
Proceedings of the Linguistic Annotation Workshop, pages 1–8,
Prague, June 2007. c©2007 Association for Computational Linguistics

GrAF: A Graph-based Format for Linguistic Annotations 

Nancy Ide 
Department of Computer Science 

Vassar College 
Poughkeepsie, New York USA 
ide@cs.vassar.edu 

Keith Suderman 
Department of Computer Science 

Vassar College 
Poughkeepsie, New York USA 
suderman@cs.vassar.edu 

 
 

Abstract 

In this paper we describe the Graph Anno-
tation Format (GrAF) and show how it is 
used represent not only independent lin-
guistic annotations, but also sets of merged 
annotations as a single graph. To demon-
strate this, we have automatically trans-
duced several different annotations of the 
Wall Street Journal corpus into GrAF and 
show how the annotations can then be 
merged, analyzed, and visualized using 
standard graph algorithms and tools. We 
also discuss how, as a standard graph rep-
resentation, it allows for the application of 
well-established graph traversal and 
analysis algorithms to produce information 
about interactions and commonalities 
among merged annotations. GrAF is an 
extension of the Linguistic Annotation 
Framework (LAF) (Ide and Romary, 2004, 
2006) developed within ISO TC37 SC4 
and as such, implements state-of-the-art 
best practice guidelines for representing 
linguistic annotations. 

1 Introduction 

Although linguistic annotation of corpora has a 
long history, over the past several years the need 
for corpora annotated for a wide variety of phe-
nomena has come to be recognized as critical for 
the future development of language processing ap-
plications. Considerable attention has been devoted 
to the development of means to represent annota-
tions so that phenomena at different levels can be 
merged and/or analyzed in combination. A particu-

lar focus has been on the development of standards 
and best practices for representing annotations that 
can facilitate “annotation interoperability”, that is, 
the use and re-use of annotations produced in dif-
ferent formats and by different groups and to en-
able easy adaptation to the input requirements of 
existing annotation tools. 

In this paper we describe the Graph Annotation 
Format (GrAF) and show how it is used represent 
not only independent linguistic annotations, but 
also sets of merged annotations as a single graph. 
We also discuss how, as a standard graph represen-
tation, it allows for the application of well-
established graph traversal and analysis algorithms 
to produce information about interactions and 
commonalities among merged annotations. GrAF 
is is an extension of the Linguistic Annotation 
Framework (LAF) (Ide and Romary, 2004, 2006) 
developed within ISO TC37 SC41 and as such, im-
plements state-of-the-art best practice guidelines 
for representing linguistic annotations. 

This paper has several aims: (1) to show the 
generality of the graph model for representing lin-
guistic annotations; (2) to demonstrate how the 
graph-based model enables merging and analysis 
of multi-layered annotations; and (3) to propose as 
the underlying model for linguistic annotations, 
due to its generality and the ease with which it is 
mapped to other formats. To accomplish this, we 
have automatically transduced several different 
annotations of the Wall Street Journal corpus into 
GrAF and show how the annotations can then be 
merged, analyzed, and visualized using standard 
graph algorithms and tools. Discussion of the 

                                                
1 International Standards Organization Technical Committee 
37 Sub-Committee 4 for Language Resource Management. 
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transduction process brings to light several prob-
lems and concerns with current annotation formats 
and leads to some recommendations for the design 
of annotation schemes.  

2 Overview 

Graph theory provides a well-understood model for 
representing objects that can be viewed as a con-
nected set of more elementary sub-objects, to-
gether with a wealth of graph-analytic algorithms 
for information extraction and analysis.  As a result, 
graphs and graph-analytic algorithms are playing 
an increasingly important role in language data 
analysis, including finding related web pages 
(Kleinberg, 1999; Dean and Henzinger, 1999; 
Brin, 1998; Grangier and Bengio, 2005), patterns 
of web access (McEneaney, 2001; Zaki, 2002), and 
the extraction of semantic information from text 
(Widdows and Dorow, 2002; Krizhanovsky, 2005; 
Nastase and Szpakowicz, 2006). Recently, there 
has been work that treats linguistic annotations as 
graphs (Cui et al., 2005; Bunescu and Mooney, 
2006; Nguyen et al., 2007; Gabrilovich and Mark-
ovitch, 2007) in order to identify, for example, 
measures of semantic similarity based on common 
subgraphs. 

