Mining Syntactically Annotated Corpora with XQuery

Gosse Bouma and Geert Kloosterman
Information Science
University of Groningen

The Netherlands
g.boumalg.j.kloosterman@rug.nl

Abstract

This paper presents a uniform approach to
data extraction from syntactically annotated
corpora encoded in XML. XQuery, which
incorporates XPath, has been designed as
a query language for XML. The combina-
tion of XPath and XQuery offers flexibility
and expressive power, while corpus specific
functions can be added to reduce the com-
plexity of individual extraction tasks. We il-
lustrate our approach using examples from
dependency treebanks for Dutch.

1 Introduction

Manually annotated treebanks have played an im-
portant role in the development of robust and ac-
curate syntactic analysers. Now that such parsers
are available for various languages, there is a grow-
ing interest in research that uses automatically an-
notated corpora. While such corpora are not error-
free, the fact that they can be constructed rela-
tively easily, and the fact that they can be an order
of magnitude larger than manually corrected tree-
banks, makes them attractive for several types of re-
search. Syntactically annotated corpora have suc-
cesfully been used to acquire lexico-semantic infor-
mation (Lin and Pantel, 2001; Snow et al., 2005), for
relation extraction (Bunescu and Mooney, 2005), in
IR (Cui et al., 2005), and in QA (Katz and Lin, 2003;
Moll4 and Gardiner, 2005).

What these tasks have in common is the fact that
they all operate on large amounts of data extracted
from syntactically annotated text. Tools to perform

17

this task are often developed with only a single ap-
plication in mind (mostly corpus linguistics) or are
developed in an ad-hoc fashion, as part of a specific
application.

We propose a more principled approach, based on
two observations:

e XML is widely used to encode syntactic anno-
tation. Syntactic annotation is not more com-
plex that some other types of information that
is routinely stored in XML. This suggests that
XML technology can be used to process syn-
tactically annotated corpora.

e XQuery is a query language for XML data. As
such, it is the obvious choice for mining syn-
tactically annotated corpora.

The remainder of this paper is organised as fol-
lows. In the next section, we present the Alpino tree-
bank format, which we use for syntactic annotation.
The Alpino parser has been used to annotate large
corpora, and the results have been used in a number
of research projects.

In section 3, we discuss the existing approaches
to data extraction from Alpino corpora. We note that
all of these have drawbacks, either because they lack
expressive power, or because they require a serious
amount of programming overhead.

In section 4, we present our approach, starting
from a relatively straightforward corpus linguistics
task, that requires little more than XPath, and end-
ing with a more advanced relation extraction task,

See
html

www.let.rug.nl/~vannoord/research.

Proceedings of the Linguistic Annotation Workshop, pages 17-24,
Prague, June 2007. (©2007 Association for Computational Linguistics

that requires XQuery. We demonstrate that much of
the complexity of advanced tasks can be avoided by
providing users with a corpus specific module, that
makes available common concepts and functions.

2 The Alpino Treebank format

As part of the development of the Alpino parser
(Bouma et al., 2001), a number of manually an-
notated dependency treebanks have been created
(van der Beek et al., 2002). Annotation guidelines
were adopted from the Corpus of Spoken Dutch
(Oostdijk, 2000), a large corpus annotation project
for Dutch. In addition, large corpora (e.g. the 80M
word Dutch CLEF? corpus, the 500M word Twente
News corpus’, and Dutch Wikipedia*) have been
annotated automatically. Both types of treebanks
have been used for corpus linguistics (van der Beek,
2005; Villada Moirén, 2005; Bouma et al., 2007).
The automatically annoted treebanks have been used
for lexical acquisition (van der Plas and Bouma,
2005), and form the core of a Dutch QA system
(Bouma et al., 2005).

