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Abstract

In this paper, we introduce a new framework

for recognizing textual entailment which de-

pends on extraction of the set of publicly-

held beliefs – known as discourse commit-

ments – that can be ascribed to the author of

a text or a hypothesis. Once a set of commit-

ments have been extracted from a t-h pair,

the task of recognizing textual entailment is

reduced to the identification of the commit-

ments from a t which support the inference

of the h. Promising results were achieved:

our system correctly identified more than

80% of examples from the RTE-3 Test Set

correctly, without the need for additional

sources of training data or other web-based

resources.

1 Introduction

Systems participating in the previous two PAS-

CAL Recognizing Textual Entailment (RTE) Chal-

lenges (Bar-Haim et al., 2006) have successfully em-

ployed a variety of “shallow” techniques in order to

recognize instances of textual entailment, including

methods based on: (1) sets of heuristics (Vander-

wende et al., 2006), (2) measures of term overlap

(Jijkoun and de Rijke, 2005), (3) the alignment of

graphs created from syntactic or semantic dependen-

cies (Haghighi et al., 2005), or (4) statistical classi-

fiers which leverage a wide range of features, includ-

ing the output of paraphrase generation (Hickl et al.,

2006) or model building systems (Bos and Markert,

2006).

While relatively “shallow” approaches have

shown much promise in RTE for entailment pairs

where the text and hypothesis remain short, we ex-

pect that performance of these types of systems will

ultimately degrade as longer and more syntactically

complex entailment pairs are considered. In order

to remain effective as texts get longer, we believe

that RTE systems will need to employ techniques

that will enable them to enumerate the set of propo-

sitions which are inferable – whether asserted, pre-

supposed, or conventionally or conversationally im-

plicated – from a text-hypothesis pair.

In this paper, we introduce a new framework for

recognizing textual entailment which depends on ex-

traction of the set of publicly-held beliefs – or dis-

course commitments – that can be ascribed to the

author of a text or a hypothesis. We show that once

a set of discourse commitments have been extracted

from a text-hypothesis pair, the task of recognizing

textual entailment can be reduced to the identifica-

tion of the one (or more) commitments from the

text which are most likely to support the inference

of each commitment extracted from the hypothesis.

More formally, we assume that given a commitment

set {ct} consisting of the set of discourse commit-

ments inferable from a text t and a hypothesis h, we

define the task of RTE as a search for the commit-

ment c ∈ {ct} which maximizes the likelihood that

c textually entails h.

The rest of this paper is organized in the fol-

lowing way. Section 2 provides a sketch of the

system we used in the PASCAL RTE-3 Challenge.

Sections 3, 4, and 5 describe details of our sys-

tems for Commitment Extraction, Commitment Se-
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Figure 1: System Architecture.

lection, and Entailment Classification, respectively.

Finally, Section 6 discusses results from this year’s

evaluation, and Section 7 provides our conclusions.

2 System Overview

The architecture of our system for recognizing tex-

tual entailment (RTE) is presented in Figure 1.

In our system, text-hypothesis (t-h) pairs are ini-

tially submitted to a Preprocessing module which

(1) syntactic parses each passage (using an imple-

mentation of the (Collins, 1999) parser), (2) iden-

tifies semantic dependencies (using a semantic de-

pendency parser trained on PropBank (Palmer et

al., 2005) and NomBank (Meyers et al., 2004)),

(3) annotates named entities (using LCC’s Cicero-

Lite named entity recognition system), (4) resolves

instances of pronominal and nominal coreference

(using a system based on (Luo et al., 2004)), and

(5) normalizes temporal and spatial expressions to

fully-resolved instances (using a technique first in-

troduced in (Aarseth et al., 2006)).

Annotated passages are then sent to a Commit-

ment Extraction module, which uses a series of ex-

traction heuristics in order to enumerate a subset of

the discourse commitments that are inferable from

either the text or hypothesis. Following (Gunlog-

son, 2001; Stalnaker, 1979), we assume that a dis-

course commitment (c) represents the any of the set

of propositions that can necessarily be inferred to be

true, given a conventional reading of a text passage.

The complete list of commitments that our system

is able to extract from from the t used in examples

34 and 36 from the RTE-3 Test Set is presented in

Figure 2. (Details of our commitment extraction ap-

proach are presented in Section 3.)