As the need to merge and study linguistic anno-
tations for multiple phenomena becomes increas-
ingly important for language analysis, it is essential 
to identify a general model that can capture the 
relevant information and enable efficient and effec-
tive analysis. Graphs have long been used to de-
scribe linguistic annotations, most familiarly in the 
form of trees (a graph in which each node has a 
single parent) for syntactic annotation. Annotation 
Graphs (Bird and Liberman, 2001) have been 
widely used to represent layers of annotation, each 
associated with primary data, although the concept 
was not extended to allow for annotations linked to 
other annotations and thus to consider multiple 
annotations as a single graph. More recently, the 
Penn Discourse TreeBank released its annotations 
of the Penn TreeBank as a graph, accompanied by 
an API that provides a set of standard graph-
handling functions for query and access 2 . The 
graph model therefore seems to be gaining ground 
as a natural and flexible model for linguistic anno-
tations which, as we demonstrate below, can repre-

                                                
2 http://www.seas.upenn.edu/~nikhild/PDTBAPI/ 

sent all annotation varieties, even those that were 
not originally designed with the graph model as a 
basis. 

2.1 LAF 

LAF provides a general framework for represent-
ing annotations that has been described elsewhere 
in detail (Ide and Romary, 2004, 2006). Its devel-
opment has built on common practice and conver-
gence of approach in linguistic annotation over the 
past 15-20 years. The core of the framework is 
specification of an abstract model for annotations 
instantiated by a pivot format, into and out of 
which annotations are mapped for the purposes of 
exchange. 

 
 
 
 
 
 
 
 
 

 

Figure 1: Use of the LAF pivot format 

Figure 1 shows the overall idea for six different 
user annotation formats (labeled A – F), which re-
quires two mappings for each scheme—one into 
and one out of the pivot format, provided by the 
scheme designer. The maximum number of map-
pings among schemes is therefore 2n, vs. n2-n mu-
tual mappings without the pivot.  

To map to the pivot, an annotation scheme must 
be (or be rendered via the mapping) isomorphic to 
the abstract model, which consists of (1) a referen-
tial structure for associating stand-off annotations 
with primary data, instantiated as a directed graph; 
and (2) a feature structure representation for anno-
tation content. An annotation thus forms a directed 
graph referencing n-dimensional regions of pri-
mary data as well as other annotations, in which 
nodes are labeled with feature structures providing 
the annotation content. Formally, LAF consists of: 

• A data model for annotations based on directed 
graphs defined as follows:  A graph of annota-
tions G is a set of vertices V(G) and a set of 
edges E(G). Vertices and edges may be labeled 
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with one or more features. A feature consists of 
a quadruple (G’, VE, K, V) where, G’ is a graph, 
VE is a vertex or edge in G’, K is the name of 
the feature and V is the feature value. 

•  A base segmentation of primary data that de-
fines edges between virtual nodes located be-
tween each “character” in the primary data.3 
The resulting graph G is treated as an edge 
graph G’ whose nodes are the edges of G, and 
which serve as the leaf (“sink”) nodes. These 
nodes provide the base for an annotation or 
several layers of annotation. Multiple segmen-
tations can be defined over the primary data, 
and multiple annotations may refer to the same 
segmentation. 

• Serializations of the data model, one of which is 
designated as the pivot.  

• Methods for manipulating the data model. 

Note that LAF does not provide specifications 
for annotation content categories (i.e., the labels 
describing the associated linguistic phenomena), 
for which standardization is a much trickier matter. 
The LAF architecture includes a Data Category 
Registry (DCR) containing pre-defined data ele-
ments and schemas that may be used directly in 
annotations, together with means to specify new 
categories and modify existing ones (see Ide and 
Romary, 2004).  

2.2 GrAF 

 GrAF is an XML serialization of the generic graph 
structure of linguistic annotations described by 
LAF. A GrAF document represents the referential 
structure of an annotation with two XML elements: 
<node> and <edge>. Both <node> and <edge> 
elements may be labeled with associated annota-
tion information. Typically, annotations describing 
a given object are associated with <node> ele-
ments. Although some annotations, such as de-
pendency analyses, are traditionally depicted with 
labeled edges, GrAF converts these to nodes in 
order to analyze both the annotated objects and the 
relations of a graph uniformly. Associating annota-
tions with nodes also simplifies the association of 
an annotation (node) with multiple objects. 

