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Abstract 

Paradigms provide an inherent 
organizational structure to natural language 
morphology. ParaMor, our minimally 
supervised morphology induction 
algorithm, retrusses the word forms of raw 
text corpora back onto their paradigmatic 
skeletons; performing on par with state-of-
the-art minimally supervised morphology 
induction algorithms at morphological 
analysis of English and German. ParaMor 
consists of two phases. Our algorithm first 
constructs sets of affixes closely mimicking 
the paradigms of a language. And with 
these structures in hand, ParaMor then 
annotates word forms with morpheme 
boundaries. To set ParaMor’s few free 
parameters we analyze a training corpus of 
Spanish. Without adjusting parameters, we 
induce the morphological structure of 
English and German. Adopting the 
evaluation methodology of Morpho 
Challenge 2007 (Kurimo et al., 2007), we 
compare ParaMor’s morphological 
analyses with Morfessor (Creutz, 2006), a 
modern minimally supervised morphology 
induction system. ParaMor consistently 
achieves competitive F1 measures. 

1 Introduction 

Words in natural language (NL) have internal 
structure. Morphological processes derive new lex-
emes from old ones or inflect the surface form of 
lexemes to mark morphosyntactic features such as 
tense, number, person, etc. This paper address 
minimally supervised induction of productive natu-

ral language morphology from text. Minimally su-
pervised induction of morphology interests us both 
for practical and theoretical reasons. In linguistic 
theory, the morpheme is often defined as the 
smallest unit of language which conveys meaning. 
And yet, without annotating for meaning, recent 
work on minimally supervised morphology induc-
tion from written corpora has met with some suc-
cess (Creutz, 2006). We are curious how far this 
program can be pushed. From a practical perspec-
tive, minimally supervised morphology induction 
would help create morphological analysis systems 
for languages outside the traditional scope of NLP. 
However, to develop our method we induce the 
morphological structure of three well-understood 
languages, English, German, and Spanish. 

1.1 Inherent Structure in NL Morphology 

The approach we have taken to induce morpho-
logical structure has explicit roots in linguistic the-
ory. Cross-linguistically, natural language organ-
izes inflectional morphology into paradigms and 
inflection classes. A paradigm is a set of mutually 
exclusive operations that can be performed on a 
word form. Each mutually exclusive morphologi-
cal operation in a paradigm marks a lexeme for 
some set or cell of morphosyntactic features. An 
inflection class, meanwhile, specifies the proce-
dural details that a particular set of adherent lex-
emes follow to realize the surface form filling each 
paradigm cell. Each lexeme in a language adheres 
to a single inflection class for each paradigm the 
lexeme realizes. The lexemes belonging to an in-
flection class may have no relationship binding 
them together beyond an arbitrary morphological 
stipulation that they adhere to the same inflection 
class. But for this paper, an inflection class may 
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also refer to a set of lexemes that inflect similarly 
for phonological or orthographic reasons. Working 
with text we intentionally blur phonology and or-
thography. 

A simple example will help illustrate paradigms, 
inflection classes, and the mutual exclusivity of 
cells. As shown in Table 1, all English verbs 
belong to a single common paradigm of five cells: 
One cell marks a verb for the morphosyntactic 
feature values present tense 3rd person, as in eats; 
another cell marks past tense, as in ate; a third cell 
holds a surface form typically used to mark 
progressive aspect, eating; a fourth produces a 
passive participle, eaten; and finally there is the 
unmarked cell, in this example eat.  

Aside from inflection classes each containing 
only a few irregular lexemes, such as that 
containing eat, there are no English verbal 
inflection classes that arbitrarily differentiate 
lexemes on purely morphological grounds. There 
are, however, several inflection classes that realize 
surface forms only for verbs with particular 
phonology or orthography. The ‘silent-e’ inflection 
class is one such. To adhere to the ‘silent-e’ 
inflection class a lexeme must fill the unmarked 
paradigm cell with a form that ends in an unspoken 
character e, as in dance. The other paradigm cells 
in the ‘silent-e’ inflection class are filled by 
applying orthographic rules such as:  

Progressive Aspect Cell – replace the final e of 
the unmarked form with the string ing, 
dance � dancing  

Past Cell – substitute ed, dance � danced  

Paradigm cells are mutually exclusive. In the Eng-
lish verbal paradigm, although English speakers 
can express progressive past actions with a 
grammatical construction, viz. was eating, there is 
no surface form of the lexeme eat that 
simultaneously fills both the progressive and the 
past cells of the verbal paradigm, *ateing. 

