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Words in natural language (NL) have intern
structure. Morphological processes derive new |
emes from old ones or inflect the surface form
lexemes to mark morphosyntactic features such
tense, number, person, etc. This paper addr
minimally supervised induction of productive natu
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Abstract ral language morphology from text. Minimally su-
pervised induction of morphology interests us both
Paradigms provide an inherent  for practical and theoretical reasons. In linguistic

organizational structure to natural language
morphology. ParaMor, our minimally
supervised morphology induction
algorithm, retrusses the word forms of raw
text corpora back onto their paradigmatic
skeletons; performing on par with state-of-
the-art minimally supervised morphology
induction algorithms at morphological
analysis of English and German. ParaMor
consists of two phases. Our algorithm first
constructs sets of affixes closely mimicking
the paradigms of a language. And with
these structures in hand, ParaMor then
annotates word forms with morpheme
boundaries. To set ParaMor's few free
parameters we analyze a training corpus of
Spanish. Without adjusting parameters, we
induce the morphological structure of
English and German. Adopting the
evaluation methodology of Morpho
Challenge 2007 (Kurimo et al., 2007), we
compare ParaMor’s morphological
analyses with Morfessor (Creutz, 2006), a
modern minimally supervised morphology
induction system. ParaMor consistently
achieves competitive;ffmeasures.

Introduction

117

e

theory, the morpheme is often defined as the
smallest unit of language which conveys meaning.
And yet, without annotating for meaning, recent
work on minimally supervised morphology induc-
tion from written corpora has met with some suc-
cess (Creutz, 2006). We are curious how far this
program can be pushed. From a practical perspec-
tive, minimally supervised morphology induction
would help create morphological analysis systems
for languages outside the traditional scope of NLP.
However, to develop our method we induce the
morphological structure of three well-understood
languages, English, German, and Spanish.

1.1 Inherent Structure in NL Morphology

The approach we have taken to induce morpho-
logical structure has explicit roots in linguistic the-
ory. Cross-linguistically, natural language organ-
izes inflectional morphology intparadigmsand
inflection classesA paradigm is a set of mutually
exclusive operations that can be performed on a
word form. Each mutually exclusive morphologi-
cal operation in a paradigm marks a lexeme for
some set ocell of morphosyntactic features. An
inflection class, meanwhile, specifies the proce-
dural details that a particular set of adherent lex-
emes follow to realize the surface form filling each
paradigm cell. Each lexeme in a language adheres
jo a single inflection class for each paradigm the
aI_xeme realizes. The lexemes belonging to an in-
ection class may have no relationship binding
m together beyond an arbitrary morphological
Epulation that they adhere to the same inflection
class. But for this paper, an inflection class may
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Paradigm Inflection Class Paradigm cells are mutually exclusive. In the Eng-

Cells ‘eat’ ‘silent-e’ lish verbal paradigm, although English speakers
Unmarked cat dance, erase, ... can express progressive past qctlons w_|th a
Present oals dances. erases. |. grammatical construction, vizvaseating there is

! d d no surface form of the lexemeeat that

Past Tense ate danced, erased, .{. sjmultaneously fills both therogressiveand the
Progressive | eating | dancing, erasing, .|. pastcells of the verbal paradigrfateing.

Passive eaten danced, erased, .|.

1.2 ParaMor

Paradigms and inflection classes, the inherent
structure of natural language morphology, form the
basis of ParaMor, our minimally supervised
morphological induction algorithm. In ParaMor’s
first phase, we find sets of mutually exclusive
strings which closely mirror the inflection classes
of a language—although ParaMor does not
differentiate between syncretic word forms of the
ame lexeme filling different paradigm cells, such
sedsuffixed forms which can fill either thegast
or thepassivecells of English verbs. In ParaMor’'s

Table 1: The English verbal paradigm, left col-
umn, and two inflection classes of the verbal
paradigm. The verbatfills the cells of its in-
flection class with the five surface forms
shown in the second column. Verbs belonging
to the ‘silent-e’ inflection class inflect follow-
ing the pattern of the third column.

also refer to a set of lexemes that inflect similarl
for phonological or orthographic reasons. Workin
with text we intentionally blur phonology and or-

thography.
A simple example will help illustrate paradigms’sgﬁ?:ige%he\;\ﬁtehivr\\/etﬁer:n gilg(y:/ot\t]:resén;ﬁ]fluer;ciioﬁnglglsioégse
inflection classes, and the mutual exclusivity o . . ;
0 segment word forms into morpheme-like pieces.

