
Proceedings of the Linguistic Annotation Workshop, pages 1–8,
Prague, June 2007. c©2007 Association for Computational Linguistics

GrAF: A Graph-based Format for Linguistic Annotations

Nancy Ide
Department of Computer Science

Vassar College
Poughkeepsie, New York USA
ide@cs.vassar.edu

Keith Suderman
Department of Computer Science

Vassar College
Poughkeepsie, New York USA
suderman@cs.vassar.edu

Abstract

In this paper we describe the Graph Anno-
tation Format (GrAF) and show how it is
used represent not only independent lin-
guistic annotations, but also sets of merged
annotations as a single graph. To demon-
strate this, we have automatically trans-
duced several different annotations of the
Wall Street Journal corpus into GrAF and
show how the annotations can then be
merged, analyzed, and visualized using
standard graph algorithms and tools. We
also discuss how, as a standard graph rep-
resentation, it allows for the application of
well-established graph traversal and
analysis algorithms to produce information
about interactions and commonalities
among merged annotations. GrAF is an
extension of the Linguistic Annotation
Framework (LAF) (Ide and Romary, 2004,
2006) developed within ISO TC37 SC4
and as such, implements state-of-the-art
best practice guidelines for representing
linguistic annotations.

1 Introduction

Although linguistic annotation of corpora has a
long history, over the past several years the need
for corpora annotated for a wide variety of phe-
nomena has come to be recognized as critical for
the future development of language processing ap-
plications. Considerable attention has been devoted
to the development of means to represent annota-
tions so that phenomena at different levels can be
merged and/or analyzed in combination. A particu-

lar focus has been on the development of standards
and best practices for representing annotations that
can facilitate “annotation interoperability”, that is,
the use and re-use of annotations produced in dif-
ferent formats and by different groups and to en-
able easy adaptation to the input requirements of
existing annotation tools.

In this paper we describe the Graph Annotation
Format (GrAF) and show how it is used represent
not only independent linguistic annotations, but
also sets of merged annotations as a single graph.
We also discuss how, as a standard graph represen-
tation, it allows for the application of well-
established graph traversal and analysis algorithms
to produce information about interactions and
commonalities among merged annotations. GrAF
is is an extension of the Linguistic Annotation
Framework (LAF) (Ide and Romary, 2004, 2006)
developed within ISO TC37 SC41 and as such, im-
plements state-of-the-art best practice guidelines
for representing linguistic annotations.

This paper has several aims: (1) to show the
generality of the graph model for representing lin-
guistic annotations; (2) to demonstrate how the
graph-based model enables merging and analysis
of multi-layered annotations; and (3) to propose as
the underlying model for linguistic annotations,
due to its generality and the ease with which it is
mapped to other formats. To accomplish this, we
have automatically transduced several different
annotations of the Wall Street Journal corpus into
GrAF and show how the annotations can then be
merged, analyzed, and visualized using standard
graph algorithms and tools. Discussion of the

1 International Standards Organization Technical Committee
37 Sub-Committee 4 for Language Resource Management.

1

transduction process brings to light several prob-
lems and concerns with current annotation formats
and leads to some recommendations for the design
of annotation schemes.

2 Overview

Graph theory provides a well-understood model for
representing objects that can be viewed as a con-
nected set of more elementary sub-objects, to-
gether with a wealth of graph-analytic algorithms
for information extraction and analysis. As a result,
graphs and graph-analytic algorithms are playing
an increasingly important role in language data
analysis, including finding related web pages
(Kleinberg, 1999; Dean and Henzinger, 1999;
Brin, 1998; Grangier and Bengio, 2005), patterns
of web access (McEneaney, 2001; Zaki, 2002), and
the extraction of semantic information from text
(Widdows and Dorow, 2002; Krizhanovsky, 2005;
Nastase and Szpakowicz, 2006). Recently, there
has been work that treats linguistic annotations as
graphs (Cui et al., 2005; Bunescu and Mooney,
2006; Nguyen et al., 2007; Gabrilovich and Mark-
ovitch, 2007) in order to identify, for example,
measures of semantic similarity based on common
subgraphs.