1.2 ParaMor 

Paradigms and inflection classes, the inherent 
structure of natural language morphology, form the 
basis of ParaMor, our minimally supervised 
morphological induction algorithm. In ParaMor’s 
first phase, we find sets of mutually exclusive 
strings which closely mirror the inflection classes 
of a language—although ParaMor does not 
differentiate between syncretic word forms of the 
same lexeme filling different paradigm cells, such 
as ed-suffixed forms which can fill either the past 
or the passive cells of English verbs. In ParaMor’s 
second phase we employ the structured knowledge 
contained within the discovered inflection classes 
to segment word forms into morpheme-like pieces.  

Languages employ a variety of morphological 
processes to arrive at grammatical word forms—
processes including suffix-, prefix-, and infixation, 
reduplication, and template filling. Furthermore, 
the application of word forming processes often 
triggers phonological (or orthographic) change, 
such a as the dropped final e of the ‘silent-e’ 
inflection class, see Table 1. Despite the wide 
range of morphological processes and their 
complicating concomitant phonology, a large caste 
of inflection classes, and hence paradigms, can be 
represented as mutually exclusive substring 
substitutions. In the ‘silent-e’ inflection class, for 
example, the word-final strings e.ed.es.ing can be 
substituted for one another to produce the surface 
forms that fill the paradigm cells of lexemes 
belonging to this inflection class. In this paper we 
focus on identifying word final suffix morphology. 
While we focus on suffixes, the methods we 
employ can be straightforwardly generalized to 
prefixes and ongoing work seeks to model 
sequences of concatenative morphemes. 

Inducing the morphology of a language from a 
naturally occurring text corpus is challenging. In 
languages with a rich morphological structure, sur-
face forms filling particular cells of an inflection 
class may be relatively rare. In the Spanish news-
wire text over which we developed ParaMor there 
are 50,000 unique types. Among these types, in-

Table 1: The English verbal paradigm, left col-
umn, and two inflection classes of the verbal 
paradigm. The verb eat fills the cells of its in-
flection class with the five surface forms 
shown in the second column. Verbs belonging 
to the ‘silent-e’ inflection class inflect follow-
ing the pattern of the third column. 

            Inflection Class Paradigm 
Cells ‘eat’ ‘silent-e’ 

Unmarked eat dance, erase, … 
Present, 3rd eats dances, erases, … 
Past Tense ate danced, erased, … 
Progressive eating dancing, erasing, … 

Passive eaten danced, erased, … 
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stances of first and second person verb forms are 
few. The suffix imos which fills the first person 
plural indicative present cell for the ir  verbal in-
flection class of Spanish occurs on only 77 unique 
lexemes. And yet we aim to identify candidate in-
flection classes which closely model the true in-
flection classes of a language, covering as many 
inflectional paradigm cells as possible. 

Fortunately, we can leverage the paradigm struc-
ture of natural language morphology itself to retain 
many inflections which, because of data sparse-
ness, might be missed if considered in isolation. 
ParaMor begins with a recall-centric search for 
partial candidate inflection classes. Many of the 
candidates which result from this initial search are 
incorrect. But intermingled with the false positives 
are candidates which collectively model significant 
fractions of true inflection classes. Hence, Pa-
raMor’s next step is to cluster the initial partial 
candidate inflection classes into larger groups. This 
clustering effectively uses the larger correct initial 
candidates as nuclei to which smaller correct can-
didates accrete. With as many initial true candi-
dates as possible safely corralled with other candi-
dates covering the same inflection class, ParaMor 
completes the paradigm discovery phase by dis-
carding the large number of erroneous initially se-
lected candidate inflection classes. Finally, with a 
strong grasp on the paradigm structure, ParaMor 
straightforwardly segments the words of a corpus 
into morphemes. 

