
Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 72–77,
Prague, June 2007. c©2007 Association for Computational Linguistics

Shallow Semantics in Fast Textual Entailment Rule Learners

Fabio Massimo Zanzotto
DISP

University of Rome “Tor Vergata”
Roma, Italy

zanzotto@info.uniroma2.it

Marco Pennacchiotti
Computerlinguistik

Universität des Saarlandes,
Saarbrücken, Germany

pennacchiotti@coli.uni-sb.de

Alessandro Moschitti
DIT

University of Trento
Povo di Trento, Italy

moschitti@dit.unitn.it

Abstract

In this paper, we briefly describe two
enhancements of thecross-pair similarity
model for learning textual entailment rules:
1) the typed anchors and 2) a faster compu-
tation of the similarity. We will report and
comment on the preliminary experiments
and on the submission results.

1 Introduction

Results of the second RTE challenge (Bar Haim et
al., 2006) have suggested that bothdeep semantic
models andmachine learningapproaches can suc-
cessfully be applied to solve textual entailment. The
only problem seems to be the size of the knowledge
bases. The two best systems (Tatu et al., 2005; Hickl
et al., 2005), which are significantly above all the
others (more than +10% accuracy), use implicit or
explicit knowledge bases larger than all the other
systems. In (Tatu et al., 2005), a deep semantic
representation is paired with a large amount of gen-
eral and task specific semantic rules (explicit knowl-
edge). In (Hickl et al., 2005), the machine learning
model is trained over a large amounts of examples
(implicit knowledge).

In contrast, Zanzotto&Moschitti (2006) proposed
a machine-learning based approach which reaches a
high accuracy by only using the available RTE data.
The key idea is thecross-pair similarity, i.e. a simi-
larity applied to two text and hypothesis pairs which
considers the relations between the words in the two
texts and between the words in the two hypotheses.
This is obtained by usingplaceholdersto link the re-
lated words. Results in (Bar Haim et al., 2006) are

comparable with the best machine learning system
when this latter is trained only on the RTE exam-
ples.

Given the high potential of thecross-pair similar-
ity model, for the RTE3 challenge, we built on it by
including some features of the two best systems: 1)
we go towards a deeper semantic representation of
learning pairs including shallow semantic informa-
tion in the syntactic trees usingtyped placeholders;
2) we reduce the computational cost of the cross-pair
similarity computation algorithm to allow the learn-
ing over larger training sets.

The paper is organized as follows: in Sec. 2 we
review the cross-pair similarity model and its limits;
in Sec. 3, we introduce our model fortyped anchors;
in Sec. 4 we describe how we limit the computa-
tional cost of the similarity; in Sec. 5 we present the
two submission experiments, and in Sec. 6 we draw
some conclusions.

2 Cross-pair similarity and its limits

2.1 Learning entailment rules with syntactic
cross-pair similarity

The cross-pair similarity model (Zanzotto and
Moschitti, 2006) proposes a similarity measure
aiming at capturing rewrite rules from train-
ing examples, computing across-pair similarity
KS((T ′,H ′), (T ′′,H ′′)). The rationale is that if two
pairs are similar, it is extremely likely that they have
the same entailment value. The key point is the use
of placeholdersto mark the relations between the
sentence words. Aplaceholderco-indexes two sub-
structures in the parse trees of text and hypothesis,

72

indicating that such substructures are related. For
example, the sentence pair, “All companies file an-
nual reports” implies “All insurance companies file
annual reports”, is represented as follows:

T1 (S (NP:1 (DT All) (NNS: 1 compa-
nies)) (VP:2 (VBP: 2 file) (NP:3 (JJ:3
annual) (NNS:3 reports))))

H1 (S (NP:1 (DT All) (NNP Fortune)
(CD 50) (NNS:1 companies)) (VP:2
(VBP: 2 file) (NP:3 (JJ:3 annual)
(NNS:3 reports))))

(E1)

where the placeholders1 , 2 , and 3 indicate the rela-
tions between the structures ofT and ofH.