Commitments are then sent to a Commitment Se-

lection module, which uses a weighted bipartite

matching algorithm first described in (Taskar et al.,

2005b) in order to identify the commitment from the

t which features the best alignment for each commit-

ment extracted from the h. The commitment pairs

identified for the hypotheses from 34 and 36 are

highlighted in Figure 2. (Details of our method for

selecting and aligning commitments are provided in

Section 4.)

Each pair of commitments are then considered in

turn by an Entailment Classification module, which

follows (Bos and Markert, 2006; Hickl et al., 2006)

in using a decision tree classifier in order to compute

the likelihood that a commitment extracted from a t

textually entails a commitment extracted from an h.

If a commitment pair is judged to be a pos-

itive instance of TE, it is sent to an Entailment

Validation module, which uses a system for rec-

ognizing instances of textual contradiction (RTC)

based on (Harabagiu et al., 2006) in order to de-

termine whether the (presumably) entailed hypothe-

sis is contradicted by any of other commitments ex-

tracted from the t during commitment extraction. If

no text commitment can be identified which contra-

dicts the hypothesis, it is presumed to be textually

entailed, and a judgment of YES is returned. Alter-

natively, if the entailed h is textually contradicted by

one (or more) of the commitments extracted from

the t, the h is considered to be contradicted by the

t, the entailment pair is classified as a negative in-

stance of TE, and a judgment of NO is returned.

In contrast, when commitment pairs are judged to

be negative instances of TE by the Entailment Clas-

sifier, the current pair is removed from further con-

sideration by the system, and the next most likely

commitment pair is considered. Commitment pairs

are considered in decreasing order of the probability

output by the Commitment Selection module until a

positive instance of TE is identified – or until there

are no more commitment pairs with a selection prob-

ability greater than a pre-defined threshold.
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Negative Instance of Textual Entailment

who served as Buchanan’s White House hostess.

Text:

Hyp(34): Harriet Lane owned a Revenue Cutter. Hyp(36): Harriet Lane worked at the White House.

T20. James Buchanan had title of President.
T21. James Buchanan had a White House hostess.

T24. James Buchanan had a niece.

T22. James Buchanan had a hostess.
T23. James Buchanan was associated with the White House.

T6.  A Revenue Cutter was named for the niece of President James Buchanan.
T7.  A Revenue Cutter was named for Buchanan’s White House hostess.
T8.  A Revenue Cutter was named for a White House hostess.
T9.  A Revenue Cutter was named for a hostess.

T10. The niece of a President served as Buchanan’s White House hostess.
T11. The niece of a President served as Buchanan’s hostess.
T12. The niece of a President served as a White House hostess.

T14. The niece of a President had occupation hostess.

T1.  A Revenue Cutter is a ship.
T2.  The ship was named for Harriet Lane.
T3.  Harriet Lane was the niece of President James Buchanan.
T4.  The niece of Buchanan served as Buchanan’s White House hostess. T19. Harriet Lane was related to James Buchanan.

T16. Harriet Lane was related to President James Buchanan.
T17. Harriet Lane was the niece of a President.
T18. Harriet Lane was related to a President.

T25. Harriet Lane served as Buchanan’s White House hostess.
T26. Harriet Lane served as Buchanan’s hostess.
T27. Harriet Lane served as a White House hostess.

T29. Harriet Lane had occupation hostess.

T5.  A Revenue Cutter was named for Harriet Lane.

T30. Harriet Lane served as a hostess..

T13. The niece of a President served at the White House.

T15. The niece of a President served as a hostess.

T28. Harriet Lane served at the White House.
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Positive Instance of Textual Entailment

A Revenue Cutter, the ship was named for Harriet Lane, niece of President James Buchanan,

Figure 2: Text Commitments Extracted from Examples 34 and 36.

3 Extracting Discourse Commitments

Following Preprocessing, our system for RTE lever-

ages a series of heuristics in order to extract a subset

of the discourse commitments available from a text-

hypothesis pair. In this section, we outline the five

classes of heuristics we used to extract commitments

for the RTE-3 Challenge.

Sentence Segmentation: We use a sentence seg-

menter to break text passages into sets of individ-

ual sentences; commitments are then extracted from

each sentence independently.