The format of Alpino dependency trees is illus-
trated in figure 1. The (somewhat simplified) XML
for this tree is in fig. 2. Nodes in the tree are labeled
with a dependency relation and a category or POS-
tag. Furthermore, the begin and end position of con-
stituents is represented in attributes,’ and the root
and word form of terminal nodes is encoded. Note
that heads do not have their dependents as children,
as is the case in most dependency tree formats. In-
stead, the head is a child of the constituent node if
which it is the head, and its dependents are siblings
of the head. Finally, trees may contain index nodes
(indicated by indices in bold in the graphical repre-
sentation and by the index attribute in the XML) to
indicate ’secondary’ edges. The subject Alan Turing
in fig. 2 is a subject of the passive auxiliary word,
but also a direct object of the verb aan_tref. Thus,
Alpino dependency trees are actually graphs.

A large syntactically annotated corpus tends to

2
3

www.clef-campaign.org
www.vf.utwente.nl/~druid/TwNC/
TwNC-main.html

‘n1. wikipedia.org

>Note that constituents may be discontinuous, and thus, the
yield of a constituent may not contain every terminal node be-
tween begin and end. See also section 4.2.

18

smain
h%\
ve

verb 1
ppar t

wordg | | mwu

/\
mod obj1 predc hd

mwp || mwp
name || name 1 adj
Alans || Turingg PP dood;

2N

?d obj1
P mwu
OPo

mwp mwp mwp
noun noun noun
71] uni 2 19543

verb
tref_aang

Figure 1: Op 7 juni 1954 werd Alan Turing dood
aangetroffen (On June 7, 1954, Alan Turing was
found dead)

give rise to even larger volumes of XML. To sup-
port efficient storage and retrieval of XML data, a
set of tools has been developed for compression of
XML data (using dictzip®) and for efficient visuali-
sation and search of data in compressed XML files.
The tools are described in more detail at the Alpino
website.’

3 Existing approaches to extraction

Users have taken quite different approaches to cor-
pus exploration and data extraction.

e For corpus exploration, Alpino dtsearch is
the most widely used tool. It allows XPath
queries to be matched against trees in a tree-
bank. The result can be a visual display of trees
with matching nodes highlighted, but alterna-
tive outputs are possible as well. Examples of
how XPath can be used for extraction are pre-
sented in the next section.

e For relation extraction (i.e. finding symptoms
of diseases), the Alpino system itself has been

Swww.dict. org
Twww. let. rug.nl/~vannoord/alp/Alpino/
TreebankTools.html

<node begin="0" cat="smain" end="9" rel="--">
<node begin="4" end="5" pos="verb" rel="hd" root="word"
<node begin="5" cat="mwu" end="7" index="1" rel="su">
<node begin="5" end="6" pos="name" rel="mwp" neclass="PER" root="Alan" word="Alan"/>
<node begin="6" end="7" pos="name" rel="mwp" neclass="PER" root="Turing" word="Turing"/>

word="werd"/>

</node>

<node begin="0" cat="ppart" end="9" rel="vc">

<node begin="0" cat="pp" end="4"

rel="mod">

<node begin="0" end="1" pos="prep" rel="hd" root="op" word="Op"/>

<node begin="1" cat="mwu"

<node begin="1" end="2" pos="noun"
<node begin="2" end="3"
<node begin="3" end="4" pos="noun"
</node>
</node>

end="4" rel="objl">
rel="mwp"
pos="noun" rel="mwp" root="juni" word="juni"/>
rel="mwp"

root="7" word="7"/>

root="1954" word="1954"/>

<node begin="5" end="7" index="1" rel="objl"/>

<node begin="7" end="8" pos="adj"

rel="predc"

root="dood" word="dood"/>

<node begin="8" end="9" pos="verb" rel="hd" root="tref_aan" word="aangetroffen"/>

</node>
</node>

Figure 2: XML encoding of the Alpino depedency tree in fig. 1

used. It provides functionality for converting
dependency trees in XML into a Prolog list of
dependency triples. The full functionality of
Prolog can then be used to do the actual extrac-
tion.

e Alternatively, one can use XSLT to extract data
from the XML directly. As XSLT is primarily
intended for transformations, this tends to give
rise to complex code.

e Alternatively, a general purpose scripting or
programming language such as Perl or Python,
with suitable XML support, can be used. As in
the Alpino/Prolog case, this has the advantage
that one has a full programming language avail-
able. A disadvantage is that there is no specific
support for working with dependency trees or
triples.

