursive counts in thegnizer ti that is applied. The entry consists of a set
memotable and curtails parses when a count exceeafspairs, each consisting of an indgxat which the
the length of the remaining input. Their method doegecognizer ri has been applied, and a set of results
not accommodate indirect left recursion, nor does f the application ofri toj .
create parse trees. The memotable is used as follows: whenever a

Our new method combines many of the ideas déecognizer ri is about to be applied to an index
veloped by others: as with the approach of Kunéhe memotable is checked to see if that recognizer
(1965) we use the length of the remaining input thias ever been applied to that index before. If so,
curtail recursive descent. Following Shiel (1976)the results from the memotable are returned. If not,
we pass additional information to parsers which ighe recognizer is applied to the input at indexhe
used to curtail recursion. The information that wememotable is updated, and the results are returned.
pass to parsers is similar to the cancellation sefr non-left-recursive recognizers, this process en-
used by Nederhof and Koster (1993) and includesures that no recognizer is ever applied to the same
the number of times a parser is applied to each inpitdex more than once.
position. However, in our approach this informa- The process of memoization is achieved through
tion is stored in a memotable which is also used tthe functionnmenoi ze which is defined as follows,
achieve polynomial complexity. Although Johnsorwhere theupdat e function stores the result of rec-
(1995) also integrates a technique for dealing witRgnizer application in the table:
left recursion with memoization, our method dif- nenoize Iabel r_i j
fers from Johnson’s Of) approach in the technique = i f 1 ookup I abel j succeeds,

. return nenotabl e result

that we use to accommodate left recursion. Also, ¢ e apply r i toj,
our approach facilitates the construction of com- update table, and return results
pac? representations of parse trees_ whereas ‘]_O hn'I\/Iemoized recognizers, such as the following,
son’'s appears not to. In the Has.kell mplementaﬁuonawe cubic complexity (see later):
of our algorithm, we use a functional programming .
structure called a monad to encapsulate the details™> = MMi z& "meS" (s ‘thteﬂg’;]slmgss)
of the parser combinators. Lickman’s (1995) ap- ‘orel se' enpty)
proach also uses a monad, but for a different pur- ™ = menoize "ns" terms
pose. Our algorithm stores “left-recursion counts42 Accommodating direct left recursion
in the memotable as does the approach of Frost
and Hafiz (2006). However, our method accommoln order to accommodate direct left recursion, we in-
dates indirect left recursion and can be used to credi@duce a set of valuesig denoting the number of
parsers, whereas the method of Frost and Hafiz ciifnes each recognizerirhas been applied to the in-
only accommodate direct left recursion and createdeXj . For non-left-recursive recognizers this “left-

recognizers not parsers. rec count” will be at most one, as the memotable
lookup will prevent such recognizers from ever be-
4 The New Method ing applied to the same input twice. However, for

left-recursive recognizers, the left-rec count is in-
We begin by describing how we improve complex-creased on recursive descent (owing to the fact that
ity of the recognizers defined in section 2. We thethe memotable is only updated on recursive ascent
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after the recognizer has been applied). Applicatiofor that recognizer and that index,i¢ is checked

of arecognizer to an indeX is failed whenever the to see if the recognizer should be failed because
left-rec count exceeds the number of unconsumedatihas descended too far through left-recursion. If
tokens of the input plus 1. At this point no parse iso, nenoi ze returns an empty set as result with the
possible (other than spurious parses which could omemotable unchanged. Otherwise, the countgr ¢
cur with circular grammars — which we want to re-is incremented and the recognizeris applied tg ,
ject). As illustration, consider the following branchand the memotable is updated with the result before
being created during the parse of two remaining tat is returned. The functionenoi ze defined below,
kens on the input (wheng, P andQare nodes in the can now be applied to rules with direct left recursion.

parse search space corresponding to non-terminalgy i e 1abel r i j =

andA, B andcto terminals or non-terminals): if lookup |abel j succeeds
return nenotable results

N else if c_ij > (l_input)-j+1, return {}

N/ \A el se increnent c_ij, apply r_i toj,

updat e nenot abl e,
and return results

P C 4.3 Accommodating indirect left recursion

Q We begin by illustrating how the method described
/ above may return incomplete results for grammars
containing indirect left recursion.

The last call of the parser for should be failed Consider the following grammar, and subset of
owing to the fact that, irrespective of whats, and the search space, where the left and right branches
C are, either they must require at least one input taepresent the expansions of the first two alternate
ken, otherwise they must rewrite topty. If they right-hand-sides of the rule for the non termirsal
all require a token, then the parse cannot succeed.dpplied to the same position on the input:

any of them rewrite tenpty, then the grammaris s .. = s then ..| Q| P | «x s
circular (N is being rewritten tov) and the last call P ::= S then . / \
should be failed in either case. (Tg s ; IS then .. IQ
Note that failing a parse when a branch is longer Sthen .. T
than the length of the remaining input is incorrect as IP IP

this can occur in a correct parse if recognizers are | |
rewritten into other recognizers which do not have Sthen.. S then ..
“token requirements to the right”. For example, we l
cannot fail the parse &or Qas these could rewrite fail s
to enpty without indicating circularity. Also note  Suppose that the left branch occurs before the
that we curtail the recognizer when the left-rec countght branch, and that the left branch was failed due
exceeds the number of unconsumed tokelus 1 to the left-rec count fos exceeding its limit. The
The plus 1 is necessary to accommodate the casesults stored foP on recursive ascent of the left
where the recognizer rewrites to empty on applicasranch would be an empty set. The problem is that
tion to the end of the input. the later call of on the right branch should not reuse
To make use of the left-rec counts, we simphithe empty set of results from the first callrods they
modify the nmenoi ze function to refer to an addi- are incomplete with respect to the positionrobn
tional table callectt abl e which contains the left- the right branch (i.e. iP were to be re-applied to the
rec counts ¢j, and to check and increment theseanput in the context of the right branch, the results
counters at appropriate points in the computationwould not necessarily be an empty set). This prob-
if the memotable lookup for the recognizei and lem is a result of the fact tha caused curtailment
the index produces a result, that result is returnedof the results fop as well as for itself. This problem
However, if the memotable does not contain a resuttan be solved as follows:
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1) Pass left-rec contexts down the parse space. Wad been constrained by the left-rec contextfait
need additional information when storing and conj. If there were no curtailment, the left-rec context
sidering results for reuse. We begin by defining thef a result would be empty and that result can be
“left-rec-context” of a node in the parse search spaaeused anywhere irrespective of the current left-rec
as a list of the following type, containing for each in-context.
dex, the left-rec count for each recognizer, including
the current recognizer, which have been called in the4  Extending recognizers to parsers

search branch leading to that node: Instead of returning a list of indices representing

[ (i ndex, [(recogl abel,left reccount)])] successful end points for recognition, parsers also

2) Generate the reasons for curtailment Whefum the parse trees. However, in order that these
computing results. For each result we need to kNOWeeg he represented in a compact form, they are con-
if the subtrees contributing to it have been curtailedy,teq with reference to other trees that are stored
through a left-rec limits, and if so, which recogniz-i, the memotable, enabling the explicit sharing of
ers, at which indices, caused the curtailment. A I'S(t,ommon subtrees, as in Kay's (1980) and Tomita’s
of (recog.l abel, index) pairs which caused cur- 19g6) methods. The example in section 1 illustrates
tailment in any of the subtrees is returned with th?he results returned by a parser.

_result.‘ orel se* and t.hens.‘ are r_n_od|f|ed, acc_ord— Parsers for terminals return a leaf value together
ingly, to merge these lists, in addition to merging th%vith an endpoint, stored in the memotable as illus-

rezultsstfrom subl;[re'est.h table toaeth ith trated below, indicating that the terminad" was
) Store results in the memotable together wi fentified at position 2 on the input:

subset of the current left-rec context corresponding
to those recognizers which caused the curtailment.
When a result is to be stored in the memotable for
a recognizep, the list of recognizers which caused The combinator:thens is extended so that
curtailment (if any) in the subtrees contributing toparsers constructed with it return parse trees which
this result is examined. For each recognigevhich  are represented using reference to their immediate
caused curtailment at some index, the current lefsubtrees. For example:

rec counter fos at that index (in the left-rec context |,

"verb" 2 ((2,3),[Leaf "s"])

the only part of the left-rec context of a node, that is SubNode("noun”, (4,5))]])
stored with the result for that node, is a list of those

recognizers and current left-rec counts which had amhjs memotable entry shows that a parse tree for a

effect on Curtai”ng the result. The limited Ieft'reCnounphrase np" has been |dent|f|ed, Starting at po-

context which is stored with the result is called thesjtion 3 and finishing at positios, and which con-

“left-rec context of the result”. sists of two subtrees, corresponding to a determiner
4) Consider results for reuse. Whenever a memnd a noun.

otable result is being considered for reuse, the left- The combinator or el se* unites results from two

rec-context of that result is compared with the leftyarsers and also groups together trees which have

rec-context of the current node in the parse searoﬁ1e same begin and end points. For example:

The result is only reused if, for each recognizer and

index in the left-rec context of the result, the left-rec, Dt

count is smaller than or equal to the left-rec-coung ((3, 5), [ Branch[ SubNode("det", (3,4)),

of that recognizer and index in the current context. SubNode( " noun”, (4,5))]])

This ensures that a result stored for some applicatiort (38 [ Branch[ SubNode(“np", (3,5)),

. . ) SubNode("pp", (5,8))]11)
P of a recognizer at index is only reused by a sub- ((3, 11), [ Branch[ SubNode("np", (3,5)),

sequent applicatior of the same recognizer at the SubNode("pp", (5,11))],
s . Branch[ SubNode("np", (3,8)),
same position, if the left-rec context fer would SubNode("pp". (8 11))11)

constrain the result more, or equally as much, as it
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which shows that four parses of a nounphrasg®  worst-case time complexities of Grand O(1}) re-
have been found starting at position 3, two of whictspectively, where n is the number of tokens in the
share the endpoint 11. input. The proof proceeds as follows:or el se*

An important feature is that trees for the sameequires O(n) operations to merge the results from
syntactic category having the same start/end pointa/o alternate recognizers provided that the indices
are grouped together and it is the group that is rere kept in ascending ordert hen' involves O(1?)
ferred to by other trees of which it is a constituentoperations when applying the second recognizer in
For example, in the following the parse tree for @ sequence to the results returned by the first rec-
"vp" spanning positions 2 to 11 refers to a group obgnizer. (The fact that recognizers can have mul-
subtrees corresponding to the two parses ofn  tiple alternatives involving multiple recognizers in

both of which span positions 3 to 11: sequence increases cost by a factor that depends on
"vp" 2 (["np"1,[1) the grammar, but not on the length of the input). For
((2,5), [Br anch[gﬂgmgzg:sxe[ b"'gﬁ’ g;g]]) non-left-recursive recognizersenoi ze guarantees
((2,8), [Branch| SubNode("vgr b". (2. 3)), that each recognizer is applied at most once to each
SubNode("np", (3,8))11) input position. It follows that non-left recursive rec-
((2,11), [Branch[ SubNode("verb", (2, 3 ognizers have Off) complexity. Recognizers with

)
SubNode(*np®, (3, 11))11) direct left recursion can be applied to the same input

5 Termination position at mosh times. It follows that such recog-
_ S _ ~nizers have O(H complexity. In the worst case a

The only source of iteration is in recursive funCt'onrecognizer with indirect left recursion could be ap-
calls. Therefore, proof of termination is based Ofhlied to the same input position * nt times where
the arguments of recursive calls to a well-foundeethis worst case would occur when every nontermi-
ascending sequence of integers. . nal was involved in the path of indirect recursion for

Basic recognizers such asrm i’ and the rec- some nonterminal. Complexity remains @)n
ognizerenpty have no recursion and clearly termi- - he only difference between parsers and recog-
nate for finite input. Other recognizers that are desjzers s that parsers construct and store parts of
fined in terms of these basic recognizers, througharse trees rather than end points. We extend the
mutual and nested recursion, are applied by th&mplexity analysis of recognizers to that of parsers
menoi ze function which takes a recognizer and anyng show that for grammars in Chomsky Normal
indexj as input and which accesses th@ot abl e.  Form (CNF) (i.e. grammars whose right-hand-sides
An appropriate measure function maps the index arghye at most two symbols, each of which can be ei-
the set of left-rec values to an integer, which inther g terminal or a non-terminal), the complexity
creases by at least one for each recursive call. Thg non-left recursive parsers is Gjnand of left-
fact that the integ.er is bounded by_conditions iMtecursive parsers it is Ofj The analysis begins by
posed on the maximum value of the index, the MaXyefining a “parse tuple” consisting of a parser name
imum values of the left-rec counters, and the MaXs; a start/end point pairs, e), and a list of parser
imum number of left-rec contexts, establishes tehames and end/point pairs corresponding to the first
mination. Extending recognizers to parsers do§gye| of the parse tree returned pyor the sequence
not involve any additional recursive calls and consess tokens frons to e. (Note that this corresponds to
quently, the proof also applies to parsers. A formaln entry in the compact representation). The anal-
proof is available from any of the authors. ysis then considers the effect of manipulating sets
of parse tuples, rather than endpoints which are the
values manipulated by recognizers. Parsers corre-
The following is an informal proof. A formal proof sponding to grammars in CNF will return, in the
is available from any of the authors. worst case, for each start/end point pair (s, @k

We begin by showing that memoized non-leftss) + 1) * 2) parse tuples, wheteis the number of ter-
recursive and left-recursive recognizers have minals and non-terminals in the grammar. It follows

6 Complexity
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that there are O(n) parse tuples for each parser anthed to obtain the best performance from this pat-
begin/endpoint pair. Each parse tuple corresponderm). We used a 3GHz/1GB PC in our experiments.
to a bi-partition of the sequence starting and fin-
ishing ate by two parsers (possibly the same) fro
the set of parsers corresponding to terminals anthe Tomita grammars used were: G1 (8 rules), G2
non-terminals in the grammar. It is these parse ty40 rules), G3 (220 rules), and G4 (400 rules). We
ples that are manipulated byr el se* and: t hens'.  used two sets of input: a) the three most-ambiguous
The only effect on complexity of these operations isnputs from Tomita’s sentence set 1 (Appendix G)
to increase the complexity oforel se* from O(n) of lengths19, 26, and26 which we parsed with

to O(r?), which is the same as the complexity ofG3 (as did Tomita), and b) three inputs of lengths
‘thens' . Owing to the fact that the complexity of 4, 10, and 40, with systematically increasing
‘thens' had the highest degree in the application odmbiguity, chosen from Tomita’s sentence set 2,
a compound recognizer to an index, increasing thehich he generated automatically using the formula:
complexity of* orel se* to the same degree in pars-

ing has no effect on the overall complexity of the noun verb det noun (prep det notin)

process.

The representation of trees in the memotable has The results, which are tabulated in figure 1,
one entry for each parser. In the worst case, wheshow our timings and those recorded by Tomita for
the parser is applied to every index, the entry hasis original algorithm and for an improved Earley
n sub-entries, corresponding idbegin points. For method, using a DEC-20 machine (Tomita 1986,
each of these sub-entries there are up sub-sub- Appendix D).
entries, each corresponding to an end point of the Considered by themselves our timings are low
parse. Each of these sub-entries contains O(n) pamseough to suggest that our method is feasible for
tuples as discussed above. It follows that the size ofe in small to medium applications, such as NL in-

mB.l Tomita’'s Grammars

the compact representation is G)n terfaces to databases or rhythm analysis in poetry.
_ Such applications typically have modest grammars
7 Implementation (no more than a few hundred rules) and are not re-

We have implemented our method in the pure funcqlerecj to parse huge vqumgs of input. . .
Clearly there can be no direct comparison against

tional programming language Haskell. We use a

monad (Wadler 1995) to implement memoization) S2rS-0ld DEC-20 times, and improved versions of
both of these algorithms do exist. However, we point
Use of a monad allows the memotable to be sy

tematically threaded through the parsers while hij—o some relevant trends in the results. The increases

ing the details of table update and reuse, allowin? times for our method roughly mirror the increases

. . Zhown for Tomita’s algorithm, as grammar complex-
a clean and simple interface to be presented to the . o ;
: : ity and/or input size increase. This suggests that our
user. The complete Haskell code is available from; . L
algorithm scales adequately well, and not dissimi-

any of the authors.

larly to the earlier algorithms.

8 Experimental Results 8.2 Highly ambiguous abstract grammars

In order to provide evidence of the low-order poly-We defined four parsers as executable specifica-
nomial costs and scalability of our method, we contions of four variants of a highly-ambiguous gram-
ducted a limited evaluation with respect to foumar introduced by Aho and Ullman (1972) when
practical natural-language grammars used by Tomitliscussing ambiguity: an unmemoized non-left—
(Appendix F, 1986) when comparing his algorithmrecursive parset, a memoized versioims, a memo-
with Earley’s, and four variants of an abstract highlyized left-recursive versiogini , and a left—recursive
ambiguous grammar from Aho and Ullman (1972)version with all parts memoized. (This improves
Our Haskell program was compiled using the Glasefficiency similarly to converting the grammar to
gow Haskell Compiler 6.6 (the code has not yet beeBhomsky Normal Form.):
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I nput No. of Qur al gorithm (conpl ete parsing)-PC Tonmi tas (conpl ete parsing)-DEC 20 Earl eys (recognition only)-DEC 20

I ength Par ses GL (4 [€5] (€] GL [ G3 [eZ] GL [ G3 [eZ]
Input from Tom tas sentence set 1. Tinmings are in seconds.

19 346 0. 02 4.79 7. 66

26 1,464 0. 03 8. 66 14.65

Input from Tom tas sentence set 2. Tinings are in seconds.

22 429 0. 00 0. 00 0. 03 0. 05 2. 80 6. 40 4.74 19.93 2.04 7.87 7.25 42.75
31 16, 796 0. 00 0.02 0. 05 0.09 6.14 14. 40 10. 40 45. 28 4.01 14.09 12.06 70.74
40 742,900 0. 03 0. 08 0.11 0.14 11.70 28. 15 18. 97 90. 85 6. 75 22.42 19.12 104.91

Figure 1: Informal comparison with Tomita/Earley results

s = (term’a’ ‘thenS s ‘thenS s) 9 Concluding Comments
‘orel se' enpty
sm = menoi ze "snf

((term'a ‘thenS sm‘thenS sm We have extended previous work of others on mod-

“orel se' enpty) ular parsers constructed as executable specifica-
sm = nenoi ze "sm " tions of grammars, in order to accommodate am-
((sm :Egﬂg tsgrm ) biguity and left recursion in polynomial time and
‘orel se' enpty) space. We have implemented our method as a set of
smmi = nmenoi ze "smm * parser combinators in the functional programming
(((Snmgimi tzge.r.fmﬂ o language Haskell, and have conducted experiments
(st ‘thenS term’a’))) which demonstrate the viability of the approach.

‘orelse’ enpty) The results of the experiments suggest that our

We chose these four grammars as they are highfjjethod is feasible for use in small to medium ap-

ambiguous. According to Aho and Ullman (1972)'plications which need_ parsing of ambiguou; gram-
s generates over2s billion complete parses of an mars. Our method, like other methods which use

input consisting of 24 a’'s. Although the left- Parser combinators or DCGs, allows parsers to be

recursive grammar does not generate exactly tiféeated as executable specifications which are “em-
same parses, it generates the same number of parf&dded” in the host programming language. It is

as it matches a terminal at the end of the rule rath&ften claimed that this embedded approach is more
than at the start. convenient than indirect methods which involve the

use of separate compiler tools such as yacc, for rea-
sons such as support from the host language (includ-
ing type checking) and ease of use. The major ad-
Tnput  No. of parses Seconds to generate the vantage of our method is that it increases the type

| th | udi ked tati .
O tial parses of full and partial parses  Of grammars that can be accommodated in the em-

. - : S gf”oo gmg‘o bedded style, by supporting left recursion and ambi-
12 208, 012 out of 0.00 0.00 0.02 guity. This greatly increases what can be done in
5 ey e s or—oi3 o5 this approach to parser construction, and removes
48 1.313e+26 0.83 0.97 0.80 the need for non-expert users to painfully rewrite
and debug their grammars to avoid left recursion.
Figure 2: Times to compute forest for n We believe such advantages balance well against any

reduction in performance, especially when an appli-
cation is being prototyped.
The Haskell implementation is in its initial stage.
These results show that our method can accomiVe are in the process of modifying it to improve ef-
modate massively-ambiguous input involving thdiciency, and to make better use of Haskell's lazy
generation of large and complex parse forests. Féwvaluation strategy (e.g. to return only the firist
example, the full forest fom=48 contains 1,225 successful parses of the input).
choice nodes and 19,600 branch nodes. Note alsoFuture work includes proof of correctness, analy-
that the use of more memoization $an reduces sis with respect to grammar size, testing with larger
the cost of left-rec checking. natural language grammars, and extending the ap-
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proach so that language evaluators can be conis.

structed as modular executable specifications of at-
tribute grammars.
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On the Complexity of Non-Projective Data-Driven Dependency Parsing

Ryan McDonald
Google Inc.
76 Ninth Avenue
New York, NY 10028
ryanmcdl@google.com

Abstract

In this paper we investigate several non-
projective parsing algorithms for depen-
dency parsing, providing novel polynomial
time solutions under the assumption that
each dependency decision is independent of
all the others, called here the edge-factored
model. We also investigate algorithms for
non-projective parsing that account for non-
local information, and present several hard-
ness results. This suggests that it is unlikely
that exact non-projective dependency pars-
ing is tractable for any model richer than the
edge-factored model.

1 Introduction

Dependency representations of natural language are
a simple yet flexible mechanism for encoding words
and their syntactic dependencies through directed
graphs. These representations have been thoroughly
studied in descriptive linguistics (Tesniere, 1959;
Hudson, 1984; Sgall et al., 1986; Meféuk, 1988) and
have been applied in numerous language process-
ing tasks. Figure 1 gives an example dependency
graph for the sentence Mr. Tomash will remain as a
director emeritus, which has been extracted from the
Penn Treebank (Marcus et al., 1993). Each edge in
this graph represents a single syntactic dependency
directed from a word to its modifier. In this rep-
resentation all edges are labeled with the specific
syntactic function of the dependency, e.g., SBJ for
subject and NMOD for modifier of a noun. To sim-
plify computation and some important definitions,
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an artificial token is inserted into the sentence as the
left most word and will always represent the root of
the dependency graph. We assume all dependency
graphs are directed trees originating out of a single
node, which is a common constraint (Nivre, 2005).