                                                
3 A character is defined to be a contiguous byte sequence of a 
specified length .For text, the default is UTF-16. 

 According to the LAF specification, an annota-
tion is itself a graph representing a feature structure. 
In GrAF, feature structures are encoded in XML 
according to the specifications of ISO TC37 SC4 
document 1884. The feature structure graph associ-
ated with a given node is the corresponding  
<node> element’s content. Note that the ISO 
specifications implement the full power of feature 
structures and define inheritance, unification, and 
subsumption mechanisms over the structures, thus 
enabling the representation of linguistic informa-
tion at any level of complexity. The specifications 
also provide a concise format for representing sim-
ple feature-value pairs that suffices to represent 
many annotations, and which, because it is suffi-
cient to represent the vast majority of annotation 
information, we use in our examples. 
<edge> elements may also be labeled (i.e., as-

sociated with a feature structure), but this informa-
tion is typically not an annotation per se, but rather 
information concerning the meaning, or role, of the 
link itself. For example, in PropBank, when there 
is more than one target of an annotation (i.e., a 
node containing an annotation has two or more 
outgoing edges), the targets may be either co-
referents or a “split argument” whose constituents 
are not contiguous, in which case the edges collect 
an ordered list of constituents. In other case, the 
outgoing edges may point to a set of alternatives. 
To differentiate the role of edges in such cases, the 
edge may be annotated. Unlabeled edges default to 
pointing to an unordered list of constituents.  

A base segmentation contains only <sink> 
elements (i.e., nodes with no outgoing edges), 
which are a sub-class of <node> elements. As 
noted above, the segmentation is an edge graph 
created from edges (spans) defined over primary 
data. The from and to attributes on <sink> ele-
ments in the base segmentation identify the start 
and end points of these edges in the primary data. 

Each annotation document declares and associ-
ates the elements in its content with a unique 
namespace. Figure 2 shows several XML frag-
ments in GrAF format. 

 

                                                
4 See ISO TC37 SC4 document N188, Feature Structures-Part 
1: Feature Structure Representation (2005-10-01), available at 
http://www.tc37sc4.org/ 
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Figure 2: GrAF annotations in XML 

3 Transduction 

To test the utility of GrAF for representing 
annotations of different types produced by 
different groups, we transduced the Penn TreeBank 
(PTB), PropBank (PB), NomBank (NB), Penn 
Discourse TreeBank (PDTB), and TimeBank (TB) 
annotations of the Wall Street Journal (WSJ) 
corpus to conform to the specifications of LAF and 
GrAF. These annotations are represented in several 
different formats, including both stand-off and 
embedded formats. The details of the transduction 
process, although relatively mundane, show that 
the process is not always trivial. Furthermore, they 
reveal several seemingly harmless practices that 
can cause difficulties for transduction to any other 
format and, therefore, use by others. Consideration 
of these details is therefore informative for the 
development of best practice annotation guidelines. 

The Penn TreeBank annotations of the WSJ are 
embedded in the data itself, by bracketing compo-
nents of syntactic trees. Leaf nodes of the tree are 
comprised of POS-word pairs; thus, the PTB in-
cludes annotations for both morpho-syntax and 
syntax. To coerce the annotations into LAF/GrAF, 
it was necessary to  

• extract the text in order to create a primary 
data document; 

• provide a primary segmentation reflecting 
the tokenization implicit in the PTB; 

• separate the morpho-syntactic annotation 
from the syntactic annotation and render 

each as a stand-off document in GrAF for-
mat, with links to the primary segmentation. 