cells. As shown in Table 1, all English verbs Lanauages emplov a variety of morohological
belong to a single common paradigm of five cells;: guag 1ploy Y P 9
rocesses to arrive at grammatical word forms—

One cell marks a verb for the morphosyntactie , : ; . R
feature valuepresenttense3® person as ineats processes including suffix-, prefix-, and infixation,

another cell markpasttense as inate a third cell rﬁgugllc?gggénag? Vtveorpdplgfmm“ng'rolz:ggggmgfzg’n
holds a surface form typically used to marl{ri ef)sp honological (or orthgJ Pa hic) change
progressive aspecteating a fourth produces a 99 P g grap g€,

passiveparticiple, eaten and finally there is the .Sl:cICh a aslthe dropped Iflnal of the sﬂet:lt-e -
unmarked cell, in this exampéat inflection class, see Table 1. Despite the wide

Aside from inflection classes each containiné?)?ﬁe”cg,;n mcoorrﬁ)cr:](())rlr?i%;%a'tl h%rr(])gﬁjssesa I:Pi Ct::t'é
only a few irregular lexemes, such as thaof inﬁ‘)lectiongclasses and ﬁence ?r/édi mg can be
containing eat there are no English verbal ’ b gms,

inflection classes that arbitrarily differentiatere%re.sen.teOI Ias hm‘Ut.LIJa"y ,gxfclzlus_lve Isubstfrlng
lexemes on purely morphological grounds. Ther%u Stmljt'onhs' n tdef_ S|Ient-'e in gctlo_n casst,) or
are, however, several inflection classes that reali%gm.p e,é f word-fina hstrlngse .des.lng:han ef

surface forms only for verbs with particula Substituted for one another to produce the surface

r . )
phonology or orthography. The ‘silent-e’ inflectionforms that fill the paradigm celis of lexemes

class is one such. To adhere to the ‘silent- egﬁg%g%;gnttﬂlsir:nfﬁg?g?ir?;?zst‘]'ﬁli?( g:(')sr phaoplgr we
inflection class a lexeme must fill the unmarke ying P 9y

paradigm cell with a form that ends in an unspokel h'lle we focus on shu]:flxes, fhe meth(l)_ds we
charactere, as indance The other paradigm cells employ can be straig torwardly generalized to
in the ‘silent-e’ inflection class are filled bypreflxes and ongoing work seeks to model

. . _ sequences of concatenative morphemes.
applying orthographic rules such as: Inducing the morphology of a language from a

Progressive Aspect Cell replace the finaé of naturally occurring text corpus is challenging. In
the unmarked form with the strimgg, languages with a rich morphological structure, sur-
dance-> dancing face forms filling particular cells of an inflection

class may be relatively rare. In the Spanish news-

wire text over which we developed ParaMor there
are 50,000 unique types. Among these types, in-

Past Cell- substituteed, dance~> danced
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stances of first and second person verb forms &603; Altun and M. Johnson, 2001). A trie or FSA
few. The suffiximos which fills thefirst person conflates multiple instances of a morpheme into a
plural indicative presentcell for their verbal in- single sequence of states. Because the choice of
flection class of Spanish occurs on only 77 uniqueossible succeeding characters is highly con-
lexemes. And yet we aim to identify candidate instrained within a morpheme, branch points in the
flection classes which closely model the true intrie or FSA are likely morpheme boundaries. Often
flection classes of a language, covering as matye similarities are used as a first step followed by
inflectional paradigm cells as possible. further processing to identify morphemes (Schone
Fortunately, we can leverage the paradigm struand Jurafsky, 2001).
ture of natural language morphology itself to retain The paradigm structure of NL morphology has
many inflections which, because of data sparsalso been previously leveraged. Goldsmith (2001)
ness, might be missed if considered in isolatiomses morphemes to efficiently encode a corpus, but
ParaMor begins with a recall-centric search fdne first groups morphemes into paradigm like
partial candidate inflection classes. Many of thetructures he calls signatures. To date, the work
candidates which result from this initial search aréhat draws the most on paradigm structure is
incorrect. But intermingled with the false positivesSnover (2002). Snover incorporates paradigm
are candidates which collectively model significanstructure into a generative statistical model of
fractions of true inflection classes. Hence, Panorphology. Additionally, to discover paradigm
raMor's next step is to cluster the initial partialike sets of suffixes, Snover designs and searches
candidate inflection classes into larger groups. Thieetworks of partial paradigms. These networks are
clustering effectively uses the larger correct initighe direct inspiration for ParaMor’'s morphology
candidates as nuclei to which smaller correct caseheme networks described in section 2.1.
didates accrete. With as many initial true candi-
dates as possible safely corralled with other candt- ParaMor: Inflection Class Identification
dates covering the same inflection class, ParaMor
completes the paradigm discovery phase by dig-1 Search