The dependency graph in Figure 1 is an exam-
ple of a nested or projective graph. Under the as-
sumption that the root of the graph is the left most
word of the sentence, a projective graph is one where
the edges can be drawn in the plane above the sen-
tence with no two edges crossing. Conversely, a
non-projective dependency graph does not satisfy
this property. Figure 2 gives an example of a non-
projective graph for a sentence that has also been
extracted from the Penn Treebank. Non-projectivity
arises due to long distance dependencies or in lan-
guages with flexible word order. For many lan-
guages, a significant portion of sentences require
a non-projective dependency analysis (Buchholz et
al., 2006). Thus, the ability to learn and infer non-
projective dependency graphs is an important prob-
lem in multilingual language processing.

Syntactic dependency parsing has seen a num-
ber of new learning and inference algorithms which
have raised state-of-the-art parsing accuracies for
many languages. In this work we focus on data-
driven models of dependency parsing. These models
are not driven by any underlying grammar, but in-
stead learn to predict dependency graphs based on
a set of parameters learned solely from a labeled
corpus. The advantage of these models is that they
negate the need for the development of grammars
when adapting the model to new languages.

One interesting class of data-driven models are
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PUNC

ROOT
NP

NMOD
NMOD

NMOD SB]) VC PP

NN

root Mr. Tomash will remain as a director emeritus

Figure 1: A projective dependency graph.

PUNC

root A scheduled on the issue

hearing is

today

Figure 2: Non-projective dependency graph.

those that assume each dependency decision is in-
dependent modulo the global structural constraint
that dependency graphs must be trees. Such mod-
els are commonly referred to as edge-factored since
their parameters factor relative to individual edges
of the graph (Paskin, 2001; McDonald et al.,
2005a). Edge-factored models have many computa-
tional benefits, most notably that inference for non-
projective dependency graphs can be achieved in
polynomial time (McDonald et al., 2005b). The pri-
mary problem in treating each dependency as in-
dependent is that it is not a realistic assumption.
Non-local information, such as arity (or valency)
and neighbouring dependencies, can be crucial to
obtaining high parsing accuracies (Klein and Man-
ning, 2002; McDonald and Pereira, 2006). How-
ever, in the data-driven parsing setting this can be
partially adverted by incorporating rich feature rep-
resentations over the input (McDonald et al., 2005a).

The goal of this work is to further our current
understanding of the computational nature of non-
projective parsing algorithms for both learning and
inference within the data-driven setting. We start by
investigating and extending the edge-factored model
of McDonald et al. (2005b). In particular, we ap-
peal to the Matrix Tree Theorem for multi-digraphs
to design polynomial-time algorithms for calculat-
ing both the partition function and edge expecta-
tions over all possible dependency graphs for a given
sentence. To motivate these algorithms, we show
that they can be used in many important learning
and inference problems including min-risk decod-
ing, training globally normalized log-linear mod-
els, syntactic language modeling, and unsupervised
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learning via the EM algorithm — none of which have
previously been known to have exact non-projective
implementations.

We then switch focus to models that account for
non-local information, in particular arity and neigh-
bouring parse decisions. For systems that model ar-
ity constraints we give a reduction from the Hamilto-
nian graph problem suggesting that the parsing prob-
lem is intractable in this case. For neighbouring
parse decisions, we extend the work of McDonald
and Pereira (2006) and show that modeling vertical
neighbourhoods makes parsing intractable in addi-
tion to modeling horizontal neighbourhoods. A con-
sequence of these results is that it is unlikely that
exact non-projective dependency parsing is tractable
for any model assumptions weaker than those made
by the edge-factored models.

1.1 Related Work

There has been extensive work on data-driven de-
pendency parsing for both projective parsing (Eis-
ner, 1996; Paskin, 2001; Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; McDonald et al.,
2005a) and non-projective parsing systems (Nivre
and Nilsson, 2005; Hall and Névak, 2005; McDon-
ald et al., 2005b). These approaches can often be
classified into two broad categories. In the first cat-
egory are those methods that employ approximate
inference, typically through the use of linear time
shift-reduce parsing algorithms (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Nivre and
Nilsson, 2005). In the second category are those
that employ exhaustive inference algorithms, usu-
ally by making strong independence assumptions, as
is the case for edge-factored models (Paskin, 2001;
McDonald et al., 2005a; McDonald et al., 2005b).
Recently there have also been proposals for exhaus-
tive methods that weaken the edge-factored assump-
tion, including both approximate methods (McDon-
ald and Pereira, 2006) and exact methods through in-
teger linear programming (Riedel and Clarke, 2006)
or branch-and-bound algorithms (Hirakawa, 2006).
For grammar based models there has been limited
work on empirical systems for non-projective pars-
ing systems, notable exceptions include the work
of Wang and Harper (2004). Theoretical studies of
note include the work of Neuhaus and Boker (1997)
showing that the recognition problem for a mini-



mal dependency grammar is hard. In addition, the
work of Kahane et al. (1998) provides a polynomial
parsing algorithm for a constrained class of non-
projective structures. Non-projective dependency
parsing can be related to certain parsing problems
defined for phrase structure representations, as for
instance immediate dominance CFG parsing (Barton
et al., 1987) and shake-and-bake translation (Brew,
1992).

Independently of this work, Koo et al. (2007) and
Smith and Smith (2007) showed that the Matrix-
Tree Theorem can be used to train edge-factored
log-linear models of dependency parsing. Both stud-
ies constructed implementations that compare favor-
ably with the state-of-the-art. The work of Meild
and Jaakkola (2000) is also of note. In that study
they use the Matrix Tree Theorem to develop a
tractable bayesian learning algorithms for tree belief
networks, which in many ways are closely related
to probabilistic dependency parsing formalisms and
the problems we address here.

2 Preliminaries

Let L = {l1,...,lj5|} be a set of permissible syn-
tactic edge labels and ©* = zgz; - -z, be a sen-
tence such that xg=root. From this sentence we con-
struct a complete labeled directed graph (digraph)
Gg = (Vg, Ey) such that,

(] Vm:{0,17’n}
o By ={(i,j)"|Vi,jeVeandl <k <|L|}

Gz is a graph where each word in the sentence is a
node, and there is a directed edge between every pair
of nodes for every possible label. By its definition,
G, is a multi-digraph, which is a digraph that may
have more than one edge between any two nodes.
Let (i, j)* represent the k" edge from i to j. G en-
codes all possible labeled dependencies between the
words of x. Thus every possible dependency graph
of  must be a subgraph of G.

Let i —™ j be a relation that is true if and only
if there is a non-empty directed path from node ¢ to
node j in some graph under consideration. A di-
rected spanning tree! of a graph G, that originates

'A directed spanning tree is commonly referred to as a ar-
borescence in the graph theory literature.
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out of node 0, is any subgraph 7' = (Vp, E7) such
that,

o Vp=Viand Er C FE,,
e Vj € Vpy,0—7 jifand onlyif j # 0

o If (i,5)F € Er, then (i',§)¥ ¢ Ep, Vi’ # i
and/or k' # k.

Define T'(G) as the set of all directed spanning trees
for a graph G. As McDonald et al. (2005b) noted,
there is a one-to-one correspondence between span-
ning trees of (G, and labeled dependency graphs
of x, i.e., T(Gg) is exactly the set of all possible
projective and non-projective dependency graphs for
sentence . Throughout the rest of this paper, we
will refer to any 7' € T'(G) as a valid dependency
graph for a sentence x. Thus, by definition, every
valid dependency graph must be a tree.

3 Edge-factored Models

In this section we examine the class of models that
assume each dependency decision is independent.
Within this setting, every edge in an induced graph
(G, for a sentence x will have an associated weight
wfj > 0 that maps the k" directed edge from node
1 to node j to a real valued numerical weight. These
weights represents the likelihood of a dependency
occurring from word w; to word w; with label [j.
Define the weight of a spanning tree T = (Vp, E7)
as the product of the edge weights

k
H Wij

(ivj)keET

w(T) =

It is easily shown that this formulation includes
the projective model of Paskin (2001) and the non-
projective model of McDonald et al. (2005b).

The definition of wfj depends on the context in
which it is being used. For example, in the work of
McDonald et al. (2005b) it is simply a linear classi-
fier that is a function of the words in the dependency,
the label of the dependency, and any contextual fea-
tures of the words in the sentence. In a generative
probabilistic model (such as Paskin (2001)) it could
represent the conditional probability of a word w;
being generated with a label [, given that the word
being modified is w; (possibly with some other in-
formation such as the orientation of the dependency



or the number of words between w; and w;). We will
attempt to make any assumptions about the form wfj
clear when necessary.

For the remainder of this section we discuss three
crucial problems for learning and inference while
showing that each can be computed tractably for the

non-projective case.

3.1 Finding the Argmax

The first problem of interest is finding the highest
weighted tree for a given input sentence x

T = argmax H wfj
TeT(Ge) (i,j)FE€Br

McDonald et al. (2005b) showed that this can be
solved in O(n?) for unlabeled parsing using the
Chu-Liu-Edmonds algorithm for standard digraphs
(Chu and Liu, 1965; Edmonds, 1967). Unlike most
exact projective parsing algorithms, which use effi-
cient bottom-up chart parsing algorithms, the Chu-
Liu-Edmonds algorithm is greedy in nature. It be-
gins by selecting the single best incoming depen-
dency edge for each node j. It then post-processes
the resulting graph to eliminate cycles and then con-
tinues recursively until a spanning tree (or valid
dependency graph) results (see McDonald et al.
(2005b) for details).

The algorithm is trivially extended to the multi-
digraph case for use in labeled dependency parsing.
First we note that if the maximum directed spanning
tree of a multi-digraph G, contains any edge (i, 5)*,
then we must have k = k* = argmax, wfj Oth-
erwise we could simply substitute (,7)*" in place
of (i,)* and obtain a higher weighted tree. There-
fore, without effecting the solution to the argmax
problem, we can delete all edges in G that do not
satisfy this property. The resulting digraph is no
longer a multi-digraph and the Chu-Liu-Edmonds
algorithm can be applied directly. The new runtime
is O(|L|n?).

As a side note, the k-best argmax problem for di-
graphs can be solved in O(kn?) (Camerini et al.,
1980). This can also be easily extended to the multi-
digraph case for labeled parsing.

3.2 Partition Function

A common step in many learning algorithms is to
compute the sum over the weight of all the possi-
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ble outputs for a given input . This value is often
referred to as the partition function due to its sim-
ilarity with a value by the same name in statistical
mechanics. We denote this value as Z,

Zo= >, w@= >[I wi

TeT(Gz) TeT(Gg) (i,j)keEr

To compute this sum it is possible to use the Matrix
Tree Theorem for multi-digraphs,

Matrix Tree Theorem (Tutte, 1984): Let G be a
multi-digraph with nodes V. = {0,1,...,n} and
edges E. Define (Laplacian) matrix @ as a (n +
1)x(n + 1) matrix indexed from O to n. For all v and

7, define:
k k
Qi= Y, wy & Q= ) = —uwj
i#5,(i,5)F€E i#5,(i,5)F€E
If the it" row and column are removed from Q to
produce the matrix ()%, then the sum of the weights of
all directed spanning trees rooted at node i is equal

to |Q'| (the determinant of Q°).

Thus, if we construct () for a graph G, then the de-
terminant of the matrix Q" is equivalent to Z. The
determinant of an nxXn matrix can be calculated in
numerous ways, most of which take O(n?) (Cormen
et al., 1990). The most efficient algorithms for cal-
culating the determinant of a matrix use the fact that
the problem is no harder than matrix multiplication
(Cormen et al., 1990). Matrix multiplication cur-
rently has known O(n?-3®) implementations and it
has been widely conjectured that it can be solved in
O(n2) (Robinson, 2005). However, most algorithms
with sub-O(n?) running times require constants that
are large enough to negate any asymptotic advantage
for the case of dependency parsing. As a result, in
this work we use O(n?3) as the runtime for comput-
ing Zg.

Since it takes O(| L|n?) to construct the matrix Q,
the entire runtime to compute Z,, is O(n?® + |L|n?).

3.3 Edge Expectations

Another important problem for various learning
paradigms is to calculate the expected value of each
edge for an input sentence x,

(6,02 = D w(@) x I((i,j)",T)

TeT(Ga)



Input: € = zox1 - xn

1. Construct Q) O(|L|n?)
2 forj:1.n O(n)
3 Qj; = Qjjand Q5 = Qi;, 0 <Vi<n O(n)
4 Qj;=1andQ;; =0,0<Vi<n O(n)
5 fori:0.n&i#j O(n)
6. Qij = —1 O(1)
7 Ze = Q) ()
s (i) ) = whZa V1<K <|L] O(ILI)
9 end for
10. Qjj = Qj;and Qi; = Qj;, 0 <Vi<n O(n)
11.  end for

Figure 3: Algorithm to calculate {((4,7)*), in

O(n® + |L|n?).

where I((i,4)¥,T) is an indicator function that is
one when the edge (i, j)¥ is in the tree 7.

To calculate the expectation for the edge (i, j)¥,
we can simply eliminate all edges (i, j)* # (i, 7)*
from G, and calculate Z,. Z, will now be equal
to the sum of the weights of all trees that con-
tain (i,7)*. A naive implementation to compute
the expectation of all |L|n? edges takes O(|L|n® +
|L|?>n*), since calculating Z,, takes O(n® + |L|n?)
for a single edge. However, we can reduce this con-
siderably by constructing ) a single time and only
making modifications to it when necessary. An al-
gorithm is given in Figure 3.3 that has a runtime of
O(n® + |L|n?). This algorithm works by first con-
structing (). It then considers edges from the node ¢
to the node j. Now, assume that there is only a single
edge from 7 to j and that that edge has a weight of 1.
Furthermore assume that this edge is the only edge
directed into the node j. In this case () should be
modified so that Q;; = 1, Q;; = —1, and Q;1; = 0,
Vi’ # 4,7 (by the Matrix Tree Theorem). The value
of Z, under this new ) will be equivalent to the
weight of all trees containing the single edge from ¢
to j with a weight of 1. For a specific edge (i, j)* its
expectation is simply wfj Z g, since we can factor out
the weight 1 edge from ¢ to j in all the trees that con-
tribute to Z, and multiply through the actual weight
for the edge. The algorithm then reconstructs Q and
continues.

Following the work of Koo et al. (2007) and Smith
and Smith (2007), it is possible to compute all ex-
pectations in O(n?® + |L|n?) through matrix inver-
sion. To make this paper self contained, we report
here their algorithm adapted to our notation. First,

125

consider the equivalence,

0log Zy 074
02 waj

1 w(T)
7. > 3

w
T TeT(Gy) U

Olog Zg

k
ow;; y

x I((i,5)",T)

As aresult, we can re-write the edge expectations as,

 0log |Q°|

L
“J 8wfj

pOlog Zy

. Nk
((,9)") = meijanj =

Using the chain rule, we get,

810g|Q0\ _ 810g|Q0\ a(QO)i/j’
k - 0)., . k
811)1] i1 8(@ )l'j/ aw”

We assume the rows and columns of Q° are in-
dexed from 1 so that the indexes of @ and Q° co-
incide. To calculate ((,7)*) when i, j > 0, we can
use the fact that dlog | X|/X;; = (X1);; and that
9(Q)irjr /Ow; is non zero only when i = i and
j =jorid =4 =jto get,

((,5)") = Zawi[((Q")1)z5 — ((Q°) 1))

When ¢ = 0 and 5 > 0 the only non zero term of
this sum is when ¢ = j' = j and so

((0,5)") = Zawi;(Q%))ys

Z and (Q°)~! can both be calculated a single time,
each taking O(n?). Using these values, each expec-
tation is computed in O(1). Coupled with with the
fact that we need to construct () and compute the
expectation for all |L|n? possible edges, in total it
takes O(n3 + |L|n?) time to compute all edge ex-
pectations.

3.4 Comparison with Projective Parsing

Projective dependency parsing algorithms are well
understood due to their close connection to phrase-
based chart parsing algorithms. The work of Eis-
ner (1996) showed that the argmax problem for di-
graphs could be solved in O(n3) using a bottom-
up dynamic programming algorithm similar to CKY.
Paskin (2001) presented an O(n?) inside-outside al-
gorithm for projective dependency parsing using the
Eisner algorithm as its backbone. Using this al-
gorithm it is trivial to calculate both Z; and each



Projective Non-Projective

argmax | O(n3 + |L|n?) O(|L|n?)
Zs | O(n?® +|LIn?) | O(n3 + |L|n?)
((1,))")= | O(® +|LIn?) | O(n® +|LIn?)

Table 1: Comparison of runtime for non-projective
and projective algorithms.

edge expectation. Crucially, the nested property of
projective structures allows edge expectations to be
computed in O(n3) from the inside-outside values.
It is straight-forward to extend the algorithms of Eis-
ner (1996) and Paskin (2001) to the labeled case
adding only a factor of O(|L|n?).

Table 1 gives an overview of the computational
complexity for the three problems considered here
for both the projective and non-projective case. We
see that the non-projective case compares favorably
for all three problems.

4 Applications

To motivate the algorithms from Section 3, we
present some important situations where each cal-
culation is required.

4.1 Inference Based Learning

Many learning paradigms can be defined as
inference-based learning. These include the per-
ceptron (Collins, 2002) and its large-margin vari-
ants (Crammer and Singer, 2003; McDonald et al.,
2005a). In these settings, a models parameters are
iteratively updated based on the argmax calculation
for a single or set of training instances under the
current parameter settings. The work of McDon-
ald et al. (2005b) showed that it is possible to learn
a highly accurate non-projective dependency parser
for multiple languages using the Chu-Liu-Edmonds
algorithm for unlabeled parsing.

4.2 Non-Projective Min-Risk Decoding

In min-risk decoding the goal is to find the depen-
dency graph for an input sentence x, that on average
has the lowest expected risk,

w(TR(T, T")
T'eT(Gg)

T = argmin
TeT(Gy)

where R is a risk function measuring the error be-
tween two graphs. Min-risk decoding has been
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studied for both phrase-structure parsing and depen-
dency parsing (Titov and Henderson, 2006). In that
work, as is common with many min-risk decoding
schemes, T'(G) is not the entire space of parse
structures. Instead, this set is usually restricted to
a small number of possible trees that have been pre-
selected by some baseline system. In this subsection
we show that when the risk function is of a specific
form, this restriction can be dropped. The result is
an exact min-risk decoding procedure.

Let R(T,T") be the Hamming distance between
two dependency graphs for an input sentence * =
L1 " T,

R(T,T)=n - > I(5)"T)
(i,j)keEr

This is a common definition of risk between two
graphs as it corresponds directly to labeled depen-
dency parsing accuracy (McDonald et al., 2005a;
Buchholz et al., 2006). Some algebra reveals,

T =  argmin Z w(TYR(T, T")

TET(C2) prer(Gy)

= argmin Z w(T)[n — Z I((i’j)kﬁT/)]
TEL(C) 1/ eT(Ga) (L)keEr

= argmin — Z w(T") Z I((i, )", T")
TET(@x)  1rer(Ga) ()keEr

= argmin — Z Z w(T’)I((i,j)k,Tl)
TeT(CG2)  (; jhepp T'€T(Ga)

= argmax = »_ > w(TI((E, )", T
TET(Ca) (; jykemy T/ €T(Ca)

= argmax T eT(Gg) WTDIGDTTY
TETGa) ; jkeny

= argmax (BN e
TETG) (; jykeny

By setting the edge weights to wfj = (@M= we
can directly solve this problem using the edge ex-
pectation algorithm described in Section 3.3 and the
argmax algorithm described in Section 3.1.

4.3 Non-Projective Log-Linear Models

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are global discriminative learning algorithms
for problems with structured output spaces, such as
dependency parsing. For dependency parsing, CRFs
would define the conditional probability of a depen-
dency graph T' for a sentence x as a globally nor-



malized log-linear model,

e, WAk

Srer@a Hipen, 0

k
H(z‘,j)kEET Wi

Srerca) Hjren, wh
w(T)
Ly

Here, the weights wfj are potential functions over
each edge defined as an exponentiated linear classi-
fier with weight vector w € RV and feature vector
f(i,5,k) € RV, where f,(i,7,k) € R represents a
single dimension of the vector f. The denominator,
which is exactly the sum over all graph weights, is a
normalization constant forcing the conditional prob-
ability distribution to sum to one.

CRFs set the parameters w to maximize the log-

likelihood of the conditional probability over a train-
I7]

a=1>

ing set of examples 7 = {(x,,T,)}
W= argvrvnaxgal: log p(Ty|xa)

This optimization can be solved through a vari-
ety of iterative gradient based techniques. Many
of these require the calculation of feature expecta-
tions over the training set under model parameters
for the previous iteration. First, we note that the
feature functions factor over edges, i.e., fu,(T) =
>_(i,j)yepy Julis J, k). Because of this, we can use
edge expectations to compute the expectation of ev-
ery feature f,. Let (f,)s, represent the expectation
of feature f,, for the training instance x,

<fu>ﬂ)0(

> p(Tl®a) fulT)
TET(Gay)
p(Tlza) >

= >
(i,5)keBp

TET(Gagy)
LU

= Z -
(i,5)k€BEp

TET(Gag)
w(T)I((i, )", T) fui, 4, k)

Ju(d, 5, k)

Ju(i, 3, k)

1
- L = ¥
x (i,j)’“eEma TeET(Gg)
1
= Z

T .k
(HJ)kEEmD‘

(6, 1) Ve Fu (i, 5, )

Thus, we can calculate the feature expectation per
training instance using the algorithms for comput-
ing Z, and edge expectations. Using this, we can
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calculate feature expectations over the entire train-
ing set,

<fu>T = Zp(ma)<fu>wa

where p(x,,) is typically setto 1/|7.