None of the approaches listed above is optimal.
XPath is suitable only for identifying syntactic pat-
terns, and does not offer the possibility of extraction
of elements (i.e. it has no capturing mechanism).
The other three approaches do allow for both match-
ing and extraction, but they all require skills that go
considerably beyond conceptual knowledge of the
treebank and some basic knowledge of XML.

Another disadvantage of the current situation is
that there is little or no sharing of solutions be-
tween users. Yet, different applications tend to en-

19

counter the same problems. For instance, multiword
expressions (such as Alan Turing or 7 juni 1954)
are encoded as trees, dominated by a cat="mwu’
node. An extraction task that requires names
to be extracted must thus take into account the
fact that names can be both nodes with a label
pos='name’ as well as cat="mwu’ nodes (dom-
inating a pos='name’). The situation is further
complicated by the fact that individual parts of a
name, such as Alan in Alan Turing, should nor-
mally not be matched. Similar problems arise if
one wants to match e.g. finite verbs (there is no
single attribute which expresses tense) or NPs (the
cat='np’ attribute is only present on complex
NPs, not on single words). A very frequent issue
is the proper handling of index nodes. Searching
for the object of the verb tref_aan in fig. 2 requires
that one finds the node in the tree that is coindexed
with the rel='obj1’ node with index 1. This is
a challenge in all approaches listed above, except
for Alpino/Prolog, which solves the problem by con-
verting trees to sets of dependency triples.

Some of the problems mentioned above could be
solved by introducing more and more fine-grained
attributes (i.e. a separate attribute for tense, as-
signing both a category and a POS-tag to (non-
head) terminal-nodes, etc.) or by introducing unary
branching nodes. This has the obvious drawback
of introducing redundancy in the encoding, would

mean another departure from the usual conception
of dependency trees (in the case unary branching is
introduced), and may still not cover all distinctions
that users need to make. Also, finding the content of
an index-node cannot be solved in this way.

One might consider moving to a radically differ-
ent treebank format, such as Tiger XML? for in-
stance, in which trees are basically a listing of nodes,
with non-terminal nodes dominating a number of
edge elements that take (the index of) other nodes
as value. Note, however, that most of the problems
mentioned above refer to linguistic concepts, and
thus are unlikely to be solved by changing the ar-
chitecture of the underlying XML representation.

4 XQuery and XPath

Two closely related standards for processing XML
documents are XSLT® and XQuery'? . Both make
use of XPath!!, the XML language for locating parts
of XML documents. While XSLT is primarily in-
tended for transformations of documents, XQuery
is primarily intended for extraction of information
from XML databases. XQuery is in many respects
similar to SQL and is rapidly becoming the standard
for XML database systems.'> A distinctive differ-
ence between the XSLT and XQuery is the fact that
XSLT documents are themselves XML documents,
whereas this is not the case for XQuery. This typi-
cally makes XQuery more concise and easier to read
than XSLT."3

These considerations made us experiment with
XQuery as a language for data extraction from syn-
tactically annotated corpora. Similar studies were
carried out by Cassidy (2002) (for an early version
of XQuery) and Mayo et al. (2006), who compare
the NITE Query Language and XQuery. Below, we
first illustrate a task that requires use of XPath only,
and then move on to tasks that require the additional
functionality of XQuery.

8V\IWW

TIGER/
Ywww.w3.0rg/TR/xs1t20

.w3.0rg/TR/xquery

.w3.0org/TR/xpath20
neg.exist.sourceforge.net,monetdb.cwi.nL

www.oracle.com/database/berkeley-db/xml
3See Kay (2005) for a thorough comparison.