1.3 Related Work 

In this section we highlight previously proposed 
minimally supervised approaches to the induction 
of morphology that, like ParaMor, draw on the 
unique structure of natural language morphology. 
One facet of NL morphological structure com-
monly leveraged by morphology induction algo-
rithms is that morphemes are recurrent building 
blocks of words. Brent et al. (1995), Goldsmith 
(2001), and Creutz (2006) emphasize the building 
block nature of morphemes when they each use 
recurring word segments to efficiently encode a 
corpus. These approaches then hypothesize that 
those recurring segments which most efficiently 
encode a corpus are likely morphemes. Another 
technique that exploits morphemes as repeating 
sub-word segments encodes the lexemes of a cor-
pus as a  character tree, i.e. trie, (Harris, 1955; 
Hafer and Weis, 1974), or as a finite state automa-
ton (FSA) over characters (Johnson, H. and Martin, 

2003; Altun and M. Johnson, 2001). A trie or FSA 
conflates multiple instances of a morpheme into a 
single sequence of states. Because the choice of 
possible succeeding characters is highly con-
strained within a morpheme, branch points in the 
trie or FSA are likely morpheme boundaries. Often 
trie similarities are used as a first step followed by 
further processing to identify morphemes (Schone 
and Jurafsky, 2001).  

The paradigm structure of NL morphology has 
also been previously leveraged. Goldsmith (2001) 
uses morphemes to efficiently encode a corpus, but 
he first groups morphemes into paradigm like 
structures he calls signatures. To date, the work 
that draws the most on paradigm structure is 
Snover (2002). Snover incorporates paradigm 
structure into a generative statistical model of 
morphology. Additionally, to discover paradigm 
like sets of suffixes, Snover designs and searches 
networks of partial paradigms. These networks are 
the direct inspiration for ParaMor’s morphology 
scheme networks described in section 2.1. 

2 ParaMor: Inflection Class Identification 

2.1 Search 

A Search Space: The first stage of ParaMor is a 
search procedure designed to identify partial in-
flection classes containing as many true productive 
suffixes of a language as possible. To search for 
these partial inflection classes we must first define 
a space to search over. In a naturally occurring 
corpus not all possible surface forms occur. In a 
corpus, each stem adhering to an inflection class 
will likely be observed in combination with only a 
subset of the suffixes in that inflection class. Each 
box in Figure 1 depicts a small portion of the em-
pirical co-occurrence of suffixes and stems from a 
Spanish newswire corpus of 50,000 types. Each 
box in this figure contains a list of suffixes at the 
top in bold, together with the total number, and a 
few examples (in italics), of stems that occurred in 
separate word forms with each suffix in that box. 
For example, the box containing the suffixes e, 
erá, ieron, and ió contains the stems deb and 
padec because the word forms debe, padece, de-
berá, padecerá, etc. all occurred in the corpus. We 
call each possible pair of suffix and stem sets a 
scheme, and say that the e.erá.ieron.ió scheme 
covers the words debe, padece, etc. Note that a 
scheme contains both stems that occurred with ex-
actly the set of suffixes in that scheme, as well as 
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stems that occurred with suffixes beyond just those 
in the scheme. For example, in addition to the four 
suffixes e, erá, ieron, and ió, the stem deb oc-
curred with the suffixes er and ido, as evident from 
the top left scheme e.er.erá.ido.ieron.ió which 
contains the stem deb. Intuitively, a scheme is a 
subset of the suffixes filling the paradigm cells of a 
true inflection class together with the stems that 
empirically occurred with that set of suffixes.  

The schemes in Figure 1 cover portions of the er 
and the ir  Spanish verbal inflection classes. The 
top left scheme of the figure contains suffixes in 
the er inflection class, while the top center scheme 
contains suffixes in the ir  inflection class. The six 
suffixes in the top left scheme and the six suffixes 
in the top center scheme are just a few of the 
suffixes in the full er and ir  inflection classes. As 
is fairly common for inflection classes across 
languages, the sets of suffixes in the Spanish er 
and ir  inflection classes overlap. That is, verbs that 
belong to the er inflection class can take as a suffix 
certain strings of characters that verbs belonging to 
the ir  inflection class can also take. The suffixes 
that are unique to the er verb inflection class in the 
top left scheme are er and erá; while the unique 
suffixes for the ir  class in the top center scheme are 
ir  and irá . In the third row of the figure, the 
scheme e.ido.ieron.ió contains only suffixes found 
in both the er and ir  schemes. 

