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Abstract

This paper presents a Bayesian approach
to comparing languages: identifying cog-
nates and the regular correspondences
that compose them. A simple model of
language is extended to include these no-
tions in an account of parent languages.
An expression is developed for the pos-
terior probability of child language forms
given a parent language. Bayes’ Theo-
rem offers a schema for evaluating choices
of cognates and correspondences to ex-
plain semantically matched data. An im-
plementation optimising this value with
gradient descent is shown to distinguish
cognates from non-cognates in data from
Polish and Russian.

Modern historical linguistics addresses ques-
tions like the following. How did language
originate? What were historically-recorded lan-
guages like? How related are languages? What
were the ancestors of modern languages like?
Recently, computation has become a key tool in
addressing such questions.

Kirby (2002) gives an overview of current cur-
rent work on how language evolved, much of it
based on computational models and simulations.
Ellison (1992) presents a linguistically motivated
method for classifying consonants as consonants
or vowels. An unexpected result for the dead
language Gothic provides added weight to one
of two competing phonological interpretations of
the orthography of this dead language.
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Other recent work has applied computational
methods for phylogenetics to measuring linguis-
tic distances, and/or constructing taxonomic
trees from distances between languages and di-
alects (Dyen et al., 1992; Ringe et al., 2002; Gray
and Atkinson, 2003; McMahon and McMahon,
2003; Nakleh et al., 2005; Ellison and Kirby,
2006).

A central focus of historical linguistics is the
reconstruction of parent languages from the ev-
idence of their descendents. In historical lin-
guistics proper, this is done by the compara-
tive method (Jeffers and Lehiste, 1989; Hock,
1991) in which shared arbitrary structure is as-
sumed to reflect common origin. At the phono-
logical level, reconstruction identifies cognates
and correspondences, and then constructs sound
changes which explain them.

This paper presents a Bayesian approach to
assessing cognates and correspondences. Best
sets of cognates and correspondences can then
be identified by gradient ascent on this evalua-
tion measure. While the work is motivated by
the eventual goal of offering software solutions
to historical linguistics, it also hopes to show
that Bayes’ theorem applied to an explicit, sim-
ple model of language can lead to a principled
and tractable method for identifying cognates.

The structure of the paper is as follows. The
next section details the notions of historical lin-
guistics needed for this paper. Section 2 for-
mally defines a model of language and parent
language. The subsequent section situates the
work amongst similar work in the literature,
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making use of concepts described in the earlier
Section 4 describes the calculation of
the probability of wordlist data given a hypoth-
esised parent language. This is combined with
Bayes’ theorem and gradient search in an algo-
rithm to find the best parent language for the
data. Section 5 describes the results of apply-
ing an implementation of the algorithm to data
from Polish and Russian. The final section sum-
marises the paper and suggests further work.

sections.

1 Cognates, Correspondences and
Reconstruction

In the neo-Grammarian model of language
change, a population speaking a uniform lan-
guage divides, and then the two populations un-
dergo separate language changes.

Word forms with continuous histories in re-
spective daughter languages descending which
from a common word-form ancestor are called
cognate, no matter what has happened to their
semantics. Cognate word forms may have un-
dergone deformations to make them less simi-
lar to each other, these deformations resulting
from regular, phonological changes. Note that
in the fields of applied linguistics, second lan-
guage acquisition, and machine translation, the
term cognate is used to mean any words that are
phonologically similar to each other. This is not
the sense meant here.

Phonological change produces modifications
to the segmental inventory, replacing one seg-
ment by another in all or only some contexts.
This sometimes has the effect of collapsing seg-
ment types together. Other changes may di-
vide one segment type into two, depending on
a contextual condition. The relation of parent-
language segments to daughter-language seg-
ments is, usually, a many-to-many relation.