Syntactic Decomposition: We use heuristics to

syntactically decompose sentences featuring coordi-

nation and lists into well-formed sentences that only

include a single conjunct or list element.

Supplemental Expressions: Recent work

by (Potts, 2005; Huddleston and Pullum, 2002)

has demonstrated that the class of supplemental

expressions – including appositives, as-clauses,

parentheticals, parenthetical adverbs, non-restrictive

relative clauses, and epithets – trigger conventional

implicatures (CI) whose truth is necessarily pre-

supposed, even if the truth conditions of a sentence

are not satisfied. In our current system, heuristics

were used to extract supplemental expressions from

each sentence under consideration and to create new

sentences which specify the CI conveyed by the

expression.

Relation Extraction: We used an in-house rela-

tion extraction system to recognize six types of se-

mantic relations between named entities, including:

(1) artifact (e.g. OWNER-OF), (2) general affilia-

tion (e.g. LOCATION-OF), (3) organization affilia-

tion (e.g. EMPLOYEE-OF), (4) part-whole, (5) social

affiliation (e.g. RELATED-TO), and (6) physical lo-

cation (e.g. LOCATED-NEAR) relations. Again, as

with supplemental expressions, heuristics were used

to generate new commitments which expressed the

semantics conveyed by these nominal relations.

Coreference Resolution: We used systems for re-

solving pronominal and nominal coreference in or-

der to expand the number of commitments avail-

able to the system. After a set of co-referential

entity mentions were detected (e.g. Harriet Lane,

the niece, Buchanan’s White House hostess), new

commitments were generated from the existing

set of commitments which incorporated each co-

referential mention.

4 Commitment Selection

Following Commitment Extraction, we used an

word alignment technique first introduced in (Taskar

et al., 2005b) in order to select the commitment

extracted from t (henceforth, ct) which represents

the best alignment for each of the commitments ex-

tracted from h (henceforth, ch).

We assume that the alignment of two discourse

commitments can be cast as a maximum weighted

matching problem in which each pair of words

(ti,hj) in an commitment pair (ct,ch) is assigned a

score sij(t, h) corresponding to the likelihood that

ti is aligned to hj .1 As with (Taskar et al., 2005b),

we use the large-margin structured prediction model

1In order to ensure that content from the h is reflected in the
t, we assume that each word from the h is aligned to exactly one
or zero words from the t.
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introduced in (Taskar et al., 2005a) in order to com-

pute a set of parameters w (computed with respect to

a set of features f ) which maximize the number of

correct alignment predictions (ȳi) made given a set

of training examples (xi), as in Equation (1).

yi = arg max
ȳi∈Y

w⊤f(xi, ȳi),∀i (1)

We used three sets of features in our model: (1)

string features (including Levenshtein edit distance,

string equality, and stemmed string equality), (2)

lexico-semantic features (including WordNet Simi-

larity (Pedersen et al., 2004) and named entity sim-

ilarity equality), and (3) word association features

(computed using the Dice coefficient (Dice, 1945)2).

In order to provide a training set which most closely

resembled the RTE-3 Test Set, we hand-annotated

token alignments for each of the 800 entailment

pairs included in the Development Set.

Following alignment, we used the sum of the edge

scores (
∑n

i,j=1
sij(ti, hj)) computed for each of the

possible (ct, ch) pairs in order to search for the ct

which represented the reciprocal best hit (Mushe-

gian and Koonin, 2005) of each ch extracted from

the hypothesis. This was performed by selecting

a commitment pair (ct, ch) where ct was the top-

scoring alignment candidate for ch and ch was the

top-scoring alignment candidate for ct. If no recip-

rocal best-hit could be found for any of the commit-

ments extracted from the h, the system automatically

returned a TE judgment of NO.

We compared the performance of our word align-

ment and commitment selection algorithms against

an implementation of the lexical alignment classi-

fier described in (Hickl et al., 2006) on commitments

extracted from the entailment pairs from the RTE-2

Test Set. Table 1 presents results from evaluations of

these two models on the token alignment and com-

mitment selection tasks. (Gold standard annotations

for each task were created by hand by a team of 3

annotators following the RTE-3 evaluations.)