carding the large number of erroneous initially Séx gearch SpaceThe first stage of ParaMor is a
lected candidate inflection classes. Finally, with 8earch procedure designed to identify partial in-

strong grasp on the paradigm structure, ParaMfgction classes containing as many true productive
straightforwardly segments the words of a corpug;tfixes of a language as possible. To search for

into morphemes. these partial inflection classes we must first define
1.3 Related Work a space to search over. In a naturally occurring
corpus not all possible surface forms occur. In a
In this section we highlight previously proposeorpus, each stem adhering to an inflection class
minimally supervised approaches to the inductiowill likely be observed in combination with only a
of morphology that, like ParaMor, draw on thesubset of the suffixes in that inflection class. Each
unique structure of natural language morphologyox in Figure 1 depicts a small portion of the em-
One facet of NL morphological structure comqpirical co-occurrence of suffixes and stems from a
monly leveraged by morphology induction algoSpanish newswire corpus of 50,000 types. Each
rithms is that morphemes are recurrent buildingox in this figure contains a list of suffixes at the
blocks of words. Brent et al. (1995), Goldsmithop in bold, together with the total number, and a
(2001), and Creutz (2006) emphasize the buildirfgw examples (iritalics), of stems that occurred in
block nature of morphemes when they each useparate word forms with each suffix in that box.
recurring word segments to efficiently encode gor example, the box containing the suffixgs
corpus. These approaches then hypothesize tead, ieron, and i6 contains the stemdeb and
those recurring segments which most efficientlpadecbecause the word forndebe padece de-
encode a corpus are likely morphemes. Anotheers padeceraetc. all occurred in the corpus. We
technique that exploits morphemes as repeatie@ll each possible pair of suffix and stem sets a
sub-word segments encodes the lexemes of a cetheme and say that the.erd.ieron.i6 scheme
pus as a character tree, i.e. trie, (Harris, 1956¢vers the wordsiebe padece,etc. Note that a
Hafer and Weis, 1974), or as a finite state automgeheme contains both stems that occurred with ex-
ton (FSA) over characters (Johnson, H. and Martiactly the set of suffixes in that scheme, as well as
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e.er.era.ido.ieron.io e.ido.ieron.ir.ir a.i6 azar.e.ido.ieron.ir.i 6
28: deb, escog, ofrec, roconoc, vend, ... 28: asist, dirig, exig, ocurr, sufr, ... 1: sal
\
e.er.era.ieron.i6é e.era.ido.ieron.i6 e.er.ido.ieron.ié e.ido.ieron.ir a.i6|| e.ido.ieron.ir.i 6
32: deb, padec, romp, ...[[ 28: deb, escog, ... ||46: deb, parec, recoq...|| 28: asist, dirig, ... || 39: asist, bat, sal, ...
N\
e.era.ieron.i6 er.ido.ieron.io e.ido.ieron.i6 ido.ieron.ir.i6
32: deb, padec, ... 58: ascend, ejerc, recog, ... 86: asist, deb, hund,... 44: interrump, sal, ...
— XN — — N\ Y

Figure 1: A small portion of a morphology scheme network—our search spaoartidl empirical in-
flection classes. This network was built from a Spanish M&wscorpus of 50,000 type&.26 millior
tokens. Each box contains a scheme. The suffixes of each scheme appthairthe top of each bc
The total number of adherent stems for each scheme, togethex fgithexemplar stems, is italics.
Stems are underlingtithey do not appear in any parent shown in this figure.