Parent-child segmental relations are reflected
in the correspondences between segment in-
ventories in the daughter languages. Cor-
respondences are pairings of segments from
daughter languages which have derived from
a common parent segment. For example, p
in Latin frequently corresponds to f in En-
glish, as in words like pater and father. Both
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segments have developed from a (postulated)
Proto-IndoEuropean *p. Because correspon-
dences only occur between cognates, identify-
ing the two is often a bootstrap process: cor-
raling cognates helps find more correspondences,
and forms sharing a number correspondences are
probably cognate.

2 Formal Structures

The method presented in this paper is based on
a formal model of language. This is described in
section 2.1. The subsequent section extends the
model to define a parent language, whose seg-
mental inventory is correspondences and whose
lexicon is cognates linking two descendent lan-
guages.

2.1 Language model

The language model is based on three assump-
tions.

Assumption 1 There is a universal, discrete
set M of meanings.

Assumption 2 A language L has its own set of
segments X(L).

Assumption 3 The lexicon \ of a language L is

a partial map of meanings to strings of segments
A M — X(L)*.

On the basis of these assumptions, we can de-
fine a language L to be a triple (M, X(L), \(L))
of meanings, segments and mappings from mean-
ings onto strings of segments.

For example, consider written Polish. The
set of meanings contains concepts as TO TAKE-
perfect-infinitive, TREE-nominative-singular,
and so on. The segmental inventory contains
the 32 segmentsaabcédeefghijkl
Imnnhnodprsstuwyzz 4, ignoring
capitalisation. The lexicon matches meanings to
strings of segments, TO TAKE-perfect-infinitive
to wzigé, TREE-nominative-singular to drzewo.

2.2 Parent language model

Definition 1 A degree-(u,v) correspondence
between L1 and Lo is a pair of strings (s,t) €
Y(Ly) x X(Lgy) over the segments of L1 and Lo



respectively, with lengths at least u and no more
than v.

As an example of a correspondence, consider
the pair of small strings from Polish and Russian,
(¢é,rb). This is a degree-(1,2) correspondence
because its members have lengths as low as one
and as high as two. It is also a degree-(u,v)
correspondence for any v < 1 and v > 2.

Any correspondence can be mapped onto its
components by projection functions.

Definition 2 The projections w1 and w map
a correspondence (s,t) onto its first mi(s,t) = s
or second ma(s,t) = t component string respec-
tively.

The first projection function will map (é,Ts)
onto ¢é, while the second maps (é,Tb) onto Tb.

Correspondences can be formed into strings.
These strings also have projections.

Definition 3 The projections w1 and w map
a string of correspondences ci..c onto the con-
catenation of the projections of each correspon-
dence.

mi(c1..cr) = mi(er)mi(c2)..mi(ck),

Wg(cl..ck) = 7T2(Cl)7T2(02)..7T2(Ck)

Suppose we sequence four correspondences
into the string (w,B)(z,3)(ia,s)(¢é,t6). This
string has first and second projections, wziaé
and B34Th, formed by concatenating the respec-
tive projections of each correspondence.

We can now define a parent language.

Definition 4 A degree-(u,v) parent Ly of two
languages Ly, Ly is a triple (M,%(Lg), A\(Lo))
where X(Lo) is a set of degree-(u,v) correspon-
dences between L1 and Lo, excluding the pair of
null strings, and \(Lg) is a partial mapping from
M onto 3(Lg) which obeys

T © )\(Lo) g )\(Ll), 9 O )\(Lo) g )\(Lg)

The circle stands for function composition.
Continuing our past example, we will focus
on the two meanings TO TAKE-perfect-infinitive
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and TREE-nominative-singular. The segment in-
ventory for the parent language contains degree-
(0,2) correspondences: (,e), (¢é,rb), (d,m),
(e,e), (ia,a), (0,0), (rz,p), (W,B), (2,3). The
lexical function maps TO TAKE-perfect-infinitive
onto the string of correspondences (w,B) (z,3)
(ia,s) (¢é,rb) while TREE-nominative-singular
maps to (d,n) (,e) (rz,p) (e,e) (w,B) (0,0).

