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Abstract 

In the construction of a part-of-speech an-
notated corpus, we are constrained by a 
fixed budget. A fully annotated corpus is 
required, but we can afford to label only a 
subset. We train a Maximum Entropy Mar-
kov Model tagger from a labeled subset 
and automatically tag the remainder. This 
paper addresses the question of where to 
focus our manual tagging efforts in order to 
deliver an annotation of highest quality. In 
this context, we find that active learning is 
always helpful. We focus on Query by Un-
certainty (QBU) and Query by Committee 
(QBC) and report on experiments with sev-
eral baselines and new variations of QBC 
and QBU, inspired by weaknesses particu-
lar to their use in this application. Experi-
ments on English prose and poetry test 
these approaches and evaluate their robust-
ness. The results allow us to make recom-
mendations for both types of text and raise 
questions that will lead to further inquiry. 

1 Introduction 

We are operating (as many do) on a fixed budget 
and need annotated text in the context of a larger 
project. We need a fully annotated corpus but can 
afford to annotate only a subset. To address our 
budgetary constraint, we train a model from a ma-
nually annotated subset of the corpus and automat-
ically annotate the remainder. At issue is where to 
focus manual annotation efforts in order to produce 
a complete annotation of highest possible quality. 
A follow-up question is whether these techniques 
work equally well on different types of text. 

In particular, we require part-of-speech (POS) 
annotations. In this paper we employ a state-of-the-
art tagger on both prose and poetry, and we ex-
amine multiple known and novel active learning 
(or sampling) techniques in order to determine 
which work best in this context. We show that the 
results obtained by a state-of-the-art tagger trained 
on a small portion of the data selected through ac-
tive learning can approach the accuracy attained by 
human annotators and are on par with results from 
exhaustively trained automatic taggers. 

In a study based on English language data pre-
sented here, we identify several active learning 
techniques and make several recommendations that 
we hope will be portable for application to other 
text types and to other languages. In section 2 we 
briefly review the state of the art approach to POS 
tagging. In section 3, we survey the approaches to 
active learning employed in this study, including 
variations on commonly known techniques. Sec-
tion 4 introduces the experimental regime and 
presents results and their implications. Section 5 
draws conclusions and identifies opportunities for 
follow-up research. 

2 Part of Speech Tagging 

Labeling natural language data with part-of-speech 
tags can be a complicated task, requiring much 
effort and expense, even for trained annotators. 
Several efforts, notably the Alembic workbench 
(Day et al., 1997) and similar tools, have provided 
interfaces to aid annotators in the process.  

Automatic POS tagging of text using probabilis-
tic models is mostly a solved problem but requires 
supervised learning from substantial amounts of 
training data. Previous work demonstrates the sui-
tability of Hidden Markov Models for POS tagging 
(Kupiec, 1992; Brants, 2000). More recent work 
has achieved state-of-the-art results with Maxi-
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mum entropy conditional Markov models (MaxEnt 
CMMs, or MEMMs for short) (Ratnaparkhi, 1996; 
Toutanova & Manning, 2000; Toutanova et al., 
2003). Part of the success of MEMMs can be attri-
buted to the absence of independence assumptions 
among predictive features and the resulting ease of 
feature engineering. To the best of our knowledge, 
the present work is the first to present results using 
MEMMs in an active learning framework.  

An MEMM is a probabilistic model for se-
quence labeling. It is a Conditional Markov Model 
(CMM as illustrated in Figure 1) in which a Max-
imum Entropy (MaxEnt) classifier is employed to 
estimate the probability distribution

1.. 1 1 2( | , ) ( | , , , )i i ME i i i i ip t w t p t w f t t− − −≈ over 
possible labels it  for each element in the se-
quence—in our case, for each word iw  in a sen-
tence w . The MaxEnt model is trained from la-
beled data and has access to any predefined 
attributes (represented here by the collection if ) of 
the entire word sequence and to the labels of pre-
vious words ( 1.. 1it − ). Our implementation employs 
an order-two Markov assumption so the classifier 
has access only to the two previous tags 1 2,i it t− − . 
We refer to the features 1 2( , , , )i i i iw f t t− − from 
which the classifier predicts the distribution over 
tags as “the local trigram context”. 