stems that occurred with suffixes beyond just thoskdate morpheme boundaries at every character
in the scheme. For example, in addition to the folroundary in every word, including the character
suffixes e, era, ieron, andid, the stemdeb oc- boundary after the final character in each word
curred with the suffixesr andido, as evident from form, to allow for empty suffixes.
the top left schemee.er.erd.ido.ieron.i6 which Schemes of suffixes and their exhaustively co-
contains the sterdeh Intuitively, a scheme is a occurring stems define a natural search space over
subset of the suffixes filling the paradigm cells of partial inflection classes because schemes readily
true inflection class together with the stems thatrganize by the suffixes and stems they contain.
empirically occurred with that set of suffixes. We define a parent-child relationship between a
The schemes in Figure 1 cover portions oféhe parent schemeR and a child schem€ , when P
and their Spanish verbal inflection classes. Theontains all the suffixes thal contains and when
top left scheme of the figure contains suffixes irP contains exactly one more suffix thah. In
theer inflection class, while the top center scheme&igure 1, parent child relations are represented by
contains suffixes in th& inflection class. The six solid lines connecting boxed schemes. The scheme
suffixes in the top left scheme and the six suffixes.er.era.ido.ieron.ig for example, is the parent of
in the top center scheme are just a few of theree depicted children in Figure 1, one of which is
suffixes in the fuller andir inflection classes. As e.er.erd.ieron.id
is fairly common for inflection classes across Our search strategy exploits a fundamental
languages, the sets of suffixes in the Spamish aspect of the relationship between parent and child
andir inflection classes overlap. That is, verbs thatchemes. Consider the number of stems in a parent
belong to theer inflection class can take as a suffixschemeP as compared to the number of stems in
certain strings of characters that verbs belonging &my one of its childrerC . Since P contains all the
the ir inflection class can also take. The suffixesuffixes which C contains, and becauge only
that are unique to ther verb inflection class in the contains stems that occurred with every suffix in
top left scheme arer anderg; while the unigue P, P can at most contain exactly the ste@s
suffixes for ther class in the top center scheme areontains and typically will contain fewer. In the
ir andira. In the third row of the figure, the Spanish corpus from which the scheme network of
schemee.ido.ieron.i6 contains only suffixes found Figure 1 was built, 32 stems occur in forms with
in both theer andir schemes. each of the five suffixes, er, era, ieron, andio
While the example schemes in Figure 1 are caattached. But only 28 of these 32 stems occur in
rect and do occur in a real Spanish newswire coyet another form involvingdo—the stemdeb did
pus, the schemes are atypically perfect. There bsit the stempadecandrompdid not, for example.
only one_sufflx appearing in Flgure 1 that is nota A search Strategy: To search for schemes
true suffix of Spanish-azar in the upper right \yhich cover portions of the true inflection classes
scheme. In unsupervised morphology induction wgs 5 language, ParaMor’s search starts at the bot-