4.4 Non-projective Generative Parsing Models

A generative probabilistic dependency model over
some alphabet ¥ consists of parameters p’;y asso-
ciated with each dependency from word z € X to
word y € X with label [, € L. In addition, we im-
pose 0 < pg,y < 1 and the normalization conditions
Z%k pgy = 1 for each x € 3. We define a gen-
erative probability model p over trees T € T'(Gy)
and a sentence © = xgxq - - - &, conditioned on the
sentence length, which is always known,

p(x,T|n) = p(x|T,n)p(T|n)
= II #hs, p(Tin)

(Z7])k€ET

We assume that p(7'|n) = [ is uniform. This model
is studied specifically by Paskin (2001). In this
model, one can view the sentence as being generated
recursively in a top-down process. First, a tree is
generated from the distribution p(7'|n). Then start-
ing at the root of the tree, every word generates all of
its modifiers independently in a recursive breadth-
first manner. Thus, p’;’y represents the probability
of the word x generating its modifier y with label
li.. This distribution is usually smoothed and is of-
ten conditioned on more information including the
orientation of x relative to y (i.e., to the left/right)
and distance between the two words. In the super-
vised setting this model can be trained with maxi-
mum likelihood estimation, which amounts to sim-
ple counts over the data. Learning in the unsuper-
vised setting requires EM and is discussed in Sec-
tion 4.4.2.

Another generative dependency model of interest
is that given by Klein and Manning (2004). In this
model the sentence and tree are generated jointly,
which allows one to drop the assumption that p(7'|n)
is uniform. This requires the addition to the model
of parameters p; srop for each x € X, with the nor-
malization condition py srop + Ey’ k p’éjy = 1. Itis
possible to extend the model of Klein and Manning



(2004) to the non-projective case. However, the re-
sulting distribution will be over multisets of words
from the alphabet instead of strings. The discus-
sion in this section is stated for the model in Paskin
(2001); a similar treatment can be developed for the
model in Klein and Manning (2004).

4.4.1 Language Modeling

A generative model of dependency structure
might be used to determine the probability of a sen-
tence o by marginalizing out all possible depen-

dency trees,
> plx,Tn)
TeT(Ga)

= Y pT.n)p(Tln)

TET(Ga)

=8 >, Il ¢k =08%

TeT(Ge) (i,j)keEr

p(xln) =

This probability can be used directly as a non-
projective syntactic language model (Chelba et al.,
1997) or possibly interpolated with a separate n-
gram model.

4.4.2 Unsupervised Learning

In unsupervised learning we train our model on
a sample of unannotated sentences X' = {a:a}lofil.
Let |xo| = no and p(T'|na) = Ba. We choose the

parameters that maximize the log-likelihood

| X
> log(p(@alna)) =
a=1
|x| | X
= Dlog( Y p(malTna)) + > log(Ba),
a=1  TeT(Gay) o=l

viewed as a function of the parameters and subject
to the normalization conditions, i.e., Zy,k Pﬁ,y =1
and p’gjy > 0.

Let x,; be the it" word of x,. By solving the
above constrained optimization problem with the
usual Lagrange multipliers method one gets

ko _
pr,y -

X ..
Z|a:|1 Zia 2 iiai=a, <(Z7])k>£va

JiTaj =Y
X ..
DI D DVITE D TSI (R ) LS W
J

’ ., I
P =Y
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where for each x,, the expectation ((4,7)¥),, is de-
fined as in Section 3, but with the weight w(T") re-
placed by the probability distribution p(x,|T, ne).

The above |L| - |3|? relations represent a non-
linear system of equations. There is no closed form
solution in the general case, and one adopts the ex-
pectation maximization (EM) method, which is a
specialization of the standard fixed-point iteration
method for the solution of non-linear systems. We
start with some initial assignment of the parameters
and at each iteration we use the induced distribu-
tion p(x4|T, no) to compute a refined value for the
parameters themselves. We are always guaranteed
that the Kullback-Liebler divergence between two
approximated distributions computed at successive
iterations does not increase, which implies the con-
vergence of the method to some local maxima (with
the exception of saddle points).

Observe that at each iteration we can compute
quantities ((,7)*), and Z, in polynomial time
using the algorithms from Section 3 with p';ah
in place of wf? i Furthermore, under some standard
conditions the fixed-point iteration method guaran-
tees a constant number of bits of precision gain for
the parameters at each iteration, resulting in overall
polynomial time computation in the size of the input
and in the required number of bits for the precision.
As far as we know, this is the first EM learning algo-
rithm for the model in Paskin (2001) working in the
non-projective case. The projective case has been
investigated in Paskin (2001).

Tag

5 Beyond Edge-factored Models

We have shown that several computational problems
related to parsing can be solved in polynomial time
for the class of non-projective dependency models
with the assumption that dependency relations are
mutually independent. These independence assump-
tions are unwarranted, as it has already been estab-
lished that modeling non-local information such as
arity and nearby parsing decisions improves the ac-
curacy of dependency models (Klein and Manning,
2002; McDonald and Pereira, 2006).

In the spirit of our effort to understand the nature
of exact non-projective algorithms, we examine de-

» pendency models that introduce arity constraints as

well as permit edge decisions to be dependent on a



limited neighbourhood of other edges in the graph.
Both kinds of models can no longer be considered
edge-factored, since the likelihood of a dependency
occurring in a particular analysis is now dependent
on properties beyond the edge itself.

5.1 Arity

One feature of the edge-factored models is that no
restriction is imposed on the arity of the nodes in the
dependency trees. As a consequence, these models
can generate dependency trees of unbounded arity.
We show below that this is a crucial feature in the
development of the complexity results we have ob-
tained in the previous sections.

Let us assume a graph GY¥ = (Vz, Ex) defined
as before, but with the additional condition that each
node i € V, is associated with an integer value

o(i) > 0. T(G:(f)) is now defined as the set of all
(¢)

directed spanning trees for GGz~ rooted in node 0,
such that every node ¢ € V has arity smaller than or
equal to ¢(i). We now introduce a construction that
will be used to establish several hardness results for
the computational problems discussed in this paper.
Recall that a Hamiltonian path in a directed graph
G is a directed path that visits all of the nodes of G
exactly once.

Let G be some directed graph with set of nodes
V = {1,2,...,n}. We construct a target graph
G = (Vu, Ey) with Vy = V U {0} (0 the root
node) and |L| = 1. For each i,j € V, with i # j,
we add an edge (i, ) to Ez. We set wi{j = 1if
there is an edge from ¢ to j in G, or else if ¢ or j
is the root node 0, and wi{j = 0 otherwise. Fur-
thermore, we set ¢(i) = 1 for each i € V,. This
construction can be clearly carried out in log-space.

Note that each T' € T' (Ggf))) must be a monadic
tree with weight equal to either O or 1. It is not dif-
ficult to see that if w(7") = 1, then when we remove
the root node 0 from 7" we obtain a Hamiltonian path
in G. Conversely, each Hamiltonian path in GG can
be extended to a spanning tree 7' € T(G(f)) with
w(T') = 1, by adding the root node 0.

Using the above observations, it can be shown that
the solution of the argmax problem for G:(f) pro-
vides some Hamiltonian directed path in GG. The lat-
ter search problem is FNP-hard, and is unlikely to
be solved in polynomial time. Furthermore, quan-

129

tity Z, provides the count of the Hamiltonian di-
rected paths in G, and for each ¢ € V, the expecta-
tion ((0,4)!)4 provides the count of the Hamiltonian
directed paths in G starting from node ¢. Both these
counting problems are #P-hard, and very unlikely to
have polynomial time solutions.

This result helps to relate the hardness of data-
driven models to the commonly known hardness
results in the grammar-driven literature given by
Neuhaus and Boker (1997). In that work, an arity
constraint is included in their minimal grammar.

5.2 Vertical and Horizontal Markovization

In general, we would like to say that every depen-
dency decision is dependent on every other edge in
a graph. However, modeling dependency parsing in
such a manner would be a computational nightmare.
Instead, we would like to make a Markov assump-
tion over the edges of the tree, in a similar way that
a Markov assumption can be made for sequential
classification problems in order to ensure tractable
learning and inference.

Klein and Manning (2003) distinguish between
two kinds of Markovization for unlexicalized CFG
parsing. The first is vertical Markovization, which
makes the generation of a non-terminal dependent
on other non-terminals that have been generated at
different levels in the phrase-structure tree. The
second is horizontal Markovization, which makes
the generation of a non-terminal dependent on other
non-terminals that have been generated at the same
level in the tree.

For dependency parsing there are analogous no-
tions of vertical and horizontal Markovization for a
given edge (4, j)*. First, let us define the vertical and
horizontal neighbourhoods of (i,4)*. The vertical
neighbourhood includes all edges in any path from
the root to a leaf that passes through (i, j)*. The hor-
izontal neighbourhood contains all edges (i, ")~
Figure 4 graphically displays the vertical and hor-
izontal neighbourhoods for an edge in the depen-
dency graph from Figure 1.

Vertical and horizontal Markovization essentially
allow the score of the graph to factor over a larger
scope of edges, provided those edges are in the same
vertical or horizontal neighbourhood. A d** order
factorization is one in which the score factors only
over the d nearest edges in the neighbourhoods. In
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McDonald and Pereira (2006), it was shown that
non-projective dependency parsing with horizontal
Markovization is FNP-hard. In this study we com-
plete the picture and show that vertical Markoviza-
tion is also FNP-hard.

Consider a first-order vertical Markovization in
which the score for a dependency graph factors over
pairs of vertically adjacent edges?,

w@) =[]  kwh

(hi)k,(3,5)F € Er

where ﬁlwg is the weight of including both edges
(h,i)* and (i, /) in the dependency graph. Note
that this formulation does not include any contribu-
tions from dependencies that have no vertically adja-
cent neighbours, i.e., any edge (0, 7)* such that there
is no edge (4, 7)* in the graph. We can easily rec-
tify this by inserting a second root node, say 0, and
including the weights lg/ow'&’ To ensure that only
valid dependency graphs get a weight greater than
Zero, WecalnsethZ ij =0ifi =0 andlgl w; =0
if i # 0.

Now, consider the NP-complete 3D-matching
problem (3DM). As input we are given three sets
of size m, call them A, B and C, and a set S C
A x B x C. The 3DM problem asks if there is a set
S’ C S such that |\S’| = m and for any two tuples
(a,b,c),(a',b/,) € S it is the case that a # d/,
b#b,and c # .

2McDonald and Pereira (2006) define this as a second-order
Markov assumption. This is simply a difference in terminology
and does not represent any meaningful distinction.
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We can reduce the 3D-matching problem to the
first-order vertical Markov parsing problem by con-
structing a graph G = (V, E), such that L =
AUBUC,V ={0,0UAUBUC and F =
{(i,5)*|4,7 € V, k € L}. The set E contains mul-
tiple edges between ever pair of nodes, each edge
taking on a label representing a single element of
the set AU B U C. Now, define O,OwO; = 1, for all
a€ Aand k, k' € AUBUC, and §,we, = 1, for
alla € Aandb € Bandc € C, and {,w;. = 1, for
all (a,b,c) € S. All other weights are set to zero.

We show below that there exists a bijection be-
tween the set of valid 3DMs for .S and the set of non-
zero weighted dependency graphs in 7'(G). First, it
is easy to show that for any 3DM 5, there is a rep-
resentative dependency graph that has a weight of
1. This graph simply consists of the edges (0, a)?,
(a,b)¢, and (b, c)¢, for all (a,b,c) € S, plus an ar-
bitrarily labeled edge from 0’ to 0.

To prove the reverse, consider a graph with weight
1. This graph must have a weight 1 edge into the
node a of the form (0,a)® since the graph must be
spanning. By the definition of the weight function,
in any non-zero weighted tree, ¢ must have a sin-
gle outgoing edge, and that edge must be directed
into the node b. Let’s say that this edge is (a,b)°.
Then again by the weighting function, in any non-
zero weighted graph, b must have a single outgoing
edge that is directed into ¢, in particular the edge
(b, c)¢. Thus, for any node a, there is a single path
directed out of it to a single leaf ¢ € C. We can
then state that the only non-zero weighted depen-
dency graph is one where each a € A, b € B and
¢ € C occurs in exactly one of m disjoint paths from
the root of the form 0 — a — b — c. This is be-
cause the label of the single edge going into node a
will determine exactly the node b that the one outgo-
ing edge from a must go into. The label of that edge
determines exactly the single outgoing edge from b
into some node c. Now, since the weighting func-
tion ensures that the only non-zero weighted paths
into any leaf node ¢ correspond directly to elements
of S, each of the m disjoint paths represent a single
tuple in a 3DM. Thus, if there is a non-zero weighted
graph in T'(G), then it must directly correspond to a
valid 3DM, which concludes the proof.

Note that any d*" order Markovization can be em-
bedded into a d + 1** Markovization. Thus, this re-



sult also holds for any arbitrary Markovization.

6 Discussion

In this paper we have shown that many important
learning and inference problems can be solved effi-
ciently for non-projective edge-factored dependency
models by appealing to the Matrix Tree Theorem
for multi-digraphs. These results extend the work
of McDonald et al. (2005b) and help to further our
understanding of when exact non-projective algo-
rithms can be employed. When this analysis is cou-
pled with the projective parsing algorithms of Eisner
(1996) and Paskin (2001) we begin to get a clear pic-
ture of the complexity for data-driven dependency
parsing within an edge-factored framework. To fur-
ther justify the algorithms presented here, we out-
lined a few novel learning and inference settings in
which they are required.

However, for the non-projective case, moving
beyond edge-factored models will almost certainly
lead to intractable parsing problems. We have pro-
vided further evidence for this by proving the hard-
ness of incorporating arity constraints and hori-
zontal/vertical edge Markovization, both of which
incorporate information unavailable to an edge-
factored model. The hardness results provided
here are also of interest since both arity constraints
and Markovization can be incorporated efficiently
in the projective case through the straight-forward
augmentation of the underlying chart parsing algo-
rithms used in the projective edge-factored models.
This highlights a fundamental difference between
the nature of projective parsing algorithms and non-
projective parsing algorithms. On the projective
side, all algorithms use a bottom-up chart parsing
framework to search the space of nested construc-
tions. On the non-projective side, algorithms are
either greedy-recursive in nature (i.e., the Chu-Liu-
Edmonds algorithm) or based on the calculation of
the determinant of a matrix (i.e., the partition func-
tion and edge expectations).

Thus, the existence of bottom-up chart parsing
algorithms for projective dependency parsing pro-
vides many advantages. As mentioned above, it
permits simple augmentation techniques to incorpo-
rate non-local information such as arity constraints
and Markovization. It also ensures the compatibility
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of projective parsing algorithms with many impor-
tant natural language processing methods that work
within a bottom-up chart parsing framework, includ-
ing information extraction (Miller et al., 2000) and
syntax-based machine translation (Wu, 1996).

The complexity results given here suggest that
polynomial chart-parsing algorithms do not exist
for the non-projective case. Otherwise we should
be able to augment them and move beyond edge-
factored models without encountering intractability
— just like the projective case. An interesting line
of research is to investigate classes of non-projective
structures that can be parsed with chart-parsing algo-
rithms and how these classes relate to the languages
parsable by other syntactic formalisms.
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Abstract

This paper investigates new design options
for the feature space of a dependency parser.
We focus on one of the simplest and most
efficient architectures, based on a determin-
istic shift-reduce algorithm, trained with the
perceptron. By adopting second-order fea-
ture maps, the primal form of the perceptron
produces models with comparable accuracy
to more complex architectures, with no need
for approximations. Further gains in accu-
racy are obtained by designing features for
parsing extracted from semantic annotations
generated by a tagger. We provide experi-
mental evaluations on the Penn Treebank.

1 Introduction

A dependency tree represents a sentence as a labeled
directed graph encoding syntactic and semantic in-
formation. The labels on the arcs can represent ba-
sic grammatical relations such as “subject” and “ob-
ject”. Dependency trees capture grammatical struc-
tures that can be useful in several language process-
ing tasks such as information extraction (Culotta &
Sorensen, 2004) and machine translation (Ding &
Palmer, 2005). Dependency treebanks are becoming
available in many languages, and several approaches
to dependency parsing on multiple languages have
been evaluated in the CoNLL 2006 and 2007 shared
tasks (Buchholz & Marsi, 2006; Nivre et al., 2007).

Dependency parsing is simpler than constituency
parsing, since dependency trees do not have extra
non-terminal nodes and there is no need for a gram-
mar to generate them. Approaches to dependency
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parsing either generate such trees by considering all
possible spanning trees (McDonald et al., 2005), or
build a single tree by means of shift-reduce parsing
actions (Yamada & Matsumoto, 2003). Determinis-
tic dependency parsers which run in linear time have
also been developed (Nivre & Scholz, 2004; Attardi,
2006). These parsers process the sentence sequen-
tially, hence their efficiency makes them suitable for
processing large amounts of text, as required, for ex-
ample, in information retrieval applications.

Recent work on dependency parsing has high-
lighted the benefits of using rich feature sets
and high-order modeling. = Yamada and Mat-
sumoto (2003) showed that learning an SVM model
in the dual space with higher-degree polynomial ker-
nel functions improves significantly the parser’s ac-
curacy. McDonald and Pereira (2006) have shown
that incorporating second order features relating to
adjacent edge pairs improves the accuracy of max-
imum spanning tree parsers (MST). In the SVM-
based approach, if the training data is large, it is not
feasible to train a single model. Rather, Yamada and
Matsumoto (see also (Hall et al., 2006)) partition the
training data in different sets, on the basis of Part-
of-Speech, then train one dual SVM model per set.
While this approach simplifies the learning task it
makes the parser more sensitive to the error rate of
the POS tagger. The second-order MST algorithm
has cubic time complexity. For non-projective lan-
guages the algorithm is NP-hard and McDonald and
Pereira (2006) introduce an approximate algorithm
to handle such cases.

In this paper we extend shift reduce parsing with
second-order feature maps which explicitly repre-
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sent all feature pairs. Also the augmented fea-
ture sets impose additional computational costs.
However, excellent efficiency/accuracy trade-off is
achieved by using the perceptron algorithm, with-
out the need to resort to approximations, producing
high-accuracy classifiers based on a single model.

We also evaluate a novel set of features for pars-
ing. Recently various forms of shallow semantic
processing have been investigated such as named-
entity recognition (NER), semantic role labeling
(SRL) and relation extraction. Syntactic parsing can
provide useful features for these tasks; e.g., Pun-
yakanok et al. (2005) show that full parsing is effec-
tive for semantic role labeling (see also related ap-
proaches evaluated within the CoNNL 2005 shared
task (Carreras et al., 2005)). However, no evidence
has been provided so far that annotated semantic
information can be leveraged for improving parser
performance. We report experiments showing that
adding features extracted by an entity tagger im-
proves the accuracy of a dependency parser.

2 Dependency parsing

A dependency parser takes as input a sentence s and
returns a dependency graph d. Figure 1 shows a de-
pendency tree for the sentence “Last week CBS Inc.
canceled *The People Next Door’.”!. Dependencies
are represented as labeled arrows from the head of
the relation to the modifier word; thus, in the exam-
ple, “Inc.” is the modifier of a dependency labeled
“SUB” (subject) to the main verb, the head, “can-
celed”.

In statistical syntactic parsing a generator (e.g.,
a PCFQG) is used to produce a number of candi-
date trees (Collins, 2000) with associated proba-
bility scores. This approach has been used also
for dependency parsing, generating spanning trees
as candidates and computing the maximum span-
ning tree (MST) using discriminative learning algo-
rithms (McDonald et al., 2005). Second-order MST
dependency parsers currently represent the state of
the art in terms of accuracy. Yamada and Mat-
sumoto (2003) proposed a deterministic classifier-
based parser. Instead of learning directly which
tree to assign to a sentence, the parser learns which

'The figure also contains entity annotations which will be
explained below in Section 4.1.
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Shift/Reduce actions to use in building the tree. Pars-
ing is cast as a classification problem: at each step
the parser applies a classifier to the features rep-
resenting its current state to predict which action
to perform on the tree. Similar deterministic ap-
proaches to parsing have been investigated also in
the context of constituent parsing (Wong & Wu,
1999; Kalt, 2004).

Nivre and Scholz (2004) proposed a variant of the
model of Yamada and Matsumoto that reduces the
complexity, from the worst case quadratic to linear.
Attardi (2006) proposed a variant of the rules that
handle non-projective relations while parsing deter-
ministically in a single pass. Shift-reduce algorithms
are simple and efficient, yet competitive in terms
of accuracy: in the CoNLL-X shared task, for sev-
eral languages, there was no statistically significant
difference between second-order MST parsers and
shift-reduce parsers.

3 A shift-reduce parser

We build upon DeSR, the shift-reduce parser de-
scribed in (Attardi, 2006). This and Nivre and
Scholz’s (2004) provide among the simplest and
most efficient methods. This parser constructs de-
pendency trees by scanning input sentences in a
single left-to-right pass and performing shift/reduce
parsing actions. The parsing algorithm is fully de-
terministic and has linear complexity. The parser’s
behavior can be described as repeatedly selecting
and applying a parsing rule to transform its state,
while advancing through the sentence. Each to-
ken is analyzed once and a decision is made lo-
cally concerning the action to take, that is, without
considering global properties of the tree being built.
Nivre (2004) investigated the issue of (strict) incre-
mentality for this type of parsers; i.e., if at any point
of the analysis the processed input forms one con-
nected structure. Nivre found that strict incremen-
tality is not guaranteed within this parsing frame-
work, although for correctly parsed trees the prop-
erty holds in almost 90% of the cases.

3.1 Parsing algorithm

The state of the parser is represented by a triple
(S,1,A), where S is the stack, I is the list of input
tokens that remain to be processed and A is the arc
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Figure 1. A dependency tree from the Penn Treebank, with additional entity annotation from the BBN corpus.

relation for the dependency graph, which consists of
a set of labeled arcs (w;, r, w;), where w;, w; € W
(the set of tokens), d € D (the set of dependencies).
Given an input sentence s, the parser is initialized
to (0, s, 0), and terminates at configuration (s, (), A).
There are three parsing schemata:

. S,n|I,A
) Shift §n|s!l,A§
) (s|S,n|I,A)
) Rights oo 201Gr0D
3) Left, (s|S,n|I,A)

(S,s|I,AU{(n,r,s)})

The Shift rule advances on the input; each Left, and
Right, rule creates a link r between the next input
token n and the top token on the stack s. For produc-
ing labeled dependencies the rules Left, and Right,
are instantiated several times once for each depen-
dency label.

