
Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 95–100,
Prague, June 2007. c©2007 Association for Computational Linguistics

Textual Entailment Using Univariate Density Model and Maximizing
Discriminant Function

Scott Settembre
SNePS Research Group, Department of Computer Science and Engineering

University at Buffalo
Buffalo, NY 14214, USA

ss424@cse.buffalo.edu

Abstract

The primary focuses of this entry this year
was firstly, to develop a framework to al-
low multiple researchers from our group to
easily contribute metrics measuring textual
entailment, and secondly, to provide a
baseline which we could use in our tools to
evaluate and compare new metrics. A de-
velopment environment tool was created to
quickly allow for testing of various metrics
and to easily randomize the development
and test sets. For each test, this RTE tool
calculated two sets of results by applying
the metrics to both a univariate Gaussian
density and by maximizing a linear dis-
criminant function. The metrics used for
the submission were a lexical similarity
metric and a lexical similarity metric using
synonym and antonym replacement. The
two submissions for RTE 2007 scored an
accuracy of 61.00% and 62.62%.

1 Introduction

The task of textual entailment for the PASCAL
Textual Entailment Challenge for 2007 was to cre-
ate a system to determine if a given pair of sen-
tences, called the Text-Hypothesis (T-H) pair, had
the property of having the Text sentence entail the
Hypothesis sentence. Each Text-Hypothesis pair is
also assigned the type of entailment that should be
applied to the pair when evaluating its entailment.
There are four types of entailment, each of which

may or may not need different techniques to de-
termine entailment, and for the purposes of the
RTE tool developed, are considered separate prob-
lems.

2 RTE Development Environment Tool

Our research group decided to begin focusing on
the Recognizing Textual Entailment challenge this
year in February and to continue our participation
for years to come. It was decided to create a
development environment from which our
researchers could attempt different techniques of
examining a Text-Hypothesis pair and yet all
metrics resulting from those techniques could be
used in calculating the final results. The RTE tool
also randomly generates training and testing sets
from the 800 Text-Hypothesis pairs provided for
development by the competition to avoid over-
fitting the data during the training stage.

Figure 1. Screenshot of the RTE Development Environment.

95

The RTE Tool can generate a metric by calling
a .NET object, COM object, web page, command
line, or an internal function. These metrics are
cached to speed testing, though a specific metric
type can be cleared manually should the object or
function generating the metric be changed.

In the image of the RTE tool above, we can see
a typical results screen. We have a misclassified
sample highlighted and all the relevant data for that
sample displayed on the bottom. Each category is
represented with a folder and displays the accuracy
results of the last classification. In this way, we
can easily compare and contrast different metrics
and their effectiveness on the samples in a simple
and intuitive way.

2.1 Defining Metrics

Each metric developed is required to produce a
continuous variable that can measure a feature of
the T-H pair. The metric value is required to be
normalized between 0 and 1 inclusive so that we
can use the same metrics for future expansion
when possibly dealing with nearest-neighbor clas-
sification techniques and not be subject to scaling
issues. This is also valuable if we intend to de-
velop vague predicates [Brachman and Levesque,
2004] to use in Boolean rules, another potential
classification implementation.

There is also currently a constraint that the
metric value “0” means the least entailment
(according to that particular metric) and the value
“1” means the most entailment. This helped create
an easy way to maximize our linear discriminant
function (which will be described below). This
constraint is unnecessary when classifying using
the univariate density model.

2.2 Classification Methods

The tool classifies a T-H test pair using one of two
classification methods. The first method uses the
metrics of the training set to generate the parame-
ters for eight Gaussian distributions, or two distri-
butions for each type of textual entailment. Each
distribution describes a probability density function
(PDF) for a particular type of entailment. For ex-
ample, there is one PDF for the entailment type of
“Question Answering” (QA) whose entailment is
“YES”, and there is one PDF for the entailment
type of QA whose entailment is “NO”. This uni-
variate normal model was chosen to simplify the
calculations over the multivariate model we

planned to use. Since the submissions would only
consider one metric for each run, instead of using
all the metrics we have defined, the univariate
model was appropriate.

The second method of classification uses the
metrics from the training set to develop a linear
decision boundary to maximize the accuracy out-
come in the test set. Once this boundary, or
threshold, is determined for each of the four types
of entailment, a simple comparison of the metric
from a T-H pair can be classified based on what
side of the boundary it is on. This linear discrimi-
nant function had a further constraint that required
the metric values be described in a certain way to
simplify the classification function. This require-
ment will be lifted for our next submission in order
to deal with solution landscapes that may not ad-
here to our Gaussian distribution model.