As the need to merge and study linguistic anno-
tations for multiple phenomena becomes increas-
ingly important for language analysis, it is essential
to identify a general model that can capture the
relevant information and enable efficient and effec-
tive analysis. Graphs have long been used to de-
scribe linguistic annotations, most familiarly in the
form of trees (a graph in which each node has a
single parent) for syntactic annotation. Annotation
Graphs (Bird and Liberman, 2001) have been
widely used to represent layers of annotation, each
associated with primary data, although the concept
was not extended to allow for annotations linked to
other annotations and thus to consider multiple
annotations as a single graph. More recently, the
Penn Discourse TreeBank released its annotations
of the Penn TreeBank as a graph, accompanied by
an API that provides a set of standard graph-
handling functions for query and access 2 . The
graph model therefore seems to be gaining ground
as a natural and flexible model for linguistic anno-
tations which, as we demonstrate below, can repre-

2 http://www.seas.upenn.edu/~nikhild/PDTBAPI/

sent all annotation varieties, even those that were
not originally designed with the graph model as a
basis.

2.1 LAF

LAF provides a general framework for represent-
ing annotations that has been described elsewhere
in detail (Ide and Romary, 2004, 2006). Its devel-
opment has built on common practice and conver-
gence of approach in linguistic annotation over the
past 15-20 years. The core of the framework is
specification of an abstract model for annotations
instantiated by a pivot format, into and out of
which annotations are mapped for the purposes of
exchange.

Figure 1: Use of the LAF pivot format

Figure 1 shows the overall idea for six different
user annotation formats (labeled A – F), which re-
quires two mappings for each scheme—one into
and one out of the pivot format, provided by the
scheme designer. The maximum number of map-
pings among schemes is therefore 2n, vs. n2-n mu-
tual mappings without the pivot.

To map to the pivot, an annotation scheme must
be (or be rendered via the mapping) isomorphic to
the abstract model, which consists of (1) a referen-
tial structure for associating stand-off annotations
with primary data, instantiated as a directed graph;
and (2) a feature structure representation for anno-
tation content. An annotation thus forms a directed
graph referencing n-dimensional regions of pri-
mary data as well as other annotations, in which
nodes are labeled with feature structures providing
the annotation content. Formally, LAF consists of:

• A data model for annotations based on directed
graphs defined as follows: A graph of annota-
tions G is a set of vertices V(G) and a set of
edges E(G). Vertices and edges may be labeled

Pivot

A

B

C F

E

D

2

with one or more features. A feature consists of
a quadruple (G’, VE, K, V) where, G’ is a graph,
VE is a vertex or edge in G’, K is the name of
the feature and V is the feature value.

• A base segmentation of primary data that de-
fines edges between virtual nodes located be-
tween each “character” in the primary data.3
The resulting graph G is treated as an edge
graph G’ whose nodes are the edges of G, and
which serve as the leaf (“sink”) nodes. These
nodes provide the base for an annotation or
several layers of annotation. Multiple segmen-
tations can be defined over the primary data,
and multiple annotations may refer to the same
segmentation.

• Serializations of the data model, one of which is
designated as the pivot.

• Methods for manipulating the data model.

Note that LAF does not provide specifications
for annotation content categories (i.e., the labels
describing the associated linguistic phenomena),
for which standardization is a much trickier matter.
The LAF architecture includes a Data Category
Registry (DCR) containing pre-defined data ele-
ments and schemas that may be used directly in
annotations, together with means to specify new
categories and modify existing ones (see Ide and
Romary, 2004).