NB, PB, and PDTB do not annotate primary 
data, but rather annotate the PTB syntax trees by 
providing stand-off documents with references to 
PTB Tree nodes. The format of the NB and PB 
stand-off annotations is nearly identical; consider 
for example the following PB annotation: 

 
wsj/00/wsj_0003.mrg 18 18 gold include.01 
p---a 14:1,16:1-ARG2 18:0-rel 19:1-ARG1 

In GrAF, this becomes 

 
 
 
 
 
 
 
 
 
 
Each line in the PB and NB stand-off files pro-

vides a single annotation and therefore interpreted 
as an annotation node with a unique id. Each anno-
tation is associated with a node with an edge to the 
annotated entity. The PB/NB comma notation (e.g., 
14:1,16:1) denotes reference to more than one 
node in the PTB tree; in GrAF, a dummy node is 
created to group them so that if, for example, a NB 
annotation refers to the same node set, in a merged 
representation a graph minimization algorithm can 
collapse the dummy nodes while retaining the an-
notations from each of PB and NB as separate 
nodes. 

Some interpretation was required for the trans-
duction, for example, we assume that the sense 
number and morpho-syntactic descriptor are asso-
ciated with the element annotated as “rel” (vs. the 
“gold” status that is associated with the entire 
proposition), an association that is automatically 
discernible from the structure. Also, because the 
POS/word pairs in the PTB leaf nodes have been 
split into separate nodes, we assume the PB/NB 
annotations should refer to the POS annotation 
rather than the string in the primary data, but either 
option is possible. 

Given the similarities of the underlying data 
models for the PDTB and LAF, creating GrAF-
compliant structures from the PDTB data is rela-

role: ARG1 

role: ARG2 

cat: NP 

role: rel 
sns: 01 
msd: p---a 

cat: NP cat: VBG 
cat: PP 

id: pb0003.18 
status: gold 

Base segmentation: 
<seg:sink seg:id="42" seg:start="24" 
      seg:end="35"/> 

Annotation over the base segmentation: 
<msd:node msd:id=”16”> 
   <msd:f name=”cat” value=”NN”/> 
</msd:node> 
 
<msd:edge from="msd:16" to="seg:42"/> 

Annotation over another annotation: 
<ptb:node ptb:id="23"> 
   <ptb:f name="type" value="NP"/> 
   <ptb:f name="role" value="-SBJ"/> 
</ptb:node> 

 
<ptb:edge from="ptb:23"to="msd:16"/> 
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tively trivial.  This task is simplified even further 
because the PDTB API allows PDTB files to be 
loaded in a few simple steps, and allows the pro-
grammer to set and query features of the node as 
well as iterate over the children of the node. So, 
given a node P that represents the root node of a 
PDTB tree, an equivalent graph G in GrAF format 
can be created by traversing the PDTB tree and 
creating matching nodes and edges in the graph G. 

Like the PTB, TimeBank annotation is embed-
ded in the primary data by surrounding annotated 
elements with XML tags. TB also includes sets of 
“link” tags at the end of each document, specifying 
relations among annotated elements. The same 
steps for rendering the PTB into GrAF could be 
followed for TB; however, this would result in a 
separate (and possibly different) primary data 
document. Therefore, it is necessary to first align 
the text extracted from TB with the primary data 
derived from PTB, after which the TB XML anno-
tations are rendered in GrAF format and associated 
with the corresponding nodes in the base segmen-
tation.  

Note that in the current GrAF representation, 
TB’s tlink, slink, and alink annotations are applied 
to edges, since they designate relations among 
nodes. However, further consideration of the na-
ture and use of the information associated with 
these links may dictate that associating it with a 
node is more appropriate and/or useful. 

Variations in tokenization exist among the dif-
ferent annotations, most commonly for splitting 
contractions or compounds (“cannot” split into 
“can” and “not”, “New York-based” split into 
“New York”, “-“, and “based”, etc.). This can be 
handled by adding edges to the base segmentation 
(not necessarily in the same segmentation docu-
ment) that cover the relevant sub-spans, and point-
ing to the new edge nodes as necessary. Annota-
tions may now reference the original span, the en-
tire annotation, or any sub-part of the annotation, 
by pointing to the appropriate node. Alternative 
segmentations of the same span can be joined by a 
“dummy” parent node so that when different anno-
tations of the same data are later merged, nodes 
labeling a sub-graph covering the same span can be 
combined. For example, in Figure 3, if the PTB 
segmentation (in gray) is the base segmentation, an 
alternative segmentation of the same span (in 
black) is created and associated to the PTB seg-
mentation via a dummy node. When annotations 

using each of the different segmentations are 
merged into a single graph, features associated 
with any node covering the same sub-tree (in bold) 
are applied to the dummy node (as a result of graph 
minimization), thus preserving the commonality in 
the merged graph.  