Placeholders help to determine if two pairs share
the samerewriting rule by looking at the subtrees
that they have in common. For example, suppose
we have to determine if “In autumn, all leaves fall”
implies “In autumn, all maple leaves fall”. The re-
lated co-indexed representation is:

T2 (S (PP (IN In) (NP (NN:a automn)))
(, ,) (NP:b (DT all) (NNS:b leaves))
(VP: c (VBP: c fall)))

H2 (S (PP (IN In) (NP:a (NN: a automn)))
(, ,) (NP:b (DT all) (NN maple)
(NNS:a leaves)) (VP:c (VBP: c fall)))

(E2)

E1 andE2 share the following subtrees:

T3 (S (NP:x (DT all) (NNS:x)) (VP: y

(VBP: y)))
H3 (S (NP:x (DT all) (NN) (NNS:x))

(VP: x (VBP: x)))

(R3)

This is therewrite rule they have in common. Then,
E2 can be likely classified as a valid entailment, as
it shares the rule with the valid entailmentE1.

The cross-pair similaritymodel uses: (1) a tree
similarity measureKT (τ1, τ2) (Collins and Duffy,
2002) that counts the subtrees thatτ1 and τ2 have
in common; (2) a substitution functiont(·, c) that
changes names of the placeholders in a tree accord-
ing to a set of correspondences between placehold-
ers c. Given C as the collection of all correspon-
dences between the placeholders of(T ′,H ′) and
(T ′′,H ′′), the cross-pair similarity is computed as:

KS((T ′, H ′), (T ′′, H ′′)) =
maxc∈C(KT (t(T ′, c), t(T ′′, c)) + KT (t(H ′, c), t(H ′′, c)))

(1)

The cross-pair similarityKS , used in a kernel-based
learning model as the support vector machines, al-
lows the exploitation of implicit true and false en-
tailment rewrite rules described in the examples.

2.2 Limits of the syntactic cross-pair similarity

Learning from examples using cross-pair similarity
is an attractive and effective approach. However,
the cross-pair strategy, as any machine learning ap-
proach, is highly sensitive on how the examples are
represented in the feature space, as this can strongly
bias the performance of the classifier.

Consider for example the following text-
hypothesis pair, which can lead to an incorrect rule,
if misused.

T4 “For my younger readers, Chapman
killed John Lennon more than twenty
years ago.”

H4 “John Lennon died more than twenty
years ago.”

(E4)

In the basic cross-pair similarity model, the learnt
rule would be the following:

T5 (S (NP:x) (VP: y (VBD: y) (NP:z)
(ADVP: k)))

H5 (S (NP:z) (VP: y (VBD: y)
(ADVP: k)))

(R5)

where the verbskill anddie are connected by they

placeholder. This rule is useful to classify examples
like:

T6 “Cows are vegetarian but, to save
money on mass-production, farmers fed
cows animal extracts.”

H6 “Cows have eaten animal extracts.”

(E6)

but it will clearly fail when used for:
T7 “FDA warns migraine medicine makers

that they are illegally selling migraine
medicines without federal approval.”

H7 “Migraine medicine makers declared
that their medicines have been ap-
proved.”

(E7)

wherewarnanddeclareare connected as generically
similar verbs.

The problem of the basic cross-pair similarity
measure is that placeholders do not convey the
semantic knowledge needed in cases such as the
above, where the semantic relation between con-
nected verbs is essential.

2.3 Computational cost of the cross-similarity
measure

Let us go back to the computational cost ofKS (eq.
1). It heavily depends on the size ofC. We de-
fine p′ andp′′ as the placeholders of, respectively,
(T ′,H ′) and(T ′′,H ′′). As C is combinatorial with
respect to|p′| and|p′′|, |C| rapidly grows. Assigning
placeholders only to chunks helps controlling their

73

number. For example, in the RTE data the number
of placeholders hardly goes beyond 7, as hypothe-
ses are generally short sentences. But, even in these
cases, the number ofKT computations grows. As
the treest(Γ, c) are obtained from a single treeΓ
(containing placeholder) applying differentc ∈ C,
it is reasonable to think that they will share com-
mon subparts. Then, during the iterations ofc ∈
C, KT (t(Γ′, c), t(Γ′′, c)) will compute the similarity
between subtrees that have already been evaluated.
The reformulation of thecross-pair similarityfunc-
tion we present takes advantage of this.