.ims.uni-stuttgart.de/projekte/

20

4.1 Corpus exploration with XPath

As argued in Bouma and Kloosterman (2002),
XPath provides a powerful query language for for-
mulating linguistically relevant queries, provided
that the XML encoding of the treebank reflects the
syntactic structure of the trees.

Inherent reflexive verbs, for instance, are verbal
heads with a re1=' se’ dependent. A verb with an
inherently reflexive can therefore be found as fol-
lows (remember that in Alpino dependency trees,
dependents are actually siblings of the head):
//node [@pos="verb"

and @rel="hd"
and ../node[Rrel="se"]

]

The double slash (°//’) ensures that we search for
nodes anywhere within the XML document. The
material in brackets ([]) can be used to specify
additional constraints that matching nodes have to
meet. The @-sign is used to refer to attributes of an
element. The double dots (’..”) locate the parent el-
ement of an XML element. Children of an element
are located using the single slash (’/’) operator. The
two can be combined to locate siblings.

Comparison operators are available to compare
e.g. attributes that have a numeric value. The follow-
ing XPath query identifies cases where the reflexive
precedes the subject:

//node [@pos="verb"
and @rel="hd"
and ../node[@rel="se"]/@begin <
../node[@rel="su"]/@begin
]
Note that we can also use the ’/° to locate attributes
of an element, and that the begin attribute encodes
the initial string position of a constituent.
Reflexives preceding the subject are a marked op-
tion in Dutch. We may contrast matching verbs with
verbs matching the following expression:

//node [@pos="verb"

and @rel="hd"

and ../node[@rel="se"]/@begin >

../node[@rel="su"]/@begin
and not (../node[@rel="su"]/@begin="0")
]

Here we have simply reversed the comparison op-
erator. As we want to exclude from considera-
tion cases where the subject precedes the finite verb
(e.g. is in sentence-initial position), we have added a

negative constraint with this effect.

REFL-SU SU-REFL verb (gloss)
% # % #

943 33 5.7 2 vorm (to shape)
91.7 11 8.3 1 ontvouw (to unfold)
74.1 234 259 82 doe_voor (to happen)
73,5 36 265 13 teken_af (to form)
58.8 10 412 7 wreek (to take revenge)
57.1 44 429 33 voltrek (to take place)
56.0 42 440 33 verzamel (to assemble)
54.6 309 454 257 bevind (to be located)
50.0 18 50.0 18 dring_op (to impose)
483 58 51.7 62 dien_aan (fo announce)

Table 1: Relative frequency of REFL-SU vs SU-REFL
word order

Using the two queries above to search one year
of newspaper text, we can collect the outcome and
compute, for a given verb, the relative frequency of
REFL-SU vs. SU-REFL order for non-subject initial
sentences in Dutch. A sample of verbs that have a
high percentage of REFL-SU occurrences, is given in
table 1. The result confirms an observation in Hae-
sereyn et al. (1997), that REFL-SU word order occurs
especially with verbs having a somewhat ’bleeched
semantics’ and expressing that something exists or
comes into existence.

It should be noted that XPath offers consider-
able more possibilities than what is illustrated here.
XPath 2.0 in particular is an important step forward
for linguistic search, as it includes far more func-
tionality for string processing (i.e. tokenization and
regular expressions) than its predecessors. Bird et al.
(2006) propose an extension of XPath 1.0 for lin-
guistic queries. The intuitive notation they intro-
duce might be useful for some users. However,
the examples they concentrate on (all having to do
with linear order) presuppose trees without ’cross-
ing branches’. The introduction of begin and end
attributes in the Alpino format makes it possible
to handle such queries for dependency trees (with
crossing branches) as well, and furthermore, does
not require an extension of XPath.

4.2 Data Extraction with XQuery

The kind of explorative corpus search for which
XPath is ideally suited is supported by most other
treebank query languages as well, although not all

21

alternatives offer the same expressive power. There
are many applications, however, in which it is neces-
sary to extract more than just (root forms of) match-
ing nodes. XQuery offers the functionality that is
required to perform arbitrary extraction.