 While the example schemes in Figure 1 are cor-
rect and do occur in a real Spanish newswire cor-
pus, the schemes are atypically perfect. There is 
only one suffix appearing in Figure 1 that is not a 
true suffix of Spanish—azar in the upper right 
scheme. In unsupervised morphology induction we 
do not know a priori the correct suffixes of a lan-
guage. Hence, we form schemes by proposing can-

didate morpheme boundaries at every character 
boundary in every word, including the character 
boundary after the final character in each word 
form, to allow for empty suffixes. 

Schemes of suffixes and their exhaustively co-
occurring stems define a natural search space over 
partial inflection classes because schemes readily 
organize by the suffixes and stems they contain. 
We define a parent-child relationship between a 
parent scheme, P  and a child scheme C , when P  
contains all the suffixes that C  contains and when 
P  contains exactly one more suffix than C . In 
Figure 1, parent child relations are represented by 
solid lines connecting boxed schemes. The scheme 
e.er.erá.ido.ieron.ió, for example, is the parent of 
three depicted children in Figure 1, one of which is 
e.er.erá.ieron.ió.  

Our search strategy exploits a fundamental 
aspect of the relationship between parent and child 
schemes. Consider the number of stems in a parent 
scheme P  as compared to the number of stems in 
any one of its children C . Since P  contains all the 
suffixes which C  contains, and because P  only 
contains stems that occurred with every suffix in 
P , P  can at most contain exactly the stems C  
contains and typically will contain fewer. In the 
Spanish corpus from which the scheme network of 
Figure 1 was built, 32 stems occur in forms with 
each of the five suffixes e, er, erá, ieron, and ió 
attached. But only 28 of these 32 stems occur in 
yet another form involving ido—the stem deb did 
but the stems padec and romp did not, for example. 

A Search Strategy: To search for schemes 
which cover portions of the true inflection classes 
of a language, ParaMor’s search starts at the bot-
tom of the network. The lowest level in the scheme 

e.er.erá.ido.ieron.ió  
28: deb, escog, ofrec, roconoc, vend, ... 

e.ido.ieron.ir.ir á.ió 
28: asist, dirig, exig, ocurr, sufr, ... 

e.erá.ido.ieron.ió  
28: deb, escog, ... 

e.er.ido.ieron.ió  
46: deb, parec, recog... 

e.ido.ieron.ir á.ió 
28: asist, dirig, ... 

 

e.ido.ieron.ir.i ó 
39: asist, bat, sal, ... 

e.er.erá.ieron.ió  
32: deb, padec, romp, ... 

e.ido.ieron.ió  
86: asist, deb, hund,... 

e.erá.ieron.ió  
32: deb, padec, ... 

er.ido.ieron.ió  
58: ascend, ejerc, recog, ... 

ido.ieron.ir.ió  
44: interrump, sal, ... 

Figure 1: A small portion of a morphology scheme network—our search space of partial empirical in-
flection classes. This network was built from a Spanish Newswire corpus of 50,000 types, 1.26 million 
tokens. Each box contains a scheme. The suffixes of each scheme appear in bold at the top of each box. 
The total number of adherent stems for each scheme, together with a few exemplar stems, is in italics. 
Stems are underlined if they do not appear in any parent shown in this figure. 

azar.e.ido.ieron.ir.i ó 
1: sal 
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network consists of schemes which contain exactly 
one suffix together with all the stems that occurred 
in the corpus with that suffix attached. ParaMor 
considers each one-suffix scheme in turn beginning 
with that scheme containing the most stems, work-
ing toward schemes containing fewer. From each 
bottom scheme, ParaMor follows a single greedy 
upward path from child to parent. As long as an 
upward path takes at least one step, making it to a 
scheme containing two or more alternating suf-
fixes, our search strategy accepts the terminal 
scheme of the path as likely modeling a portion of 
a true inflection class. 

Each greedily chosen upward step is based on 
two criteria. The first criterion considers the 
number of adherent stems in the current scheme as 
compared to its parents’ adherent sizes. A variety 
of statistics could judge the stem-strength of parent 
schemes: ranging from simple ratios through 
(dis)similarity measures, such as the dice 
coefficient or mutual information, to full fledged 
statistical tests. After experimenting with a range 
of such statistics we found, somewhat surprisingly, 
that measuring the ratio of parent stem size to child 
stem size correctly identifies parent schemes which 
contain only true suffixes just as consistently as 
more sophisticated tests. While a full report of our 
experiments is beyond the scope of this paper, the 
short explanation of this behavior is data 
sparseness. Many upward search steps start from 
schemes containing few stems. And when little 
data is available no statistic is particularly reliable.  