do not know a priori the correct suffixes of a langym of the network. The lowest level in the scheme
guage. Hence, we form schemes by proposing can-
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network consists of schemes which contain exacthaper we leave the parent-child stem ratio cutoff
one suffix together with all the stems that occurreparameter at 0.25.
in the corpus with that suffix attached. ParaMor Alone, stem strength assessments of parent
considers each one-suffix scheme in turn beginnirsghemes, such as parent-child stem ratios, falter as
with that scheme containing the most stems, work- search path nears the top of the morphology
ing toward schemes containing fewer. From eadtheme network. Monotonically decreasing adher-
bottom scheme, ParaMor follows a single greedsnt stem size causes statistics that assess parents’
upward path from child to parent. As long as astem-strength to become less and less reliable.
upward path takes at least one step, making it taHence, the second criterion governing each search
scheme containing two or more alternating subtep helps to halt upward search paths before judg-
fixes, our search strategy accepts the termin@lg parents’ worth becomes impossible. While
scheme of the path as likely modeling a portion dhere are certainly many possible stopping criteria,
a true inflection class. ParaMor’s policy stops each upward search path
Each greedily chosen upward step is based @rhen there is no parent scheme with more stems
two criteria. The first criterion considers thethan it has suffixes. We devised this halting condi-
number of adherent stems in the current schemetam for two reasons. First, requiring each path
compared to its parents’ adherent sizes. A variesgheme to contain more stems than suffixes attains
of statistics could judge the stem-strength of parehigh suffix recall. High recall results from setting a
schemes: ranging from simple ratios througlow bar for upward movement at the bottom of the
(dis)similarity measures, such as the dicaetwork. Search paths which begin from schemes
coefficient or mutual information, to full fledgedwhose single suffix is rare in the text corpus can
statistical tests. After experimenting with a rangeften take one or two upward search steps and
of such statistics we found, somewhat surprisinglyeach a scheme containing the necessary three or
that measuring the ratio of parent stem size to chifdur stems. Second, this halting criterion requires
stem size correctly identifies parent schemes whitche top scheme of search paths that climb high in
contain only true suffixes just as consistently athe network to contain a comparatively large num-
more sophisticated tests. While a full report of ouser of stems. Reigning in high-reaching search
experiments is beyond the scope of this paper, thaths before the stem count falls too far, captures
short explanation of this behavior is datgath-terminal schemes which cover a large number
sparseness. Many upward search steps start fromword types. In the second stage of ParaMor's
schemes containing few stems. And when littlflection class identification phase these larger
data is available no statistic is particularly reliableterminal schemes effectively vacuum up the useful
Parent-child stem ratios have two additionatmaller paths that result from the more rare suf-
computational advantages over other measurdses. Figure 2 contains examples of schemes se-
First, they are quick to compute and second, thected by ParaMor’s initial search.
parent with the largest stem ratio is always that To evaluate ParaMor at paradigm identification,
parent with the most stems. So, being greedy, eagle hand compiled an answer key of the inflection
search step simply moves to that parddt, with  classes of Spanish. This answer key contains nine
the most stems, as long as the parent-child stgoroductive inflection classes. Three contain the
ratio to P is large. The threshold above which a&uffixes of thear, er, and ir verbal inflection
stem ratio is considered large enough to warrant alasses. There are two orthographically differenti-
upward step is a free parameter. As the goal of thased inflection classes for nouns in the answer key:
initial search stage is to identify schemes contaiilone for nouns that form the plural by addsy@nd
ing as wide a variety of productive suffixes as po®sne for nouns that takes Adjectives in Spanish
sible, we want to set the parent-child stem ratimflect for gender and number. Arguably, gender
threshold as low as possible. But a ratio threshotthd number each constitute separate paradigms,
that is too small will allow search paths to scheme=sach with two cells. But here we conflated these
containing unproductive and spurious suffixes. Imto a single inflection class with four cells. Fi-
practice, for Spanish, we have found that settingplly, there are three inflection classes in our an-
the parent-child stem ratio cutoff much below 0.25wer key covering Spanish clitics. Spanish verbal
results in schemes that begin to include only maclitics behave orthographically as agglutinative
ginally productive derivational suffixes. For thissequences of suffixes.
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1) D.< 5501 stems contains four suffixes of the& verbal inflection
2) a.as.0.0s 892 stems class, including the only instanceiod that occurs
in any selected scheme. Containing only six stems,
5) a.aba.aban.ada.adas.ado.ados.an.ando.  the 1591 scheme could accidentally be filtered out
ar.aron.arse.ara.aran.o 25 stems  during the third phase of inflection class identifica-
tion. Hence, the rationale for clustering initial se-
lected schemes is two fold. First, by consolidating
schemes which cover portions of the same inflec-
tion class we produce sets of suffixes which more
closely model the paradigm structure of natural

12) a.aba.ada.adas.ado.ados.an.ando.ar.
aron.ara.aran.e.en.o 21 stems

209) e.er.ida.idas.ido.idos.imiento.i6 9 stems

1590)d.ipo 4 stems language morphology. And, second, corralling cor-
1591)ido.idos.ir.iré 6 stems rect schemes safeguards against losing unique suf-
1592)@.e.iu 4 stems fixes. _ .
1593)iza.izado.izan.izar.izaron.izaran.iz6 The clustering of schemes presents two unique

8 stems challenges. First, we must avoid over-clustering

_ . schemes which model distinct inflection classes.
Flgure 2: The suffixes of some schemesestec As noted in Section 2.1, it is common, Cross-

by the initial search over a Spanish corpu |inguistically, for the suffixes of inflection classes
50,000 types. While some selected sch¢  to overlap. Looking at Figure 2, we must be careful
contain large numbers of correct suffixes, ¢ not to merge the 2089 selected scheme, which