XQuery programs consist of so-called FLWOR
expressions (for, let, where, order by,
return, not all parts are required). The example
below illustrates this. Assume we want to extract
from a treebank all occurrences of names, along with
their named entity class. The following XQuery
script covers the base case.

for $name in
collection(’adl994’)//node[@pos="name"]

let S$nec := string($node/@neclass)

return
<term nec="{Snec}">
{string ($name/Q@word) }

</term>

The for-statement locates the nodes to be pro-
cessed. Nodes are located by XPath expressions.
The collection-predicate defines the directory to be
processed. For every document in the collection,
nodes with a POS-attribute name are processed. We
use a let-statement to assign the variable $Snec is
assigned the string value of the neclass-attibute
(which indicates the named entity class of the name).
The return-statement returns for each matching
node an XML element containing the string value of
the word attribute of the name, as well as an attribute
indicating the named entity class.

The complexity of XQuery scripts can increase
considerably, depending on the complexity of the
underlying XML data and the task being performed.
One of the most interesting features of XQuery is the
possibility to define functions. They can be used to
enhance the readibility of code. Furthermore, func-
tions can be collected in modules, and thus can be
reused across applications.

For Alpino treebanks, for instance, we have
implemented a module that covers concepts and
tasks that are needed frequently. As pointed
out above, names in the Alpino treebank are not
just single nodes, but, in case a name consists
of two or more words, can also consist of mul-
tiple node[@pos='name’] elements, with a
node [@cat="mwu’] as parent. This motivates
the introduction of a name and neclass function,

as shown in fig. 3. Assuming that the alpino mod-
ule has been imported, we can now write a better
name extraction script:

for $name in
collection(’adl994’)//node

where alpino:name ($Sname)

return
<term nec="{alpino:neclass ($name) }">
{alpino:yield{$name) }

</term>
As we are matching with non-terminal nodes as
well, we need to take into account that it no longer
suffices to return the value of word to obtain the
yield of a node. As this situation arises frequently
as well, we added a yield function (see fig. 3).
It takes a node as argument, collects all descen-
dant node/@word attribute values in the variable
Swords, sorted by the begin value of their node
element. The yield function returns the string con-
catenation of the elements in S$words, separated by
blanks. Note that this solution also gives the correct
result for discontinuous constituents.

We used a wrapper around the XQuery processor
Saxon'* to execute XQuery scripts directly on com-
pacted corpora. The result is output such as:
<term nec="ORG">PvdA</term>
<term nec="LOC">Atlantische Oceaan</term>

A more advanced relation extraction example is
given in fig. 4. It is a script for extraction of events
involving the death of a person from a syntactically
annotated corpus (Dutch wikipedia in this case). It
will return the name of the person who died, and,
if these can be found in the same sentence, the
date, location, and cause of death.”> The script
makes heavy use of functions from the alpino
module that were added to facilitate relation extrac-
tion. The selector-of function defines the ’se-
mantic head’ of a phrase. This is either the sibling
marked rel=’hd’, or (for nodes that are them-
selves heads) the head of the mother. For apposi-
tions and conjuncts, it it the selector of the head.
Note that the last case involves a recursive function
call. Similarly, the semantic role is normally iden-
tical to the value of the rel-attribute, but we go up

“www.saxonica.com

'SQuestions about such facts are relatively frequent in Ques-
tion Answering evaluation tasks.

22

one additional level for heads, appositions and con-
juncts. The value of $resolved is given by the
resolve—-index function shown in fig. 3, i.e. if a
node is just an index (as is the case for the object of
aan_tref in fig. 1), the ’antecedent’ node is returned.
In all other cases, the node itself is returned. Date
and place are found using functions for locating the
date and place dependents of the verb. Finally, rel-
evant events are found using the die-verb and
kill-verb functions.