Additional parsing actions (cf. (Attardi, 2006))
have been introduced for handling non-projective
dependency trees: i.e., trees that cannot be drawn
in the plane without crossing edges. However, they
are not needed in the experiments reported here,
because in the Penn Treebank used in our experi-
ments dependencies are extracted without consider-
ing empty nodes and the resulting trees are all pro-
jective?.

The pseudo code in Algorithm 1 reproduces
schematically the parsing process.

The function getContext() extracts a vector of
features x relative to the structure built up to that
point from the context of the current token, i.e., from
a subset of I, S and A. The step estimateAction()
predicts a parsing action y, given a trained model «

’Instead, the version of the Penn Treebank used for the

CoNLL 2007 shared task includes also non-projective represen-
tations.
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Algorithm 1: DeSR: Dependency Shift Reduce
parser.

input: s = wy, wo, ..., wy
begin
S
I — (wi,wa, ..., wy)
A—()

while 7 # () do
x « getContext(S, I, A)
y < estimateAction(x, )
performAction(y, S, I, A)

end

and x. The final step performAction() updates the
state according to the predicted parsing rule.

3.2 Features

The set of features used in this paper were chosen
with a few simple experiments on the development
data as a variant of a generic model. The only fea-
tures of the tokens used are “Lemma”, “Pos” and
“Dep”: “Lemma” refers to the morphologically sim-
plified form of the token, “Pos” is the Part-of-Speech
and “Dep” is the label on a dependency. “Child”
refers to the child of a node (right or left): up to
two furthest children of a node are considered. Ta-
ble 1 lists which feature is extracted for which to-
ken: negative numbers refer to tokens on the stack,
positive numbers refer to input tokens. As an exam-
ple, POS(-1) is the Part-of-Speech of the token on
the top of the stack, while Lemma(0) is the lemma
of the next token in the input, PosLeftChild(-1) ex-
tracts the Part-of-Speech of the leftmost child of the
token on the top of the stack, etc.



TOKEN
FEATURES Stack Input
Lemma 2 110 1 2 3
Pos 2 -1]10 1 2 3
LemmalLeftChild -1]10
PosLeftChild -1]0
DepLeftChild -1 10
LemmaRightChild -1]0
PosRightChild -1 10
DepRightChild -1
LemmaPrev 0
PosSucc -1

Table 1. Configuration of the feature parameters used in
the experiments.

3.3 Learning a parsing model with the
perceptron

The problem of learning a parsing model can be
framed as a classification task where each class
y; € Y represents one of k possible parsing actions.
Each of such actions is associated with a weight vec-
tor a, € IR? Given a datapoint x € X, a d-
dimensional vector of binary features in the input
space X, a parsing action is chosen with a winner-
take-all discriminant function:

estimateAction(x, o) = argmax f(x, ) (4)
k

when using a linear classifier, such as the perceptron
or SVM, f(u,v) = (u,v) is the inner product be-
tween vectors u and v.

We learn the parameters o from the training data
with the perceptron (Rosemblatt, 1958), in the on-
line multiclass formulation of the algorithm (Cram-
mer & Singer, 2003) with uniform negative updates.
The perceptron has been used in previous work on
dependency parsing by Carreras et al. (2006), with
a parser based on Eisner’s algorithm (Eisner, 2000),
and also on incremental constituent parsing (Collins
& Roark, 2006). Also the MST parser of McDonald
uses a variant of the perceptron algorithm (McDon-
ald, 2006). The choice is motivated by the simplicity
and performance of perceptrons, which have proved
competitive on a number of tasks; e.g., in shallow
parsing, where perceptron’s performance is com-
parable to that of Conditional Random Field mod-
els (Sha & Pereira, 2003).

The only adjustable parameter of the model is the
number of instances 7' to use for training. We fixed
T using the development portion of the data. In

136

our experiments, the best value is between 20 and
30 times the size of the training data. To regularize
the model we take as the final model the average of
all weight vectors posited during training (Collins,
2002). Algorithm 2 illustrates the perceptron learn-
ing procedure. The final average model can be com-
puted efficiently during training without storing the
individual « vectors (e.g., see (Ciaramita & Johnson,
2003)).

Algorithm 2: Average multiclass perceptron
input : S = (x;,4:)V;a) =0, Vk €Y
fort =1to T do

choose j

E' = {T SZE <Xj’af"> > <Xj>a§/j>}
if |[E'| > 0 then
Laffrl:aﬁ—g',VTEEt

t+1 ot .
ozyj = ozyj + X

output: o, = =5, af, Vk €Y

3.4 Higher-order feature spaces

Yamada and Matsumoto (2003) and McDonald and
Pereira (2006) have shown that higher-order fea-
ture representations and modeling can improve pars-
ing accuracy, although at significant computational
costs. To make SVM training feasible in the dual
model with polynomial kernels, Yamada and Mat-
sumoto split the training data into several sets, based
on POS tags, and train a parsing model for each
set. McDonald and Pereira’s second-order MST
parser has O(n3) complexity, while for handling
non-projective trees, otherwise an NP-hard problem,
the parser resorts to an approximate algorithm. Here
we discuss how the feature representation can be
enriched to improve parsing while maintaining the
simplicity of the shift-reduce architecture, and per-
forming discriminative learning without partitioning
the training data.

The linear classifier (see Equation 4) learned with
the perceptron is inherently limited in the types of
solutions it can learn. As originally pointed out by
Minsky and Papert (1969), there are problems which
require non-linear solutions that cannot be learned
by such models. A simple workaround this limi-
tation relies on feature maps ® : IR? — IR" that



map the input vectors x € X into some higher h-
dimensional representation ®(X) C IR", the fea-
ture space. The feature space can represent, for ex-
ample, all combinations of individual features in the
input space. We define a feature map which ex-
tracts all second order features of the form x;x;;
ie, ®(x) = (z4, 25/t = 1,...,d,j = 1,...,d). The
linear perceptron working in ®(X) effectively im-
plements a non-linear classifier in the original in-
put space X. One shortcoming of this approach is
that it inflates considerably the feature representa-
tion and might not scale. In general, the number of
features of degree g over an input space of dimen-
sion d is (d+g _1). In practice, a second-order fea-
ture map can be handled with reasonable efficiency
by the perceptron. We call this the 2nd-order model,
which uses a modified scoring function:

g(x, ar) = f(P(x), o) (5)

where also ay, is h-dimensional. The proposed fea-
ture map is equivalent to a polynomial kernel func-
tion of degree two. Yamada and Matsumoto (2003)
have shown that the degree two polynomial ker-
nel has superior accuracy than the linear model and
polynomial kernels of higher degrees. However, us-
ing the dual model is not always practical for depen-
dency parsing. The discriminant function of the dual
model is defined as:

N

f’(x, Q) = arg max Z agi(x,x;)7 (6)

)

where the weights « are associated with class-
instance pairs rather than class-feature pairs. With
respect to the discriminant function of equation (4)
there is an additional summation. In principle, the
inner products can be cached in a Kernel matrix to
speed up training.

There are two shortcomings to using such a model
in dependency parsing. First, if the amount of train-
ing data is large it might not be feasible to store the
Kernel matrix; which for a dataset of size IV requires
O(N3) computations and O(N?) space. As an ex-
ample, the number of training instances N in the
Penn Treebank is over 1.8 million, caching the Ker-
nel matrix would require several Terabytes of space.
The second shortcoming is independent of training.
In predicting a tree for unseen sentences the model
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will have to recompute the inner products between
the observation and all the support vectors; i.e., all
class-instance pairs with a3, ; > 0. The second-order
feature map with the perceptron is more efficient and
allows faster training and prediction. Training a sin-
gle parsing model avoids a potential loss of accuracy
that occurs when using the technique of partitioning
the training data according to the POS. Inaccurate
predictions of the POS can affect significantly the
accuracy of the actions predicted, while the single
model is more robust, since the POS is just one of
the many features used in prediction.

4 Semantic features

Semantic information is used implicitly in parsing.
For example, conditioning on lexical heads pro-
vides a source of semantic information. There have
been a few attempts at using semantic information
more explicitly. Charniak’s 1997 parser (1997), de-
fined probability estimates backed off to word clus-
ters. Collins and Koo (Collins & Koo, 2005) in-
troduced an improved reranking model for parsing
which includes a hidden layer of semantic features.
Yi and Palmer (2005) retrained a constituent parser
in which phrases were annotated with argument in-
formation to improve SRL, however this didn’t im-
prove over the output of the basic parser.

In recent years there has been a significant
amount of work on semantic annotation tasks such
as named-entity recognition, semantic role labeling
and relation extraction. There is evidence that de-
pendency and constituent parsing can be helpful in
these and other tasks; e.g., by means of tree ker-
nels in question classification and semantic role la-
beling (Zhang & Lee, 2003; Moschitti, 2006).

It is natural to ask if also the opposite holds:
whether semantic annotations can be used to im-
prove parsing. In particular, it would be interesting
to know if entity-like tags can be used for this pur-
pose. One reason for this is that entity tagging is ef-
ficient and does not seem to need parsing for achiev-
ing top performance. Beyond improving traditional
parsing, independently learned semantic tags might
be helpful in adapting a parser to a new domain. To
the best of our knowledge, no evidence has been pro-
duced yet that annotated semantic information can
improve parsing. In the following we investigate



adding entity tags as features of our parser.

4.1 BBN Entity corpus

The BBN corpus (BBN, 2005) supplements the Wall
Street Journal Penn Treebank with annotation of a
large set of entity types. The corpus includes an-
notation of 12 named entity types (Person, Facility,
Organization, GPE, Location, Nationality, Product,
Event, Work of Art, Law, Language, and Contact-
Info), nine nominal entity types (Person, Facility,
Organization, GPE, Product, Plant, Animal, Sub-
stance, Disease and Game), and seven numeric types
(Date, Time, Percent, Money, Quantity, Ordinal and
Cardinal). Several of these types are further divided
into subtypes>. This corpus provides adequate sup-
port for experimenting semantic features for parsing.

Figure 1 illustrates the annotation layer provided
by the BBN corpus®. It is interesting to notice one
apparent property of the combination of semantic
tags and dependencies. When we consider segments
composed of several words there is exactly one de-
pendency connecting a token outside the segment
with a token inside the segment; e.g., “CBS Inc.” is
connected outside only through the token “Inc.”, the
subject of the main verb. With respect to the rest of
the tree, segments tend to form units, with their own
internal structure. Intuitively, this information seems
relevant for parsing. This locally-structured patterns
could help particularly simple algorithms like ours,
which have limited knowledge of the global struc-
ture being built.

Table 2 lists the 40 most frequent categories in
sections 2 to 21 of the BBN corpus, and the per-
centage of all entities they represent — together more
than 97%. Sections 2-21 are comprised of 949,853
tokens, 23.5% of the tokens have a non-null BBN
entity tag, on average there is one tagged token every
four. The total number of entities is 139,029, 70.5%
of which are named entities and nominal concepts,
17% are numerical types and the remaining 12.5%
describe time entities.

We designed three new features which extract
simple properties of entities from the semantic an-
notation information:

’BBN Corpus documentation.
“The full label for “ORG” is “ORG:Corporation”, and
“WOA” stands for “WorkOfArt:Other”.
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TOKEN
FEATURES Stack Input
AS-0 = EOS+BIO+TAG 0
AS-1 = EOS+BIO+TAG -1 10 1
AS-2 =EOS+BIO+TAG | 2 -1 |0 1 2
EOS 2 110 1 2
BIO 2 110 1 2
TAG 2 1|10 1 2

Table 3. Additional configurations for the models with
BBN entity features.

e EOS: Distance to the end of the segment; e.g.,
EOS(“Last”) = 1, EOS(“canceled”) = 0;

e BIO: The first character of the BBN label
for a token; e.g., BIO(“CBS”) = “B”, and
BIO(“canceled”) = 0;

e TAG: Full BBN tag for the token; e.g.,
TAG(“CBS”) =  “B-ORG:Corporation”,
TAG(“week”) = “I-DATE”.

The feature EOS provides information about the rel-
ative position of the token within a segment with re-
spect to the end of the segment. The feature BIO dis-
criminates tokens with no semantic annotation as-
sociated, from tokens within a segment and token
which start a segment. Finally the feature TAG iden-
tifies the full semantic tag associated with the token.
With respect to the former two features this bears
the most fine-grained semantics. Table 3 summa-
rizes six additional models we implemented. The
first three use all additional features together, ap-
plied to different sets of tokens, while the last three
apply only one feature, on top of the base model,
relative to the next token in the input, the following
two tokens in the input, and the previous two tokens
on the stack.

4.2 Corpus pre-processing

The original BBN corpus has its own tokeniza-
tion which often does not reflect the Penn Tree-
bank tokenization; e.g., when an entity intersects
an hyphenated compound, thus “third-highest” be-
comes “thirdorpryar - highest”. This is problem-
atic for combining entity annotation and dependency
trees. Since our main focus is parsing we re-aligned
the BBN Corpus with the Treebank tokenization.
Thus, for example, when an entity splits a Tree-
bank token we extend the entity boundary to contain



WSJ-BBN Corpus Categories
Tag % | Tag % | Tag % | Tag %
PER_DESC 15.5 | ORG:CORP 13.7 | DATE:DATE 9.2 | ORG_DESC:CORP | 8.9
PERSON 8.13 | MONEY 6.5 | CARDINAL 6.0 | PERCENT 35
GPE:CITY 3.12 | GPE:COUNTRY 2.9 | ORG:GOV 2.6 | NORP:NATION-TY | 1.9
DATE:DURATION 1.8 | GPE:PROVINCE 1.5 | ORG_DESC:GOV 1.4 | FAC_DESC:BLDG 1.1
ORG:OTHER 0.7 | PROD_DESC:VEHICLE | 0.7 | ORG_-DESC:OTHER | 0.6 | ORDINAL 0.6
TIME 0.5 | GPE_DESC:COUNTRY 0.5 | SUBST:OTHER 0.5 | SUBST:FOOD 0.5
DATE:OTHER 0.4 | NORP:POLITICAL 0.4 | DATE:AGE 0.4 | LOC:REGION 0.3
SUBST:CHEM 0.3 | WOA:OTHER 0.3 | FAC_DESC:OTHER | 0.3 | SUBST:DRUG 0.3
ANIMAL 0.3 | GPE_DESC:PROVINCE 0.2 | PROD:VEHICLE 0.2 | GPE_DESC:CITY 0.2
PRODUCT:OTHER | 0.2 | LAW 0.2 | ORG:POLITICAL 0.2 | ORGEEDU 0.2

Table 2. The 40 most frequent labels in sections 2 to 21 of the Wall Street Journal BBN Corpus and the percentage of

tags occurrences.

the whole original Treebank token, thus obtaining
“third-highestorprnar” in the example above.

4.3 Semantic tagger

We treated semantic tags as POS tags. A tagger
was trained on the BBN gold standard annotation
and used it to annotate development and evaluation
data. We briefly describe the tagger (see (Ciaramita
& Altun, 2006) for more details), a Hidden Markov
Model trained with the perceptron algorithm intro-
duced in (Collins, 2002). The tagger uses Viterbi
decoding. Label to label dependencies are limited to
the previous tag (first order HMM). A generic fea-
ture set for NER based on words, lemmas, POS tags,
and word shape features was used.

The tagger is trained on sections 2-21 of the BBN
corpus. As before, section 22 of the BBN corpus
is used for choosing the perceptron’s parameter 7.
The tagger’s model is regularized as described for
Algorithm 2. The full BBN tagset is comprised
of 105 classes organized hierarchically, we ignored
the hierarchical organization and treated each tag as
an independent class in the standard BIO encoding.
The tagger evaluated on section 23 achieves an F-
score of 86.8%. The part of speech for the evalua-
tion/development sections was produced with Tree-
Tagger. As a final remark we notice that the tagger’s
complexity, linear in the length of the sentence, pre-
serves the parser’s complexity.

5 Parsing experiments

5.1 Data and setup

We used the standard partitions of the Wall Street
Journal Penn Treebank (Marcus et al., 1993); i.e.,
sections 2-21 for training, section 22 for develop-
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ment and section 23 for evaluation. The constituent
trees were transformed into dependency trees by
means of a program created by Joakim Nivre that
implements the rules proposed by Yamada and Mat-
sumoto, which in turn are based on the head rules
of Collins’ parser (Collins, 1999)°. The lemma for
each token was produced using the “morph” func-
tion of the WordNet (Fellbaum, 1998) libraryé. The
data in the WSJ sections 22 and 23, both for the
parser and for the semantic tagger, was POS-tagged
using TreeTagger’, which has an accuracy of 97.0%
on section 23.

Training a parsing model on the Wall Street Jour-
nal requires a set of 22 classes: 10 of the 11 labels
in the dependency corpus generated from the Penn
Treebank (e.g., subj, obj, sbar, vmod, nmod, root,
etc.) are paired with both a Left and Right actions.
In addition, there is in one rule for the “root” label
and one for the Shift action. The total number of
features found in training ranges from two hundred
thousand for the Ist-order model to approximately
20 million of the 2nd-order models.

We evaluated several models, each trained with
1st-order and 2nd-order features. The base model
(BASE) only uses the traditional set of features (cf.
Table 1). Models EOS, BIO and TAG each use only
one type of semantic feature with the configuration
described in Table 3. Models AS-0, AS-1, and AS-2
use all three semantic features for the token on the
stack in AS-0, plus the previous token on the stack

and the new token in the input in AS-1, plus an addi-
SThe script is available from
http://w3.msi.vxu.se/%7enivre/research/Penn2Malt.html
Shttp://wordnet.princeton.edu
"TreeTagger is available from http:/www.ims.uni-
stuttgart.de/projekte/corplex/TreeTagger/



1st-order scores 2nd-order scores
DeSR MODEL | LAS | UAS 1Imp | LAC | LAS | UAS 1Imp | LAC
BASE 84.01 | 85.56 - 88.24 | 89.20 | 90.55 - 92.22
EOS 84.89 | 86.37 +5.6 | 88.94 | 89.36 | 90.64 +1.0 | 92.37
BIO 84.95 | 86.37 +6.6 | 89.06 | 89.63 | 90.89 +3.6 | 92.55
TAG 84.76 | 86.26 +4.8 | 88.80 | 89.54 | 90.81 +2.8 | 92.55
AS-0 84.40 | 8595 +2.7 | 88.38 | 89.41 | 90.72 +1.8 | 92.38
AS-1 85.13 | 86.52 +6.6 | 89.11 | 89.57 | 90.77 +2.3 | 92.49
AS-2 85.32 | 86.71 +8.0 | 89.25 | 89.87 | 91.10 +5.8 | 92.68

Table 4. Results of the different models on WSJ section 23 using the CoNLL scores Labeled attachment score (LAS),
Unlabeled attachment score (UAS), and Label accuracy score (LAC). The column labeled “Imp” reports the improve-
ment in terms of relative error reduction with respect to the BASE model for the UAS score. In bold the best results.

tional token from the stack and an additional token
from the input for AS-2 (cf. Table 3).

5.2 Results of 2nd-order models

Table 4 summarizes the results of all experiments.
We report the following scores, obtained with the
CoNLL-X scoring script: labeled attachment score
(LAS), unlabeled attachment score (UAS) and label
accuracy score (LAC). For the UAS score, the most
frequently reported, we include the improvement in
relative error reduction.

The 2nd-order base model improves on all mea-
sures over the Ist-order model by approximately
5%. The UAS score is 90.55%, with an improve-
ment of 4.9%. The magnitude of the improve-
ment is remarkable and reflects the 4.6% improve-
ment that Yamada and Matsumoto (Yamada & Mat-
sumoto, 2003) report going from the linear SVM to
the polynomial of degree two. Our base model’s ac-
curacy (90.55% UAS) compares well with the ac-
curacy of the parsers based on the polynomial ker-
nel trained with SVM of Yamada and Matsumoto
(UAS 90.3%), and Hall et al. (2006) (UAS 89.4%).
We notice in particular that, given the lack of non-
projective cases/rules, the parser of Hall et al. (2006)
is almost identical to our parser, hence the differ-
ence in accuracy (+1.1%) might effectively be due
to a better classifier. Yamada & Matsumoto’s parser
is slightly more complex than our parser, and has
quadratic worst-case complexity. Overall, the accu-
racy of the 2nd-order parser is comparable to that of
the 1st-order MST parser (90.7%).

There is no direct evidence that our perceptron
produces better classifiers than SVM. Rather, the
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pattern of results produced by the perceptron seems
comparable to that of SVM (Yamada & Matsumoto,
2003). This is a useful finding in itself, given that
the former is more efficient: perceptron’s update is
linear while SVM solves a quadratic problem at each
update. However, one major difference between the
two approaches lies in the fact that learning with the
primal model does not require splitting the model
by Part-of-Speech, or other means. As a conse-
quence, beyond the greater simplicity, our method
might benefit from not depending so strongly on the
quality of POS tagging. POS information is encoded
as a feature and contributes its weight to the selec-
tion of the parsing action, together with all addi-
tionally available information. In the SVM-trained
methods the model that makes the prediction for the
parsing rule is essentially chosen by an oracle, the
prediction of the POS tagger. Furthermore, it might
be argued that learning a single model makes a bet-
ter use of the training data by exploiting the cor-
relations between all datapoints, while in the dual
split-training case the interaction is limited to dat-
apoints in the same partition. In any case, second-
order feature maps could be used also with SVM or
other classifiers. The advantage of using the per-
ceptron lies in the unchallenged accuracy/efficiency
trade-off. Finally, we recall that training in the pri-
mal model can be performed fully on-line without
affecting the resulting model nor the complexity of
the algorithm.

5.3 Results of models with semantic features

All models based on semantic features improve over
the base model on all measures. The best configura-



Parser UAS
Hall et al. *06 89.4
Yamada & Matsumoto *03 90.3
DeSR 90.55
McDonald & Pereira 1st-order MST | 90.7
DeSR AS-2 91.1
McDonald & Pereira 2nd-order MST | 91.5
Sagae & Lavie *06 92.7

Table 5. Comparison of main results on the Penn Tree-
bank dataset.

tion is that of model AS-2 which extracts all seman-
tic features from the widest context. In the 1st-order
AS-2 model the improvement, 86.71% UAS (+8%
relative error reduction) is more marked than in the
2nd-order AS-2 model, 91.1% UAS (+5.8% error
reduction). A possible simple exaplanation is that
some information captured by the semantic features
is correlated with other higher-order features which
do not occur in the 1st-order encoding. Overall the
accuracy of the DeSR parser with semantic informa-
tion is slightly inferior to that of the second-order
MST parser (McDonald & Pereira, 2006) (91.5%
UANS). The best result on this dataset to date (92.7%
UAS) is that of Sagae and Lavie (Sagae & Lavie,
2006) who use a parser which combines the predic-
tions of several pre-existing parsers, including Mc-
Donald’s and Nivre’s parsers. Table 5 lists the main
results to date on the version of the Penn Treebank
for dependency parsing task used in this paper.