3 Adding semantic information to
cross-pair similarity

The examples in the previous section show that
the cross-pairs approach lacks the lexical-semantic
knowledge connecting the words in a placeholder.
In the examples, the missed knowledge is the type
of semantic relation between the main verbs. The
relation that linkskill anddie is not a generic sim-
ilarity, as a WordNet based similarity measure can
suggest, but a more specific causal relation. The
learnt rewrite ruleR5 holds only for verbs in such
relation. In facts, it is correctly applied in example
E6, asfeedcauseseat, but it gives a wrong sugges-
tion in exampleE7, sincewarnanddeclareare only
related by a generic similarity relation.

We then need to encode this information in the
syntactic trees in order to learn correct rules.

3.1 Defining anchor types

The idea of introducing anchor types should be in
principle very simple and effective. Yet, this may be
not the case: simpler attempts to introduce semantic
information in RTE systems have often failed. To
investigate the validity of our idea, we then need to
focus on a small set of relevant relation types, and to
carefully control ambiguity for each type.

A valuable source of relation types among words
is WordNet. We choose to integrate in our system
three important relation standing at the word level:
part-of, antinomy, andverb entailment. We also de-
fine two more general anchor types:similarity and
the surface matching. The first type links words
which are similar according to some WordNet simi-
larity measure. Specifically, this type is intended to

Rank Relation Type Symbol
1. antinomy ↔
2. part-of ⊂
3. verb entailment ←

4. similarity ≈
5. surface matching =

Table 1: Ranked anchor types

capture the semantic relations ofsynonymyandhy-
peronymy. The second type is activated when words
or lemmas match: then, it captures cases in which
words are semantically equivalent. The complete set
of relation types used in the experiments is given in
Table 1.

3.2 Type anchors in the syntactic tree

To learn more correctrewrite rulesby using the an-
chor types defined in the previous section, we need
to add this information to syntactic trees. The best
position would be in the same nodes of the anchors.
Also, to be more effective, this information should
be inserted in as many subtrees as possible. Thus we
define the typed-anchor climbing-up rules. We then
implement in our model the following climbing up
rule:

if two typed anchors climb up to the same
node, give precedence to that with the high-
est ranking in Tab. 1.

This rule can be easily showed to be consistent with
common sense intuitions. For an example like “John
is a tall boy” that does not entail “John is a short
boy”, our strategy will produce these trees:

(E8)
T8 H8

S↔ 3

NP= 1

NNP= 1

John

VP↔ 2

AUX

is

NP↔ 3

DT

a

JJ↔ 2

tall

NN = 3

boy

S↔ 3

NP= 1

NNP= 1

John

VP↔ 2

AUX

is

NP↔ 3

DT

a

JJ↔ 2

short

NN = 3

boy

This representation can be used to derive a correct
rewrite rule, such as:
if two fragments have the same syntactic struc-
ture S(NP1, V P (AUX,NP2)), and there is an
antonym type (↔) on the S and NP2 , then the

74

c1 = {(a, 1), (b, 2), (c, 3)} c2 = {(a, 1), (b, 2), (d, 3)}
Γ1 t(Γ1, c1) t(Γ1, c2)

X1
a

A2
a

B3
a

w1

a

C4
b

w2

b

D5
d

D6
c

w3

c

C7
d

w4

d

X1
a:1

A2
a:1

B3
a:1

w1

a:1

C4
b:2

w2

b:2

D5
d

D6
c:3

w3

c:3

C7
d

w4

d

X1
a:1

A2
a:1

B3
a:1

w1

a:1

C4
b:2

w2

b:2

D5
d:3

D6
c

w3

c

C7
d:3

w4

d:3
Γ2 t(Γ2, c1) t(Γ2, c2)

