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Abstract

We describe an approach to textual infer-
ence that improves alignments at both the
typed dependency level and at a deeper se-
mantic level. We present a machine learning
approach to alignment scoring, a stochas-
tic search procedure, and a new tool that
finds deeper semantic alignments, allowing
rapid development of semantic features over
the aligned graphs. Further, we describe a
complementary semantic component based
on natural logic, which shows an added gain
of 3.13% accuracy on the RTE3 test set.

1 Introduction

Among the many approaches to textual inference,
alignment of dependency graphs has shown utility
in determining entailment without the use of deep
understanding. However, discovering alignments
requires a scoring function that accurately scores
alignment and a search procedure capable of approx-
imating the optimal mapping within a large search
space. We address the former requirement through
a machine learning approach for acquiring lexical
feature weights, and we address the latter with an
approximate stochastic approach to search.

Unfortunately, the most accurate aligner can-
not capture deeper semantic relations between two
pieces of text. For this, we have developed a tool,
Semgrex, that allows the rapid development of de-
pendency rules to find specific entailments, such as
familial or locative relations, a common occurence
in textual entailment data. Instead of writing code by

hand to capture patterns in the dependency graphs,
we develop a separate rule-base that operates over
aligned dependency graphs. Further, we describe a
separate natural logic component that complements
our textual inference system, making local entail-
ment decisions based on monotonic assumptions.

The next section gives a brief overview of the sys-
tem architecture, followed by our proposal for im-
proving alignment scoring and search. New coref-
erence features and the Semgrex tool are then de-
scribed, followed by a description of natural logic.

2 System Overview

Our system is a three stage architecture that con-
ducts linguistic analysis, builds an alignment be-
tween dependency graphs of the text and hypothesis,
and performs inference to determine entailment.

Linguistic analysis identifies semantic entities, re-
lationships, and structure within the given text and
hypothesis. Typed dependency graphs are passed
to the aligner, as well as lexical features such as
named entities, synonymity, part of speech, etc. The
alignment stage then performs dependency graph
alignment between the hypothesis and text graphs,
searching the space of possible alignments for the
highest scoring alignment. Improvements to the
scorer, search algorithm, and automatically learned
weights are described in the next section.

The final inference stage determines if the hy-
pothesis is entailed by the text. We construct a set
of features from the previous stages ranging from
antonyms and polarity to graph structure and seman-
tic relations. Each feature is weighted according to a
set of hand-crafted or machine-learned weights over
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the development dataset. We do not describe the fea-
tures here; the reader is referred to de Marneffe et al.
(2006a) for more details. A novel component that
leverages natural logic is also used to make the final
entailment decisions, described in section 6.

3 Alignment Model

We examine three tasks undertaken to improve the
alignment phase: (1) the construction of manu-
ally aligned data which enables automatic learning
of alignment models, and effectively decouples the
alignment and inference development efforts, (2) the
development of new search procedures for finding
high-quality alignments, and (3) the use of machine
learning techniques to automatically learn the pa-
rameters of alignment scoring models.

3.1 Manual Alignment Annotation
While work such as Raina et al. (2005) has tried
to learn feature alignment weights by credit assign-
ment backward from whether an item is answered
correctly, this can be very difficult, and here we fol-
low Hickl et al. (2006) in using supervised gold-
standard alignments, which help us to evaluate and
improve alignment and inference independently.

We built a web-based tool that allows annotators
to mark semantic relationships between text and hy-
pothesis words. A table with the hypothesis words
on one axis and the text on the other allows re-
lationships to be marked in the corresponding ta-
ble cell with one of four options. These relation-
ships include text to hypothesis entailment, hypothe-
sis to text entailment, synonymy, and antonymy. Ex-
amples of entailment (from the RTE 2005 dataset)
include pairs such as drinking/consumption, coro-
navirus/virus, and Royal Navy/British. By distin-
guishing between these different types of align-
ments, we can capture some limited semantics in the
alignment process, but full exploitation of this infor-
mation is left to future work.

We annotated the complete RTE2 dev and
RTE3 dev datasets, for a total of 1600 aligned
text/hypothesis pairs (the data is available at
http://nlp.stanford.edu/projects/rte/).