as the 1, 2%, 5", 12", 209", and 1591 selecte  models a portion of ther verbal inflection class,
schemes; many others are incorrectemion:  with the 1591 selected scheme, which models the
of word final strings. ir class—despite these schemes sharing two suf-
) ) fixes, ido andidos As the second challenge, the
In a corpus of Spanish newswire text of 50,00fany small schemes which the search strategy
types and 1.26 million tokens, the initial searchyroquces act as distractive noise during clustering.
identifies schemes containing 92% of all ideal inyhjle small schemes containing correct suffixes
flectional suffixes of Spanish, or 98% of the idegj, exist, e.g. the 1581scheme, the vast majority
suffixes that occurred at least twice in the corpugs schemes containing few stems and suffixes are
There are selected schemes which contain portioRgorrect collections of word final strings that hap-
of each of the nine inflection classes in the ansWBkn to occur in corpus word forms attached to a
key. The high recall of the initial search comes, Qfima|| number of shared initial strings. ParaMor’s
course, at the expense of precision. While there &Ristering algorithm should, for example, avoid
nine inflection-classes and 87 unique suffixes i lacing @.s and @.ipo, respectively the *L and
the hand-built answer key for Spanish, 833Y594" selected schemes, in the same cluster. Al-

schemes are selected containing 9889 unique CRough@.ipo shares the null suffix with the valid

didate suffixes. nominal schem&.s, the string ‘ipo’ is not a mor-
2.2 Clustering Partial Inflection Classes phological suffix of Spanish. .

To form clusters of related schemes while ad-
While the third step of inflection class identifica-dressing both the challenge of observing a lan-
tion, discussed in Section 2.3, directly improveguage’s paradigm structure as well as the challenge
the initial search’s low precision by filtering outof merging in the face of many small incorrectly
bogus schemes, the second step, described heetected schemes, ParaMor adapts greedy hierar-
conflates selected schemes which model portioghical agglomerative clustering. We modify vanilla
of the same inflection class. Consider the fifth angottom-up clustering by placing restrictions on
twelfth schemes selected by ParaMor from ouwhich clusters are allowed to merge. The first re-
Spanish corpus, as shown in Figure 2. Both @friction helps ensure that schemes modeling dis-
these schemes contain a large number of suffixgésct but overlapping inflection classes remain
from the Spanishar verbal inflection class. And separated. The restriction: do not place into the
while each contains many overlapping suffixessame cluster suffixes which share no stem in the
each possesses correct suffixes which the othgrpus. This restriction retains separate clusters for
does not. Meanwhile, the 159%elected scheme separate inflection classes because a lexeme’s stem
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occurring with suffixes unique to that lexeme’'sall possible stem-suffix pairs the clusters contain.
inflection class will not occur with suffixes uniqueA stem-suffix pair occurs in a cluster if some
to some other inflection class. scheme belonging to that cluster contains both that
Alone, requiring all pairs of suffixes in a clusterstem and that suffix. With these adaptations, we
to occur in the corpus with some common stemllow agglomerative clustering to proceed until
will not prevent small bogus schemes, such dBere are no more clusters that can legally be
@.ipo from attaching to correct schemes, such aserged.
@.s—the ipo.s scheme contains two ‘stems,’ the o .
word form initial strings ‘ma’ and ‘t. And so a 2-3 Filtering of Inflection Classes
second restriction is rGQUired. This second reStriWith most valid schemes having found a safe ha-
tion employs a heuristic specifically adapted tQen in a cluster with other schemes modeling the
ParaMor’s initial search strategy. As discussed i&ame inflection class, we turn our attention to im-
Section 2.1, in addition to many schemes whichroving scheme-cluster precision. ParaMor applies
contain only few suffixes, ParaMor’s initial net- series of filters, culling out unwanted scheme-
work search also identifies multiple overlappingjusters. The first filter is closely related to the
schemes containing significant subsets of the sutuster restriction on scheme size discussed in Sec-
fixes in an inflection class. Thé"512", and 209  tion 2.2. ParaMor discards all unclustered schemes
selected schemes of Figure 2 are three such Iar%[ing below the size threshold used during clus-
schemes. ParaMor restricts cluster merges heurigiring. Figure 3 graphs the number of Spanish clus-
cally by requiring at least one large scheme fqgrs which survive this size-based filtering step as
each small scheme the cluster contains, where W threshold size is varied. Figure 3 also contains
measure the size of a scheme as the numberz0plot of the recall of unique Spanish suffixes as a
unique word forms it covers. The threshold sizgnction of this threshold. As the size threshold is
above which schemes are considered large is f@reased the number of remaining clusters quickly
second of ParaMor's two free parameters. Thgops. But suffix recall only slowly falls during the
scheme size threshold is reused during ParaMoggeep decline in cluster count, indicating ParaMor
filtering stage. We discuss the unsupervised procgiscards mostly bogus schemes containing illicit
dure we use to set the size threshold when we pegrfixes. Because recall is relatively stable, the ex-
sent the details of cluster fiItering in Section 2.3. act size threshold we use should have 0n|y a minor
We have found that with these two cluster regffect on ParaMor’s final morphological analyses.
strictions in place, the particular metric we use tf fact, we have not fully explored the ramifica-
measure the similarity of scheme-clusters does n@éns various threshold values have on the final
significantly affect clustering. For the experimentgnorphological word segmentations, but have sim-
we report here, we measure the similarity obly picked a reasonable setting, 37 covered word
scheme-clusters as the cosine between the setsyples. At this threshold, the number of scheme-
clusters is reduced by more than 98%, while the