In Table 4 we also evaluate the gain obtained by
adding one semantic feature type at a time (cf. rows
EOS/BIO/TAG). These results show that all seman-
tic features provide some improvement (with the du-
bious case of EOS in the 2nd-order model). The
BIO encoding seems to produce the most accurate
features. This could be promising because it sug-
gests that the benefit does not depend only on the
specific tags, but that the segmentation in itself is
important. Hence tagging could improve the adapta-
tion of parsers to new domains even if only generic
tagging methods are available.

5.4 Remarks on efficiency

All experiments were performed on a 2.4GHz AMD
Opteron CPU machine with 32GB RAM. The 2nd-
order parser uses almost 3GB of memory. While
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Parsing time/sec
Parser English | Chinese
MST 2n-order | 97.52 59.05
MST 1st-order | 76.62 49.13
DeSR 36.90 21.22

Table 6. Parsing times for the CoNNL 2007 English and
Chinese datasets for MST and DeSR.

it is several times slower and larger than the Ist-
order model® the 2nd-order model performance is
still competitive. It takes 3 minutes (user time) to
parse section 23, POS tagging included. In train-
ing, the model takes about 1 hour to process the full
dataset once. As a comparison, Hall et al. (2006)
reports 1.5 hours for training the partitioned SVM
model and 10 minutes for parsing the evaluation set
on the same Penn Treebank data. We also compared
directly the parsing time of our parser with that of
the MST parser using the version 0.4.3 of MST-
Parser’. For these experiments we used two datasets
from the CoNLL 2007 shared task for English and
Chinese. Table 6 reports the times, in seconds, to
parse the test sets for these languages on a 3.3GHz
Xeon machine with 4 GB Ram, of the MST 1st and
2nd-order parser and DeSR parser (without semantic
features).

The architecture of the model presented here of-
fers several options for optimization. For exam-
ple, implementing the o models with full vectors
rather than hash tables speeds up parsing by a factor
of three, at the expense of memory. Alternatively,
memory load in training can be reduced, at the ex-
pense of time, by using on-line training. However,
the most valuable option for space need reduction
might be to filter out low-frequency second-order
features. Since the frequency of such features seems
to follow a power law distribution, this reduces sig-
nificantly the feature space size even for low thresh-
olds at small accuracy expense. In this paper how-
ever we focused on the full model, no approxima-
tions were required to run the experiments.

8The 1st-order parser takes 7 seconds (user time) to process
Section 23.
° Available from sourceforge.net.



6 Conclusion

We explored the design space of a dependency
parser by modeling and extending the feature repre-
sentation, while adopting one of the simplest parsing
architecture: a single-pass deterministic shift-reduce
algorithm trained with a regularized multiclass per-
ceptron. We showed that with the perceptron it is
possible to adopt higher-order feature maps equiva-
lent to polynomial kernels without need of approx-
imating the model (although this remains an option
for optimization). The resulting models achieve ac-
curacies comparable (or better) to more complex ar-
chitectures based on dual SVM training, and faster
parsing on unseen data. With respect to learning, it is
possible that more sophisticated formulations of the
perceptron (e.g. MIRA (Crammer & Singer, 2003))
could provide further gains in accuracy, as shown
with the MST parser (McDonald et al., 2005).

We also experimented with novel types of se-
mantic features, extracted from the annotations pro-
duced by an entity tagger trained on the BBN cor-
pus. This model further improves over the standard
model yielding an additional 5.8% relative error re-
duction. Although the magnitude of the improve-
ment is not striking, to the best of our knowledge
this is the first encouraging evidence that annotated
semantic information can improve parsing and sug-
gests several options for further research. For exam-
ple, this finding might indicate that this type of ap-
proach, which combines semantic tagging and pars-
ing, is viable for the adaptation of parsing to new
domains for which semantic taggers exist. Seman-
tic features could be also easily included in other
types of dependency parsing algorithms, e.g., MST,
and in current methods for constituent parse rerank-
ing (Collins, 2000; Charniak & Johnson, 2005).

For future research several issues concerning the
semantic features could be tackled. We notice that
more complex semantic features can be designed
and evaluated. For example, it might be useful to
guess the “head” of segments with simple heuris-
tics, i.e., the guess the node which is more likely to
connect the segment with the rest of the tree, which
all internal components of the entity depend upon.
It would be also interesting to extract semantic fea-
tures from taggers trained on different datasets and
based on different tagsets.
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Abstract

We propose a generative dependency pars-
ing model which uses binary latent variables
to induce conditioning features. To define
this model we use a recently proposed class
of Bayesian Networks for structured predic-
tion, Incremental Sigmoid Belief Networks.
We demonstrate that the proposed model
achieves state-of-the-art results on three dif-
ferent languages. We also demonstrate that
the features induced by the ISBN’s latent
variables are crucial to this success, and
show that the proposed model is particularly
good on long dependencies.

1 Introduction

Dependency parsing has been a topic of active re-
search in natural language processing during the last
several years. The CoNLL-X shared task (Buch-
holz and Marsi, 2006) made a wide selection of
standardized treebanks for different languages avail-
able for the research community and allowed for
easy comparison between various statistical meth-
ods on a standardized benchmark. One of the sur-
prising things discovered by this evaluation is that
the best results are achieved by methods which
are quite different from state-of-the-art models for
constituent parsing, e.g. the deterministic parsing
method of (Nivre et al., 2006) and the minimum
spanning tree parser of (McDonald et al., 2006).
All the most accurate dependency parsing models
are fully discriminative, unlike constituent parsing
where all the state of the art methods have a genera-
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tive component (Charniak and Johnson, 2005; Hen-
derson, 2004; Collins, 2000). Another surprising
thing is the lack of latent variable models among
the methods used in the shared task. Latent vari-
able models would allow complex features to be in-
duced automatically, which would be highly desir-
able in multilingual parsing, where manual feature
selection might be very difficult and time consum-
ing, especially for languages unknown to the parser
developer.

In this paper we propose a generative latent vari-
able model for dependency parsing. It is based on
Incremental Sigmoid Belief Networks (ISBNs), a
class of directed graphical model for structure pre-
diction problems recently proposed in (Titov and
Henderson, 2007), where they were demonstrated
to achieve competitive results on the constituent
parsing task. As discussed in (Titov and Hender-
son, 2007), computing the conditional probabili-
ties which we need for parsing is in general in-
tractable with ISBNSs, but they can be approximated
efficiently in several ways. In particular, the neu-
ral network constituent parsers in (Henderson, 2003)
and (Henderson, 2004) can be regarded as coarse ap-
proximations to their corresponding ISBN model.

ISBNs use history-based probability models. The
most common approach to handling the unbounded
nature of the parse histories in these models is to
choose a pre-defined set of features which can be
unambiguously derived from the history (e.g. (Char-
niak, 2000; Collins, 1999; Nivre et al., 2004)). De-
cision probabilities are then assumed to be indepen-
dent of all information not represented by this finite
set of features. ISBNs instead use a vector of binary

Proceedings of the 10th Conference on Parsing Technologies, pages 144155,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



latent variables to encode the information about the
parser history. This history vector is similar to the
hidden state of a Hidden Markov Model. But un-
like the graphical model for an HMM, which speci-
fies conditional dependency edges only between ad-
jacent states in the sequence, the ISBN graphical
model can specify conditional dependency edges be-
tween states which are arbitrarily far apart in the
parse history. The source state of such an edge is de-
termined by the partial output structure built at the
time of the destination state, thereby allowing the
conditional dependency edges to be appropriate for
the structural nature of the problem being modeled.
This structure sensitivity is possible because ISBNs
are a constrained form of switching model (Mur-
phy, 2002), where each output decision switches the
model structure used for the remaining decisions.

We build an ISBN model of dependency parsing
using the parsing order proposed in (Nivre et al.,
2004). However, instead of performing determin-
istic parsing as in (Nivre et al., 2004), we use this
ordering to define a generative history-based model,
by integrating word prediction operations into the
set of parser actions. Then we propose a simple, lan-
guage independent set of relations which determine
how latent variable vectors are interconnected by
conditional dependency edges in the ISBN model.
ISBNs also condition the latent variable vectors on a
set of explicit features, which we vary in the experi-
ments.

In experiments we evaluate both the performance
of the ISBN dependency parser compared to previ-
ous work, and the ability of the ISBN model to in-
duce complex history features. Our model achieves
state-of-the-art performance on the languages we
test, significantly outperforming the model of (Nivre
et al., 2006) on two languages out of three and
demonstrating about the same results on the third.
In order to test the model’s feature induction abili-
ties, we train models with two different sets of ex-
plicit conditioning features: the feature set individu-
ally tuned by (Nivre et al., 2006) for each considered
language, and a minimal set of local features. These
models achieve comparable accuracy, unlike with
the discriminative SVM-based approach of (Nivre et
al., 2006), where careful feature selection appears to
be crucial. We also conduct a controlled experiment
where we used the tuned features of (Nivre et al.,
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2006) but disable the feature induction abilities of
our model by elimination of the edges connecting
latent state vectors. This restricted model achieves
far worse results, showing that it is exactly the ca-
pacity of ISBNs to induce history features which is
the key to its success. It also motivates further re-
search into how feature induction techniques can be
exploited in discriminative parsing methods.

We analyze how the relation accuracy changes
with the length of the head-dependent relation,
demonstrating that our model very significantly out-
performs the state-of-the-art baseline of (Nivre et
al., 2006) on long dependencies. Additional exper-
iments suggest that both feature induction abilities
and use of the beam search contribute to this im-
provement.

The fact that our model defines a probability
model over parse trees, unlike the previous state-of-
the-art methods (Nivre et al., 2006; McDonald et al.,
2006), makes it easier to use this model in appli-
cations which require probability estimates, e.g. in
language processing pipelines. Also, as with any
generative model, it may be easy to improve the
parser’s accuracy by using discriminative retraining
techniques (Henderson, 2004) or data-defined ker-
nels (Henderson and Titov, 2005), with or even with-
out introduction of any additional linguistic features.
In addition, there are some applications, such as lan-
guage modeling, which require generative models.
Another advantage of generative models is that they
do not suffer from the label bias problems (Bot-
tou, 1991), which is a potential problem for con-
ditional or deterministic history-based models, such
as (Nivre et al., 2004).

In the remainder of this paper, we will first review
general ISBNs and how they can be approximated.
Then we will define the generative parsing model,
based on the algorithm of (Nivre et al., 2004), and
propose an ISBN for this model. The empirical part
of the paper then evaluates both the overall accuracy
of this method and the importance of the model’s
capacity to induce features. Additional related work
will be discussed in the last section before conclud-

ing.



2 Thelatent Variable Architecture

In this section we will begin by briefly introduc-
ing the class of graphical models we will be us-
ing, Incremental Sigmoid Belief Networks (Titov
and Henderson, 2007). ISBNs are designed specif-
ically for modeling structured data. They are latent
variable models which are not tractable to compute
exactly, but two approximations exist which have
been shown to be effective for constituent parsing
(Titov and Henderson, 2007). Finally, we present
how these approximations can be trained.

2.1 Incremental Sigmoid Belief Networks

An ISBN is a form of Sigmoid Belief Network
(SBN) (Neal, 1992). SBNs are Bayesian Networks
with binary variables and conditional probability
distributions in the form:

P(S; = 1|Par(S;)) = o( Z
S;ePar(S;)

Jij i),

where S; are the variables, Par(S;) are the variables
which S; depends on (its parents), o denotes the lo-
gistic sigmoid function, and J;; is the weight for the
edge from variable S; to variable .S; in the graphi-
cal model. SBNs are similar to feed-forward neural
networks, but unlike neural networks, SBNs have a
precise probabilistic semantics for their hidden vari-
ables. ISBNs are based on a generalized version of
SBNs where variables with any range of discrete val-
ues are allowed. The normalized exponential func-
tion (’soft-max’) is used to define the conditional
probability distributions at these nodes.

To extend SBNs for processing arbitrarily long se-
quences, such as a parser’s sequence of decisions
D', ..., D™, SBNs are extended to a form of Dy-
namic Bayesian Network (DBN). In DBNs, a new
set of variables is instantiated for each position in
the sequence, but the edges and weights are the same
for each position in the sequence. The edges which
connect variables instantiated for different positions
must be directed forward in the sequence, thereby
allowing a temporal interpretation of the sequence.

Incremental Sigmoid Belief Networks (Titov and
Henderson, 2007) differ from simple dynamic SBNs
in that they allow the model structure to depend on
the output variable values. Specifically, a decision is
allowed to effect the placement of any edge whose
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destination is after the decision. This results in a
form of switching model (Murphy, 2002), where
each decision switches the model structure used for
the remaining decisions. The incoming edges for
a given position are a discrete function of the se-
quence of decisions which precede that position.
This makes the ISBN an “incremental” model, not
just a dynamic model. The structure of the model is
determined incrementally as the decision sequence
proceeds.

ISBNs are designed to allow the model structure
to depend on the output values without overly com-
plicating the inference of the desired conditional
probabilities P(D!|D*, ..., D!~1), the probability
of the next decision given the history of previous de-
cisions. In particular, it is never necessary to sum
over all possible model structures, which in general
would make inference intractable.

2.2 Modeling Structureswith | SBNs

ISBNs are designed for modeling structured data
where the output structure is not given as part of
the input. In dependency parsing, this means they
can model the probability of an output dependency
structure when the input only specifies the sequence
of words (i.e. parsing). The difficulty with such
problems is that the statistical dependencies in the
dependency structure are local in the structure, and
not necessarily local in the word sequence. ISBNs
allow us to capture these statistical dependencies in
the model structure by having model edges depend
on the output variables which specify the depen-
dency structure. For example, if an output specifies
that there is a dependency arc from word w; to word
wj, then any future decision involving w; can di-
rectly depend on its head w;. This allows the head
w; to be treated as local to the dependent w; even if
they are far apart in the sentence.

This structurally-defined notion of locality is par-
ticularly important for the model’s latent variables.
When the structurally-defined model edges connect
latent variables, information can be propagated be-
tween latent variables, thereby providing an even
larger structural domain of locality than that pro-
vided by single edges. This provides a poten-
tially powerful form of feature induction, which is
nonetheless biased toward a notion of locality which
is appropriate for the structure of the problem.



2.3 Approximating | SBNs

(Titov and Henderson, 2007) proposes two approxi-
mations for inference in ISBNs, both based on vari-
ational methods. The main idea of variational meth-
ods (Jordan et al., 1999) is, roughly, to construct a
tractable approximate model with a number of free
parameters. The values of the free parameters are set
so that the resulting approximate model is as close as
possible to the original graphical model for a given
inference problem.

The simplest example of a variation method is the
mean field method, which uses a fully factorized dis-
tribution Q(H|V') = I, Q:(h;|V') as the approxi-
mate model, where V' are the visible (i.e. known)
variables, H = hq,...,h; are the hidden (i.e. la-
tent) variables, and each Q); is the distribution of an
individual latent variable &;. The free parameters of
this approximate model are the means 1; of the dis-
tributions Q;.

(Titov and Henderson, 2007) proposes two ap-
proximate models based on the variational approach.
First, they show that the neural network of (Hen-
derson, 2003) can be viewed as a coarse mean field
approximation of ISBNs, which they call the feed-
forward approximation. This approximation im-
poses the constraint that the free parameters p; of
the approximate model are only allowed to depend
on the distributions of their parent variables. This
constraint increases the potential for a large approx-
imation error, but it significantly simplifies the com-
putations by allowing all the free parameters to be
set in a single pass over the model.

The second approximation proposed in (Titov and
Henderson, 2007) takes into consideration the fact
that, after each decision is made, all the preceding
latent variables should have their means p; updated.
This approximation extends the feed-forward ap-
proximation to account for the most important com-
ponents of this update. They call this approxima-
tion the mean field approximation, because a mean
field approximation is applied to handle the statisti-
cal dependencies introduced by the new decisions.
This approximation was shown to be a more accu-
rate approximation of ISBNs than the feed-forward
approximation, but remain tractable. It was also
shown to achieve significantly better accuracy on
constituent parsing.
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24 Learning

Training these approximations of ISBNs is done to
maximize the fit of the approximate models to the
data. We use gradient descent, and a regularized
maximum likelihood objective function. Gaussian
regularization is applied, which is equivalent to the
weight decay standardly used in neural networks.
Regularization was reduced through the course of
learning.

Gradient descent requires computing the deriva-
tives of the objective function with respect to the
model parameters. In the feed-forward approxima-
tion, this can be done with the standard Backpropa-
gation learning used with neural networks. For the
mean field approximation, propagating the error all
the way back through the structure of the graphical
model requires a more complicated calculation, but
it can still be done efficiently (see (Titov and Hen-
derson, 2007) for details).

3 TheDependency Parsing Algorithm

The sequences of decisions D', ..., D™ which we
will be modeling with ISBNs are the sequences of
decisions made by a dependency parser. For this we
use the parsing strategy for projective dependency
parsing introduced in (Nivre et al., 2004), which
is similar to a standard shift-reduce algorithm for
context-free grammars (Aho et al., 1986). It can
be viewed as a mixture of bottom-up and top-down
parsing strategies, where left dependencies are con-
structed in a bottom-up fashion and right dependen-
cies are constructed top-down. For details we refer
the reader to (Nivre et al., 2004). In this section we
briefly describe the algorithm and explain how we
use it to define our history-based probability model.

In this paper, as in the CoNLL-X shared task,
we consider labeled dependency parsing. The state
of the parser is defined by the current stack S, the
queue I of remaining input words and the partial la-
beled dependency structure constructed by previous
parser decisions. The parser starts with an empty
stack S and terminates when it reaches a configura-
tion with an empty queue 7. The algorithm uses 4
types of decisions:

1. The decision L eft-Arc, adds a dependency arc
from the next input word w; to the word w; on
top of the stack and selects the label r for the



relation between w; and w;. Word w; is then
popped from the stack.

2. The decision Right-Arc, adds an arc from the
word w; on top of the stack to the next input
word w; and selects the label » for the relation
between w; and wj.

3. The decision Reduce pops the word w; from
the stack.

4. The decision Shift,,; shifts the word w; from
the queue to the stack.

Unlike the original definition in (Nivre et al., 2004)
the Right-Arc, decision does not shift w; to the
stack. However, the only thing the parser can do
after a Right-Arc, decision is to choose the Shift,,
decision. This subtle modification does not change
the actual parsing order, but it does simplify the def-
inition of our graphical model, as explained in sec-
tion 4.

We use a history-based probability model, which
decomposes the probability of the parse according
to the parser decisions:

P(T)=P(D',..,D™) =] P(D'|D,...

where T is the parse tree and D',..., D™ is its
equivalent sequence of parser decisions. Since we
need a generative model, the action Shift,,; also pre-
dicts the next word in the queue I, w;41, thus the
P(Shift,,|D", ..., D*1) is a probability both of
the shift operation and the word w;4; conditioned
on current parsing history.!

Instead of treating each D? as an atomic decision,
it is convenient to split it into a sequence of elemen-
tary decisions D' = di, ..., d%:

P(DYD,..., D7) HPd |h(t, k)

YIn preliminary experiments, we also considered look-
ahead, where the word is predicted earlier than it appears at the
head of the queue I, and “anti-look-ahead”, where the word is
predicted only when it is shifted to the stack S. Early predic-
tion allows conditioning decision probabilities on the words in
the look-ahead and, thus, speeds up the search for an optimal
decision sequence. However, the loss of accuracy with look-
ahead was quite significant. The described method, where a
new word is predicted when it appears at the head of the queue,
led to the most accurate model and quite efficient search. The
anti-look-ahead model was both less accurate and slower.
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Figure 1: An ISBN for estimating P(d}|h(t, k)).

where h(t,k) denotes the parsing history
DY, ... .DLdt o dh . We split Left-Arc,
and Right-Arc, each into two elementary decisions:
first, the parser decides to create the corresponding
arc, then, it decides to assign a relation » to the
arc. Similarly, we decompose the decision Shift,,
into an elementary decision to shift a word and a
prediction of the word w;1. In our experiments we
use datasets from the CoNLL-X shared task, which
provide additional properties for each word token,
such as its part-of-speech tag and some fine-grain
features. This information implicitly induces word
clustering, which we use in our model: first we
predict a part-of-speech tag for the word, then a set
of word features, treating feature combination as an
atomic value, and only then a particular word form.
This approach allows us to both decrease the effect
of sparsity and to avoid normalization across all the
words in the vocabulary, significantly reducing the
computational expense of word prediction.

4 An|SBN for Dependency Parsing

In this section we define the ISBN model we use for
dependency parsing. An example of this ISBN for
estimating P(d'|h(t, k)) is illustrated in figure 1. It
is organized into vectors of variables latent state
variable vectors S = 5! ..., s representing an
intermediate state at position ¢/, and decision vari-
able vectors D', representing a decision at position
t', where ¢’ < t. Variables whose value are given at
the current decision (¢, k) are shaded in figure 1, la-
tent and current decision variables are left unshaded.

As illustrated by the edges in figure 1, the prob-
ability of each state variable s (the individual cir-
cles in S*") depends on all the variables in a finite
set of relevant previous state and decision vectors,



but there are no direct dependencies between the dif-
ferent variables in a single state vector. For each
relevant decision vector, the precise set of decision
variables which are connected in this way can be
adapted to a particular language. As long as these
connected decisions include all the new information
about the parse, the performance of the model is not
very sensitive to this choice. This is because ISBNs
have the ability to induce their own complex features
of the parse history, as demonstrated in the experi-
ments in section 6.

The most important design decision in building
an ISBN model is choosing the finite set of relevant
previous state vectors for the current decision. By
connecting to a previous state, we place that state in
the local context of the current decision. This speci-
fication of the domain of locality determines the in-
ductive bias of learning with ISBNs. When deciding
what information to store in its latent variables, an
ISBN is more likely to choose information which
is immediately local to the current decision. This
stored information then becomes local to any fol-
lowing connected decision, where it again has some
chance of being chosen as relevant to that decision.
In this way, the information available to a given deci-
sion can come from arbitrarily far away in the chain
of interconnected states, but it is much more likely
to come from a state which is relatively local. Thus,
we need to choose the set of local (i.e. connected)
states in accordance with our prior knowledge about
which previous decisions are likely to be particularly
relevant to the current decision.