3 Metric Set Used for Submission

Three different metrics were developed for use in
our RTE tool this year. We decided to concentrate
on producing simple measurements to create a
baseline for which to judge the development of
new metrics as well as to judge the performance of
future training or classification methods.

Due to time constraints, we chose to employ
simple metrics, which have been used before, in
order to meet our primary goals. Despite the sim-
plicity and the lack of semantic interpretation of
the metrics, these metrics coupled with our pattern
classification strategy yielded competitive results.

3.1 Lexical Similarity Ratio Metric

Our first metric is a simple lexical similarity ratio
between the words in the Text and Hypothesis sen-
tences in a T-H pair. The formula counts number
of matches between the occurrences of a word in
the Hypothesis and the words in the Text. The
sum is then normalized by dividing it by the num-
ber of words in the Hypothesis itself. For baseline
purposes, every word was considered and only
punctuation was removed. This technique was also
used by other teams in previous challenge submis-
sions [Jijkoun and Rijke, 2005].

3.2 Average Matched Word Displacement

Our second metric was not used in the final results,
but will be described for completeness. This met-
ric was the average of the distances in the Text be-

96

tween matched words from the Hypothesis normal-
ized by dividing that average by the maximum pos-
sible distance. In other words, if two words in the
Hypothesis were found in the Text, the distance
between them in the Text would be averaged with
all the other combinations of matched word pair
distances and then normalized by dividing the
maximum possible distance value for that particu-
lar sentence. Preliminary results showed a less
than significant correlation and so were not used in
this submission.

3.3 Synonym and Antonym Replacement

The third metric is nearly identical to the lexical
similarity metric defined above except that if a
word in the Hypothesis sentence is not matched,
then all its synonyms and antonyms are also
searched for in the Text sentence. Any synonym
matches raise the score and any antonym matches
lower the score by a fixed amount, and in this case
arbitrarily selected as ±1 (before normalization). A
Microsoft Word 2003 COM object was used to
search for the synonyms and antonyms from Mi-
crosoft Word’s lexical database.

4 Classification used for Submission

Two different types of classification methods were
used to classify entailment for a Text-Hypothesis
pair. Both types are described below.

We chose to initially keep our classification
models simple and easy to visualize so that both
our experienced and inexperienced research group
members could participate. The “No Free Lunch
Theorem” [Duda, Hart, and Stork, 2001] shows
that there is no inherent benefit to any specific
classifier1 , and since the more important task of
generating the metrics 2 crosses academic disci-
plines in our research group, we found communi-
cating in terms of a Gaussian distribution was eas-
ily understood.

1 For “good generalization performance, there are no
context-independent or usage-independent reasons to
favor one learning or classification method over an-
other.”
2 Since we are creating the metrics, we are attempting to
distribute the values in a Gaussian curve. This becomes
a “context” which we can favor a classifier that will
classify the data better, such as the univariate normal
model. Our goal is to create a better metric and not
necessarily to find a better classifier.

4.1 Univariate Normal Model

The continuous univariate normal model, or Gaus-
sian density, allows us to calculate p(x), or the
probability that feature x will appear in a dataset.
The data points in the given dataset is assumed to
be distributed in a Gaussian distribution, some-
times referred to as a bell curve. Of course if the
data points in that data set turn out to be distributed
in a non-Gaussian curve (i.e. exponential curve or
even linear) or multimodal curve (more than one
peak), then we may not be able to draw any con-
clusions. For the purposes of our metrics, we are
assuming a Gaussian distribution, and encourage
the developer of the metric function to attempt to
fit the metric results into Gaussian curve.

The two parameters of interest are the mean μ
and the variance σ2, of the data points. With these
two parameters, we are essentially able to calculate
the probability density function (PDF) for the cate-
gory. After calculating these parameters from the
development data set, we can apply the following
formula to generate the probability, p(x), of a sam-
ple, where x is the metric value we wish to classify.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= ⎟

⎠
⎞

⎜
⎝
⎛ −
σ
μ

πσ

x
xp

2

2
1exp

2
1)(

During the training step, the mean of a category

is calculated. The following formula does this cal-
culation, where n is the number of samples, and xi
is a particular metric of the ith sample:

n
xn

i i∑== 1μ

Also during the training step, the variance of a

category is also calculated, with this formula:

()
n

nxxn

i i

n

ii∑ ∑= =
−

= 1

2

1
2

2
/

σ

For each type of entailment, there are two classi-

fiers: one classifier for “YES” and one classifier
for “NO”, representing the two categories. During
the training step, the mean and variance parame-
ters are calculated directly from the metrics that

97

come from the development data. During the test-
ing step, the specified metric is calculated for the
T-H pair, and using the univariate normal formula,
we can calculate the probability that the calculated
metric is in the “YES” category or the “NO” cate-
gory. Then which ever result is larger, that cate-
gory is chosen as the answer.