The parent language condition is verified by
checking the projections of the two correspon-
dence strings. The first string has projec-
tions wzigé and B3aTh, which are forms for
the meaning TO TAKE-perfect-infinitive in Pol-
ish and Russian respectively. The second string
has projections drzewo and mepeso, which are
forms for the meaning TREE-nominative-singular
in Polish and Russian respectively. So the pro-
jection condition is satisfied. If the lexical func-
tion is only defined on these two meanings, then
this is a valid parent language.

It is worth emphasising that the projection
condition for qualifying as a parent language ap-
plies only for those meanings for which the par-
ent lexical mapping is defined. The correspond-
ing forms in the child languages are said to be
cognate in this model. Where no parent form
is reconstructed, the forms are not cognate, and
are to be accounted for in some way other than
the parent language.

3 Related Work

The current work is, of course, far from the first
to seek to identify cognates and/or correspon-
dences. Here is an abbreviated overview of pre-
vious work in the field!. More detailed surveys
can be found in chapter 3 of Kondrak’s (2002)
PhD thesis or Lowe’s online survey 2 of prior art
in this field.

In perhaps the first computational work on
historical linguistics, Kay (1964) described an al-
gorithm for determining correspondences given
a list of cognate pairs across two daughter lan-
guages. His method seeks to find the smallest set

'An anonymous reviewer suggests that the current
work shares features with that of Kessler (2001). I have
been unable to access this book in time to include dis-
cussion of it in this paper.

Hlinguistics.berkeley.edu/“jblowe/REWWW /Prior Art.html



of correspondences which allows a degree-(1, 00)
alignment for each cognate pair. Unfortunately,
the complexity of the problem has precluded its
application to significant daa sets.

Frantz (1970) developed a PL/1 programming
which returned numerical evaluations of corre-
spondences and cognacy, given a list of possi-
ble cognate word-pairs. Each word pair must be
supplied as a degree-(0,1) reconstruction, that
is, aligning single segments with each other or
with gaps.

Guy (1984; 1994) presented a program called
COGNATE which finds regular correspondences
and identifies cognates using statistical tech-
niques.

For his Master’s, Broza (1998) developed
MDL-based software called candid which identi-
fies correspondences from cognates and expresses
these as contextual phonological transformation
rules.

Kondrak’s (2002) doctoral dissertation com-
bines phonological and semantic similarity meth-
ods with correspondance-learning. The algo-
rithms for learning correspondences are taken
from Melamed’s (2000) probabilistic methods
for identifying word-word translation equiva-
lence. These methods, like the current work,
are Bayesian. Because Melamed’s problem seeks
partial rather than complete explanation of the
inputs in terms of correspondences, the match-
ing problem is somewhat more difficult theoret-
ically. As a result, he does not arrive at the de-
composition of the sum of the probability of two
inputs given the set of possible correspondences,
approximating this with a high probability align-
ment.

4 Conditional Probability of the
Data

The core of any Bayesian model is the condi-
tional probability of the data given the hypoth-
esis. This section details how probabilities as-
signed to data, and the assumptions on which
this assignment is based.

The data is the mapping of meanings onto
forms in two daughter languages. If those two
languages are L1 and Lo, we want to determine
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P(X\(L1),\(Lg)|h). The nature of h will be dis-
cussed in section 4.6.
For brevity, we will write \; for A\(L;).

4.1 Meaning independence

The first step in defining the conditional prob-
ability of the data is to decompose it into
meaning-by-meaning probabilities. This can be
achieved by adopting the following two assump-
tions.

Assumption 4 In a given language, the forms
for different meanings are selected indepen-
dently.

This assumption states that within a single
language choosing, for example, a form wzigé
for meaning TO TAKE-perfect-infinitive is no help
in predicting the form which expresses TREE-
nominative-singular.