A Viterbi decoder is a dynamic programming 
algorithm that applies the MaxEnt classifier to 
score multiple competing tag-sequence hypotheses 
efficiently and to produce the best tag sequence, 
according to the model. We approximate Viterbi 
very closely using a fast beam search. Essentially, 
the decoding process involves sequential classifi-
cation, conditioned on the (uncertain) decisions of 
the previous local trigram context classifications. 
The chosen tag sequence t̂ is the tag sequence 
maximizing the following quantity: 

1 2
1..

ˆ arg max ( | )

arg max ( | , , , )
t

t ME i i i i i
i n

t P t w

p t w f t t− −
=

=

= ∏  

The features used in this work are reasonably 
typical for modern MEMM feature-based POS 
tagging and consist of a combination of lexical, 
orthographic, contextual, and frequency-based in-
formation. In particular, for each word the follow-
ing features are defined: the textual form of the 
word itself, the POS tags of the preceding two 
words, and the textual form of the following word. 
Following Toutanova and Manning (2000) approx-
imately, more information is defined for words that 
are considered rare (which we define here as words 

that occur fewer than fifteen times). We consider 
the tagger to be near-state-of-the-art in terms of 
tagging accuracy. 

 

Figure 1. Simple Markov order 2 CMM, with focus on 
the i-th hidden label (or tag). 

3 Active Learning 

The objective of this research is to produce more 
high quality annotated data with less human anno-
tator time and effort. Active learning is an ap-
proach to machine learning in which a model is 
trained with the selective help of an oracle. The 
oracle provides labels on a sufficient number of 
“tough” cases, as identified by the model. Easy 
cases are assumed to be understood by the model 
and to require no additional annotation by the 
oracle. Many variations have been proposed in the 
broader active learning and decision theory litera-
ture under many names, including “active sam-
pling” and “optimal sampling.” 

In active learning for POS tagging, as in other 
applications, the oracle can be a human. For expe-
rimental purposes, a human oracle is simulated 
using pre-labeled data, where the labels are hidden 
until queried. To begin, the active learning process 
requires some small amount of training data to 
seed the model. The process proceeds by identify-
ing the data in the given corpus that should be 
tagged first for maximal impact. 

3.1 Active Learning in the Language Context 
When considering the role of active learning, we 
were initially drawn to the work in active learning 
for classification. In a simple configuration, each 
instance (document, image, etc.) to be labeled can 
be considered to be independent. However, for ac-
tive learning for the POS tagging problem we con-
sidered the nature of human input as an oracle for 
the task. As an approximation, people read sen-
tences as propositional atoms, gathering contextual 
cues from the sentence in order to assemble the 
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meaning of the whole. Consequently, we thought it 
unreasonable to choose the word as the granularity 
for active learning. Instead, we begin with the as-
sumption that a human will usually require much 
of the sentence or at least local context from the 
sentence in order to label a single word with its 
POS label. While focusing on a single word, the 
human may as well label the entire sentence or at 
least correct the labels assigned by the tagger for 
the sentence. Consequently, the sentence is the 
granularity of annotation for this work. (Future 
work will question this assumption and investigate 
tagging a word or a subsequence of words at a 
time.) This distinguishes our work from active 
learning for classification since labels are not 
drawn from a fixed set of labels. Rather, every sen-
tence of length n can be labeled with a tag se-
quence drawn from a set of size nT , where T  is 
the size of the per-word tag set. Granted, many of 
the options have very low probability. 

To underscore our choice of annotating at the 
granularity of a sentence, we also note that a max-
imum entropy classifier for isolated word tagging 
that leverages attributes of neighboring words—
but is blind to all tags—will underperform an 
MEMM that includes the tags of neighboring 
words (usually on the left) among its features. Pre-
vious experiments demonstrate the usefulness of 
tags in context on the standard Wall Street Journal 
data from the Penn Treebank (Marcus et al., 1999). 
A MaxEnt isolated word tagger achieves 93.7% on 
words observed in the training set and 82.6% on 
words unseen in the training set. Toutanova and 
Manning (2000) achieves 96.9% (on seen) and 
86.9% (on unseen) with an MEMM. They sur-
passed their earlier work in 2003 with a “cyclic 
dependency network tagger”, achieving 
97.2%/89.05% (seen/unseen) (Toutanova et al., 
2003). The generally agreed upon upper bound is 
around 98%, due to label inconsistencies in the 
Treebank. The main point is that effective use of 
contextual features is necessary to achieve state of 
the art performance in POS tagging. 