To understand the limitations of this method, we
have a quick example. Here is a parameter list of
each category as well as the decisions that were
made from them:

(IE,NO) = { μ = 0.6867668 , σ = 0.1824087}
(IE,YES) = { μ = 0.6874263 , σ = 0.1622136}
(IR,NO) = { μ = 0.3649016 , σ = 0.1984567}
(IR,YES) = { μ = 0.5888839 , σ = 0.2035728}
(QA,NO) = { μ = 0.4470804 , σ = 0.1821738}
(QA,YES) = { μ = 0.7330091 , σ = 0.1873602}
(SUM,NO) = { μ = 0.4470848 , σ = 0.2625011}
(SUM,YES) = { μ = 0.657442 , σ = 0.250246}

Overall correct entailments made: 492 out of 800.
Overall probability of success : 0.615

IE (200) [%47.5 with 95 correct]
 Predicted YES (0) [%NaN with 0 correct]
 Predicted NO (200) [%47.5 with 95 correct]
IR (200) [%66.5 with 133 correct]
 Predicted YES (76) [%63.16 with 48 correct]
 Predicted NO (124) [%68.55 with 85 correct]
QA (200) [%73.5 with 147 correct]
 Predicted YES (95) [%77.89 with 74 correct]
 Predicted NO (105) [%69.52 with 73 correct]
SUM (200) [%58.5 with 117 correct]
 Predicted YES (133) [%60.9 with 81 correct]
 Predicted NO (67) [%53.73 with 36 correct]

As we can see, the two categories (IE,NO) and

(IE,YES) are very similar in mean, μ. This essen-
tially translates to two Gaussian curves peaking at
the same point, which would cause an overlap that
would favor the curve with the larger variance dur-
ing the calculation of p(x). If we look at the results
using these parameters, we can see that in the “IE”
type of entailment all decisions were made in favor
of that category. This does not mean that there is
an error, just that the distribution of this metric is
too similar and so probably is not a good metric to
use in deciding the classification for that category.
Whereas in entailment type “QA”, we find that this
metric does indeed divide the categories into two
curves that are quite separated, and so yields a
good accuracy.

4.2 Maximizing the Discriminant Function

This is the easiest way the RTE tool calculates
whether a T-H pair is in a specific category. If a

metric is less-than a specific threshold, then the T-
H pair is classified as “NO”, and if it is above the
threshold, then the pair is classified as “YES”.
Each type of entailment has its own discriminant
function and therefore, there are only four classifi-
ers or in this case, technically defined as four di-
chotomizers.

Each threshold is calculated using a brute force
iterative technique. After the metric is calculated
for each sample, the RTE tool simply increments
the threshold a certain fixed amount (arbitrarily
selected as 0.001 each each iteration) and records
the accuracy over the entire development data set
for that iteration. As the process concludes after
one thousand iterations (that is, moving the thresh-
old from 0 to 1 in .001 increments), the threshold
with the maximum accuracy is selected as the
threshold for that classifier. This, however, places
a constraint on the way the metric needs to be de-
fined, as described above in section 2.1.

5 Results

There are four result sets representing each of the
metrics used paired with each of the classification
strategies used. The first table below shows the
actual results, broken down into each type of en-
tailment, using the released annotated test set. The
second table shows our results by randomly split-
ting the development dataset 80%/20% into a train-
ing set (80%) and a testing set (20%). From the
results listed in the second table, it was decided
which metric/classification pair would be used in
our final submission.

Although we cannot truly compare results from
this competition to last years RTE 2 competition,
we found that our results seemed quite competitive.
[Bar-Haim, Dagan, et al. 2006] We do recognize
that some of our metrics have already been em-
ployed by other teams [Jijkoun and Rijke, 2005]
and that our results may be different because of the
thesaurus corpus we employed and the classifica-
tion strategy we used.