3.2 Improving Alignment Search
In order to find “good” alignments, we define both a
formal model for scoring the quality of a proposed

alignment and a search procedure over the alignment
space. Our goal is to build a model that maximizes
the total alignment score of the full dataset D, which
we take to be the sum of the alignment scores for all
individual text/hypothesis pairs (t, h).

Each of the text and hypothesis is a semantic de-
pendency graph; n(h) is the set of nodes (words)
and e(h) is the set of edges (grammatical relations)
in a hypothesis h. An alignment a : n(h) 7→ n(t) ∪
{null} maps each hypothesis word to a text word
or to a null symbol, much like an IBM-style ma-
chine translation model. We assume that the align-
ment score s(t, h, a) is the sum of two terms, the first
scoring aligned word pairs and the second the match
between an edge between two words in the hypoth-
esis graph and the corresponding path between the
words in the text graph. Each of these is a sum, over
the scoring function for individual word pairs sw and
the scoring function for edge path pairs se:

s(t, h, a) =
∑

hi∈n(h)

sw(hi, a(hi))

+
∑

(hi,hj)∈e(h)

se((hi, hj), (a(hi), a(hj)))

The space of alignments for a hypothesis with m
words and a text with n words contains (n + 1)m

possible alignments, making exhaustive search in-
tractable. However, since the bulk of the alignment
score depends on local factors, we have explored
several search strategies and found that stochastic
local search produces better quality solutions.

Stochastic search is inspired by Gibbs sampling
and operates on a complete state formulation of the
search problem. We initialize the algorithm with the
complete alignment that maximizes the greedy word
pair scores. Then, in each step of the search, we
seek to randomly replace an alignment for a single
hypothesis word hi. For each possible text word tj
(including null), we compute the alignment score if
we were to align hi with tj . Treating these scores as
log probabilities, we create a normalized distribution
from which we sample one alignment. This Gibbs
sampler is guaranteed to give us samples from the
posterior distribution over alignments defined im-
plicitly by the scoring function. As we wish to find a
maximum of the function, we use simulated anneal-
ing by including a temperature parameter to smooth
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the sampling distribution as a function of time. This
allows us to initially explore the space widely, but
later to converge to a local maximum which is hope-
fully the global maximum.

3.3 Learning Alignment Models
Last year, we manually defined the alignment scor-
ing function (de Marneffe et al., 2006a). However,
the existence of the gold standard alignments de-
scribed in section 3.1 enables the automatic learning
of a scoring function. For both the word and edge
scorers, we choose a linear model where the score is
the dot product of a feature and a weight vector:

sw(hi, tj) = θw · f(hi, tj), and
se((hi, hj), (tk, t`)) = θe · f((hi, hj), (tk, t`)).

Recent results in machine learning show the ef-
fectiveness of online learning algorithms for struc-
ture prediction tasks. Online algorithms update their
model at each iteration step over the training set. For
each datum, they use the current weight vector to
make a prediction which is compared to the correct
label. The weight vector is updated as a function
of the difference. We compared two different up-
date rules: the perceptron update and the MIRA up-
date. In the perceptron update, for an incorrect pre-
diction, the weight vector is modified by adding a
multiple of the difference between the feature vector
of the correct label and the feature vector of the pre-
dicted label. We use the adaptation of this algorithm
to structure prediction, first proposed by (Collins,
2002). The MIRA update is a proposed improvement
that attempts to make the minimal modification to
the weight vector such that the score of the incorrect
prediction for the example is lower than the score of
the correct label (Crammer and Singer, 2001).

We compare the performance of the perceptron
and MIRA algorithms on 10-fold cross-validation
on the RTE2 dev dataset. Both algorithms improve
with each pass over the dataset. Most improve-
ment is within the first five passes. Table 1 shows
runs for both algorithms over 10 passes through the
dataset. MIRA consistently outperforms perceptron
learning. Moreover, scoring alignments based on the
learned weights marginally outperforms our hand-
constructed scoring function by 1.7% absolute.