To choose which previous decisions are particu-
larly relevant to the current decision, we make use
of the partial dependency structure which has been
decided so far in the parse. Specifically, the current
latent state vector is connected to a set of 7 previous
latent state vectors (if they exist) according to the
following relationships:

1. Input Context: the last previous state with the
same queue .

2. Stack Context: the last previous state with the
same stack S.

3. Right Child of Top of S: the last previous state
where the rightmost right child of the current
stack top was on top of the stack.
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4. Left Child of Top of S: the last previous state
where the leftmost left child of the current stack
top was on top of the stack.

5. Left Child of Front of I2 : the last previous
state where the leftmost child of the front ele-
ment of I was on top of the stack.

6. Head of Top: the last previous state where the
head word of the current stack top was on top
of the stack.

7. Top of S at Front of I: the last previous state
where the current stack top was at the front of
the queue.

Each of these 7 relations has its own distinct weight
matrix for the resulting edges in the ISBN, but the
same weight matrix is used at each position where
the relation is relevant.

All these relations but the last one are motivated
by linguistic considerations. The current decision is
primarily about what to do with the current word on
the top of the stack and the current word on the front
of the queue. The Input Context and Stack Context
relationships connect to the most recent states used
for making decisions about each of these words. The
Right Child of Top of S relationship connects to a
state used for making decisions about the most re-
cently attached dependent of the stack top. Simi-
larly, the Left Child of Front of I relationship con-
nects to a state for the most recently attached depen-
dent of the queue front. The Left Child of Top of S
is the first dependent of the stack top, which is a par-
ticularly informative dependent for many languages.
Likewise, the Head of Top can tell us a lot about the
stack top, if it has been chosen already.

A second motivation for including a state in the
local context of a decision is that it might contain in-
formation which has no other route for reaching the
current decision. In particular, it is generally a good
idea to ensure that the immediately preceding state is
always included somewhere in the set of connected
states. This requirement ensures that information, at
least theoretically, can pass between any two states
in the decision sequence, thereby avoiding any hard

2\We refer to the head of the queue as the front, to avoid
unnecessary ambiguity of the word head in the context of de-
pendency parsing.



independence assumptions. The last relation, Top of
S at Front of I, is included mainly to fulfill this re-
quirement. Otherwise, after a Shifth operation, the
preceding state would not be selected by any of the
relationships.

As indicated in figure 1, the probability of each
elementary decision d;@’ depends both on the current
state vector S* and on the previously chosen ele-
mentary action d,_, from DY, This probability dis-
tribution has the form of a normalized exponential:

gt
/ - o1y (d) o2 VoS
P(dt = d’St 7d2_1): ( ) Z W St,’
S a®Ph k) (d) e T4

where @,y 1) is the indicator function of the set of
elementary decisions that may possibly follow the
last decision in the history h(t', k), and the Wy; are
the weights. Now it is easy to see why the origi-
nal decision Right-Arc, (Nivre et al., 2004) had to
be decomposed into two distinct decisions: the de-
cision to construct a labeled arc and the decision to
shift the word. Use of this composite Right-Arc,
would have required the introduction of individual
parameters for each pair (w, ), where w is an arbi-
trary word in the lexicon and » - an arbitrary depen-
dency relation.

5 Searchingfor theBest Tree

ISBNs define a probability model which does not
make any a-priori assumptions of independence be-
tween any decision variables. As we discussed in
section 4 use of relations based on partial output
structure makes it possible to take into account sta-
tistical interdependencies between decisions closely
related in the output structure, but separated by mul-
tiple decisions in the input structure. This property
leads to exponential complexity of complete search.
However, the success of the deterministic parsing
strategy which uses the same parsing order (Nivre et
al., 2006), suggests that it should be relatively easy
to find an accurate approximation to the best parse
with heuristic search methods. Unlike (Nivre et al.,
2006), we can not use a lookahead in our generative
model, as was discussed in section 3, so a greedy
method is unlikely to lead to a good approximation.
Instead we use a pruning strategy similar to that de-
scribed in (Henderson, 2003), where it was applied
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to a considerably harder search problem: constituent
parsing with a left-corner parsing order.

We apply fixed beam pruning after each deci-
sion Shift,,;, because knowledge of the next word
in the queue I helps distinguish unlikely decision
sequences. We could have used best-first search be-
tween Shiftw]. operations, but this still leads to rela-
tively expensive computations, especially when the
set of dependency relations is large. However, most
of the word pairs can possibly participate only in a
very limited number of distinct relations. Thus, we
pursue only a fixed number of relations r after each
L eft-Arc, and Right-Arc, operation.

Experiments with a variety of post-shift beam
widths confirmed that very small validation perfor-
mance gains are achieved with widths larger than 30,
and sometimes even a beam of 5 was sufficient. We
found also that allowing 5 different relations after
each dependency prediction operation was enough
that it had virtually no effect on the validation accu-
racy.

6 Empirical Evaluation

In this section we evaluate the ISBN model for
dependency parsing on three treebanks from the
CoNLL-X shared task. We compare our genera-
tive models with the best parsers from the CoNLL-
X task, including the SVM-based parser of (Nivre et
al., 2006) (the MALT parser), which uses the same
parsing algorithm. To test the feature induction abil-
ities of our model we compare results with two fea-
ture sets, the feature set tuned individually for each
language by (Nivre et al., 2006), and another fea-
ture set which includes only obvious local features.
This simple feature set comprises only features of
the word on top of the stack S and the front word
of the queue 7. We compare the gain from using
tuned features with the similar gain obtained by the
MALT parser. To obtain these results we train the
MALT parser with the same two feature sets.?

In order to distinguish the contribution of ISBN’s
feature induction abilities from the contribution of

3The tuned feature sets were obtained from
http://w3.msi.vxu.se/ nivre/research/MaltParser.html. We
removed lookahead features for ISBN experiments but
preserved them for experiments with the MALT parser. Anal-
ogously, we extended simple features with 3 words lookahead
for the MALT parser experiments.



our estimation method and search, we perform an-
other experiment. We use the tuned feature set and
disable the feature induction abilities of the model
by removing all the edges between latent variables
vectors. Comparison of this restricted model with
the full ISBN model shows how important the fea-
ture induction is. Also, comparison of this restricted
model with the MALT parser, which uses the same
set of features, indicates whether our generative esti-
mation method and use of beam search is beneficial.

6.1 Experimental Setup

We used the CoNLL-X distributions of Danish
DDT treebank (Kromann, 2003), Dutch Alpino tree-
bank (van der Beek et al., 2002) and Slovene SDT
treebank (Dzeroski et al., 2006). The choice of these
treebanks was motivated by the fact that they all
are freely distributed and have very different sizes
of their training sets: 195,069 tokens for Dutch,
94,386 tokens for Danish and only 28,750 tokens for
Slovene. As it is generally believed that discrimina-
tive models win over generative models with a large
amount of training data, so we expected to see simi-
lar trend in our results. Test sets are about equal and
contain about 5,000 scoring tokens.

We followed the experimental setup of the shared
task and used all the information provided for the
languages: gold standard part-of-speech tags and
coarse part-of-speech tags, word form, word lemma
(lemma information was not available for Danish)
and a set of fine-grain word features. As we ex-
plained in section 3, we treated these sets of fine-
grain features as an atomic value when predicting
a word. However, when conditioning on words, we
treated each component of this composite feature in-
dividually, as it proved to be useful on the develop-
ment set. We used frequency cutoffs: we ignored
any property (e.g., word form, feature or even part-
of-speech tag*) which occurs in the training set less
than 5 times. Following (Nivre et al., 2006), we used
pseudo-projective transformation they proposed to
cast non-projective parsing tasks as projective.

ISBN models were trained using a small devel-
opment set taken out from the training set, which
was used for tuning learning parameters and for

“Part-of-speech tags for multi-word units in the Danish tree-
bank were formed as concatenation of tags of the words, which
led to quite sparse set of part-of-speech tags.
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early stopping. The sizes of the development sets
were: 4,988 tokens for larger Dutch corpus, 2,504
tokens for Danish and 2,033 tokens for Slovene.
The MALT parser was trained always using the en-
tire training set. We expect that the mean field ap-
proximation should demonstrate better results than
feed-forward approximation on this task as it is the-
oretically expected and confirmed on the constituent
parsing task (Titov and Henderson, 2007). How-
ever, the sizes of testing sets would not allow us
to perform any conclusive analysis, so we decided
not to perform these comparisons here. Instead we
used the mean field approximation for the smaller
two corpora and used the feed-forward approxima-
tion for the larger one. Training the mean field ap-
proximations on the larger Dutch treebank is feasi-
ble, but would significantly reduce the possibilities
for tuning the learning parameters on the develop-
ment set and, thus, would increase the randomness
of model comparisons.

All model selection was performed on the devel-
opment set and a single model of each type was
applied to the testing set. We used a state vari-
able vector consisting of 80 binary variables, as it
proved sufficient on the preliminary experiments.
For the MALT parser we replicated the parameters
from (Nivre et al., 2006) as described in detail on
their web site.

The labeled attachment scores for the ISBN with
tuned features (TF) and local features (LF) and
ISBN with tuned features and no edges connect-
ing latent variable vectors (TF-NA) are presented
in table 1, along with results for the MALT parser
both with tuned and local feature, the MST parser
(McDonald et al., 2006), and the average score
(Aver) across all systems in the CoNLL-X shared
task. The MST parser is included because it demon-
strated the best overall result in the task, non signif-
icantly outperforming the MALT parser, which, in
turn, achieved the second best overall result. The la-
beled attachment score is computed using the same
method as in the CoNLL-X shared task, i.e. ignor-
ing punctuation. Note, that though we tried to com-
pletely replicate training of the MALT parser with
the tuned features, we obtained slightly different re-
sults. The original published results for the MALT
parser with tuned features were 84.8% for Danish,
78.6% for Dutch and 70.3% for Slovene. The im-



Danish | Dutch | Slovene toroot| 1 2 3-6| >6

ISBN | TF 85.0 79.6 72.9 Da| ISBN || 95.1 | 95.7 | 90.1 | 84.1 | 74.7
LF 84.5 79.5 724 MALT || 954 | 96.0 | 90.8 | 84.0 | 71.6

TF-NA 83.5 76.4 71.7 Du| ISBN || 79.8 | 924 | 86.2 | 81.4 | 71.1

MALT | TF 85.1 78.2 70.5 MALT || 73.1 | 91.9 | 85.0 | 76.2 | 64.3
LF 79.8 74.5 66.8 SI | ISBN | 76.1 | 925 | 85.6 | 79.6 | 54.3

MST 84.8 79.2 73.4 MALT || 59.9 | 92.1 | 85.0 | 78.4 | 47.1
Aver 78.3 70.7 65.2 Av| ISBN || 83.6 | 93.5 | 87.3 | 81.7 | 66.7
Table 1. Labeled attachment score on the testing sets MALT | 76.2 | 933 | 87.0 | 79.5 | 61.0
of Danish, Dutch and Slovene treebanks. Improv]| 75 | 02 | 04 | 22 | 57

provement of the ISBN models (TF and LF) over
the MALT parser is statistically significant for Dutch
and Slovene. Differences between their results on
Danish are not statistically significant.

6.2 Discussion of Results

The ISBN with tuned features (TF) achieved signif-
icantly better accuracy than the MALT parser on 2
languages (Dutch and Slovene), and demonstrated
essentially the same accuracy on Danish. The results
of the ISBN are among the two top published results
on all three languages, including the best published
results on Dutch. All three models, MST, MALT and
ISBN, demonstrate much better results than the av-
erage result in the CONLL-X shared task. These re-
sults suggest that our generative model is quite com-
petitive with respect to the best models, which are
both discriminative.> We would expect further im-
provement of ISBN results if we applied discrimina-
tive retraining (Henderson, 2004) or reranking with
data-defined kernels (Henderson and Titov, 2005),
even without introduction of any additional features.
We can see that the ISBN parser achieves about
the same results with local features (LF). Local fea-
tures by themselves are definitely not sufficient for
the construction of accurate models, as seen from
the results of the MALT parser with local features
(and look-ahead). This result demonstrates that IS-
BNs are a powerful model for feature induction.
The results of the ISBN without edges connecting
latent state vectors is slightly surprising and suggest
that without feature induction the ISBN is signifi-
cantly worse than the best models. This shows that

SNote that the development set accuracy predicted correctly
the testing set ranking of ISBN TF, LF and TF-NA models on
each of the datasets, so it is fair to compare the best ISBN result
among the three with other parsers.
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Table 2: F; score of labeled attachment as a function
of dependency length on the testing sets of Danish,
Dutch and Slovene.

the improvement is coming mostly from the abil-
ity of the ISBN to induce complex features and not
from either using beam search or from the estima-
tion procedure. It might also suggest that genera-
tive models are probably worse for the dependency
parsing task than discriminative approaches (at least
for larger datasets). This motivates further research
into methods which combine powerful feature in-
duction properties with the advantage of discrimina-
tive training. Although discriminative reranking of
the generative model is likely to help, the derivation
of fully discriminative feature induction methods is
certainly more challenging.

In order to better understand differences in per-
formance between ISBN and MALT, we analyzed
how relation accuracy changes with the length of
the head-dependent relation. The harmonic mean
between precision and recall of labeled attachment,
F1 measure, for the ISBN and MALT parsers with
tuned features is presented in table 2. F; score is
computed for four different ranges of lengths and
for attachments directly to root. Along with the re-
sults for each of the languages, the table includes
their mean (Av) and the absolute improvement of
the ISBN model over MALT (Improv). It is easy
to see that accuracy of both models is generally sim-
ilar for small distances (1 and 2), but as the distance
grows the ISBN parser starts to significantly outper-
form MALT, achieving 5.7% average improvement
on dependencies longer than 6 word tokens. When
the MALT parser does not manage to recover a long
dependency, the highest scoring action it can choose
is to reduce the dependent from the stack without
specifying its head, thereby attaching the dependent



to the root by default. This explains the relatively
low F; scores for attachments to root (evident for
Dutch and Slovene): though recall of attachment to
root is comparable to that of the ISBN parser (82.4%
for MALT against 84.2% for ISBN, on average over
3 languages), precision for the MALT parser is much
worse (71.5% for MALT against 83.1% for ISBN,
on average).

The considerably worse accuracy of the MALT
parser on longer dependencies might be explained
both by use of a non-greedy search method in the
ISBN and the ability of ISBNSs to induce history fea-
tures. To capture a long dependency, the MALT
parser should keep a word on the stack during a
long sequence of decision. If at any point during
the intermediate steps this choice seems not to be
locally optimal, then the MALT parser will choose
the alternative and lose the possibility of the long
dependency.® By using a beam search, the ISBN
parser can maintain the possibility of the long de-
pendency in its beam even when other alternatives
seem locally preferable. Also, long dependences are
often more difficult, and may be systematically dif-
ferent from local dependencies. The designer of a
MALT parser needs to discover predictive features
for long dependencies by hand, whereas the ISBN
model can automatically discover them. Thus we
expect that the feature induction abilities of ISBNs
have a strong effect on the accuracy of long depen-
dences. This prediction is confirmed by the differ-
ences between the results of the normal ISBN (TF)
and the restricted ISBN (TF-NA) model. The TF-
NA model, like the MALT parser, is biased toward
attachment to root; it attaches to root 12.0% more
words on average than the normal ISBN, without
any improvement of recall and with a great loss of
precision. The F; score on long dependences for the
TF-NA model is also negatively effected in the same
way as for the MALT parser. This confirms that the
ability of the ISBN model to induce features is a ma-
jor factor in improving accuracy of long dependen-
cies.

5The MALT parser is trained to keep the word as long as
possible: if both Shift and Reduce decisions are possible during
training, it always prefers to shift. Though this strategy should
generally reduce the described problem, it is evident from the
low precision score for attachment to root, that it can not com-
pletely eliminate it.
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7 Reated Work

There has not been much previous work on latent
variable models for dependency parsing. Depen-
dency parsing with Dynamic Bayesian Networks
was considered in (Peshkin and Savova, 2005), with
limited success. Roughly, the model considered
the whole sentence at a time, with the DBN being
used to decide which words correspond to leaves
of the tree. The chosen words are then removed
from the sentence and the model is recursively ap-
plied to the reduced sentence. Recently several la-
tent variable models for constituent parsing have
been proposed (Koo and Collins, 2005; Matsuzaki
et al., 2005; Prescher, 2005; Riezler et al., 2002).
In (Matsuzaki et al., 2005) non-terminals in a stan-
dard PCFG model are augmented with latent vari-
ables. A similar model of (Prescher, 2005) uses a
head-driven PCFG with latent heads, thus restrict-
ing the flexibility of the latent-variable model by us-
ing explicit linguistic constraints. While the model
of (Matsuzaki et al., 2005) significantly outperforms
the constrained model of (Prescher, 2005), they both
are well below the state-of-the-art in constituent
parsing. In (Koo and Collins, 2005), an undirected
graphical model for constituent parse reranking uses
dependency relations to define the edges. Thus, it
should be easy to apply a similar method to rerank-
ing dependency trees.

Undirected graphical models, in particular Condi-
tional Random Fields, are the standard tools for shal-
low parsing (Sha and Pereira, 2003). However, shal-
low parsing is effectively a sequence labeling prob-
lem and therefore differs significantly from full pars-
ing. As discussed in (Titov and Henderson, 2007),
undirected graphical models do not seem to be suit-
able for history-based parsing models.

Sigmoid Belief Networks (SBNs) were used orig-
inally for character recognition tasks, but later a dy-
namic modification of this model was applied to the
reinforcement learning task (Sallans, 2002). How-
ever, their graphical model, approximation method,
and learning method differ significantly from those
of this paper. The extension of dynamic SBNs with
incrementally specified model structure (i.e. Incre-
mental Sigmoid Belief Networks, used in this pa-
per) was proposed and applied to constituent parsing
in (Titov and Henderson, 2007).



8 Conclusions

We proposed a latent variable dependency parsing
model based on Incremental Sigmoid Belief Net-
works. Unlike state-of-the-art dependency parsers,
it uses a generative history-based model. We demon-
strated that it achieves state-of-the-art results on a
selection of languages from the CoNLL-X shared
task. The parser uses a vector of latent variables
to represent an intermediate state and uses rela-
tions defined on the output structure to construct the
edges between latent state vectors. These proper-
ties make it a powerful feature induction method
for dependency parsing, and it achieves competi-
tive results even with very simple explicit features.
The ISBN model is especially accurate at modeling
long dependences, achieving average improvement
of 5.7% over the state-of-the-art baseline on depen-
dences longer than 6 words. Empirical evaluation
demonstrates that competitive results are achieved
mostly because of the ability of the model to in-
duce complex features and not because of the use of
a generative probability model or a specific search
method. As with other generative models, it can be
further improved by the application of discrimina-
tive reranking techniques. Discriminative methods
are likely to allow it to significantly improve over
the current state-of-the-art in dependency parsing.’
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Abstract

Current parameters of accurate unlexical-
ized parsers based on Probabilistic Context-
Free Grammars (PCFGs) form a two-
dimensional grid in which rewrite events
are conditioned on both horizontal (head-
outward) and vertical (parental) histories.
In Semitic languages, where arguments
may move around rather freely and phrase-
structures are often shallow, there are ad-
ditional morphological factors that govern
the generation process. Here we pro-
pose that agreement features percolated up
the parse-tree form a third dimension of
parametrization that is orthogonal to the pre-
vious two. This dimension differs from
mere “state-splits” as it applies to a whole
set of categories rather than to individual
ones and encodes linguistically motivated
co-occurrences between them. This paper
presents extensive experiments with exten-
sions of unlexicalized PCFGs for parsing
Modern Hebrew in which tuning the param-
eters in three dimensions gradually leads to
improved performance. Our best result in-
troduces a new, stronger, lower bound on the
performance of treebank grammars for pars-
ing Modern Hebrew, and is on a par with
current results for parsing Modern Standard
Arabic obtained by a fully lexicalized parser
trained on a much larger treebank.
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1 Dimensions of Unlexicalized Parsing

Probabilistic Context Free Grammars (PCFGs) are
the formal backbone of most high-accuracy statisti-
cal parsers for English, and a variety of techniques
was developed to enhance their performance rela-
tive to the naive treebank implementation — from
unlexicalized extensions exploiting simple category
splits (Johnson, 1998; Klein and Manning, 2003)
to fully lexicalized parsers that condition events be-
low a constituent upon the head and additional lexi-
cal content (Collins, 2003; Charniak, 1997). While
it is clear that conditioning on lexical content im-
proves the grammar’'s disambiguation capabilities,
Klein and Manning (2003) demonstrate that a well-
crafted unlexicalized PCFG can close the gap, to a
large extent, with current state-of-the-art lexicalized
parsers for English.

The factor that sets apart vanilla PCFGs (Char-
niak, 1996) from their unlexicalized extensions pro-
posed by, e.g., (Johnson, 1998; Klein and Manning,
2003), is the choice for statistical parametrization
that weakens the independence assumptions implicit
in the treebank grammar. Studies on accurate unlex-
icalized parsing models outline two dimensions of
parametrization. The first, proposed by (Johnson,
1998), is the annotation of parental history, and the
second encodes a head-outward generation process
(Collins, 2003). Johnson (1998) augments node la-
bels with the label of their parent, thus incorporat-
ing a dependency on the node’s grandparent. Collins
(2003) proposes to generate the head of a phrase first
and then generate its sisters using Markovian pro-
cesses, thereby exploiting head/sister-dependencies.