Parent-child stem ratios have two additional 
computational advantages over other measures. 
First, they are quick to compute and second, the 
parent with the largest stem ratio is always that 
parent with the most stems. So, being greedy, each 
search step simply moves to that parent, P , with 
the most stems, as long as the parent-child stem 
ratio to P  is large. The threshold above which a 
stem ratio is considered large enough to warrant an 
upward step is a free parameter. As the goal of this 
initial search stage is to identify schemes contain-
ing as wide a variety of productive suffixes as pos-
sible, we want to set the parent-child stem ratio 
threshold as low as possible. But a ratio threshold 
that is too small will allow search paths to schemes 
containing unproductive and spurious suffixes. In 
practice, for Spanish, we have found that setting 
the parent-child stem ratio cutoff much below 0.25 
results in schemes that begin to include only mar-
ginally productive derivational suffixes. For this 

paper we leave the parent-child stem ratio cutoff 
parameter at 0.25.  

Alone, stem strength assessments of parent 
schemes, such as parent-child stem ratios, falter as 
a search path nears the top of the morphology 
scheme network. Monotonically decreasing adher-
ent stem size causes statistics that assess parents’ 
stem-strength to become less and less reliable. 
Hence, the second criterion governing each search 
step helps to halt upward search paths before judg-
ing parents’ worth becomes impossible. While 
there are certainly many possible stopping criteria, 
ParaMor’s policy stops each upward search path 
when there is no parent scheme with more stems 
than it has suffixes. We devised this halting condi-
tion for two reasons. First, requiring each path 
scheme to contain more stems than suffixes attains 
high suffix recall. High recall results from setting a 
low bar for upward movement at the bottom of the 
network. Search paths which begin from schemes 
whose single suffix is rare in the text corpus can 
often take one or two upward search steps and 
reach a scheme containing the necessary three or 
four stems. Second, this halting criterion requires 
the top scheme of search paths that climb high in 
the network to contain a comparatively large num-
ber of stems. Reigning in high-reaching search 
paths before the stem count falls too far, captures 
path-terminal schemes which cover a large number 
of word types. In the second stage of ParaMor’s 
inflection class identification phase these larger 
terminal schemes effectively vacuum up the useful 
smaller paths that result from the more rare suf-
fixes. Figure 2 contains examples of schemes se-
lected by ParaMor’s initial search. 

To evaluate ParaMor at paradigm identification, 
we hand compiled an answer key of the inflection 
classes of Spanish. This answer key contains nine 
productive inflection classes. Three contain the 
suffixes of the ar, er, and ir  verbal inflection 
classes. There are two orthographically differenti-
ated inflection classes for nouns in the answer key: 
one for nouns that form the plural by adding s, and 
one for nouns that take es. Adjectives in Spanish 
inflect for gender and number. Arguably, gender 
and number each constitute separate paradigms, 
each with two cells. But here we conflated these 
into a single inflection class with four cells. Fi-
nally, there are three inflection classes in our an-
swer key covering Spanish clitics. Spanish verbal 
clitics behave orthographically as agglutinative 
sequences of suffixes.  
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In a corpus of Spanish newswire text of 50,000 
types and 1.26 million tokens, the initial search 
identifies schemes containing 92% of all ideal in-
flectional suffixes of Spanish, or 98% of the ideal 
suffixes that occurred at least twice in the corpus. 
There are selected schemes which contain portions 
of each of the nine inflection classes in the answer 
key. The high recall of the initial search comes, of 
course, at the expense of precision. While there are 
nine inflection-classes and 87 unique suffixes in 
the hand-built answer key for Spanish, 8339 
schemes are selected containing 9889 unique can-
didate suffixes.  