 

 

 

 

 

 

 
 

 

 

 
Figure 3: Alternative segmentations 

4 Merging Annotations 

Once they are in in GrAF format, merging annota-
tions of the same primary data, or annotations ref-
erencing annotations of the same primary data, in-
volves simply combining the graphs for each anno-
tation, starting with graph G describing the base 
segmentation and using the algorithm in Figure 4. 
Once merged, graph minimization, for which effi-
cient algorithms exist (see, e.g., Cardon and Cro-
chemore, 1982; Habib et al., 1999), can be applied 
to collapse identically-labeled nodes with edges to 
common subgraphs and eliminate dummy nodes 
such as the one in Figure 3. 

 

Figure 4: Graph-merging algorithm 

cat: NP 

cat: PUNC 
type: hyphen 

cat: VBG 

N e w  Y o r k  -  b a s e d 

cat: JJ 
cat: NNP 

cat: ADJP 

role: alt 
role: alt 

Given a graph G : 

for each graph of annotations Gp do 
  for each vertex vp in Gp do 

  if vp is not a leaf in Gp then 
    add vp to G 

  for each edge (vi, vj) in Gp do 
  if vj is a leaf in Gp then 
    find corresponding vertex vg ∈ G 
   add a new edge (vi, vg) to G 
    else 
 add edge (vi, vj) to G 
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5 Using the Graphs 

Because the GrAF format is isomorphic to input to 
many graph-analytic tools, existing software can 
be exploited; for example, we have generated 
graph diagrams directly from a merged graph in-
cluding PTB, NB, and PB annotations using 
GraphViz5, which takes as its input a simple text 
file representation of a graph. Generating the input 
files to GraphViz involves simply iterating over 
the nodes and edges in the graph and printing out a 
suitable string representation. Figure 5 shows a 
segment of the GraphViz output generated from 
the PTB/NB/PB merged annotations (modified 
slightly for readability). 

 

 
Figure 5: Fragment of GraphViz output 

Graph-traversal and graph-coloring algorithms can 
be used to identify and generate statistics concern-
ing commonly annotated components in the 
merged graph. For example, we modified the 
merging algorithm to "color" the annotated nodes 
as the graphs are constructed to reflect the source 
of the annotation (e.g., PTB, NB, PB, etc.) and the 
annotation content itself. Colors are propagated via 
outgoing edges down to the base segmentation, so 
that each node in the graph can be identified by the 
source and type of annotation applied. The colored 
graph can then be used to identify common sub-
graphs. So, for example, a graph traversal can 
identify higher-level nodes in PTB that cover the 
same spans as TB annotations, which in the 
merged graph are connected to sink nodes (tokens) 
only, thus effectively “collapsing” the two annota-
tions.  

                                                
5 www.graphviz.org 

Traversal of the colored graph can also be used 
to generate statistics reflecting the interactions 
among annotations. As a simple example, we gen-
erated a list of all nodes annotated as ARG0 by 
both PB and NB6, the “related” element (a verb for 
PB, a nominalization for NB), the PTB annotation, 
and the set of sink nodes covered by the node, 
which reveals clusters of verb/nominalization pairs 
and can be used, for example, to augment semantic 
lexicons. Similar information generated via graph 
traversal can obviously provide a wealth of statis-
tics that can in turn be used to study interactions 
among linguistic phenomena. Other graph-analytic 
algorithms—including common sub-graph analy-
sis, shortest paths, minimum spanning trees, con-
nectedness, identification of articulation vertices, 
topological sort, graph partitioning, etc.—may 
prove to be useful for mining information from a 
graph of annotations at multiple linguistic levels, 
possibly revealing relationships and interactions 
that were previously difficult to observe. We have, 
for example, generated frequent subgraphs of the 
PB and NB annotations using the IBM Frequent 
Subgraph Miner7 (Inokuchi et al., 2005). We are 
currently exploring several additional applications 
of graph algorithms to annotation analysis.  