2.2 GrAF

 GrAF is an XML serialization of the generic graph
structure of linguistic annotations described by
LAF. A GrAF document represents the referential
structure of an annotation with two XML elements:
<node> and <edge>. Both <node> and <edge>
elements may be labeled with associated annota-
tion information. Typically, annotations describing
a given object are associated with <node> ele-
ments. Although some annotations, such as de-
pendency analyses, are traditionally depicted with
labeled edges, GrAF converts these to nodes in
order to analyze both the annotated objects and the
relations of a graph uniformly. Associating annota-
tions with nodes also simplifies the association of
an annotation (node) with multiple objects.

3 A character is defined to be a contiguous byte sequence of a
specified length .For text, the default is UTF-16.

 According to the LAF specification, an annota-
tion is itself a graph representing a feature structure.
In GrAF, feature structures are encoded in XML
according to the specifications of ISO TC37 SC4
document 1884. The feature structure graph associ-
ated with a given node is the corresponding
<node> element’s content. Note that the ISO
specifications implement the full power of feature
structures and define inheritance, unification, and
subsumption mechanisms over the structures, thus
enabling the representation of linguistic informa-
tion at any level of complexity. The specifications
also provide a concise format for representing sim-
ple feature-value pairs that suffices to represent
many annotations, and which, because it is suffi-
cient to represent the vast majority of annotation
information, we use in our examples.
<edge> elements may also be labeled (i.e., as-

sociated with a feature structure), but this informa-
tion is typically not an annotation per se, but rather
information concerning the meaning, or role, of the
link itself. For example, in PropBank, when there
is more than one target of an annotation (i.e., a
node containing an annotation has two or more
outgoing edges), the targets may be either co-
referents or a “split argument” whose constituents
are not contiguous, in which case the edges collect
an ordered list of constituents. In other case, the
outgoing edges may point to a set of alternatives.
To differentiate the role of edges in such cases, the
edge may be annotated. Unlabeled edges default to
pointing to an unordered list of constituents.

A base segmentation contains only <sink>
elements (i.e., nodes with no outgoing edges),
which are a sub-class of <node> elements. As
noted above, the segmentation is an edge graph
created from edges (spans) defined over primary
data. The from and to attributes on <sink> ele-
ments in the base segmentation identify the start
and end points of these edges in the primary data.

Each annotation document declares and associ-
ates the elements in its content with a unique
namespace. Figure 2 shows several XML frag-
ments in GrAF format.

4 See ISO TC37 SC4 document N188, Feature Structures-Part
1: Feature Structure Representation (2005-10-01), available at
http://www.tc37sc4.org/

3

Figure 2: GrAF annotations in XML

3 Transduction

To test the utility of GrAF for representing
annotations of different types produced by
different groups, we transduced the Penn TreeBank
(PTB), PropBank (PB), NomBank (NB), Penn
Discourse TreeBank (PDTB), and TimeBank (TB)
annotations of the Wall Street Journal (WSJ)
corpus to conform to the specifications of LAF and
GrAF. These annotations are represented in several
different formats, including both stand-off and
embedded formats. The details of the transduction
process, although relatively mundane, show that
the process is not always trivial. Furthermore, they
reveal several seemingly harmless practices that
can cause difficulties for transduction to any other
format and, therefore, use by others. Consideration
of these details is therefore informative for the
development of best practice annotation guidelines.

The Penn TreeBank annotations of the WSJ are
embedded in the data itself, by bracketing compo-
nents of syntactic trees. Leaf nodes of the tree are
comprised of POS-word pairs; thus, the PTB in-
cludes annotations for both morpho-syntax and
syntax. To coerce the annotations into LAF/GrAF,
it was necessary to

• extract the text in order to create a primary
data document;

• provide a primary segmentation reflecting
the tokenization implicit in the PTB;

• separate the morpho-syntactic annotation
from the syntactic annotation and render

each as a stand-off document in GrAF for-
mat, with links to the primary segmentation.