Proceedings of the 10th Conference on Parsing Technologies, pages 156-167,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



Klein and Manning (2003) systematize the dissult is on a par with those achieved for MSA using a
tinction between these two forms of parametrizatiofully lexicalized parser and a much larger treebank.
by drawing them on a horizontal-vertical grid: par-The remainder of this document is organized as fol-
ent encoding is vertical (external to the rule) whereasws. In section 2 we review characteristic aspects
head-outward generation is horizontal (internal tof MH (and other Semitic languages) and illustrate
the rule). By varying the value of the parame+the special role of morphology and dependencies
ters along the grid, Klein and Manning (2003) tunedisplayed by morpho-syntactic processes using the
their treebank grammar to achieve improved perfoicase of syntactic definiteness in MH. In section 3 we
mance. This two-dimensional parametrization hadefine our three-dimensional parametrization space.
been instrumental in devising parsing models thdh section 4 we spell out the method and procedure
improve disambiguation capabilities for English ador the empirical evaluation of one, two and three
well as other languages, such as German (Dubey apdrametrization dimensions, and in section 5 we re-
Keller, 2003) Czech (Collins et al., 1999) and Chiport and analyze results for different parametrization
nese (Bikel and Chiang, 2000). However, accuracghoices. Finally, section 6 discusses related work
results for parsing languages other than English stifind in section 7 we summarize and conclude.
lag behindt

We propose that for various languages includ2 Dimensions of Modern Hebrew Syntax
:r? dtr:\ioiimltlgt?nrggae'ﬂém?céﬁﬂrg S?Zi‘ﬁlir(gﬂ;)_ Parsing MH is in its infancy. AIthough a syntacti-_
mension of parametrization is necessary for encod? lly annotated corpus has been available for quite

o ) . some time (Sima’an et al., 2001), we know of only
ing linguistic information relevant for breaking false . . . .

. ) s two studies attempting to parse MH using statistical

independence assumptions. In Semitic languages, .

methods (see section 6). One reason for the sparse-

arguments may move around rather freely and the . . ) L

7 ness in this field is that the adaptation of existing

phrase-structure of clause-level categories is often . . . :

models to parsing MH is technically involved yet

shallow. For such languages agreement features plgges not quarantee to yield comparable resuits as

a role in disambiguation at least as important as t : )
. _g o P r}ﬁe processes that license grammatical structures of
vertical and horizontal conditioning. We propose ahrases and sentences in MH differ from those as-

third dimension of parameterizations that encode . . . : .
morohological featuFr)es such as those realizing s r?_umed for English. This section outlines differences
P 9 g ybetween English and MH and discusses their reflec-

tactic agreement. These features are percolated fr%rgn in the MH treebank annotation scheme. We

surface forms in a bottom-up fashion and express . .
) : : .. _“"argue that on top of syntactic processes exploited
information that is complementary to the horizon- :
) . L by current parsers there is an orthogonal morpho-

tal and vertical generation histories proposed before: . : o
: ) . , . Syntactic dimension which is invaluable for syntac-

Such morphological information refines syntactl%
categories based on their morpho-syntactic role, an
captures linguistically motivated co-occurrences and
dependencies manifested via, e.g., morpho-syntactc;  nodern Hebrew Structure

agreement.

This work aims at parsing MH and explores thd>hrases and sg_ntences in MH, as well as in Arab_ic
empirical contribution of the three dimensions of2Nd other Semitic languages, have a relatively flexi-
parameters specified above. We present extensigi¢® Phrase structure. Subjects, verbs and objects can
experiments that gradually lead to improved perfor?€ inverted and prepositional phrases, adjuncts and
mance as we extend the degree to which the thrdgrbal modifiers can move argund rather freely. The
dimensions are exploited. Our best model uses dictors that affect word-order in the language are not

three dimensions of parametrization, and our best réXclusively syntactic and have to do with rhetorical
- and pragmatic factors as wéll.

The learning curves over increasing training data (e.g.,fa__
German (Dubey and Keller, 2003)) show that treebank size can 2See, for instance, (Melnik, 2002) for an Information
not be the sole factor to account for the inferior perforneanc  Structure-syntactic account of verb initial sentences.

i& disambiguation, and it can be effectively learned
sing simple treebank grammars.

157



(a.) S (a.) NPFSD (a) s

NPESD ADIPFS.D NPFS.D PREDFES
mswrh
sganit hmnhd fmsurh sganit okl dedicatecES
NPMP-SBJ VP.MP NPFS-OBJ deputyFS the-manageiS.D the-dedicateSD  jeptyFS the-managei!S.D
\ \
CD.MP N.MP V:MP NFS : “Mafin ;
| ‘ | | Figure 2:Definiteness in MH as a Phrase-Level Agreement
. b aklw ewgh . .. K .
sni hildim ateMP cakeES Feature: Agreement on definiteness helps to determine the in-
twoMP  the-childrerMP ternal structure of a higher level NP (a), and the absencedhe
(b) S helps to determine the attachment to a predicate in a vegh-le
sentence (b) (markinB(efiniteness))
NPFS-OBJ VPMP NPMP-SBJ (a) s (b) SV
\ |
N.FS V.MP
| CD"MP N"‘\AP NPFS.D VPFS NP(NNT).FSD VP(V)).FS
gt e i hildim vFs vFs
two.MP  the-childrenMP NN‘T'FS N'M‘S'D i NN‘T'FS N'M‘S'D i
sganit hmnhl res’iér{ed’?s sganit hmnhl resi;)r{ed;s
deputyFS the-manageiS.D deputyFS the-manageMS.D

Figure 1: word Order and Agreement Features in MH

Phrases: Agreement onMP features reveals the subject- Figure 3: Phrase-Level Agreement Features and Head-

rIB'ependencies in MH:The direction of percolating definiteness

inating constituents in a variable phrase-structure (mmgrk P : g
M (asculine) F(eminine) S(ingular), P(lural).) in MH is distinct of that of the head (markingnead-tag)

It would be too strong a claim, however, to clas-
sify MH (and similar languages) as a free-word{roperty (Danon, 2001). Definite noun-phrases ex-
order language in the canonical sense. The level bibit agreement with other modifying phrases, and
freedom in the order and number of internal consuch agreement helps to determine the internal struc-
stituents varies between syntactic categories. Withiure, labels, and the correct level of attachment as
a verb phrase or a sentential clause, for instanc#lustrated in figure 2. The agreement on definite-
the order of constituents obeys less strict rules tharess helps to determine the internal structure of noun
within, e.g., a noun phraseFigure 1 illustrates two phrases 2(a), and the absence thereof helps in de-
syntactic structures that express the same grammtgrmining the attachment to predicates in verb-less
ical relations yet vary in their internal order of con-sentences, as in 2(b). Finally, definiteness may be
stituents. Within the noun phrase constituents, howpercolated from a different form than the one deter-
ever, determiners always precede nouns. mining the gender and number of a phrase. In figure

Within the flexible phrase structure it is typically 3(a), for instance, the definiteness feature (marked
morphological information that provides cues for theas D) percolates fromhimnhl’ (the-manager.MS.D)
grammatical relations between surface forms. Iwhile the gender and number are percolated from
figure 1, for example, it is agreement on gendersganit’ (deputy.FS). The direction of percolation
and number that reveals the subject-predicate depedi-definiteness may be distinct of that of percolat-
dency between surface forms. Figure 1 also showg head information, as can be seem in figure 3(b).
that agreement features help to reveal such relatiofEhe direction of head-dependencies in MH typi-
between higher levels of constituents as well. cally coincides with that of percolating gender.)

Determining the child constituents that contribute 14 summarize agreement features are helpful in

each of the features is not a trivial matter either. Tap5)y7ing and disambiguating syntactic structures in
illustrate the extent and the complexity of that mattef,q “not only at the lexical level, but also at higher

let us considedefinitenes MH, which is morpho- jeyels of constituency. In MH, features percolated
logically marked (as an prefix to the stem, glossed o gifferent surface forms jointly determine the

here explicitly as “the-") and behaves as a syntactigaqres of higher-level constituents, and such fea-

3See (Wintner, 2000) and (Goldberg et al., 2006) for formaFures manifest multiple deper_ldenues, which in turn
and statistical accounts (respectively) of noun phrasé4Hn  cannot be collapsed onto a single head.
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2.2 The Modern Hebrew Treebank Scheme Feature:Value | Value Encoded

The annotation scheme of version 2.0 of the MH gender.z masculine
. . gender:N feminine
treebank (Sima’an et al., 20d113ims to capture the gender:B both
morphological and syntactic properties of MH just number-Y singular
described. This results in several aspects that dis- number:R plural
tinguish the MH treebank from, e.g., the WSJ Penn number:B both
treebank annotation scheme (Marcus et al., 1994). definiteness:H | definite
definiteness:U | underspecified

The MH treebank is built over word segments.
This means that the yields of the syntactic trees do Table 1:Features and Values in the MH Treebank
not correspond to space delimited words but rather
to morphological segments that carry distinct syn-

Dependency Type | Features Percolated

tactic roles, i.e., each segment corresponds to a sin- DEP HEAD all

- : DEP_MAJOR at least gender
gle P_OS tag. _(Thls in tqrr_w means thaF_preﬂxes DEP NUMBER Cumber
marking determiners, relativizers, prepositions and DEP.DEFINITE definiteness
definite articles are segmented away and appear as DEPACCUSATIVE | case

leaves in a syntactic parse tree.) The POS categories DEPMULTIPLE | all (e.g., conjunction)

assigned to segmented words are decorated with fea- 1 pje 2:p ependency Labels in the MH Treebank
tures such as gender, number, person and tense, and
these features are percolated higher up the tree @&s nested structures capturing the recursive struc-
cording to pre-defined syntactic dependencies (Knjiure of construct-state nouns, numerical expressions
molowski et al., 2007). Since agreement featuregnd possession. An additional category, PREDP, is
of non-terminal constituents may be contributed bypdded in the treebank scheme to account for sen-
more than one child, the annotation scheme definé&nces in MH that lack a copular element, and it may
multiple dependency labels that guide the percolalso be decorated with inflectional features agreeing
tion of the different features higher up the tree. Defwith the subject. The MH treebank scheme also fea-
initeness in the MH treebank is treated as a segmeittres null elements that mark traces and additional
at the POS tags level and as a feature at the level laels that mark functional features (e.g., SBJ,0BJ)
non-terminals. As any other feature, it is percolatewhich we strip off and ignore throughout this study.
higher up the tree according to marked dependency Morphological features percolated up the tree
labels. Table 1 lists the features and values annotatethnifest dependencies that are marked locally yet
on top of syntactic categories and table 2 describd®ve a global effect. We propose to learn treebank
the dependencies according to which these featurggammars in which the syntactic categories are aug-
are percolated from child constituents to their parmented with morphological features at all levels of
ents. the hierarchy. This allows to learn finer-grained
In order to comply with the flexible phrase struc-categories with subtle differences in their syntactic
ture in MH, clausal categories (S, SBAR and FRAGehavior and to capture non-independence between
and their corresponding interrogatives SQ, SQBARertain parts of the syntactic parse-tree.
and FRAGQ) are annotated as flat structures. Verbs
(VB tags) always attach to a VP mother, howeved Refining the Parameter Space

only non-finite VBs can accept complements un;

) . lein and Manning, 2003) argue that parent en-
der the same VP parent, meaning that all mflecteg( ! 'ng .) gue that p
coding on top of syntactic categories and RHS

verb forms are represented as unary prOCIuct'onsarkovization of CFG productions are two instances

under an inflected VP. NP and PP are annotateO the same idea, namely that of encoding the gener-

“Version 2.0 of the MH treebank is publicly available ation history of a node to a varying degree. They
at http://mla.cs.technion. ac.il/english/ gypsequently describe two dimensions that define

i ndex. ht m along with a complete overview of the MH thei ters’ Thertical di .
annotation scheme and illustrative examples (Krymoloveski eIr parameters: space. ertical dimension ¢),

al., 2007). capturing the history of the node’s ancestors in a top-
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vertical

down generation process (e.g., its parent and grand-
parent), and thlorizontaldimension ), capturing T
the previously generated horizontal ancestors of a
node (effectively, its sisters) in a head-outward gen- S8y
eration process. By varying the value fand v M,(N;I.){\WM)
along this two-dimensional grid they improve per- .
formance of their induced treebank grammar. SROZGN R
Formally, the probability of a parse treeis cal- N/\ ‘ L
culated as the probability of its derivation, the se-
guential application of rewrite rules. This in turn : [ horisontal
is calculated as the product of rules’ probabilities, /
approximated by assuming independence between,,,,
themP(w) = [, P(ri|ri o ... ori—1) = [[; P(ri).
The vertical dimensiom can be thought of as a func- Figure 4:The Three-Dimensional Parametrization Space
tion ¥ selecting features from the generation his-
tory of the constituent thus restoring selected depefimpoverished morphological treatment, but for lan-
dencies: guages in which morphological processes are more
pertinent, we argue, bi-dimensional parametrization
shall not suffice.
The horizontal dimensioh can be thought of astwo  The emerging picture is as follows. Bare-category
functions¥, ¥y over decomposed rules, whebg  skeletons reside in a bi-dimensional parametrization
selects hidden internal features of the parent, argpace (figure 3(a)) in which the vertical (figure 3(b))
¥, selects previously generated sisters in a headnd horizontal (figure 3(c)) parameter instantiations
outward Markovian process (we retain here the aglaborate the generation history of a non-terminal
sumption that the head child H always matters). node. Specialized structures enriched with (an in-
creasing amount of) morphological features reside
P(ri) = Pu(H[¥1(LHS(ri))) deeper along a third dimension we refer todapth

P(r;) = P(ri|¥o(rio..ori_1))

X H Po(C|Vo(RHS(r;)), H) (d). Figure 4 illustrates an instantiation df= 1
CEeRHS(r;)—H with a single definiteness feature. Highéralues

The fact that the default notion of a treebankvould imply adding more (accumulating) features.
grammar takes = 1 (i.e., ¥g(ry0..or;_1) = 0) Klein and Manning (2003) view thevertical

andh = oo (RHS cannot decompose) is, accordingaind horizontal parametrization dimensions as im-
to Klein and Manning (2003), a historical accident. plementingexternalandinternal annotation strate-
We claim that languages with freeer word ordegies respectively. External parameters indicate fea-
and richer morphology call for an additional dimen-tures of the external environment that influence the
sion of parametrization. The additional parametenode’s expansion possibilities, and internal parame-
shows to what extent morphological features erters mark aspects of hidden internal content which
coded in a specialized structure back up the derivaafluence constituents’ external distribution. We
tion of the tree. This dimension can be thought ofiew the third dimension of parametrization as im-
as a function¥; selecting aspects of morphologicalplementing arelational strategy of annotation en-
orthogonal analysis of the rules, whéeveA denotes coding the way different constituents may combine
morphological analysis of the syntactic categories ito form phrases and sentences. In a bottom up pro-
both LHS andRH S of the rule. cess this annotation strategy imposes soft constraints
on a the top-down head-outward generation process.
P(ri) = P(ri[¥s(MA(r:))) Figure 6(a) focuses on a selected NP node high-
The fact that in current parseds; (M A(r;)) = 0 is, lighted in figure 4 and shows its expansion possibil-
we claim, another historical accident. Parsing Enities in three dimensions. Figure 6(b) illustrates how
glish is quite remarkable in that it can be done witlihe depth expansion interacts with both parent anno-
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vertical vertical

S - S(VB) S S(VB) S(VB)
NP NP(NNT) VP(VT) NP - NP(NNT) VP(VT) NP(NNT) VP(VT)
NP NP(NNT) ADIJP(1]) NP NP(NNT) ADIP(JT) NP(NNT) ADIJP(1J)
NNT ] NN Rl VB NNT NN i) VB NNT NN 1 VB
| | | | | | | | | | | | |
mno i Snnn nmonn nvann nno Yminn nmonn nmvann nno | Smnn nmonn mvann
deputy-of | the-manager the-dedicated resigned deputy-of the-manager ~ the-dedicated resigned deputy-of | the-manager the-dedicated resigned
+ + horizontal t + horizontal
NP ADIJP NP ADJP
(a) The horizontal/verticalGrid (b) The vertical dimension (c) The horizontaldimension

Figure 5:The Two-Dimensional SpaceThe horizontal and vertical dimensions outlined by (Kleid &anning, 2003)

vertical vertical

tation and neighbor dependencies thereby affecting (raren Encading
both distributions.

3.1 A Note on State-Splits

Recent studies (Klein and Manning, 2003; Mat-
suzaki et al., 2005; Prescher, 2005; Petrov et al,, .~ i
2006) suggest that category-splits help in enhan((,‘:j) B () s
ing the performance of treebank grammars, and Rigure 6: The Expansion Possibilities of a Non-Terminal
previous study on MH (Tsarfaty, 2006) outlines SpeNode: Expanding the NP from figure 4 in a three-dimensional
- . . . parameterization Space
cific POS-tags splits that improve MH parsing ac-
curacy. Yet, there is a major difference betweeAN additional dimension of statistical estimation for
category-splits, whether manually or automaticallyearmning unlexicalized treebank PCFGs. Our pro-
acquired, and the kind of state-splits that arise frorgosal deviates from various stochastic extensions of
agreement features that refine phrasal categorie‘é‘.Ch constraints-based grammatical formalisms (cf.
While category-splits aim at each category in isolAbney, 1997)) and has the advantage of elegantly
lation, agreement features apply to a whole sdtypassing the issue of loosing probability mass to
of categories all at once, thereby capturing refind@iled derivations due to unification failures. To the
ment of the categories as well as linguistically mobest of our knowledge, this proposal has not been
tivated co-occurrences between them. IndividugtmPpirically explored before.
category-splits are viewed as taking place in a twojr
dimensional space and it is hard to analyze and em-
pirically evaluate their interaction with other annota-Our goal is to determine the optimal strategy for
tion strategies. Here we propose a principled way tiearning treebank grammars for MH and to contrast
statistically model the interaction between differentt with bi-dimensional strategies explored for En-
linguistic processes that license grammatical struglish. The methodology we use is adopted from
tures and empirically contrast their contribution.  (Klein and Manning, 2003) and our procedure is
identical to the one described in (Johnson, 1998).
3.2 A Note on Stochastic AV grammars We define transformations over the treebank that ac-
The practice of having morphological features orcept as input specific points in tlig, v, d) space de-
thogonal to a constituency structure is not a newicted in figure 7. We use the transformed training
one and is familiar from formal theories of syntaxsets for learning different treebank PCFGs which we
such as HPSG (Sag et al., 2003) and LFG (Kahen used to parse unseen sentences, and detrans-
plan and Bresnan, 1982). Here we propose to réorm the parses for the purpose of evaluafion.

frame SyStem_at'C morphological decorafuon Of SYN-"Sprevious studied on MH used different portions of the tree-
tactic categories at all levels of the hierarchy asank and its annotation scheme due to its gradual develdpmen

horizontal
(Head-outward
Markovization)

Experimental Setup
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Data We use version 2.0 of the MH treebankstantiated value of then selects the number of pre-
which consists of 6501 sentences from the dailyiously generated (non-head) sisters to be taken into
newspaper ‘Ha'aretz’. We employ the syntactic cataccount when generating the next sister in a Marko-
egories, POS categories and morphological featuregn process¥, in our formal exposition).
annotated therein. The data set is split into 13 sec- Thed dimension we proposed is implemented us-
tions consisting of 500 sentences each. We use tirgy a transformation that augments syntactic cate-
first section (section 0) as our development set argbries with morphological features percolated up the
the last section (section 12) as our test set. The rgee. We usal = 0 to select bare syntactic cate-
maining sentences (sections 1-11) are all used fgories and instantiatd = 1 with the definiteness
training. After removing empty sentences, sentencdsature. The decision to select definiteness (rather
with uneven bracketing and sentences that do ntian, e.g., gender or number) is rather pragmatic as
match the annotation schefnee remain with ade- its direction of percolation may be distinct of head
vsetof 483 sentences (average length in word segaformation and the question remains whether the
ments 48), arainset of 5241 sentences (53) andcombination of such non-overlapping dependencies
a testsetof 496 sentences (58). Since this workis instrumental for parsing MH.
is only the first step towards the development of a Our baseline model is a vanilla treebank PCFG
broad-coverage statistical parser for MH (and othess described in (Charniak, 1996) which we locate
Semitic languages) we use the development set fon the (oo, 0,0) point of our coordinates-system.
parameter-tuning and error analysis and use the tafta first set of experiments we implement simple
set only for confirming our best results. PCFG extensions of the treebank trees based on se-
lected points on th€oo,v,d) plain. In a second

Models  The models we implement use one-, tWOget of experiments we use an unlexicalized head-

or three-dimensional parametrization and differenfian paseline a la (Collins, 2003) located on the
in_stantiation of values thereof. (Due to the Smalto,o,o) coordinate. We transform the treebank trees
size of our data set we only use the valyésl} i, correspondence with different points in the three-
as possible |nstant|at|ops.) _ dimensional space defined by, v, d). The models
The v dimension is implemented using a transyye jmplement are marked in the coordinate-system
form as in (Johnson, 1998) where= 0 corresponds  ygpjcted in figure 7. The implementation details of

to bare syntactic categories and= 1 augments e ransformations we use are spelled out in tables
node labels with the label of their parent node. 3.4

Theh dimension is peculiar in that it distinguishes
PCFGs b = ~0), where RHS cannot decompose Procedure We implement different models that
from their head-driven unlexicalized variety. To im-correspond to different instantiations kfv andd.
plementh # oo we use a PCFG transformation em-+or each instantiation we transform the training set
ulating (Collins, 2003)’s first model, in which sistersand learn a PCFG using Maximum Likelihood es-
are generated conditioned on the head tag and a sitimates, and we use BitPar (Schmidt, 2004), an ef-
ple ‘distance’ function (Hageloh, 2007).The in- ficient general-purpose parser, to parse unseen sen-
tences. The input to the parser is a sequence of word

process. As the MH treebank is approaching maturity we fe i
that the time is ripe to standardize its use for MH statii;ticefé(:"gmemS where each segment corresponds to a sin

parsing. The software we implemented will be made availablgle POS tag, possibly decorated with morphologi-
for non-commercial use upon request to the author(s) and thgy| features. This setup assumes partial morpholog-

feature percolation software by (Krymolowski et al., 200¥) . . . . .
publicly available through the Knowledge Center for Preees ical disambiguation (namely, segmentation) but cru-

ing Hebrew. By this we hope to increase the interest in MHially we donot disambiguate their respective POS

of more sophisticated models by cutting down on setup time. . | ina tool d it k
6Marked as “NOMATCH” in the treebank. ing general-purpose parsing tools and it makes our

"A formal overview of the transformation and its corre-results comparable to studies in other langudges.
spondence to (Collins, 2003)’s models is available at (dge
2007). We use the distance function defined therein, marking 2Our working assumption is that better performance of a
the direction and whether it is the first node to be generated. parsing model in our setup will improve performance also
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Transliterate The lexical items (leaves) in the MH treebank are writtetriefwrite and are encoded

in utf8. A transliteration software is used to convert thieemtcoding into Latin characters and to reverse

their order, essentially allowing for standard left-tghi processing.