In active learning, we employ several sets of 
data that we refer to by the following names: 

 Initial Training: the small set of data used 
to train the original model before active 
learning starts 

 Training: data that has already been la-
beled by the oracle as of step i in the learn-
ing cycle 

 Unannotated: data not yet labeled by the 
oracle as of step i 

 Test (specifically Development Test): la-
beled data used to measure the accuracy of 
the model at each stage of the active learn-
ing process. Labels on this set are held in 
reserve for comparison with the labels 
chosen by the model. It is the accuracy on 
this set that we report in our experimental 
results in Section 4. 

Note that the Training set grows at the expense of 
the Unannotated set as active learning progresses. 

Active Learning for POS Tagging consists of the 
following steps: 

1. Train a model with Initial Training data 
2. Apply model to Unannotated data 
3. Compute potential informativeness of 

each sentence 
4. Remove top n sentences with most po-

tential informativeness from Unanno-
tated data and give to oracle 

5. Add n sentences annotated (or corrected) 
by the oracle to Training data 

6. Retrain model with Training data 
7. Return to step 2 until stopping condition 

is met. 
There are several possible stopping conditions, 

including reaching a quality bar based on accuracy 
on the Test set, the rate of oracle error corrections 
in the given cycle, or even the cumulative number 
of oracle error corrections. In practice, the exhaus-
tion of resources, such as time or money, may 
completely dominate all other desirable stopping 
conditions. 

Several methods are available for determining 
which sentences will provide the most information. 
Expected Value of Sample Information (EVSI) 
(Raiffa & Schlaiffer, 1967) would be the optimal 
approach from a decision theoretic point of view, 
but it is computationally prohibitive and is not con-
sidered here. We also do not consider the related 
notion of query-by-model-improvement or other 
methods (Anderson & Moore, 2005; Roy & 
McCallum, 2001a, 2001b). While worth exploring, 
they do not fit in the context of this current work 
and should be considered in future work. We focus 
here on the more widely used Query by Committee 
(QBC) and Query by Uncertainty (QBU), includ-
ing our new adaptations of these. 

Our implementation of maximum entropy train-
ing employs a convex optimization procedure 
known as LBFGS. Although this procedure is rela-
tively fast, training a model (or models in the case 
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of QBC) from scratch on the training data during 
every round of the active learning loop would pro-
long our experiments unnecessarily. Instead we 
start each optimization search with a parameter set 
consisting of the model parameters from the pre-
vious iteration of active learning (we call this “Fast 
MaxEnt”). In practice, this converges quickly and 
produces equivalent results. 

3.2 Query by Committee 

Query by Committee (QBC) was introduced by 
Seung, Opper, and Sompolinsky (1992). Freund, 
Seung, Shamir, and Tishby (1997) provided a care-
ful analysis of the approach. Engelson and Dagan 
(1996) experimented with QBC using HMMs for 
POS tagging and found that selective sampling of 
sentences can significantly reduce the number of 
samples required to achieve desirable tag accura-
cies. Unlike the present work, Engelson & Dagan 
were restricted by computational resources to se-
lection from small windows of the Unannotated set, 
not from the entire Unannotated set. Related work 
includes learning ensembles of POS taggers, as in 
the work of Brill and Wu (1998), where an ensem-
ble consisting of a unigram model, an N-gram 
model, a transformation-based model, and an 
MEMM for POS tagging achieves substantial re-
sults beyond the individual taggers. Their conclu-
sion relevant to this paper is that different taggers 
commit complementary errors, a useful fact to ex-
ploit in active learning. QBC employs a committee 
of N models, in which each model votes on the 
correct tagging of a sentence. The potential infor-
mativeness of a sentence is measured by the total 
number of tag sequence disagreements (compared 
pair-wise) among the committee members. Possi-
ble variants of QBC involve the number of com-
mittee members, how the training data is split 
among the committee members, and whether the 
training data is sampled with or without replace-
ment. 

A potential problem with QBC in this applica-
tion is that words occur with different frequencies 
in the corpus. Because of the potential for greater 
impact across the corpus, querying for the tag of a 
more frequent word may be more desirable than 
querying for the tag of a word that occurs less fre-
quently, even if there is greater disagreement on 
the tags for the less frequent word. We attempted 
to compensate for this by weighting the number of 
disagreements by the corpus frequency of the word 

in the full data set (Training and Unannotated). 
Unfortunately, this resulted in worse performance; 
solving this problem is an interesting avenue for 
future work. 