2The Dice coefficient was computed as Dice(i) =
2Cth(i)

Ct(i)Ch(i)
, where Cth is equal to the number of times a word

i was found in both the t and an h of a single entailment pair,
while Ct and Ch were equal to the number of times a word
was found in any t or h, respectively. A hand-crafted corpus
of 100,000 entailment pairs was used to compute values for
Ct, Ch, and Cth.

Task Measurement Current Work Hickl et al.

Token Alignment Precision 94.55% 92.22%

Token Alignment MRR 0.9219 0.8797

Commitment Selection Precision 89.50% 72.50%

Commitment Selection MRR 0.8853 0.7410

Table 1: Alignment and Selection Performance

5 Entailment Classification

Following work done by (Bos and Markert, 2006;

Hickl et al., 2006) for the RTE-2 Challenge, we used

a decision tree (C5.0 (Quinlan, 1998)) to estimate

the likelihood that a commitment pair represented

a valid instance of textual entailment.3 Confidence

values associated with each leaf node (i.e. YES or

NO) were normalized and used to rank examples for

the official submission.

In a departure from previous work (such as (Hickl

et al., 2006)) which leveraged large corpora of en-

tailment pairs to train an entailment classifier, our

model was only trained on the 800 text-hypothesis

pairs found in the RTE-3 Development Set (DevSet).

Features were selected manually by performing ten-

fold cross validation on the DevSet. Maximum per-

formance of the entailment classifier on the DevSet

is provided in Table 2.

IE IR QA SUM Total

Accuracy 0.8450 0.8750 0.8850 0.8600 0.8663

Average Precision 0.8522 0.8953 0.9005 0.8959 0.8860

Table 2: Entailment Classifier Performance.

A partial list of the features used in the Entailment

Classifier used in our official submission is provided

in Figure 3.

6 Experiments and Results

We submitted one ranked run in our official submis-

sion for this year’s evaluation. Official results from

the RTE-3 Test Set are presented in Table 3.

IE IR QA SUM Total

Accuracy 0.6750 0.8000 0.9000 0.8400 0.8038

Average Precision 0.7760 0.8133 0.9308 0.8974 0.8815

Table 3: Official RTE-3 Results.

Accuracy and average precision varied signifi-

cantly (p < 0.05) across each of the four tasks. Per-

formance (in terms of accuracy and average preci-

sion) was highest on the QA set (90.0% precision)

and lowest on the IE set (67.5%).

The length of the text (either short or long) did not

significantly impact performance, however; in fact,

3We used a pruning confidence of 20% in our model.
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ALIGNMENT FEATURES: Derived from the results of the alignment
of each pair of commitments performed during Commitment Selec-
tion.
⋄1⋄ LONGEST COMMON STRING: This feature represents the longest
contiguous string common to both texts.
⋄2⋄ UNALIGNED CHUNK: This feature represents the number of
chunks in one text that are not aligned with a chunk from the other
⋄3⋄ LEXICAL ENTAILMENT PROBABILITY: Defined as in (Glickman
and Dagan, 2005).

DEPENDENCY FEATURES: Computed from the semantic depen-
dencies identified by the PropBank- and NomBank-based semantic
parsers.
⋄1⋄ ENTITY-ARG MATCH: This is a boolean feature which fires when
aligned entities were assigned the same argument role label.
⋄2⋄ ENTITY-NEAR-ARG MATCH: This feature is collapsing the ar-
guments Arg1 and Arg2 (as well as the ArgM subtypes) into single
categories for the purpose of counting matches.
⋄3⋄ PREDICATE-ARG MATCH: This boolean feature is flagged when
at least two aligned arguments have the same role.
⋄4⋄ PREDICATE-NEAR-ARG MATCH: This feature is collapsing the ar-
guments Arg1 and Arg2 (as well as the ArgM subtypes) into single
categories for the purpose of counting matches.

SEMANTIC/PRAGMATIC FEATURES: Extracted during prepro-
cessing.
⋄1⋄ NAMED ENTITY CLASS: This feature has a different value for
each of the 150 named entity classes.
⋄2⋄ TEMPORAL NORMALIZATION: This boolean feature is flagged
when the temporal expressions are normalized to the same ISO
9000 equivalents.
⋄3⋄ MODALITY MARKER: This boolean feature is flagged when the
two texts use the same modal verbs.
⋄4⋄ SPEECH-ACT: This boolean feature is flagged when the lexicons
indicate the same speech act in both texts.
⋄5⋄ FACTIVITY MARKER: This boolean feature is flagged when the
factivity markers indicate either TRUE or FALSE in both texts simul-
taneously.
⋄6⋄ BELIEF MARKER: This boolean feature is set when the belief
markers indicate either TRUE or FALSE in both texts simultaneously.