Some examples of the output of the extraction
script are (i.e. John Lennon was killed on Decem-
ber 8, 1980, and Erasmus died in Basel on July, 12,
1536):

<died-how place="nil" file="1687-98"
person="John Lennon" cause="vermoord"
date="op 8 december 1980"/>

<died-how place="in Bazel" file="20336-37"
person="Erasmus" cause="overlijd"
date="op 12 juli 1536"/>

The functions illustrated in the two examples can
be used for a range of similar data extraction tasks,
whether these are intended for corpus linguistics re-
search or as part of an information extraction sys-
tem. The definition of corpus specific functions that
cover frequently used syntactic and semantic con-
cepts allows the application specific code to be rel-
atively compact and straightforward. In addition,
code which builds upon well tested corpus specific
functions tends to give more accurate results than
code developed from scratch.

5 Conclusions

In this paper, we have presented an approach to min-
ing syntactically corpora that uses standard XML
technology. It can be used both for corpus explo-
ration as well as for information extraction tasks. By
providing a corpus specific module, the complexity
of such tasks can be reduced. By adopting standard
XML languages, we can benefit optimally from the
fact that these are far more expressive than what is
provided in application specific languages or tools.
In addition, there is no shortage of tools or platforms
supporting these languages. Thus, development of
corpus specific tools can be kept at a minimum.

module namespace alpino="alpino.xq"

declare function name ($constituent as element (node)) as xs:boolean
{ if ($constituent [@pos=’'name’] or
Sconstituent [Rcat = 'mwu’]/node[@neclass='PER’])

then fn:true()
else fn:false()
}i
declare function neclass ($constituent as element (node)) as xs:string
{ if Sconstituent [@neclass]
then fn:string($constituent/@neclass)
else if Sconstituent/node[@neclass]
then fn:string($constituent/node[l]/@neclass)
}i

declare function alpino:yield($constituent as element (node)) as xs:string
{ let S$words :=
for $leaf in $constituent/descendant-or-self::node[Q@word]
order by number ($leaf/@begin)
return Sleaf/Qword

return string-join ($words," ")
}i
declare function alpino:resolve-index ($constituent as element (node))
as element (node)
{ if ($constituent[@index and not (@pos or @cat)])
then $constituent/ancestor::alpino_ds/
descendant : :node
[@index = S$Sconstituent/@index and (Q@pos or Qcat)]
else S$Sconstituent
}i

Figure 3: XQuery module (fragment) for Alpino treebanks

for $node in collection (’'wikipedia’)/alpino_ds//node

let S$verb := alpino:selector-of ($node)

let $date = if (exists(alpino:date-dependents ($verb)))
then alpino:yield(alpino:date-dependents ($verb) [1])
else "'nil’

let $place := if (exists(alpino:location-dependents ($verb)))
then alpino:yield(alpino:location-dependents ($verb) [1])
else 'nil’

let Scause = if ($verb/../node[@rel="pc"]/node[@root="aan"])
then alpino:yield($verb/../node[@rel="pc"])
else [[omitted]]
let S$role := alpino:semantic-role ($node)
let S$resolved := alpino:resolve-index ($node)
where alpino:person-node ($resolved)
and ((Srole="su" and alpino:die-verb ($verb))
or (Srole="objl" and alpino:kill-verb ($verb))
)
return
<died-how file="{alpino:file-id($node)}" person="{alpino:root-string($Sresolved) }"
cause="{Scause}" date="{$date}" place = "{$place}" />

Figure 4: Extracting circumstances of the death of a person

23

References

Steven Bird, Yi Chen, Susan B. Davidson, Haejoong
Lee, and Yifeng Zheng. Designing and evalu-
ating an XPath dialect for linguistic queries. In
Proceedings of 22nd International Conference on
Data Engineering (ICDE), 2006.

Gosse Bouma and Geert Kloosterman. Querying de-
pendency treebanks in XML. In Proceedings of
the 3rd conference on Language Resources and
Evaluation (LREC), Gran Canaria, 2002.