X1
1

A2
1

B3
1

m1

1

C4
2

m2

2

D5

D6
3

m3

3

C7

m4

X1
a:1

A2
a:1

B3
a:1

m1

a:1

C4
b:2

m2

b:2

D5

D6
c:3

m3

c:3

C7

m4

X1
a:1

A2
a:1

B3
a:1

m1

a:1

C4
b:2

m2

b:2

D5

D6
d:3

m3

d:3

C7

m4

Figure 1:Tree pairs with placeholders andt(T, c) transformation

entailment does not hold.

4 Reducing computational cost of the
cross-pair similarity computation

4.1 The original kernel function

In this section, we describe more in detail the simi-
larity functionKS (Eq. 1). To simplify, we focus on
the computation of only oneKT of the kernel sum.

KS(Γ′,Γ′′) = max
c∈C

KT (t(Γ′, c), t(Γ′′, c)), (2)

where the(Γ′,Γ′′) pair can be either(T ′, T ′′) or
(H ′,H ′′). We apply this simplification since we
are interested in optimizing the evaluation of the
KT with respect to different sets of correspondences
c ∈ C.

To better explainKS , we need to analyze the role
of the substitution functiont(Γ, c) and to review the
tree kernel functionKT .

The aim oft(Γ, c) is to coherently replace place-
holders in two treesΓ′ andΓ′′ so that these two trees
can be compared. The substitution is carried out
according to the set of correspondencesc. Let p′

andp′′ be placeholders ofΓ′ andΓ′′, respectively,
if p′′ ⊆ p′ then c is a bijection between a subset
p̂′ ⊆ p′ andp′′. For example (Fig. 1), the treesΓ1

hasp1 ={ a, b , c , d} as placeholder set andΓ2 has
p2 ={ 1 , 2 , 3}. In this case, a possible set of corre-
spondence isc1 = {(a, 1), (b, 2), (c, 3)}. In Fig. 1

the substitution function replaces each placeholder
a of the treeΓ1with the new placeholdera:1 by
t(·, c) obtaining the transformed treet(Γ1, c1), and
each placeholder1 of Γ2 with a:1. After these sub-
stitutions, the labels of the two trees can be matched
and the similarity functionKT is applicable.

KT (τ ′, τ ′′), as defined in (Collins and Duffy,
2002), computes the number of common subtrees
betweenτ ′ andτ ′′.

4.2 An observation to reduce the
computational cost

The above section has shown that the similarity
functionKS firstly applies the transformationt(·, c)
and then computes the tree kernelKT . The overall
process can be optimized by factorizing redundant
KT computations.

Indeed, two trees,t(Γ, c′) and t(Γ, c′′), obtained
by applying two sets of correspondencesc′, c′′ ∈ C,
may partially overlap sincec′ andc′′ can share a non-
empty set of common elements. Let us consider the
subtree setS shared byt(Γ, c′) and t(Γ, c′′) such
that they contain placeholders inc′ ∩ c′′ = c, then
t(γ, c) = t(γ, c′) = t(γ, c′′) ∀γ ∈ S. Therefore if
we apply a tree kernel functionKT to a pair(Γ′,Γ′′),
we can find ac such that subtrees ofΓ′ and subtrees
of Γ′′ are invariant with respect toc′ andc′′. There-
fore,KT (t(γ′, c), t(γ′′, c)) = KT (t(γ′, c′), t(γ′′, c′))
= KT (t(γ′, c′′), t(γ′′, c′′)). This implies that it is
possible to refine the dynamic programming algo-
rithm used to compute the∆ matrices while com-