2.2 Clustering Partial Inflection Classes 

While the third step of inflection class identifica-
tion, discussed in Section 2.3, directly improves 
the initial search’s low precision by filtering out 
bogus schemes, the second step, described here, 
conflates selected schemes which model portions 
of the same inflection class. Consider the fifth and 
twelfth schemes selected by ParaMor from our 
Spanish corpus, as shown in Figure 2. Both of 
these schemes contain a large number of suffixes 
from the Spanish ar verbal inflection class. And 
while each contains many overlapping suffixes, 
each possesses correct suffixes which the other 
does not. Meanwhile, the 1591st selected scheme 

contains four suffixes of the ir  verbal inflection 
class, including the only instance of iré that occurs 
in any selected scheme. Containing only six stems, 
the 1591st scheme could accidentally be filtered out 
during the third phase of inflection class identifica-
tion. Hence, the rationale for clustering initial se-
lected schemes is two fold. First, by consolidating 
schemes which cover portions of the same inflec-
tion class we produce sets of suffixes which more 
closely model the paradigm structure of natural 
language morphology. And, second, corralling cor-
rect schemes safeguards against losing unique suf-
fixes. 

The clustering of schemes presents two unique 
challenges. First, we must avoid over-clustering 
schemes which model distinct inflection classes. 
As noted in Section 2.1, it is common, cross-
linguistically, for the suffixes of inflection classes 
to overlap. Looking at Figure 2, we must be careful 
not to merge the 209th selected scheme, which 
models a portion of the er verbal inflection class, 
with the 1591st selected scheme, which models the 
ir  class—despite these schemes sharing two suf-
fixes, ido and idos. As the second challenge, the 
many small schemes which the search strategy 
produces act as distractive noise during clustering. 
While small schemes containing correct suffixes 
do exist, e.g. the 1591st scheme, the vast majority 
of schemes containing few stems and suffixes are 
incorrect collections of word final strings that hap-
pen to occur in corpus word forms attached to a 
small number of shared initial strings. ParaMor’s 
clustering algorithm should, for example, avoid 
placing Ø.s and Ø.ipo, respectively the 1st and 
1590th selected schemes, in the same cluster. Al-
though Ø.ipo shares the null suffix with the valid 
nominal scheme Ø.s, the string ‘ipo’ is not a mor-
phological suffix of Spanish. 

To form clusters of related schemes while ad-
dressing both the challenge of observing a lan-
guage’s paradigm structure as well as the challenge 
of merging in the face of many small incorrectly 
selected schemes, ParaMor adapts greedy hierar-
chical agglomerative clustering. We modify vanilla 
bottom-up clustering by placing restrictions on 
which clusters are allowed to merge. The first re-
striction helps ensure that schemes modeling dis-
tinct but overlapping inflection classes remain 
separated. The restriction: do not place into the 
same cluster suffixes which share no stem in the 
corpus. This restriction retains separate clusters for 
separate inflection classes because a lexeme’s stem 

Figure 2: The suffixes of some schemes selected 
by the initial search over a Spanish corpus of 
50,000 types. While some selected schemes 
contain large numbers of correct suffixes, such 
as the 1st, 2nd, 5th, 12th, 209th, and 1591st selected 
schemes; many others are incorrect collections 
of word final strings. 

 1) Ø.s 5501 stems 
 2) a.as.o.os 892 stems 

... 
 5) a.aba.aban.ada.adas.ado.ados.an.ando.   

ar.aron.arse.ará.arán.ó 25 stems 
... 

 12) a.aba.ada.adas.ado.ados.an.ando.ar.   
aron.ará.arán.e.en.ó 21 stems 

... 
 209) e.er.ida.idas.ido.idos.imiento.ió 9 stems 

... 
1590) Ø.ipo 4 stems 
1591) ido.idos.ir.iré 6 stems 
1592) Ø.e.iu 4 stems 
1593) iza.izado.izan.izar.izaron.izarán.izó 

... 8 stems 
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occurring with suffixes unique to that lexeme’s 
inflection class will not occur with suffixes unique 
to some other inflection class.  

Alone, requiring all pairs of suffixes in a cluster 
to occur in the corpus with some common stem 
will not prevent small bogus schemes, such as 
Ø.ipo from attaching to correct schemes, such as 
Ø.s—the ipo.s scheme contains two ‘stems,’ the 
word form initial strings ‘ma’ and ‘t’. And so a 
second restriction is required. This second restric-
tion employs a heuristic specifically adapted to 
ParaMor’s initial search strategy. As discussed in 
Section 2.1, in addition to many schemes which 
contain only few suffixes, ParaMor’s initial net-
work search also identifies multiple overlapping 
schemes containing significant subsets of the suf-
fixes in an inflection class. The 5th, 12th, and 209th 
selected schemes of Figure 2 are three such larger 
schemes. ParaMor restricts cluster merges heuristi-
cally by requiring at least one large scheme for 
each small scheme the cluster contains, where we 
measure the size of a scheme as the number of 
unique word forms it covers. The threshold size 
above which schemes are considered large is the 
second of ParaMor‘s two free parameters. The 
scheme size threshold is reused during ParaMor’s 
filtering stage. We discuss the unsupervised proce-
dure we use to set the size threshold when we pre-
sent the details of cluster filtering in Section 2.3. 