NB, PB, and PDTB do not annotate primary
data, but rather annotate the PTB syntax trees by
providing stand-off documents with references to
PTB Tree nodes. The format of the NB and PB
stand-off annotations is nearly identical; consider
for example the following PB annotation:

wsj/00/wsj_0003.mrg 18 18 gold include.01
p---a 14:1,16:1-ARG2 18:0-rel 19:1-ARG1

In GrAF, this becomes

Each line in the PB and NB stand-off files pro-

vides a single annotation and therefore interpreted
as an annotation node with a unique id. Each anno-
tation is associated with a node with an edge to the
annotated entity. The PB/NB comma notation (e.g.,
14:1,16:1) denotes reference to more than one
node in the PTB tree; in GrAF, a dummy node is
created to group them so that if, for example, a NB
annotation refers to the same node set, in a merged
representation a graph minimization algorithm can
collapse the dummy nodes while retaining the an-
notations from each of PB and NB as separate
nodes.

Some interpretation was required for the trans-
duction, for example, we assume that the sense
number and morpho-syntactic descriptor are asso-
ciated with the element annotated as “rel” (vs. the
“gold” status that is associated with the entire
proposition), an association that is automatically
discernible from the structure. Also, because the
POS/word pairs in the PTB leaf nodes have been
split into separate nodes, we assume the PB/NB
annotations should refer to the POS annotation
rather than the string in the primary data, but either
option is possible.

Given the similarities of the underlying data
models for the PDTB and LAF, creating GrAF-
compliant structures from the PDTB data is rela-

role: ARG1

role: ARG2

cat: NP

role: rel
sns: 01
msd: p---a

cat: NP cat: VBG
cat: PP

id: pb0003.18
status: gold

Base segmentation:
<seg:sink seg:id="42" seg:start="24"
 seg:end="35"/>

Annotation over the base segmentation:
<msd:node msd:id=”16”>
 <msd:f name=”cat” value=”NN”/>
</msd:node>

<msd:edge from="msd:16" to="seg:42"/>

Annotation over another annotation:
<ptb:node ptb:id="23">
 <ptb:f name="type" value="NP"/>
 <ptb:f name="role" value="-SBJ"/>
</ptb:node>

<ptb:edge from="ptb:23"to="msd:16"/>

4

tively trivial. This task is simplified even further
because the PDTB API allows PDTB files to be
loaded in a few simple steps, and allows the pro-
grammer to set and query features of the node as
well as iterate over the children of the node. So,
given a node P that represents the root node of a
PDTB tree, an equivalent graph G in GrAF format
can be created by traversing the PDTB tree and
creating matching nodes and edges in the graph G.

Like the PTB, TimeBank annotation is embed-
ded in the primary data by surrounding annotated
elements with XML tags. TB also includes sets of
“link” tags at the end of each document, specifying
relations among annotated elements. The same
steps for rendering the PTB into GrAF could be
followed for TB; however, this would result in a
separate (and possibly different) primary data
document. Therefore, it is necessary to first align
the text extracted from TB with the primary data
derived from PTB, after which the TB XML anno-
tations are rendered in GrAF format and associated
with the corresponding nodes in the base segmen-
tation.

Note that in the current GrAF representation,
TB’s tlink, slink, and alink annotations are applied
to edges, since they designate relations among
nodes. However, further consideration of the na-
ture and use of the information associated with
these links may dictate that associating it with a
node is more appropriate and/or useful.

Variations in tokenization exist among the dif-
ferent annotations, most commonly for splitting
contractions or compounds (“cannot” split into
“can” and “not”, “New York-based” split into
“New York”, “-“, and “based”, etc.). This can be
handled by adding edges to the base segmentation
(not necessarily in the same segmentation docu-
ment) that cover the relevant sub-spans, and point-
ing to the new edge nodes as necessary. Annota-
tions may now reference the original span, the en-
tire annotation, or any sub-part of the annotation,
by pointing to the appropriate node. Alternative
segmentations of the same span can be joined by a
“dummy” parent node so that when different anno-
tations of the same data are later merged, nodes
labeling a sub-graph covering the same span can be
combined. For example, in Figure 3, if the PTB
segmentation (in gray) is the base segmentation, an
alternative segmentation of the same span (in
black) is created and associated to the PTB seg-
mentation via a dummy node. When annotations

using each of the different segmentations are
merged into a single graph, features associated
with any node covering the same sub-tree (in bold)
are applied to the dummy node (as a result of graph
minimization), thus preserving the commonality in
the merged graph.