5.1 Actual Results

The actual results are based on training the RTE
tool we developed on the released annotated de-
velopment dataset and then applying the trained
classifiers on the test dataset. In this table, each
column represents a training metric used with a

98

classification method. For the two metrics used,
“LS” represents Lexical Similarity, while “LR”
represents Lexical Similarity with Synonym and
Antonym Replacement (or Lexical Replacement
for short). For the two types of classification used,
“UN” represents the Univariate Normal model,
while “DM” represents Linear Discriminant
Maximization.

 LS+UN LR+UN LS+DM LR+DM
Overall 0.615 0.626 0.61 0.629
IE 0.475 0.510 0.495 0.505
IR 0.665 0.630 0.635 0.640
QA 0.735 0.750 0.750 0.750
SUM 0.585 0.615 0.560 0.620

As the reader can see, our final submissions’

scores were not the maximal ones from the table.
Our first submission we submitted scored 61% and
our second submission scored 62.62%. For our
first submission, the Lexical Similarity metric was
used in conjunction with the Linear Discriminant
Maximization model for classification. For our
second submission, our Lexical Replacement met-
ric was used in combination with the Univariate
Normal model of classification. These two combi-
nations were chosen, however, from the training
results below.

5.2 Training results

Using these results, it was decided to pick the
maximal overall accuracy using both metrics. It
was assumed that the same correlations found in
the development dataset would be found in the
testing dataset. Though this did not ring true in
actuality, the final results using either method were
quite close.

 LS+UN LR+UN LS+DM LR+DM
Overall 0.669 0.675 0.717 0.644
IE 0.425 0.575 0.625 0.600
IR 0.688 0.667 0.688 0.646
QA 0.811 0.784 0.811 0.784
SUM 0.771 0.686 0.775 0.543

6 Conclusions and Future Enhancements

The lexical similarity metric and its variants obvi-
ously have some correlation to whether a Text-

Hypothesis pair has entailment or not. Though we
were surprised by the results (from our runs ex-
ceeding results from other teams’ runs from previ-
ous years) and at how well they worked initially,
further investigation found the accuracy of certain
types of entailment, especially Information Extrac-
tion (IE), lacking and perhaps making some met-
rics almost irrelevant as a viable metric.

By focusing our efforts this year on developing
a tool to test various methods of classification and
metrics, we created an excellent way to develop
our ideas and distribute our research efforts among
researchers. The RTE Development Environment
will help us coordinate our efforts and allow small
gains in any individual metric to contribute to the
overall classification in a proportionately signifi-
cant way.

For future enhancements, we intend to apply the
multivariate model to process a metric vector in
determining classification instead of just consider-
ing one metric at a time (as we did in the univariate
model). In addition, we intend to extend our met-
rics to consider semantic interpretations and com-
parisons between the Text-Hypothesis pair.

We feel that our overall success was illuminat-
ing to the larger task at hand and we are looking
forward to applying our decision making frame-
work to next year’s submission. Judging by our
results, the simplicity of our approach will quite
possibly yield a competitive entailment strategy
even in comparison to more syntactic or semantic
decompositions of the sentence pairs at this time.

Our primary success, over the three week period
in which we addressed this problem, was the de-
velopment of a tool and a process by which mem-
bers of our research group can interact. The pool-
ing of expertise from our linguistics, computer sci-
ence, and cognitive science disciplines and con-
structing our future plan of action culminated in
the development of this tool, benchmarks for our
group, and constraints in which we can operate
efficiently and address this problem with more
depth in the future.

7 Acknowledgements

We would like to thank Dr. Stuart Shapiro and Dr.
William Rapaport of the SNePS Research Group,
University at Buffalo, for their encouragement and
guidance in this year and in the years to come.

99

Special thanks to Dr. Sargur Srihari of CEDAR,
“Center of Excellence for Document Analysis and
Recognition”, University at Buffalo, for providing
insight into various classification techniques. Fi-
nally, we congratulate our members of the SNePS
Research Group for their contributions over the
short amount of time we had to address this chal-
lenge this year.

References
Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,

Danilo Giampiccolo, Bernardo Magnini and Idan
Szpektor. 2006. The Second PASCAL Recognising
Textual Entailment Challenge. In Proceedings of the
Second PASCAL Challenges Workshop on Recognis-
ing Textual Entailment.

Ronald J. Brachman and Hector J. Levesque. 2004.
Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers, San Francisco, CA.

Richard O. Duda, Peter E. Hart, David G. Stork. Pattern
Classification. Wily, New York, second edition,
2001.

Valentin Jijkoun and Maarten de Rijke. Recognizing
Textual Entailment Using Lexical Similarity. Pro-
ceedings of the PASCAL Challenges Workshop on
Recognising Textual Entailment, 2005.

100