A puzzling problem is that our overall per-
formance decreased 0.87% with the addition of

Perfectly aligned
Individual words Text/hypothesis pairs

Perceptron 4675 271
MIRA 4775 283

Table 1: Perceptron and MIRA results on 10-fold cross-
validation on RTE2 dev for 10 passes.

RTE3 dev alignment data. We believe this is due
to a larger proportion of “irrelevant” and “relation”
pairs. Irrelevant pairs are those where the text and
hypothesis are completely unrelated. Relation pairs
are those where the correct entailment judgment re-
lies on the extraction of relations such as X works
for Y, X is located in Y, or X is the wife of Y. Both
of these categories do not rely on alignments for en-
tailment decisions, and hence introduce noise.

4 Coreference

In RTE3, 135 pairs in RTE3 dev and 117 in
RTE3 test have lengths classified as “long,” with
642 personal pronouns identified in RTE3 dev and
504 in RTE3 test. These numbers suggest that re-
solving pronomial anaphora plays an important role
in making good entailment decisions. For exam-
ple, identifying the first “he” as referring to “Yunus”
in this pair from RTE3 dev can help alignment and
other system features.

P: Yunus, who shared the 1.4 million prize Friday with the
Grameen Bank that he founded 30 years ago, pioneered the con-
cept of “microcredit.”
H: Yunus founded the Grameen Bank 30 years ago.

Indeed, 52 of the first 200 pairs from RTE3 dev
were deemed by a human evaluator to rely on ref-
erence information. We used the OpenNLP1 pack-
age’s maximum-entropy coreference utility to per-
form resolution on parse trees and named-entity data
from our system. Found relations are stored and
used by the alignment stage for word similarity.

We evaluated our system with and without coref-
erence over RTE3 dev and RTE3 test. Results are
shown in Table 3. The presence of reference infor-
mation helped, approaching significance on the de-
velopment set (p < 0.1, McNemar’s test, 2-tailed),
but not on the test set. Examination of alignments
and features between the two runs shows that the
alignments do not differ significantly, but associated

1http://opennlp.sourceforge.net/

167



weights do, thus affecting entailment threshold tun-
ing. We believe coreference needs to be integrated
into all the featurizers and lexical resources, rather
than only with word matching, in order to make fur-
ther gains.

5 Semgrex Language

A core part of an entailment system is the ability to
find semantically equivalent patterns in text. Pre-
viously, we wrote tedious graph traversal code by
hand for each desired pattern. As a remedy, we
wrote Semgrex, a pattern language for dependency
graphs. We use Semgrex atop the typed dependen-
cies from the Stanford Parser (de Marneffe et al.,
2006b), as aligned in the alignment phase, to iden-
tify both semantic patterns in a single text and over
two aligned pieces of text. The syntax of the lan-
guage was modeled after tgrep/Tregex, query lan-
guages used to find syntactic patterns in trees (Levy
and Andrew, 2006). This speeds up the process of
graph search and reduces errors that occur in com-
plicated traversal code.

5.1 Semgrex Features
Rather than providing regular expression match-
ing of atomic tree labels, as in most tree pattern
languages, Semgrex represents nodes as a (non-
recursive) attribute-value matrix. It then uses regular
expressions for subsets of attribute values. For ex-
ample, {word:run;tag:/ˆNN/} refers to any
node that has a value run for the attribute word and
a tag that starts with NN, while {} refers to any node
in the graph.

However, the most important part of Semgrex is
that it allows you to specify relations between nodes.
For example, {} <nsubj {} finds all the depen-
dents of nsubj relations. Logical connectives can
be used to form more complex patterns and node
naming can help retrieve matched nodes from the
patterns. Four base relations, shown in figure 1, al-
low you to specify the type of relation between two
nodes, in addition to an alignment relation (@) be-
tween two graphs.