Figure 3: Alternative segmentations

4 Merging Annotations

Once they are in in GrAF format, merging annota-
tions of the same primary data, or annotations ref-
erencing annotations of the same primary data, in-
volves simply combining the graphs for each anno-
tation, starting with graph G describing the base
segmentation and using the algorithm in Figure 4.
Once merged, graph minimization, for which effi-
cient algorithms exist (see, e.g., Cardon and Cro-
chemore, 1982; Habib et al., 1999), can be applied
to collapse identically-labeled nodes with edges to
common subgraphs and eliminate dummy nodes
such as the one in Figure 3.

Figure 4: Graph-merging algorithm

cat: NP

cat: PUNC
type: hyphen

cat: VBG

N e w Y o r k - b a s e d

cat: JJ
cat: NNP

cat: ADJP

role: alt
role: alt

Given a graph G :

for each graph of annotations Gp do
 for each vertex vp in Gp do

 if vp is not a leaf in Gp then
 add vp to G

 for each edge (vi, vj) in Gp do
 if vj is a leaf in Gp then
 find corresponding vertex vg ∈ G
 add a new edge (vi, vg) to G
 else
 add edge (vi, vj) to G

5

5 Using the Graphs

Because the GrAF format is isomorphic to input to
many graph-analytic tools, existing software can
be exploited; for example, we have generated
graph diagrams directly from a merged graph in-
cluding PTB, NB, and PB annotations using
GraphViz5, which takes as its input a simple text
file representation of a graph. Generating the input
files to GraphViz involves simply iterating over
the nodes and edges in the graph and printing out a
suitable string representation. Figure 5 shows a
segment of the GraphViz output generated from
the PTB/NB/PB merged annotations (modified
slightly for readability).

Figure 5: Fragment of GraphViz output

Graph-traversal and graph-coloring algorithms can
be used to identify and generate statistics concern-
ing commonly annotated components in the
merged graph. For example, we modified the
merging algorithm to "color" the annotated nodes
as the graphs are constructed to reflect the source
of the annotation (e.g., PTB, NB, PB, etc.) and the
annotation content itself. Colors are propagated via
outgoing edges down to the base segmentation, so
that each node in the graph can be identified by the
source and type of annotation applied. The colored
graph can then be used to identify common sub-
graphs. So, for example, a graph traversal can
identify higher-level nodes in PTB that cover the
same spans as TB annotations, which in the
merged graph are connected to sink nodes (tokens)
only, thus effectively “collapsing” the two annota-
tions.

5 www.graphviz.org

Traversal of the colored graph can also be used
to generate statistics reflecting the interactions
among annotations. As a simple example, we gen-
erated a list of all nodes annotated as ARG0 by
both PB and NB6, the “related” element (a verb for
PB, a nominalization for NB), the PTB annotation,
and the set of sink nodes covered by the node,
which reveals clusters of verb/nominalization pairs
and can be used, for example, to augment semantic
lexicons. Similar information generated via graph
traversal can obviously provide a wealth of statis-
tics that can in turn be used to study interactions
among linguistic phenomena. Other graph-analytic
algorithms—including common sub-graph analy-
sis, shortest paths, minimum spanning trees, con-
nectedness, identification of articulation vertices,
topological sort, graph partitioning, etc.—may
prove to be useful for mining information from a
graph of annotations at multiple linguistic levels,
possibly revealing relationships and interactions
that were previously difficult to observe. We have,
for example, generated frequent subgraphs of the
PB and NB annotations using the IBM Frequent
Subgraph Miner7 (Inokuchi et al., 2005). We are
currently exploring several additional applications
of graph algorithms to annotation analysis.