1000 1 number of unique candidate suffixes in any cluster
800 \ 0.8 is reduced by more than 85%. Note that the initial
g 500 -1 \’\‘\Recal 06 = number of selected schemes, 8339, falls outside the
g 08 scale of Figure 3.
O 400 \# of Cluster T 0.4 é Of the s%heme-clusters which remain after size
- \ based filtering is complete, by far the largest cate-
200 - 0.2 gory of incorrect clusters contains schemes which,
0 ‘ ‘ =l g like the 15945 selected scheme, shown in Figure 2,

incorrectly hypothesize morpheme boundaries one
or more characters to the left of the true boundary.
To filter out these incorrectly segmented clusters

Figure 3: The # of clusters antheir recall o We use a technique inspired by Harris (1955). For

unique Spanish suffixes as the schemuste €ach initial string common to all suffixes in the
size cutoff is varied. The value of eatmctior cluster, for each scheme in the cluster, we examine

at the threshold we use in all experiments rébe network scheme containing the suffixes formed
ported in this paper is that of the larger symbol. by stripping the initial string from the scheme’s

0 50 100 150
Scheme or Cluster Size
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suffixes. We then measure the entropy of leftwara@nalyses. Precision is measured analogously, sam-
trie characters of the stripped scheme. If the epling morpheme-sharing pairs of words from the
tropy is large, then the character stripped schemepioposed analyses and noting if that pair of words
likely at a morpheme boundary and the originadhares a feature in any correct analysis of those
scheme is likely modeling an incorrect morphemwords.

boundary. This algorithm would throw out the We evaluate ParaMor on two languages not
1593° selected scheme because the stems in #eamined during the development of ParaMor's
schemea.ado.an.ar.aron.aran.6 end in a wide induction algorithms: English and German. And
variety of characters, yielding high trie entropywe evaluate with each of these two languages at
and signaling a likely morpheme boundarytwo tasks:

Because we apply morpheme boundary filtering1 Analyzing inflectional morphology alone

after we have clustered, the redundancy of they jointly analyzing inflectional and derivational
many schemes in the cluster makes this filter quite  morphology.

robust, letting us set the cutoff parameter as low

we like avoiding another free parameter. e constructed Morpho Challenge 2007 style

answer keys for each language and each task using
2.4 Segmentation and Evaluation the Celex database (Burnage, 1990). The English
and German corpora we test over are the corpora

Word segmentation is our final step of morpholo, 4ijaple through Morpho Challenge 2007. The

gical analysis. ParaMor’s current segmenta’giognglish corpus contains nearly 385,000 types,

I ) ) ) 'While the German corpus contains more than 1.26
inspired segmentation algorithm possible. Essepsijiion types. ParaMor induced paradigmatic

tially, ParaMor strips off suffixes which likely par- gcheme-clusters over these larger corpora by

ticipate in a paradigm. To segment any wowd,  oaging just the top 50,000 most frequent types.
ParaMor identifies all scheme-clusters that contajg ;+ \vith the scheme-clusters in hand. ParaMor

a non-empty suffix that matches a word final Stringegmented all the types in each corpus.