75

puting the kernelKS(Γ′,Γ′′).
To better explain this idea let us consider

Fig. 1 that represents two trees,Γ1 and Γ2,
and the application of two different transforma-
tions c1 = {(a, 1), (b, 2), (c, 3)} and c2 =
{(a, 1), (b, 2), (d, 3)}. Nodes are generally in the
form Xi z whereX is the original node label,z is
the placeholder, andi is used to index nodes of the
tree. Two nodes are equal if they have the same node
label and the same placeholder. The first column of
the figure represents the original treesΓ1 and Γ2.
The second and third columns contain respectively
the transformed treest(Γ, c1) andt(Γ, c2)

Since the subtree ofΓ1 starting fromA2 a con-
tains only placeholders that are inc, in the trans-
formed trees,t(Γ1, c1) and t(Γ1, c2), the subtrees
rooted inA2 a:1 are identical. The same happens
for Γ2 with the subtree rooted inA2 1. In the trans-
formed trees,t(Γ2, c1) andt(Γ2, c2), subtrees rooted
in A2 a:1 are identical. The computation ofKT

applied to the above subtrees gives an identical re-
sult. Then, this computation can be avoided. If cor-
rectly used in a dynamic programming algorithm,
the above observation can produce an interesting de-
crease in the time computational cost. More de-
tails on the algorithm and the decrease in computa-
tional cost may be found in (Moschitti and Zanzotto,
2007).

5 Experimental Results

5.1 Experimental Setup

We implemented the novel cross-similarity kernel
in the SVM-light-TK (Moschitti, 2006) that en-
codes the basic syntactic kernelKT in SVM-light
(Joachims, 1999).

To assess the validity of the typed anchor model
(tap), we evaluated two sets of systems: theplain
andlexical-boostedsystems. Theplain systems are:
-tap: our tree-kernel approach using typed place-
holders with climbing in the syntactic tree;
-tree: the cross-similarity model described in Sec.2.
Its comparison withtap indicates the effectiveness
of our approaches;
The lexical-boostedsystems are:
-lex: a standard approach based onlexical over-
lap. The classifier uses as the only feature the lexi-
cal overlap similarity score described in (Corley and

Mihalcea, 2005);
-lex+tap: these configurations mix lexical overlap
and our typed anchor approaches;
-lex+tree: the comparison of this configuration with
lex+tapshould further support the validity of our in-
tuition on typed anchors;

Preliminary experiments have been performed us-
ing two datasets:RTE2 (the 1600 entailment pairs
from the RTE-2 challenge) andRTE3d (the devel-
opment dataset of this challenge). We randomly
divided this latter in two halves:RTE3d0 and
RTE3d1.

5.2 Investigatory Results Analysis and
Submission Results

Table 2 reports the results of the experiments. The
first column indicates the training set whereas the
second one specifies the used test set. The third and
the forth columns represent the accuracy of basic
models: the originaltree model and the enhanced
tap model. The latter three columns report the basic
lex model and the two combined models,lex+tree
and lex+tap. The second and the third rows repre-
sent the accuracy of the models with respect to the
first randomly selected half ofRTE3d whilst the
last two rows are related to the second half.

The experimental results show some interesting
facts. In the case of theplain systems(treeandtap),
we have the following observations:
- The use of thetyped anchorsin the model seems
to be effective. All thetap model results are higher
than the correspondingtreemodel results. This sug-
gests that the method used to integrate this kind of
information in the syntactic tree is effective.
- The claim thatusing more training material helps
seems not to be supported by these experiments. The
gap betweentree and tap is higher when learn-
ing with RTE2 + RTE3d0 than when learning
with RTE30. This supports the claim. How-
ever, the result is not kept when learning with
RTE2 + RTE3d1 with respect to when learning
with RTE31. This suggests that adding not very
specific information, i.e. derived from corpora dif-
ferent from the target one (RTE3), may not help the
learning of accurate rules.