The graph format also enables manipulations
that may be desirable in order to add information,
modify the graph to reflect additional analysis, cor-
rect errors, etc. For example, it may be desirable to
delete or move constituents such as punctuation
and parenthetical phrases under certain circum-
stances, conjoin sub-graphs whose sink nodes are
joined by a conjunction such as “and”, or correct
PP attachments based on information in the tree.

6 Discussion

GrAF provides a serialization of annotations that
follows the specifications of LAF and is therefore a
candidate to serve as the LAF pivot format. The
advantages of a pivot format, and, in general, the
use of the graph model for linguistic annotations,
are numerous. First, transduction of the various
formats into GrAF, as described in section 4, de-
manded substantial programming effort; similar
effort would be required to transduce to any other

6 The gray nodes in Figure 5 are those that have been “col-
ored” by both PB and NB.
7 http://www.alphaworks.ibm.com/tech/fsm

6

format, graph-based or not. The role of the LAF
pivot format is to reduce this effort across the com-
munity by an order of magnitude, as shown in
Figure 1. Whether or not GrAF is the pivot, the
adoption of the graph model, at least for the pur-
poses of exchange, would result in a similar reduc-
tion of effort, since graph representations are in
general trivially mappable.

In addition to enabling the generation of input to
a wide range of graph-handling software, the graph
model for annotations is isomorphic to representa-
tion formats used by emerging annotation frame-
works, in particular, UIMA’s Common Analysis
System8. It is also compatible with tools such as
the PDTBAPI, which is easily generalized to han-
dle graphs as well as trees. In addition, the graph
model underlies Semantic Web formats such as
RDF and OWL, so that any annotation graph is
trivially transducable to their serializations (which
include not only XML but several others as well),
and which, as noted above, has spawned a flurry of
research using graph algorithms to extract and ana-
lyze semantic information from the web.

A final advantage of the graph model is that it
provides a sound basis for devising linguistic anno-
tation schemes. For example, the PB and NB for-
mat, although ultimately mappable to a graph rep-
resentation, was not developed with the graph
model as a basis. The format is ambiguous as to
the relations among the parts of the annotation, in
particular, the relation between the information at
the beginning of the line providing the status
(“gold”), sense number, and morpho-syntactic de-
scription, and the rest of the annotation. Human
interpretation can determine that the status (proba-
bly) applies to the whole annotation, and the sense
number and msd apply to the PTB lexical item be-
ing annotated, as reflected in the graph-based rep-
resentation given in section 3. This somewhat in-
nocuous example demonstrates an all-too-
pervasive feature of many annotation schemes:
reliance on human interpretation to determine
structural relations that are implicit in the content
of the annotation. Blind automatic transduction of
the format to any other format is therefore impos-
sible, and the interpretation, although more or less
clear in this example, is prone to human error. If
the designers of the PB/NB format had begun with
a graph-based model—i.e., had been forced to

8 http://www.alphaworks.ibm.com/tech/uima

“draw the circles and lines”—this ambiguity would
likely have been avoided.

7 Conclusion

We have argued that a graph model for linguistic
annotations provides the generality and flexibility
required for representing linguistic annotations of
different types, and provides powerful and well-
established means to analyze these annotations in
ways that have been previously unexploited. We
introduce GrAF, an XML serialization of the graph
model, and demonstrate how it can be used to rep-
resent annotations originally made available in
widely varying formats. GrAF is designed to be
used in conjunction with the Linguistic Annotation
Framework, which defines an overall architecture
for representing layers of linguistic annotation. We
show how LAF stand-off annotations in GrAF
format can be easily merged and analyzed, and
discuss the application of graph-analytic algo-
rithms and tools.

Linguistic annotation has a long history, and
over the past 15-20 years we have seen increasing
attention to the need for standardization as well as
continuing development and convergence of best
practices to enable annotation interoperability.
Dramatic changes in technology, an in particular
the development of the World Wide Web, have
impacted both the ways in which we represent lin-
guistic annotations and the urgency of the need to
develop sophisticated language processing applica-
tions that rely on them. LAF and GrAF are not
based on brand new ideas, but rather reflect and
make explicit what appears to be evolving as
common best practice methodology.