We have found that with these two cluster re-
strictions in place, the particular metric we use to 
measure the similarity of scheme-clusters does not 
significantly affect clustering. For the experiments 
we report here, we measure the similarity of 
scheme-clusters as the cosine between the sets of 

all possible stem-suffix pairs the clusters contain. 
A stem-suffix pair occurs in a cluster if some 
scheme belonging to that cluster contains both that 
stem and that suffix. With these adaptations, we 
allow agglomerative clustering to proceed until 
there are no more clusters that can legally be 
merged.  

2.3 Filtering of Inflection Classes 

With most valid schemes having found a safe ha-
ven in a cluster with other schemes modeling the 
same inflection class, we turn our attention to im-
proving scheme-cluster precision. ParaMor applies 
a series of filters, culling out unwanted scheme-
clusters. The first filter is closely related to the 
cluster restriction on scheme size discussed in Sec-
tion 2.2. ParaMor discards all unclustered schemes 
falling below the size threshold used during clus-
tering. Figure 3 graphs the number of Spanish clus-
ters which survive this size-based filtering step as 
the threshold size is varied. Figure 3 also contains 
a plot of the recall of unique Spanish suffixes as a 
function of this threshold. As the size threshold is 
increased the number of remaining clusters quickly 
drops. But suffix recall only slowly falls during the 
steep decline in cluster count, indicating ParaMor 
discards mostly bogus schemes containing illicit 
suffixes. Because recall is relatively stable, the ex-
act size threshold we use should have only a minor 
effect on ParaMor’s final morphological analyses. 
In fact, we have not fully explored the ramifica-
tions various threshold values have on the final 
morphological word segmentations, but have sim-
ply picked a reasonable setting, 37 covered word 
types. At this threshold, the number of scheme-
clusters is reduced by more than 98%, while the 
number of unique candidate suffixes in any cluster 
is reduced by more than 85%. Note that the initial 
number of selected schemes, 8339, falls outside the 
scale of Figure 3. 

Of the scheme-clusters which remain after size 
based filtering is complete, by far the largest cate-
gory of incorrect clusters contains schemes which, 
like the 1593rd selected scheme, shown in Figure 2, 
incorrectly hypothesize morpheme boundaries one 
or more characters to the left of the true boundary. 
To filter out these incorrectly segmented clusters 
we use a technique inspired by Harris (1955). For 
each initial string common to all suffixes in the 
cluster, for each scheme in the cluster, we examine 
the network scheme containing the suffixes formed 
by stripping the initial string from the scheme’s 

Figure 3: The # of clusters and their recall of 
unique Spanish suffixes as the scheme-cluster 
size cutoff is varied. The value of each function 
at the threshold we use in all experiments re-
ported in this paper is that of the larger symbol. 
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suffixes. We then measure the entropy of leftward 
trie characters of the stripped scheme. If the en-
tropy is large, then the character stripped scheme is 
likely at a morpheme boundary and the original 
scheme is likely modeling an incorrect morpheme 
boundary. This algorithm would throw out the 
1593rd selected scheme because the stems in the 
scheme a.ado.an.ar.aron.arán.ó end in a wide 
variety of characters, yielding high trie entropy, 
and signaling a likely morpheme boundary. 
Because we apply morpheme boundary filtering 
after we have clustered, the redundancy of the 
many schemes in the cluster makes this filter quite 
robust, letting us set the cutoff parameter as low as 
we like avoiding another free parameter. 