of w. F_or each such mat_chlng suffixf .DC’ We compare ParaMor to Morfessor v0.9.2
where Cis the cluster containing , we strip T etz 2006), a state-of-the-art minimally super-
from w obtaining a stent. If there is some Sec- \iseq morphology induction algorithm. Morfessor
ond suffix f"UC such thatt.f" is a word form o4 5 gingle free parameter. To make for stiff com-
%etition, we report results for Morfessor at that pa-
rameter setting which maximized &n each sepa-
rate test scenario. We did not vary the two free pa-
Fameters of ParaMor, but hold each of ParaMor’s

paradigm. If ParaMor finds no complex analysis,,rameters at a setting which produced reasonable
then we proposev itself as the sole analysis of thegyanishsuffix sets, see sections 2.1-2.2. Table 2
word. Note that for each word form, ParaMor may.,niaing the evaluation results. To estimate the

propose multiple separate segmentation analySegiance of our experimental results we measured

each containing a single proposed stem and suffy, 510 Challenge 2007 style precision, recall, and

1 &, on multiple non-overlapping pairs of 1000 fea-
tions we follow the methodology of Morpho Cha"tulre-sharing words. PPINg P
lenge 2007 (Kurimo et al., 2007), a minimally Su- Nejther ParaMor nor Morfessor arise in Table 2

pervised morphology induction competition. Word,g a4y superior. Each algorithm outperforms the

segmentations are evaluated in Morpho Challeng@,qo 4t [ in some scenario. Examining precision

2007 by comparing against hand annotated matyq recall is more illuminating. ParaMor attains
phological analyses. The correctness of proposgg icyarly high recall of inflectional affixes for

morphological analyses is computed in MOrphgqw, pngjish and German. We conjecture that Pa-
Challenge 2007 by comparing pairs of word formg,\1qrs “sirong performance at identifying inflec-

which share portions of their analyses. Recall i%na| morphemes comes from closely modeling
measured by first sampling pairs of words from thge natural paradigm structure of language. Con-
answer analyses which share a stem or morphosyjasqe|y * Morfessor places its focus on precision
tactic feature and then noting if that pair of word,q does not rely on any property exclusive to in-
forms shares a morpheme in any of their proposediional (or derivational) morphology. Hence,

then ParaMor proposes a segmentationvobe-
tweent and f . ParaMor, here, identifies and
f' as mutually exclusive suffixes from the sam
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Inflectional Morphology Only Inflectional & Derivational Morphology
English German English German
P R|FR|o]| P R|R|e| P | R|FR|o]| P R| R |e

Morfessor | 53.3|47.0|149.9/1.3]| 38.7|44.2/ 41.2/0.8| 73.6| 34.0/ 46.5/1.1] 66.9| 37.1| 47.7|0.7
ParaMor |33.0/81.4|47.0/0.9| 42.8|68.6|52.7|0.8]48.9/53.6/51.1|0.8]| 60.0| 33.5|43.0|0.7

Table 2: ParaMor segmentations compared to Morfessor’s (Creutz, 2006) evalrafeedsion,Recall,
F,, and standard deviation of,fs, in four scenarios. Segmentations over English and German a
evaluated against correct morphological analyses consistindjeoleft, of inflectional morpholog
only, and on the right, of both inflectional and derivational morphology.

Morfessor attains high precision with reasonable and Information Science, Report D13. Helsinki:
recall when graded against an answer key contain-University of Technology, Espoo, Finland, 2006.
ing both inflectional and derivational morphology. Goldsmith, John. "Unsupervised Learning of the

We are excited by ParaMor's strong Morphology of a Natural LanguageComputa-
performance and are eager to extend our algorithm.tional Linguistics27.2 (2001): 153-198.
We believe the precision of ParaMor's simplédafer, Margaret A., and Stephen F. Weiss. "Word
segmentation algorithm can be improved by Segmentation by Letter Successor Varieties."
narrowing down the proposed analyses for eachinformation Storage and Retrigval0.11/12
word to the most likely. Perhaps ParaMor and (1974): 371-385.
Morfessor's vastly different strategies forHarris, Zellig. "From Phoneme to Morpheme.”
morphology induction could be combined into a Language31.2 (1955): 190-222. Reprinted in
hybrid strategy more successful than either alone.Harris 1970.
And ambitiously, we hope to extend ParaMor t#larris, Zellig. Papers in Structural and
analyze languages with agglutinative sequences ofTransformational Linguists Ed. D. Reidel,
affixes by generalizing the definition of a scheme. Dordrecht 1970.

Johnson, Howard, and Joel Martin. "Unsupervised
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