3.3 Query by Uncertainty 

The idea behind active sampling based on uncer-
tainty appears to originate with Thrun and Moeller 
(1992). QBU has received significant attention in 
general. Early experiments involving QBU were 
conducted by Lewis and Gale (1994) on text classi-
fication, where they demonstrated significant bene-
fits of the approach. Lewis and Catlett (1994) ex-
amined its application for non-probabilistic learn-
ers in conjunction with other probabilistic learners 
under the name “uncertainty sampling.” Brigham 
Anderson (2005) explored QBU using HMMs and 
concluded that it is sometimes advantageous. We 
are not aware of any published work on the appli-
cation of QBU to POS tagging. In our implementa-
tion, QBU employs a single MEMM tagger. The 
MaxEnt model comprising the tagger can assess 
the probability distribution over tags for any word 

in its local trigram context, as illustrated in the ex-
ample in Figure 2. 

Figure 2. Distribution over tags for the word “hurdle” in 
italics. The local trigram context is in boldface. 

In Query by Uncertainty (QBU), the informa-
tiveness of a sample is assumed to be the uncer-
tainty in the predicted distribution over tags for 
that sample, that is the entropy of 

1 2( | , , , )ME i i i i ip t w f t t− − . To determine the poten-
tial informativeness of a word, we can measure the 
entropy in that distribution. Since we are selecting 
sentences, we must extend our measure of uncer-
tainty beyond the word. 

3.4 Adaptations of QBU 

There are several problems with the use of QBU in 
this context: 

• Some words are more important; i.e., they 
contain more information perhaps because 
they occur more frequently. 

   NN 0 .85 
   VB  0.13 
   ... 
RB    DT JJS CD  2.0E-7 
 
Perhaps     the biggest   hurdle … 
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• MaxEnt estimates per-word distributions 
over tags, not per-sentence distributions 
over tag sequences. 

• Entropy computations are relatively costly. 
We address the first issue in a new version of QBU 
which we call “Weighted Query by Uncertainty” 
(WQBU). In WQBU, per-word uncertainty is 
weighted by the word's corpus frequency. 

To address the issue of estimating per-sentence 
uncertainty from distributions over tag sequences, 
we have considered several different approaches. 
The per-word (conditional) entropy is defined as 
follows: 

 
 
 
 
 
 

where iT  is the random variable for the tag it  on 
word iw , and the features of the context in which 

iw  occurs are denoted, as before, by the collection 
if  and the prior tags 1 2,i it t− − . It is straightforward 

to calculate this entropy for each word in a sen-
tence from the Unannotated set, if we assume that 
previous tags 1 2,i it t− −  are from the Viterbi (best) 
tag sequence (for the entire sentence) according to 
the model. 

For an entire sentence, we estimate the tag-
sequence entropy by summing over all possible tag 
sequences. However, computing this estimate ex-
actly on a 25-word sentence, where each word can 
be labeled with one of 35 tags, would require 3525 
= 3.99*1038 steps. Instead, we approximate the per-
sentence tag sequence distribution entropy by 
summing per-word entropy: 

 
 
This is the approach we refer to as QBU in the 

experimental results section. We have experi-
mented with a second approach that estimates the 
per-sentence entropy of the tag-sequence distribu-
tion by Monte Carlo decoding. Unfortunately, cur-
rent active learning results involving this MC POS 
tagging decoder are negative on small Training set 
sizes, so we do not present them here. Another al-
ternative approximation worth pursuing is compu-
ting the per-sentence entropy using the n-best POS 
tag sequences. Very recent work by Mann and 
McCallum (2007) proposes an approach in which 
exact sequence entropy can be calculated efficient-

ly. Further experimentation is required to compare 
our approximation to these alternatives. 

An alternative approach that eliminates the 
overhead of entropy computations entirely is to 
estimate per-sentence uncertainty with ˆ1 ( )P t− , 
where t̂ is the Viterbi (best) tag sequence. We call 
this scheme QBUV. In essence, it selects a sample 
consisting of the sentences having the highest 
probability that the Viterbi sequence is wrong. To 
our knowledge, this is a novel approach to active 
learning. 

4 Experimental Results 

In this section, we examine the experimental setup, 
the prose and poetry data sets, and the results from 
using the various active learning algorithms on 
these corpora. 

4.1 Setup 

The experiments focus on the annotation scenario 
posed earlier, in which budgetary constraints af-
ford only some number x of sentences to be anno-
tated. The x-axis in each graph captures the num-
ber of sentences. For most of the experiments, the 
graphs present accuracies on the (Development) 
Test set. Later in this section, we present results for 
an alternate metric, namely number of words cor-
rected by the oracle. 