References

A. Cardon and Maxime Crochemore, 1982. Partitioning
a graph in O(|A| log2 |V|).Theoretical Computer Sci-
ence, 19(1):85–98.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Mo-
toda, 2005. A General Framework for Mining Fre-
quent Subgraphs from Labeled Graphs. Fundamenta
Informaticae, 66:1-2, 53-82.

Andrew A. Krizhanovsky, 2005. Synonym search in
Wikipedia: Synarcher.
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/
0606097

7

Dat P.T Nguyen, Yutaka Matsuo, and Mitsuru Ishizuka,
2007. Exploiting Syntactic and Semantic Information

for Relation Extraction from Wikipedia. IJCAI
Workshop on Text-Mining & Link-Analysis (TextLink
2007).

Dominic Widdows and Beate Dorow, 2002. A graph
model for unsupervised lexical acquisition. Proceed-
ings of the 19th International Conference on Compu-
tational Linguistics, 1093-1099.

Evgeniy Gabrilovich and Shaul Markovitch, 2007.
Computing Semantic Relatedness Using Wikipedia-
based Explicit Semantic Analysis. Proceedings of the
20th International Joint Conference on Artificial In-
telligence, Hyderabad, India.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan and Tat-
Seng Chua, 2005. Question answering passage re-
trieval using dependency relations. SIGIR '05: Pro-
ceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 400-407.

Jeffrey Dean, Monika R. Henzinger, 1999. Finding re-
lated pages in the World Wide Web. Computer Net-
works, 31(11-16):1467–1479.

John E. McEneaney, 2001. Graphic and numerical
methods to assess navigation in hypertext. Interna-
tional Journal of Human-Computer Studies, 55, 761-
786.

Jon M. Kleinberg, 1999. Authoritative sources in a hy-
per-linked environment. Journal of the ACM
46(5):604-632.

Michel Habib, Christophe Paul, Laurent Viennot, 1999.
Partition refinement techniques: An interesting algo-
rithmic tool kit. International Journal of Foundations
of Computer Science, 10(2):147–170.

Mohammed J. Zaki, 2002. Efficiently mining trees in a
forest. Proceedings of SIGKDD’02.

Nancy Ide and Laurent Romary, 2004. A Registry of
Standard Data Categories for Linguistic Annotation.
Proceedings of the Fourth Language Resources and
Evaluation Conference (LREC), Lisbon, 135-39.

Nancy Ide and Laurent Romary, 2004. International
Standard for a Linguistic Annotation Framework.
Journal of Natural Language Engineering, 10:3-4,
211-225.

Nancy Ide and Laurent Romary, 2006. Representing
Linguistic Corpora and Their Annotations. Proceed-
ings of the Fifth Language Resources and Evaluation
Conference (LREC), Genoa, Italy.

Razvan C. Bunescu and Raymond J. Mooney, 2007.
Extracting relations from text: From word sequences
to dependency paths. In Anne Kao and Steve Poteet
(eds.), Text Mining and Natural Language Process-
ing, Springer, 29-44.

Sergey Brin, 1998. Extracting patterns and relations
from the world wide web. Proceedings of the 1998
International Workshop on the Web and Databases,
172-183.

Sisay Fissaha Adafre and Maar ten de Rijke, 2005. Dis-
covering missing links in Wikipedia. Workshop on
Link Discovery: Issues, Approaches and Applica-
tions.

Stephen Bird and Mark Liberman, 2001. A formal
framework for linguistic annotation. Speech Commu-
nication, 33:1-2, 23-60.

Vivi Nastase and Stan Szpakowicz, 2006. Matching
syntactic-semantic graphs for semantic relation as-
signment. Proceedings of TextGraphs: the Second
Workshop on Graph Based Methods for Natural
Language Processing, 81-88.

8