Assumption 5 Across different languages, the
forms corresponding to different meanings are
independent.

According to this assumption, the Polish word
wzigé and the Russian word B34aTh can be
structurally dependent because they express the
same meaning. In contrast, we can only ex-
pect a chance relationship between the Rus-
sian word B34TH meaning TO TAKE-perfect-
infinitive, and the Polish word drzewo express-
ing TREE-nominative-singular.

Together, these two assumptions imply that
the only dependencies possible between any four
forms expressing the two meanings m; and ms in
two languages L and Lg are between \(my) and
A(m1) on the one hand and A(mg) and A(m2) on
the other.

Consequently the probability of generating the
word forms in two languages can be decomposed
into the product of generating the two language-
particular forms for each meaning.

II PAi(m

meM

P(Ai, \alh) = ; A2(m)|h)



4.2 Cognacy and independence

The next assumption holds that structural cor-
relation between corresponding forms should be
explained as resulting from cognacy.

Assumption 6 Across different languages,
forms corresponding to the same meaning are
dependent only if the forms are cognate.

If the words for a particular meaning do not
derive from a common ancestral form, then they
are uncorrelated. To return to our Polish and
Russian examples, we can expect dependencies
in structure between the cognate words drzewo
and mepeBo. But we should expect no such cor-
relation in the non-cognate pair pomararncza
and ameabCcWMH meaning ORANGE-nominative-
singular.

Let us write M; for the domain of the lexical
function in language L;. This is the set of mean-
ings for which this language has defined a word
form. The set of cognates is the domain of the
lexical function of the parent language, My. We
can decompose the evidential words into three
sets: My of cognates, My \ My of meanings only
expressed in language L1, and My \ My of mean-
ings only expressed in language Ly. Words in the
second and third categories are non-cognate, and
so probabilistically independent of each other.

The conditional probability of the data can
thus be expressed as follows.

()\1,)\2|h H P )\1 2(m)|h)
meMy
I[I PO [T POe(m)h)
meMi\Mo meMa\ My

4.3 Probability of a word

We now turn to the probability of generating a
string in a language. The first assumption de-
fines the distribution over word-length.

Assumption 7 The probability of a word hav-
g a particular length is negative exponential in
that length.

The second assumption allows segment prob-
ability to depend only on the segment identity,
and not on its neighbourhood.
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Assumption 8 Segment choice is context-

independent.

These two assumptions together imply that
the probability of strings is determined by a fixed
distribution over 3(L;) U {#}, where # is an
end-of-word marker. For the descendent lan-
guages, this distribution can be taken as the rela-
tive frequencies of the segments and end-of-word
marker. Denote this distribution for language L;
by fi.

The probability of generating a word in a lan-
guage, given relative frequencies f;, is the prod-
uct of the relative frequencies for each lettern in
the word, multiplied by the relative frequency of
the end-of-word marker.

Pi(m)|h) =

) I fi)

aE)\ (m)

Note that this expression only holds for words
that are independent of all others, such as com-
ponents of non-cognate pairs.

4.4 Probability of generating a cognate
pair

The probability of generating a cognate pair of
words is similar to the above, because descen-
dent forms are deterministically derivable from
the parent forms. If (A;(m), A2(m)) are a pair of
cognates derived from an ancestral form Ao(m),
then there is unit probability that the descen-
dent forms are what they are given the parent:
P()\l(m), )\Q(m)\)\o(m)) =1.

Since a cognate pair is derivable from a par-
ent form, the probability of a cognate pair is
the sum of the probabilities of all parent forms
which will generate the two descendents. Write
W(m) = W(A1(m), A2(m)) for the set of pos-
sible correspondence strings in the parent which
project onto wordforms A (m) and Aa(m). Then
the probability of the word pair is given by:

P(\(m), A - Y Pulm

seW (m)

= s|h)

The summation poses a slight problem, however.
How do we sum over all possible strings with
given projections? Fortunately, we can decom-
pose the summation. Start by recognising that



the parent language is also a language, and so
the probability of forms in the language is de-
termined by a distribution over segments — in
this case correspondences — and the end-of-word
marker. For consistency, we call this distribution
Jo.