In order to ascertain the usefulness of the active 
learning approaches explored here, the results are 
presented against a baseline in which sentences are 
selected randomly from the Unannotated set. We 
consider this baseline to represent the use of a 
state-of-the-art tagger trained on the same amount 
of data as the active learner. Due to randomization, 
the random baseline is actually distinct from expe-
riment to experiment without any surprising devia-
tions. Also, each result curve in each graph 
represents the average of three distinct runs. 

Worth noting is that most of the graphs include 
active learning curves that are run to completion; 
namely, the rightmost extent of all curves 
represents the exhaustion of the Unannotated data. 
At this extreme point, active learning and random 
sample selection all have the same Training set. In 
the scenarios we are targeting, this far right side is 
not of interest. Points representing smaller amounts 
of annotated data are our primary interest. 

In the experiments that follow, we address sev-
eral natural questions that arise in the course of 
applying active learning. We also compare the va-

1 2

1 2

1 2

( | , , , )

( | , , , )

log ( | , , , )
i
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ME i i i i i
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riants of QBU and QBC. For QBC, committee 
members divide the training set (at each stage of 
the active learning process) evenly. All committee 
members and final models are MEMMs. Likewise, 
all variants of QBU employ MEMMs. 

4.2 Data Sets 

The experiments involve two data sets in search 
of conclusions that generalize over two very dif-
ferent kinds of English text. The first data set con-
sists of English prose from the POS-tagged one-
million-word Wall Street Journal text in the Penn 
Treebank (PTB) version 3. We use a random sam-
ple of the corpus constituting 25% of the tradition-
al training set (sections 2–21). Initial Training data 
consists of 1% of this set. We employ section 24 as 
the Development Test set. Average sentence length 
is approximately 25 words. 

Our second experimental set consists of English 
poetry from the British National Corpus (BNC) 
(Godbert & Ramsay, 1991; Hughes, 1982; Raine, 
1984). The text is also fully tagged with 91 parts of 
speech from a different tag set than the one used 
for the PTB. The BNC XML data was taken from 
the files B1C.xml, CBO.xml, and H8R.xml. This 
results in a set of 60,056 words and 8,917 sen-
tences. 

4.3 General Results 

To begin, each step in the active learning process 
adds a batch of 100 sentences from the Unanno-
tated set at a time. Figure 3 demonstrates (using 
QBU) that the size of a query batch is not signifi-
cant in these experiments.  

The primary question to address is whether ac-
tive learning helps or not. Figure 4 demonstrates 
that QBU, QBUV, and QBC all outperform the 
random baseline in terms of total, per-word accu-
racy on the Test set, given the same amount of 
Training data. Figure 5 is a close-up version of 
Figure 4, placing emphasis on points up to 1000 
annotated sentences. In these figures, QBU and 
QBUV vie for the best performing active learning 
algorithm. These results appear to give some useful 
advice captured in Table 1. The first column in the 
table contains the starting conditions. The remain-
ing columns indicate that for between 800-1600 
sentences of annotation, QBUV takes over from 
QBU as the best selection algorithm. 

The next question to address is how much initial 
training data should be used; i.e., when should we 

start using active learning? The experiment in Fig-
ure 6 demonstrates (using QBU) that one should 
use as little data as possible for Initial Training 
Data. There is always a significant advantage to 
starting early. In the experiment documented in  

 
Figure 3. Varying the size of the query batch in active 

learning yields identical results after the first query batch.  

 
Figure 4. The best representatives of each type of active 
learner beat the baseline. QBU and QBUV trade off the 

top position over QBC and the Baseline. 

Figure 5. Close-up of the low end of the graph from Figure 
4. QBUV and QBU are nearly tied for best performance. 

 75

 80

 85

 90

 95

 100  1000  10000

A
cc

ur
ac

y 
(%

)

Number of Sentences in Training Set

Batch Query Size of 10 Sentences
Batch Query Size of 100 Sentences
Batch Query Size of 500 Sentences

 75

 80

 85

 90

 95

 100  1000  10000

A
cc

ur
ac

y 
(%

)

Number of Sentences in Training Set

QBUV 
QBU
QBC

Baseline

 76

 78

 80

 82

 84

 86

 88

 90

 92

 100  1000

A
cc

ur
ac

y 
(%

)

Number of Sentences in Training Set

QBUV 
QBU
QBC

Baseline

106



this figure, a batch query size of one was employed 
in order to make the point as clearly as possible. 
Larger batch query sizes produce a graph with sim-
ilar trends as do experiments involving larger Un-
annotated sets and other active learners. 
 