Correct The manual annotation resulted in unavoidable errors imtimetation scheme, such as typos

(e.g., SQBQR instead of SQBAR) wrong delimiters (e.g., stead of “”) or wrong feature order (e.g.,
number-gender instead of gender-number). We used an atitsuapt to detect these error, we manually
determine their correction. Then we created an automatigtgo apply all fixes (57 errors in 1% sentences).
Re-attach VB elements are attached by convention to a VP which inhigsitsiorphological features.

9 VB instances in the treebank are mistakenly attached topareit without an intermediate VP level.

Our software re-attaches those VB elements to a VP parerpencdlates its morphological features.

Disjoint Due to recursive processes of generating noun phrases aretical expressionsmixut)

in MH the sets of POS and syntactic categories are not disjbhis is a major concern for PCFG parsers

that assume disjoint sets of pre- and non-terminals. Thdagvbetween the sets also introduces additional
infinite derivations to which we loose probability mass. Gaftware takes care to decorate POS categories
used as non-terminal with an additional “P”, creating a neto$ categories encoding partial derivations.
Lexicalize A pre-condition for applying horizontal parameterizasanla Collins is the annotation of

heads of syntactic phrases. The treebank provided by thel&dge center does not define unique heads,

but rather, mark multiple dependencies for some categaridsione for others. Our software uses rules

for choosing the syntactic head according to specified digranies and a head table when none are specified.
Linearize In order to implement the head-outward constituents’ gei@r process we use software made
available to us by (Hageloh, 2007) which converts PCFG prooln such as the generation of a head is followed by left ayid r
markovized derivation processes. We used two versions dkdx&ation, one which conditions only on the
head and a distance function, and another which condititsesom immediately neighboring sister(s).
DecorateOur software implements an additional general transforrichvbelects the features that are to be
annotated on top of syntactic categories to implement uanmrametrization decisions. This transform can be
used for, e.g., displaying parent information, selectimgphological features, etc.

Table 3:Transforms over the MH Treebank: We clean and correct the treebank usimgnsliterate, Correct, Re-attach and
Disjoint, and transform the training set according to certain patdra¢éion decisions usinbexicalize, Linearize andDecorate

Smoothing pre-terminal rules is done explicitly byfor two evaluation options, once including punctua-
collecting statistics on “rare word” occurrences andion marks {¥” P) and once excluding thenii(O P).
providing the parser with possible open class cat-

egories and their corresponding frequency counts. Results

The frequency threshold defining “rare words” was

tuned empirically and set to 1. The resulting tesPur baseline for the first set of experiments is

parses are detransformed and to skeletal constitughtvanilla PCFG as described in (Charniak, 1996)

structures, and are compared against the gold pard#gthout a preceding POS tagging phase and without
to evaluate parsing accuracy. right branching corrections). We transform the tree-

bank trees based on various points in the, v, d)

Evaluation We evaluate our models using EVALB yyo-dimensional space to evaluate the performance
in accordance with standard PARSEVAL evaluationyf the resulting PCFG extensions.

metrics. The evaluation of all models focuses on Tapje 5 reports the accuracy results for all models
Labeled Precision and Recall considering bare sypi, section Odevse} of the treebank. The accuracy
tactic categories (stripping off all morphological oryegjts for the vanilla PCFG are approximately 10%
parental features and removing intermediate nodgS,er than reported by (Charniak, 1996) for English
for linearization). We report the average F'measurﬁemonstrating that parsing MH using the currently
for sentences of length up to 40 and for all sentencegyyilable treebank is a harder task. For all unlexical-
(F<a0 and Fyy respectively). We report the results e extensions learned from the transfromed tree-

within an integrated model for morphological and syntadte= ~ banks, the resulting grammars show enhanced dis-
ambiguation in the spirit of (Tsarfaty, 2006). We conjeetur ambiguation capabilities and improved parsing ac-
that the kind of models developed here which takes into attcou . . .

morphological information is more appropriate for the niarp curacy. We observe that the vertical dimension con-
logical disambiguation task defined therein. tributes the most from both one-dimensional mod-
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Name Params Description Transforms used

DIST h=0 0-order Markov process Lexicalize(category), Linearize(distance)
MRK h =1 1-order Markov process Lexicalize(category), Linearize(distance, neighbor)
PA v =1 Parent Annotation Decorate(parent)

DEF d=1 Definiteness feature percolationDecorate(definiteness)

Table 4:Implementing Different Parametrization Options using Transforms

Implementation

(hyv,d) ‘ Farr Feao  Farn  Feao head-dependencies which play a role in determin-
WP WP WOP WOP  ing grammatical structures in English are also in-

PCFG Eoo,0,0; 656167 66-8: 63-;; 627-78 strumental for parsing MH. However, the marginal
PA 00,0,1) | 70.6 71.96 70. 72.1 - : T .

DEF (x.1.0) | 6753 6878 6882 7006 CONUribution of the head-driven variation is surpris-
PA+DEF (c0,1,1) | 72.63 73.89 73.01 74.11 ingly low. Next we observe that for one-dimensional

models the vertical dimension still contributes the
Ta.ble 5:PCFG Two-Dimensional ExtensionS'Accuracy re-  most to parsing accuracy_ However’ morphologi_
sults for parsing thelevesi{section 0) . . . ;
cal information represented by the depth dimension
n%ontributes more to parsing accuracy than informa-

els. A qualitative error analysis reveals that pare L . . )
i L . . fion concerning immediately preceding sisters on
annotation strategy distinguishes effectively vanoui1 : . : . . .
the horizontal dimension. This outcome is consis-

kinds of distributions clustered together under a sin-

gle category. For example, S categories that appetaernt with our observation that the grammar of MH

under TOP tend to be more flat than S categories a yltsti:less; S|grr11|f|catr;]c? on :]t:jetﬂo?trlsnro;‘]clonsi,tlttljeir:]ts
pearing under SBAR (SBAR clauses typically gen-ea € 1o one ofhers a at morpnhological in-

erate a non-finite VP node under which additionalc "a0N 1S more indicative of the kind of syntac-

PP modifiers can be attached). tic relations that appear between them. For two-

Orthogonal morphological marking provide addi_d_imensional models, incorpqrating the_ dept.h dimen-
tional information that is indicative of the kind of ston (orthog_onal morphologllcal marking) is bgtter
dependencies that exist between a category and Egsfan n<_)t doing so, and relying sqlely on horizon-
various child constituents, and we see that - /verngal parameters perfprms slightly worse than

. ) P the vertical/depth combination. The best performing
mension instantiated wittiefinitenessot only con-

. ) model for two-dimensional head-driven extensions
tribute more than 2% to the overall parsing accurac

?é the one combining vertical history and morpho-
of a vanilla PCFG, but also contributes as much tP d y P

: ) ogical depth. This is again consistent with the prop-
the improvement obtained from a treebank alread g P g brop

. . . . 4% ties of MH highlighted in section 2 — parental in-
annotated with the vertical dimension. The Conmbuformation gives cues about the possible expansion

tions are thus additive providing preliminary empir- S .
ical Tt ¢ claim that th wo dimensi non the current node, and morphological information
cal support fo our ciaim that tnese ftwo ENSIONG, dicates possible interrelation between child con-
provide information that is complementary. . . ,
_ stituents that may be generated in a flexible order.

In our next set of experiments we evaluate the
contribution of the depth dimension to extensions of Our second set of experiments shows that a three-
the head-driven unlexicalized variety a la (Collinsdimensional annotation strategy strikes the best bal-
2003). We set our baseline at th@& 0,0) coordi- ance between bias and variance and achieves the best
nate and evaluate models that combine one, two aadcuracy results among all models. Different dimen-
three dimensions of parametrization. Table 6 showsions provide different sorts of information which
the accuracy results for parsing section 0 using there complementary, resulting in a model that is ca-
resulting models. pable of generalizing better. The total error reduc-

The first outcome of these experiments is that oufon from a plain PCFG is more than 20%, and our
new baseline improves on the accuracy results dfest result is on a par with those achieved for other
a simple treebank PCFG. This result indicates thdnguages (e.g., 75% for MSA).
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Implementation| Params| Far, F<iao Far F<ao been successfully used for various NLP tasks such as
(hyv,d) | WP WP WOP WOP - : : - :
morphological disambiguation, POS tagging (Bar-
DIST | (0,0,0) | 66.56 68.20 67.59 69.24 Haim et al., 2007) and NP chunking (Goldberg et
MRK (1,0,0) | 66.69 68.14 67.93 69.37  al.,, 2006). However its use for statistical parsing has
PA (0,1,0) | 68.87 70.48 69.64 70.91 )
DEF (0.01) | 6885 6992 7042 71.45 bgen mtorde_ scartc;e anf_l Iests succesi;‘ll:—:. Thei(only p][e
PA+MRK (1,1,0) | 69.97 71.48 70.69 71.98 vious stu ,|es attempting o parse We Know o
MRK+DEE (1,0,1) | 69.46 70.79 71.05 72.37 are (Slma anetal., 2001), applylng avariation of the
PA+DEF (0,1,1) | 71.15 72.34 71.98 72.91 DOP tree-gram model to 500 sentences, and (Tsar-
PA+MRK+DEF [ (1,1,1) [ 72.34 73.63 73.27 74.41 faty, 2006), using a treebank PCFG in an integrated

system for morphological and syntactic disambigua-
tion.’ The adaptation of state-of-the-art parsing
models to MH is not immediate as the flat variable
structures of phrases are hard to parse and a plen-

Table 6:Head-Driven Three-Dimensional ExtensionsAc-
curacy results for parsing thievesi{section 0)

Implementaton ('Za;ar;)s Pa fow L ten tiful of morphological features that would facilitate
PCFG (2.0.0) | 6508 67.31 6582 68.22 disambiguation are not exploited by currently avail-
PCFG+PA+DEF‘ (00,1,1) | 7226 74.46 72.42 74.52 able parsers. Also, the MH treebank is much smaller
DIST ‘ (0,0,0) ‘ 66.33 68.79 67.06 69.47 than the ones for, e.g., English (Marcus et al., 1994)
PA+MRK+DEF | (1,1,1) | 72.64 74.64 73.21 75.25

and Arabic (Maamouri and Bies, 2004), making it
hard to apply data-intensive methods such as the all-
subtrees approach (Bod, 1992) or full lexicalization
(Collins, 2003). Our best performing model incor-
porates three dimensions of parametrization and our

Figure 8 shows the", (WOP) results for all best result (75.25%) is similar to the one obtained
models we implemented. In general, we see that f&Y the parser of (Bikel, 2004) for Modern Standard
parsing MH higher dimensionality is better. More-Arabic (75%) using a fully lexicalized model and
over, we see that for all points on the, h,0) plain a training corpus about three times as large as our
the corresponding models on tke, 1, 1) plain al- newest MH treebank.
ways perform better. We further see that the contri- This work has shown that devising an adequate
bution of the depth dimension to a parent annotatd@fseline for parsing MH requires more than sim-
PCFG can compensate, to a large extent on the laBle category-splits and sophisticated head-driven ex-
of head-dependency information. These accumuld€nsions, and our results provide preliminary evi-
tive results, then, provide empirical evidence to théence for the variation in performance of different
importance of morphological and morpho-syntacti@@rametrization strategies relative to the properties
processes such as definiteness for syntactic analy8Rd structure of a given language. The compari-
and disambiguation as argued for in section 2.  Son with parsing accuracy for MSA suggests that

We confirm our results on thstsetand report Parametrizing an orthogonal depth dimension may
in table 7 our results on section 12 of the treebanfe€ able to compensate, to some extent, on the lack
The performance has slightly increased and we ol9f Sister-dependencies, lexical information, and per-
tain better results for our best strategy. We retain tig@Ps even the lack of annotated data, but establish-
high error-reduction rate and propose our best resulfld €émpirically its contribution to parsing MSA is a
75.25% for sentences of length 40, as an empiri- matter for further research. In the future we intend
cally established string baseline on the performand@ further investigate the significance of the depth di-
of treebank grammars for MH. mension by extending our models to include more

morphological features, more variation in the pa-

Table 7:PCFG and Head-Driven Unlexicalized Models:
Accuracy Results for parsing thestst(section 12)

6 Related Work

°Both studies acheived between 60%-70% accuracy, how-

. ever the results are not comparable to our study because of th
The MH treebank (Sima'an et al., 2001), a MO se of different training sets, different annotation cartians,

phologically and syntactically annotated corpus, hashd different evaluation schemes.
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Figure 7:All Models: Locating Unlexicalized Parsing Moddisgure 8:All Results: Parsing Results for Unlexicalized Mod-
in a Three-Dimensional Parametrization Space els in a Three-Dimensional Parametrization Space

rameter space, and applications to more languagesrder language in the canonical sense, and our qual-
itative analysis shows that all dimensions contribute
7 Conclusion to the models’ disambiguation capabilities. Orthog-
Morphologically rich languages introduce a new di-(?nal d|m_en_5|ons provide complementary informa-
mension into the expansion possibilities of a nont—Ion that is invaluable fo_r the_ parsing process _to the
extent that the relevant linguistic phenomena license

terminal node in a syntactic parse tree. This di- tical struct in the | 0 It
mension is orthogonal to the vertical (Collins, 2003 rammatical Structures in the language. DUF results
oint out a principled way to quantitatively charac-

and horizontal (Johnson, 1998) dimensions previ-

ously outlined by Klein and Manning (2003), and_tenzmg differences between languages, thus guid-

it cannot be collapsed into any one of the previoug'g the selection of parameters for the development
two. These additional dependencies exist alongsidt anngtated resources, cu_stom parsers and cross-
the syntactic head dependency and are attested us Wé;wstlc robust parsing engines.
morphosyntactic phenomena such as long distance
agreement. We demonstrate using syntactic defi-
niteness in MH that incorporating morphologically
marked features as a third, orthogonal dimensioficknowledgments We thank the Knowledge
for annotating syntactic categories is invaluable foEenter for Processing Hebrew and Dalia Bojan for
weakening the independence assumptions implidaroviding us with the newest version of the MH
in a treebank PCFG and increasing the model’s digreebank. We are particularly grateful to the devel-
ambiguation capabilities. Using a three-dimension&Pment team of version 2.0, Adi Mile'a and Yuval
model we establish a new, stronger, lower bound offrymolowsky, supervised by Yoad Winter for con-
the performance of unlexicalized parsing models foiinued collaboration and technical support. We fur-
Modern Hebrew, comparable to those achieved fdher thank Felix Hageloh for allowing us to use the
other languages (Czech, Chinese, German and Argeftware resulting from his M.Sc. thesis work. We
bic) with much larger corpora. also like to thank Remko Scha, Jelle Zuidema, Yoav
Tuning the dimensions and value of the parameSeginer and three anonymous reviewers for helpful
ters for learning treebank grammars is largely an enfomments on the text, and Noa Tsarfaty for techni-
pirical matter, and we do not wish to claim here thagal help in the graphical display. The work of the
a three-dimensional annotation strategy is the befitst author is funded by the Netherlands Organiza-
for any given language. Rather, we argue that fdfon for Scientific Research (NWO), grant number
different languages different optimal parametriza017.001.271, for which we are grateful.
tion strategies may apply. MH is not a free-word-
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Abstract

The Conference on Computational Natural
Language Learning features a shared task, in
which participants train and test their learn-
ing systems on the same data sets. In 2007,
as in 2006, the shared task has been devoted
to dependency parsing, this year with both a
multilingual track and a domain adaptation
track. In this paper, I summarize the main
findings from the 2007 shared task and try
to identify major challenges for the parsing
community based on these findings.

1 Introduction

The annual Conference on Computational Natural
Language Learning (CoNLL) has for the past nine
years organized a shared task, where participants
train and test their learning systems on the same
data sets. In 2006, the shared task was multilin-
gual dependency parsing, where participants had to
train and test a parser on data from thirteen differ-
ent languages (Buchholz and Marsi, 2006). In 2007,
the task was extended by adding a second track for
(monolingual) domain adaptation.

The CoNLL 2007 shared task on dependency
parsing featured two tracks:

o In the multilingual track, the task was to train a
parser using labeled data from Arabic, Basque,
Catalan, Chinese, Czech, English, Greek, Hun-
garian, Italian, and Turkish.

e In the domain adaptation track, the task was
to adapt a parser for English news text to other
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domains using unlabeled data from the target
domains: biomedical and chemical abstracts,
parent-child dialogues.! In the closed class, the
base parser had to be trained using the English
training set for the multilingual track and no
external resources were allowed. In the open
class, any base parser could be used and any
external resources were allowed.

Both tracks used the same column-based format for
labeled data with six input columns and two output
columns for each word of a sentence:

e Input: word-id, word form, lemma, coarse part
of speech, fine part-of-speech, morphosyntactic
features.

e QOutput: head (word-id), dependency label.

The main evaluation metric for both tracks was the
labeled attachment score (LAS), i.e., the percentage
of words that have been assigned the correct head
and dependency label. For more information about
the setup, see Nivre et al. (2007)

In this paper, I will summarize the main findings
from the CoNLL 2007 shared task, starting with
a characterization of the different approaches used
(section 2), and moving on to the most interesting
results in the multilingual track (section 3) and the
domain adaptation track (section 4). Finally, based
on these findings, I will try to identify some im-
portant challenges for the wider parsing community
(section 5).

'"The biomedical domain was the development domain,
which means that a small labeled development set was available

for this domain. The final testing was only done on chemical
abstracts and (optionally) parent-child dialogues.

Proceedings of the 10th Conference on Parsing Technologies, pages 168-170,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics



2 Approaches

In total, test runs were submitted for twenty-three
systems in the multilingual track, and ten systems in
the domain adaptation track (six of which also par-
ticipated in the multilingual track). The majority of
these systems used models belonging to one of the
two dominant approaches in data-driven dependency
parsing in recent years (McDonald and Nivre, 2007):

o In graph-based models, every possible depen-
dency graph for a given input sentence is given
a score that decomposes into scores for the arcs
of the graph. The optimal parse can be found
using a spanning tree algorithm (Eisner, 1996;
McDonald et al., 2005).

o In transition-based models, dependency graphs
are modeled by sequences of parsing actions
(or transitions) for building them. The search
for an optimal parse is often deterministic and
guided by classifiers (Yamada and Matsumoto,
2003; Nivre, 2003).

The majority of graph-based parsers in the shared
task were based on what McDonald and Pereira
(2006) call the first-order model, where the score
of each arc is independent of every other arc, but
there were also attempts at exploring higher-order
models, either with exact inference limited to pro-
jective dependency graphs (Carreras, 2007), or with
approximate inference (Nakagawa, 2007). Another
innovation was the use of k-best spanning tree algo-
rithms for inference with a non-projective first-order
model (Hall et al., 2007b).

For transition-based parsers, the trend was clearly
to move away from deterministic parsing by adding
a probability model for scoring a set of candidate
parses typically derived using a heuristic search
strategy. The probability model may be either con-
ditional (Duan et al., 2007) or generative (Titov and
Henderson, 2007).

An interesting way of combining the two main
approaches is to use a graph-based model to build
an ensemble of transition-based parsers. This tech-
nique, first proposed by Sagae and Lavie (2006), was
used in the highest scoring system in both the mul-
tilingual track (Hall et al., 2007a) and the domain
adaptation track (Sagae and Tsujii, 2007).
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3 Multilingual Parsing

The ten languages involved in the multilingual track
can be grouped into three classes with respect to the
best parsing accuracy achieved:

e Low (LAS =76.3-76.9):
Arabic, Basque, Greek

e Medium (LAS = 79.2-80.2):
Czech, Hungarian, Turkish

e High (LAS = 84.4-89.6):
Catalan, Chinese, English, Italian

To a large extent, these classes appear to be definable
from typological properties. The class with the high-
est top scores contains languages with a rather im-
poverished morphology. Medium scores are reached
by the two agglutinative languages, Hungarian and
Turkish, as well as by Czech. The most difficult lan-
guages are those that combine a relatively free word
order with a high degree of inflection. Based on
these characteristics, one would expect to find Czech
in the last class. However, the Czech training set
is four times the size of the training set for Arabic,
which is the language with the largest training set
of the difficult languages. On the whole, however,
training set size alone is a poor predictor of parsing
accuracy, which can be seen from the fact that the
Italian training set is only about half the size of the
Arabic one and only one sixth of Czech one. Thus,
there seems to be a need for parsing methods that
can cope better with richly inflected languages.

4 Domain Adaptation

One result from the domain adaptation track that
may seem surprising at first was the fact that the
best closed class systems outperformed the best
open class systems on the official test set containing
chemical abstracts. To some extent, this may be ex-
plained by the greater number of participants in the
closed class (eight vs. four). However, it also seems
that the major problem in adapting existing, often
grammar-based, parsers to the new domain was not
the domain as such but the mapping from the native
output of the parser to the kind of annotation pro-
vided in the shared task data sets. In this respect,
the closed class systems had an advantage by having
been trained on exactly this kind of annotation. This



result serves to highlight the fact that domain adapta-
tion, as well as the integration of grammar-based and
data-driven methods, often involves transformations
between different kinds of linguistic representations.

The best performing (closed class) system in the
domain adaptation track used a combination of co-
learning and active learning by training two different
parsers on the labeled training data, parsing the un-
labeled domain data with both parsers, and adding
parsed sentences to the training data only if the two
parsers agreed on their analysis (Sagae and Tsujii,
2007). This resulted in a LAS of 81.1 on the test set
of chemical abstracts, to be compared with 89.0 for
the English test set in the multilingual track.

5 Conclusion

Based on the results from the CoNLL 2007 shared
task, it is clear that we need to improve our methods
for parsing richly inflected languages. We also need
to find better ways of integrating parsers developed
within different frameworks, so that they can be
reused effectively for, among other things, domain
adaptation. More generally, we need to increase our
knowledge of the multi-causal relationship between
language characteristics, syntactic representations,
and parsing and learning methods. In order to do
this, perhaps we also need a shared task at the Inter-
national Conference on Parsing Technologies.
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