5.2 Entailment Patterns
A particularly useful application of Semgrex is to
create relation entailment patterns. In particular, the
IE subtask of RTE has many characteristics that are

Semgrex Relations
Symbol #Description

{A} >reln {B} A is the governor of a reln relation
with B

{A} <reln {B} A is the dependent of a reln relation
with B

{A} >>reln {B} A dominates a node that is the
governor of a reln relation with B

{A} <<reln {B} A is the dependent of a node that is
dominated by B

{A} @ {B} A aligns to B

Figure 1: Semgrex relations between nodes.

not well suited to the core alignment features of our
system. We began integrating Semgrex into our sys-
tem by creating semantic alignment rules for these
IE tasks.
T: Bill Clinton’s wife Hillary was in Wichita today, continuing
her campaign.
H: Bill Clinton is married to Hillary. (TRUE)

Pattern:

({}=1
<nsubjpass ({word:married} >pp to {}=2))

@ ({} >poss ({lemma:/wife/} >appos {}=3))

This is a simplified version of a pattern that looks
for marriage relations. If it matches, additional pro-
grammatic checks ensure that the nodes labeled 2
and 3 are either aligned or coreferent. If they are,
then we add a MATCH feature, otherwise we add a
MISMATCH. Patterns included other familial rela-
tions and employer-employee relations. These pat-
terns serve both as a necessary component of an IE
entailment system and as a test drive of Semgrex.

5.3 Range of Application
Our rules for marriage relations correctly matched
six examples in the RTE3 development set and one
in the test set. Due to our system’s weaker per-
formance on the IE subtask of the data, we ana-
lyzed 200 examples in the development set for Sem-
grex applicability. We identified several relational
classes, including the following:

• Work: works for, holds the position of
• Location: lives in, is located in
• Relative: wife/husband of, are relatives
• Membership: is an employee of, is part of
• Business: is a partner of, owns
• Base: is based in, headquarters in

These relations make up at least 7% of the data, sug-
gesting utility from capturing other relations.
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6 Natural Logic

We developed a computational model of natural
logic, the NatLog system, as another inference en-
gine for our RTE system. NatLog complements our
core broad-coverage system by trading lower recall
for higher precision, similar to (Bos and Markert,
2006). Natural logic avoids difficulties with translat-
ing natural language into first-order logic (FOL) by
forgoing logical notation and model theory in favor
of natural language. Proofs are expressed as incre-
mental edits to natural language expressions. Edits
represent conceptual contractions and expansions,
with truth preservation specified natural logic. For
further details, we refer the reader to (Sánchez Va-
lencia, 1995).

We define an entailment relation v between
nouns (hammer v tool), adjectives (deafening v
loud), verbs (sprint v run), modifiers, connectives
and quantifiers. In ordinary (upward-monotone)
contexts, the entailment relation between compound
expressions mirrors the entailment relations be-
tween their parts. Thus tango in Paris v dance
in France, since tango v dance and in Paris v in
France. However, many linguistic constructions cre-
ate downward-monotone contexts, including nega-
tion (didn’t sing v didn’t yodel), restrictive quanti-
fiers (few beetles v few insects) and many others.

NatLog uses a three-stage architecture, compris-
ing linguistic pre-processing, alignment, and entail-
ment classification. In pre-processing, we define a
list of expressions that affect monotonicity, and de-
fine Tregex patterns that recognize each occurrence
and its scope. This monotonicity marking can cor-
rectly account for multiple monotonicity inversions,
as in no soldier without a uniform, and marks each
token span with its final effective monotonicity.

In the second stage, word alignments from our
RTE system are represented as a sequence of atomic
edits over token spans, as entailment relations
are described across incremental edits in NatLog.
Aligned pairs generate substitution edits, unaligned
premise words yield deletion edits, and unaligned
hypothesis words yield insertion edits. Where pos-
sible, contiguous sequences of word-level edits are
collected into span edits.

In the final stage, we use a decision-tree classi-
fier to predict the elementary entailment relation (ta-

relation symbol in terms of v RTE
equivalent p = h p v h, h v p yes
forward p < h p v h, h 6v p yes
reverse p = h h v p, p 6v h no
independent p # h p 6v h, h 6v p no
exclusive p | h p v ¬h, h v ¬p no

Table 2: NatLog’s five elementary entailment relations. The last
column indicates correspondences to RTE answers.

ble 2) for each atomic edit. Edit features include
the type, effective monotonicity at affected tokens,
and their lexical features, including syntactic cate-
gory, lemma similarity, and WordNet-derived mea-
sures of synonymy, hyponymy, and antonymy. The
classifier was trained on a set of 69 problems de-
signed to exercise the feature space, learning heuris-
tics such as deletion in an upward-monotone context
yields <, substitution of a hypernym in a downward-
monotone context yields =, and substitution of an
antonym yields |.