 100 200 400 800 1600 3200 6400 

QBU 76.26 86.11 90.63 92.27 93.67 94.65 95.42 

QBUV 76.65 85.09 89.75 92.24 93.72 94.96 95.60 

QBC 76.19 85.77 89.37 91.78 93.49 94.62 95.36 

Base 76.57 82.13 86.68 90.12 92.49 94.02 95.19 

Table 1. The best models (on PTB WSJ data) with various 
amounts of annotation (columns). 

 
Figure 6. Start active learning as early as possible for a 

head start. 

4.4 QBC Results 

An important question to address for QBC is 
what number of committee members produces the 
best results? There was no significant difference in 
results from the QBC experiments when using be-
tween 3 and 7 committee members. For brevity we 
omit the graph. 

4.5 QBU Results 

For Query by Uncertainty, the experiment in Fig-
ure 7 demonstrates that QBU is superior to QBUV 
for low counts, but that QBUV slightly overtakes 
QBU beyond approximately 300 sentences. In fact, 
all QBU variants, including the weighted version, 
surpassed the baseline. WQBU has been omitted 
from the graph, as it was inferior to straight-
forward QBU. 

4.6 Results on the BNC 

Next we introduce results on poetry from the Brit-
ish National Corpus. Recall that the feature set 
employed by the MEMM tagger was optimized for 
performance on the Wall Street Journal. For the 
experiment presented in Figure 8, all data in the 
Training and Unannotated sets is from the BNC, 
but we employ the same feature set from the WSJ 
experiments. This result on the BNC data shows 
first of all that tagging poetry with this tagger 
leaves a final shortfall of approximately 8% from 
the WSJ results. Nonetheless and more importantly, 
the active learning trends observed on the WSJ still 
hold. QBC is better than the baseline, and QBU 
and QBUV trade off for first place. Furthermore, 
for low numbers of sentences, it is overwhelmingly 
to one’s advantage to employ active learning for 
annotation. 
 

 
Figure 7. QBUV is superior to QBU overall, but QBU is 
better for very low counts. Both are superior to the ran-

dom baseline and the Longest Sentence (LS) baseline. 

 
Figure 8. Active learning results on the BNC poetry data. 
Accuracy of QBUV, QBU, and QBC against the random 
baseline. QBU and QBUV are nearly indistinguishable. 
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4.7 Another Perspective 

Next, briefly consider a different metric on the ver-
tical axis. In Figure 9, the metric is the total num-
ber of words changed (corrected) by the oracle. 
This quantity reflects the cumulative number of 
differences between the tagger’s hypothesis on a 
sentence (at the point in time when the oracle is 
queried) and the oracle’s answer (over the training 
set). It corresponds roughly to the amount of time 
that would be required for a human annotator to 
correct the tags suggested by the model. This fig-
ure reveals that QBUV makes significantly more 
changes than QBU, QBC, or LS (the Longest Sen-
tence baseline). Hence, the superiority of QBU 
over QBUV, as measured by this metric, appears to 
outweigh the small wins provided by QBUV when 
measured by accuracy alone. That said, the random 
baseline makes the fewest changes of all. If this 
metric (and not some combination with accuracy) 
were our only consideration, then active learning 
would appear not to serve our needs. 

This metric is also a measure of how well a par-
ticular query algorithm selects sentences that espe-
cially require assistance from the oracle. In this 
sense, QBUV appears most effective. 

 

Figure 9. Cumulative number of corrections made by the 
oracle for several competitive active learning algorithms. 

QBU requires fewer corrections than QBUV. 

5 Conclusions 

Active learning is a viable way to accelerate the 
efficiency of a human annotator and is most effec-
tive when done as early as possible. We have pre-
sented state-of-the-art tagging results using a frac-
tion of the labeled data. QBUV is a cheap approach 
to performing active learning, only to be surpassed 
by QBU when labeling small numbers of sentences. 

We are in the midst of conducting a user study to 
assess the true costs of annotating a sentence at a 
time or a word at a time. We plan to incorporate 
these specific costs into a model of cost measured 
in time (or money) that will supplant the metrics 
reported here, namely accuracy and number of 
words corrected. As noted earlier, future work will 
also evaluate active learning at the granularity of a 
word or a subsequence of words, to be evaluated 
by the cost metric. 
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