The graph format also enables manipulations 
that may be desirable in order to add information, 
modify the graph to reflect additional analysis, cor-
rect errors, etc. For example, it may be desirable to 
delete or move constituents such as punctuation 
and parenthetical phrases under certain circum-
stances, conjoin sub-graphs whose sink nodes are 
joined by a conjunction such as “and”, or correct 
PP attachments based on information in the tree.  

6 Discussion 

GrAF provides a serialization of annotations that 
follows the specifications of LAF and is therefore a 
candidate to serve as the LAF pivot format. The 
advantages of a pivot format, and, in general, the 
use of the graph model for linguistic annotations, 
are numerous. First, transduction of the various 
formats into GrAF, as described in section 4, de-
manded substantial programming effort; similar 
effort would be required to transduce to any other 

                                                
6 The gray nodes in Figure 5 are those that have been “col-
ored” by both PB and NB. 
7 http://www.alphaworks.ibm.com/tech/fsm 
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format, graph-based or not. The role of the LAF 
pivot format is to reduce this effort across the com-
munity by an order of magnitude, as shown in 
Figure 1. Whether or not GrAF is the pivot, the 
adoption of the graph model, at least for the pur-
poses of exchange, would result in a similar reduc-
tion of effort, since graph representations are in 
general trivially mappable. 

In addition to enabling the generation of input to 
a wide range of graph-handling software, the graph 
model for annotations is isomorphic to representa-
tion formats used by emerging annotation frame-
works, in particular, UIMA’s Common Analysis 
System8. It is also compatible with tools such as 
the PDTBAPI, which is easily generalized to han-
dle graphs as well as trees. In addition, the graph 
model underlies Semantic Web formats such as 
RDF and OWL, so that any annotation graph is 
trivially transducable to their serializations (which 
include not only XML but several others as well), 
and which, as noted above, has spawned a flurry of 
research using graph algorithms to extract and ana-
lyze semantic information from the web. 

A final advantage of the graph model is that it 
provides a sound basis for devising linguistic anno-
tation schemes. For example, the PB and NB for-
mat, although ultimately mappable to a graph rep-
resentation, was not developed with the graph 
model as a basis. The format is ambiguous as to 
the relations among the parts of the annotation, in 
particular, the relation between the information at 
the beginning of the line providing the status 
(“gold”), sense number, and morpho-syntactic de-
scription, and the rest of the annotation. Human 
interpretation can determine that the status (proba-
bly) applies to the whole annotation, and the sense 
number and msd apply to the PTB lexical item be-
ing annotated, as reflected in the graph-based rep-
resentation given in section 3. This somewhat in-
nocuous example demonstrates an all-too-
pervasive feature of many annotation schemes: 
reliance on human interpretation to determine 
structural relations that are implicit in the content 
of the annotation. Blind automatic transduction of 
the format to any other format is therefore impos-
sible, and the interpretation, although more or less 
clear in this example, is prone to human error. If 
the designers of the PB/NB format had begun with 
a graph-based model—i.e., had been forced to 
                                                
8 http://www.alphaworks.ibm.com/tech/uima 

“draw the circles and lines”—this ambiguity would 
likely have been avoided. 

7 Conclusion 

We have argued that a graph model for linguistic 
annotations provides the generality and flexibility 
required for representing linguistic annotations of 
different types, and provides powerful and well-
established means to analyze these annotations in 
ways that have been previously unexploited. We 
introduce GrAF, an XML serialization of the graph 
model, and demonstrate how it can be used to rep-
resent annotations originally made available in 
widely varying formats. GrAF is designed to be 
used in conjunction with the Linguistic Annotation 
Framework, which defines an overall architecture 
for representing layers of linguistic annotation. We 
show how LAF stand-off annotations in GrAF 
format can be easily merged and analyzed, and 
discuss the application of graph-analytic algo-
rithms and tools. 

Linguistic annotation has a long history, and 
over the past 15-20 years we have seen increasing 
attention to the need for standardization as well as 
continuing development and convergence of best 
practices to enable annotation interoperability. 
Dramatic changes in technology, an in particular 
the development of the World Wide Web, have 
impacted both the ways in which we represent lin-
guistic annotations and the urgency of the need to 
develop sophisticated language processing applica-
tions that rely on them. LAF and GrAF are not 
based on brand new ideas, but rather reflect and 
make explicit what appears to be evolving as 
common best practice methodology.  
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