Gosse Bouma, Gertjan van Noord, and Robert Mal-
ouf. Alpino: Wide-coverage computational analy-
sis of Dutch. In Computational Linguistics in The
Netherlands 2000. Rodopi, Amsterdam, 2001.

Gosse Bouma, Ismail Fahmi, Jori Mur, Gertjan van
Noord, Lonneke van der Plas, and Jorg Tiede-
man. Linguistic knowledge and question answer-
ing. Traitement Automatique des Langues, 2(46):
15-39, 2005.

Gosse Bouma, Petra Hendriks, and Jack Hoeksema.
Focus particles inside prepositional phrases: A
comparison of Dutch, English, and German. Jour-
nal of Comparative Germanic Linguistics, 10(1),
2007.

Razvan Bunescu and Raymond Mooney. A short-
est path dependency kernel for relation extraction.
In Proceedings of HLT/EMNLP, pages 724-731,
Vancouver, 2005.

Steve Cassidy. XQuery as an annotation query lan-
guage: a use case analysis. In Language Re-
sources and Evaluation Conference (LREC), Gran
Canaria, 2002.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and
Tat-Seng Chua. Question answering passage re-
trieval using dependency relations. In Proceed-
ings of SIGIR 05, Salvador, Brazil, 2005.

W. Haesereyn, K. Romijn, G. Geerts, J. De Rooy,
and M.C. Van den Toorn. Algemene Nederlandse
Spraakkunst. Martinus Nijhoff Uitgevers Gronin-
gen / Wolters Plantyn Deurne, 1997.

Boris Katz and Jimmy Lin. Selectively using rela-
tions to improve precision in question answering.
In Proceedings of the workshop on Natural Lan-
guage Processing for Question Answering (EACL
2003), pages 43-50, Budapest, 2003. EACL.

24

Michael Kay. Comparing XSLT and XQuery.
In Proceedings of XTech 2005, Amsterdam,
2005. URL www.idealliance.org/
proceedings/xtech05.

Dekan Lin and Patrick Pantel. Discovery of infer-
ence rules for question answering. Natural Lan-
guage Engineering, 7:343-360, 2001.

Neil Mayo, Jonathan Kilgour, and Jean Carletta.
Towards an alternative implementation of NXT
query language via XQuery. In Proceedings of the
EACL Workshop on Multi-dimensional Markup in
NLP, Trento, 2006.

D. Molld and M. Gardiner. Answerfinder - ques-
tion answering by combining lexical, syntactic
and semantic information. In Australasian Lan-
guage Technology Workshop (ALTW) 2004, Syd-
ney, 2005.

Nelleke Oostdijk. The Spoken Dutch Corpus:
Overview and first evaluation. In Proceedings of
LREC 2000, pages 887-894, 2000.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.
Learning syntactic patterns for automatic hyper-
nym discovery. In Lawrence K. Saul, Yair Weiss,
and Lon Bottou, editors, Advances in Neural In-
formation Processing Systems 17, pages 1297-
1304. MIT Press, Cambridge, MA, 2005.

L. van der Beek, G. Bouma, R. Malouf, and
G. van Noord. The Alpino dependency treebank.
In Computational Linguistics in the Netherlands
(CLIN) 2001, Twente University, 2002.

Leonoor van der Beek. Topics in Corpus Based
Dutch Syntax. PhD thesis, University of Gronin-
gen, Groningen, 2005.

Lonneke van der Plas and Gosse Bouma. Auto-
matic acquisition of lexico-semantic knowledge
for question answering. In Proceedings of On-
tolex 2005 — Ontologies and Lexical Resources,
Jeju Island, South Korea, 2005.

Begoiia Villada Moirén. Linguistically enriched
corpora for establishing variation in support verb
constructions. In Proceedings of the 6th Inter-
national Workshop on Linguistically Interpreted
Corpora (LINC-2005), Jeju Island, Republic of
Korea, 2005.