Figure 3: Features used in the Entailment Classifier

as can be seen in Table 4, total accuracy was nearly

the same for examples featuring short or long texts.

Short Long

n Accuracy n Accuracy

IE 181 0.6685 19 0.7368

IR 146 0.8082 54 0.7778

QA 165 0.8909 35 0.9429

SUM 191 0.8482 9 0.6667

Total 683 0.8023 117 0.8120

Table 4: Short vs. Long Pairs.

In experiments conducted following the RTE-3

submission deadline, we found that using a sys-

tem for recognizing textual contradiction to vali-

date judgments output by the entailment classifier

had only a slight positive impact on the overall per-

formance of our system. Table 5 compares per-

formance of our RTE system when four different

configurations of our system for recognizing textual

contradiction was used.

When used with its default threshold (λ = 0.85),

we discovered that using textual contradiction en-

abled us to identify 17 additional examples (2.13%

overall) that were not available when using our sys-

Validation? λ IE IR QA SUM Total

Yes (RTE-3) 0.85 0.6750 0.8000 0.9000 0.8400 0.8038

Yes 0.75 0.6900 0.8100 0.8850 0.8650 0.8125

Yes 0.65 0.6550 0.8000 0.8850 0.8250 0.7913

No – 0.6550 0.8000 0.8650 0.8250 0.7865

Table 5: Impact of Validation.

tem for RTE alone.4 When we hand-tuned λ to max-

imize performance on the RTE-3 Test Set, we found

that accuracy could be increased by 3.0% over the

baseline (to 81.25% overall). Despite its limited ef-

fectiveness on this year’s Test Set, we believe that

net positive effect of using textual contradiction to

validate textual entailment judgments suggests that

this technique has merit and should be explored in

future evaluations.

In a second post hoc experiment, we sought to

quantify the impact that additional sources of train-

ing data could have on the performance of our RTE

system. Although our official submission was only

trained on the 800 t-h pairs found in the RTE-3 De-

velopment Set, we followed (Hickl et al., 2006) in

using a large, hand-crafted training set of 100,000

text-hypothesis pairs in order to train our entailment

classifier. Even though previous work has shown

that RTE accuracy increased with the size of the

training set, our experiments showed no correlation

between the size of the training corpus and the over-

all accuracy of the system. Table 6 summarizes the

performance of our RTE system when trained on in-

creasing amounts of training data. While increasing

the training data to approximately 10,000 training

examples did positively impact performance, we dis-

covered that using a training corpus of a size equal

to (Hickl et al., 2006)’s had nearly no measurable

impact on the observed performance of our system.

Training Corpus Accuracy Average Precision

800 pairs (RTE-3 Dev) 0.8038 0.8815

10,000 pairs 0.8150 0.8939

25,000 pairs 0.8225 0.8834

50,000 pairs 0.8125 0.8355

100,000 pairs 0.8050 0.8003

Table 6: Impact of Training Corpus Size.

While large training corpora (like (Hickl et al.,

2006)’s or the one compiled for this work) may pro-

vide an important source of lexico-semantic infor-

mation that can be leveraged in performing an entail-

ment classification, these results suggest that our ap-

proach based on commitment extraction may nullify

4We learned the default threshold by training on the textual
contradiction corpus compiled by (Harabagiu et al., 2006).
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the gains in performance seen by these approaches.

7 Conclusions

This paper introduced a new framework for recog-

nizing textual entailment which depends on the ex-

traction of the discourse commitments that can be

inferred from a conventional interpretation of a text

passage. By explicitly enumerating the set of infer-

ences that can be drawn from a t or h, our approach

is able to reduce the task of RTE to the identification

of the set of commitments that support the inference

of each corresponding commitment extracted from a

hypothesis. In our current work, we show that this

approach can be used to correctly classify more than

80% of examples from the RTE-3 Test Set, without

the need for additional sources of training data or

web-based resources.
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