To produce a top-level entailment judgment, the
atomic entailment predictions associated with each
edit are composed in a fairly obvious way. If r is any
entailment relation, then (= ◦ r) ≡ r, but (# ◦ r) ≡
#. < and = are transitive, but (< ◦ =) ≡ #, and so
on.

We do not expect NatLog to be a general-purpose
solution for RTE problems. Many problems depend
on types of inference that it does not address, such
as paraphrase or relation extraction. Most pairs have
large edit distances, and more atomic edits means
a greater chance of errors propagating to the final
output: given the entailment composition rules, the
system can answer yes only if all atomic-level pre-
dictions are either < or =. Instead, we hope to make
reliable predictions on a subset of the RTE problems.

Table 3 shows NatLog performance on RTE3. It
makes positive predictions on few problems (18%
on development set, 24% on test), but achieves good
precision relative to our RTE system (76% and 68%,
respectively). For comparison, the FOL-based sys-
tem reported in (Bos and Markert, 2006) attained a
precision of 76% on RTE2, but made a positive pre-
diction in only 4% of cases. This high precision sug-
gests that superior performance can be achieved by
hybridizing NatLog with our core RTE system.

The reader is referred to (MacCartney and Man-
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ID Premise(s) Hypothesis Answer
518 The French railway company SNCF is cooperating in

the project.
The French railway company is called SNCF. yes

601 NUCOR has pioneered a giant mini-mill in which steel
is poured into continuous casting machines.

Nucor has pioneered the first mini-mill. no

Table 4: Illustrative examples from the RTE3 test suite

RTE3 Development Set (800 problems)
System % yes precision recall accuracy

Core +coref 50.25 68.66 66.99 67.25
Core -coref 49.88 66.42 64.32 64.88

NatLog 18.00 76.39 26.70 58.00
Hybrid, bal. 50.00 69.75 67.72 68.25
Hybrid, opt. 55.13 69.16 74.03 69.63

RTE3 Test Set (800 problems)
System % yes precision recall accuracy

Core +coref 50.00 61.75 60.24 60.50
Core -coref 50.00 60.25 58.78 59.00

NatLog 23.88 68.06 31.71 57.38
Hybrid, bal. 50.00 64.50 62.93 63.25
Hybrid, opt. 54.13 63.74 67.32 63.62

Table 3: Performance on the RTE3 development and test sets.
% yes indicates the proportion of yes predictions made by the
system. Precision and recall are shown for the yes label.

ning, 2007) for more details on NatLog.

7 System Results

Our core system makes yes/no predictions by thresh-
olding a real-valued inference score. To construct
a hybrid system, we adjust the inference score by
+x if NatLog predicts yes, −x otherwise. x is cho-
sen by optimizing development set accuracy when
adjusting the threshold to generate balanced predic-
tions (equal numbers of yes and no). As another
experiment, we fix x at this value and adjust the
threshold to optimize development set accuracy, re-
sulting in an excess of yes predictions. Results for
these two cases are shown in Table 3. Parameter
values tuned on development data yielded the best
performance. The optimized hybrid system attained
an absolute accuracy gain of 3.12% over our RTE
system, corresponding to an extra 25 problems an-
swered correctly. This result is statistically signifi-
cant (p < 0.01, McNemar’s test, 2-tailed).

The gain cannot be fully attributed to NatLog’s
success in handling the kind of inferences about
monotonicity which are the staple of natural logic.
Indeed, such inferences are quite rare in the RTE

data. Rather, NatLog seems to have gained primarily
by being more precise. In some cases, this precision
works against it: NatLog answers no to problem 518
(table 4) because it cannot account for the insertion
of called. On the other hand, it correctly rejects the
hypothesis in problem 601 because it cannot account
for the insertion of first, whereas the less-precise
core system was happy to allow it.
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