2.4 Segmentation and Evaluation 

Word segmentation is our final step of morpholo-
gical analysis. ParaMor’s current segmentation 
algorithm is perhaps the most simple paradigm 
inspired segmentation algorithm possible. Essen-
tially, ParaMor strips off suffixes which likely par-
ticipate in a paradigm. To segment any word, w , 
ParaMor identifies all scheme-clusters that contain 
a non-empty suffix that matches a word final string 
of w . For each such matching suffix, Cf ∈ , 
where C is the cluster containing f , we strip f  
from w  obtaining a stem t . If there is some sec-
ond suffix Cf ∈′  such that ft ′.  is a word form 
found in either of the training or the test corpora, 
then ParaMor proposes a segmentation of w  be-
tween t  and f . ParaMor, here, identifies f  and 
f ′  as mutually exclusive suffixes from the same 

paradigm. If ParaMor finds no complex analysis, 
then we propose w  itself as the sole analysis of the 
word. Note that for each word form, ParaMor may 
propose multiple separate segmentation analyses 
each containing a single proposed stem and suffix. 

To evaluate ParaMor’s morphological segmenta-
tions we follow the methodology of Morpho Chal-
lenge 2007 (Kurimo et al., 2007), a minimally su-
pervised morphology induction competition. Word 
segmentations are evaluated in Morpho Challenge 
2007 by comparing against hand annotated mor-
phological analyses. The correctness of proposed 
morphological analyses is computed in Morpho 
Challenge 2007 by comparing pairs of word forms 
which share portions of their analyses. Recall is 
measured by first sampling pairs of words from the 
answer analyses which share a stem or morphosyn-
tactic feature and then noting if that pair of word 
forms shares a morpheme in any of their proposed 

analyses. Precision is measured analogously, sam-
pling morpheme-sharing pairs of words from the 
proposed analyses and noting if that pair of words 
shares a feature in any correct analysis of those 
words.  

We evaluate ParaMor on two languages not 
examined during the development of ParaMor’s 
induction algorithms: English and German. And 
we evaluate with each of these two languages at 
two tasks:  

1. Analyzing inflectional morphology alone 
2. Jointly analyzing inflectional and derivational 

morphology.  

We constructed Morpho Challenge 2007 style 
answer keys for each language and each task using 
the Celex database (Burnage, 1990). The English 
and German corpora we test over are the corpora 
available through Morpho Challenge 2007. The 
English corpus contains nearly 385,000 types, 
while the German corpus contains more than 1.26 
million types. ParaMor induced paradigmatic 
scheme-clusters over these larger corpora by 
reading just the top 50,000 most frequent types. 
But with the scheme-clusters in hand, ParaMor 
segmented all the types in each corpus. 

We compare ParaMor to Morfessor v0.9.2 
(Creutz, 2006), a state-of-the-art minimally super-
vised morphology induction algorithm. Morfessor 
has a single free parameter. To make for stiff com-
petition, we report results for Morfessor at that pa-
rameter setting which maximized F1 on each sepa-
rate test scenario. We did not vary the two free pa-
rameters of ParaMor, but hold each of ParaMor’s 
parameters at a setting which produced reasonable 
Spanish suffix sets, see sections 2.1-2.2. Table 2 
contains the evaluation results. To estimate the 
variance of our experimental results we measured 
Morpho Challenge 2007 style precision, recall, and 
F1 on multiple non-overlapping pairs of 1000 fea-
ture-sharing words.  

Neither ParaMor nor Morfessor arise in Table 2 
as clearly superior. Each algorithm outperforms the 
other at F1 in some scenario. Examining precision 
and recall is more illuminating. ParaMor attains 
particularly high recall of inflectional affixes for 
both English and German. We conjecture that Pa-
raMor’s strong performance at identifying inflec-
tional morphemes comes from closely modeling 
the natural paradigm structure of language. Con-
versely, Morfessor places its focus on precision 
and does not rely on any property exclusive to in-
flectional (or derivational) morphology. Hence, 
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Morfessor attains high precision with reasonable 
recall when graded against an answer key contain-
ing both inflectional and derivational morphology. 

We are excited by ParaMor’s strong 
performance and are eager to extend our algorithm. 
We believe the precision of ParaMor’s simple 
segmentation algorithm can be improved by 
narrowing down the proposed analyses for each 
word to the most likely. Perhaps ParaMor and 
Morfessor’s vastly different strategies for 
morphology induction could be combined into a 
hybrid strategy more successful than either alone. 
And ambitiously, we hope to extend ParaMor to 
analyze languages with agglutinative sequences of 
affixes by generalizing the definition of a scheme.  
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