On the other hand, in the case of thelexical-
boosted systems (lex, lex+tree, and lex+tap), we
see that:

76

Train Test tree tap lex lex+tree lex+tap
RTE3d0 RTE3d1 62.97 64.23 69.02 68.26 69.02
RTE2 + RTE3d0 RTE3d1 62.22 62.47 71.03 71.28 71.79
RTE3d1 RTE3d0 62.03 62.78 70.22 70.22 71.22
RTE2 + RTE3d0 RTE3d0 63.77 64.76 71.46 71.22 72.95

Table 2: Accuracy of the systems on two folds of RTE3 development

- There is an extremely high accuracy result for the
pure lex model. This result is counterintuitive. A
model like lex has been likely used by QA or IE
systems to extract examples for the RTE3d set. If
this is the case we may expect that positive and
negative examples should have similar values for
this lex distance indicator. It is then not clear why
this model results in so high accuracy.
- Given the high results of thelex model, the model
lex+treedoes not increase the performances.
- On the contrary, the modellex+tap is always better
(or equal) than thelex model. This suggests that
for this particular set of examples thetyped anchors
are necessary to effectively use therewriting rules
implicitly encoded in the examples.
- When thetap model is used in combination with
the lex model, it seems that the claim “the more
training examples the better” is valid. The gaps
betweenlexandlex+tapare higher when theRTE2
is used in combination with theRTE3d related set.

Given this analysis we submitted two systems
both based on thelex+tapmodel. We did two differ-
ent training: one usingRTE3d and the other using
RTE2 + RTE3d. Results are reported in the Table
below:

Train Accuracy
RTE3d 66.75%
RTE2 + RTE3d 65.75%

Such results seem too low to be statistically consis-
tent with our development outcome. This suggests
that there is a clear difference between the content
of RTE3d and theRTE3 test set. Moreover, in
contrast with what expected, the system trained with
only theRTE3d data is more accurate than the oth-
ers. Again, this suggests that the RTE corpora (from
all the challenges) are most probably very different.

6 Conclusions and final remarks

This paper demonstrates that it is possible to ef-
fectively include shallow semantics in syntax-based
learning approaches. Moreover, as it happened in
RTE2, it is not always true that more learning ex-
amples increase the accuracy of RTE systems. This
claim is still under investigation.

References
Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Gi-

ampiccolo, Bernardo Magnini, and Idan Szpektor. 2006.
The II PASCAL RTE challenge. InPASCAL Challenges
Workshop, Venice, Italy.

Michael Collins and Nigel Duffy. 2002. New ranking algo-
rithms for parsing and tagging: Kernels over discrete struc-
tures, and the voted perceptron. InProceedings of ACL02.

Courtney Corley and Rada Mihalcea. 2005. Measuring the se-
mantic similarity of texts. InProc. of the ACL Workshop
on Empirical Modeling of Semantic Equivalence and Entail-
ment, pages 13–18, Ann Arbor, Michigan, June. Association
for Computational Linguistics.

Andrew Hickl, John Williams, Jeremy Bensley, Kirk Roberts,
Bryan Rink, and Ying Shi. 2005. Recognizing textual en-
tailment with LCCs GROUNDHOG system. InProceedings
of the Second PASCAL Challenges Workshop on Recognis-
ing Textual Entailment, Venice, Italy.

Thorsten Joachims. 1999. Making large-scale svm learning
practical. In B. Schlkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods-Support Vector Learning. MIT
Press.

Alessandro Moschitti and Fabio Massimo Zanzotto. 2007.
Fast and effective kernels for relational learning from texts.
In Proceedings of the International Conference of Machine
Learning (ICML), Corvallis, Oregon.

Alessandro Moschitti. 2006. Making tree kernels practical
for natural language learning. InProceedings of EACL’06,
Trento, Italy.

Marta Tatu, Brandon Iles, John Slavick, Adrian Novischi, and
Dan Moldovan. 2005. COGEX at the second recognizing
textual entailment challenge. InProceedings of the Second
PASCAL Challenges Workshop on Recognising Textual En-
tailment, Venice, Italy.

Fabio Massimo Zanzotto and Alessandro Moschitti. 2006. Au-
tomatic learning of textual entailments with cross-pair sim-
ilarities. In Proceedings of the 21st Coling and 44th ACL,
pages 401–408, Sydney, Australia, July.

77