The only parent form which projects onto two
empty strings is the empty string, consisting
only of the end-of-word marker. For brevity,
we will drop the lambdas, writing P(x,y|h) for
P(\i(m) = 2, da(m) = y|h)

P(0,0[h) = fo(#)

We assume, without loss of generality, that
the segmental inventory of the parent language
consists of all degree-(u,v) correspondences be-
tween L1 and Lo. Parent segments which are
never used can be excluded by giving them zero
relative frequency in fy.

The function Pre(s;u,v) returns the set of bi-
nary divisions (a, b) of the string s, such that the
length of the first part a is at least v and at most
.

Pre(s;u,v) = {(a,b)|ab = s,m <a| <n}

With this function, we can recursively define a
function W (s,t;u,v) on pairs of strings (s,t)
which returns the set of all degree-(u,v) parent
language strings which project onto s and t. For
brevity, we will treat all u,v arguments as im-
plicit.

W(0,0) = {0}

By definition, the only parent language string
which can map onto the empty string in both
descendents is the empty string.

The recursive step breaks the strings s and
t into all possible prefixes a and ¢ respectively.
The correspondence (a, ¢) is then preposed on all
strings returned by W when it is applied to the
remainders of s and t.

W (s, t) = L—ﬂ L—ij

(a,b)ePre(s) (c,d)ePre(t)

(a,c)W(b,d)

Note that this is the set W (m) we defined earlier.
W(m) = W(A1(m), Aa(m); u, v)
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The recursive definition of W in terms of dis-
joint unions and concatenation can be trans-
formed into a recursive definition for the proba-
bility Py(s,t|h) of constructing a member of the
set. Disjoint union is replaced by summation,
concatenation by product. The probability of
an individual correspondence (a,c) is its (un-
known) relative frequency fy(a,c) in the parent
language. Once again, we hide the implicit u,v
parameters.

Po(0,0h) = fo(#)
22

(a,b)ePre(s) (¢c,d)ePre(t)

Py(s, t|h) = fola,c)P(b,d|h)

4.5 Probability of a form-pair

We now have the pieces to specify the probabil-
ity of finding any particular form as the form-
pair for the descendent languages. The prob-
ability of the pair in the case of cognacy is
Py(A1(m), A2(m)|h). If the pair are not cognate,
then they are independent, and their probabil-
ity is Py (A1(m))Py(A2(m)|h). If we write ¢(m|h)
for the likelihood that the pair is cognate, we
can combine these two values to given a total
probability of the two forms.

Po(Ai(m), Aa(m)[h)c(m]h)

+P1(A1(m)) P2 (A2(m)[h)(1.0 — c(m]|h))

Because the word-pairs are independent (as-
sumption 4), the product of the above probabil-
ity for each meaning m gives the probability of
the data given the hypothesis.

4.6 Hypothesis

One burning question remains, however. What
is the hypothesis? The simple answer is that it
is exactly those free variables in the specification
of the probability of the data

There were two groups of unknowns in the
probability of the data. The first is the rela-
tive frequency fo assigned to correspondences in
parent-language forms. The second is the like-
lihood of cognacy ¢, a vector of values between
zero and one indexed by meanings.

A hypothesis is therefore any setting of values
for the pair of vectors (f,c).



Note that while the degree variables u, v were
not fixed in the above derivation, they will be
held constant for any particular search, and thus
do not define a dimension in the hypothesis
space.

4.7 Search

In this section, we have derived P(D|h), the like-
lihood of our data given a hypothesis.

For simplicity, we choose a flat prior over hy-
potheses, rendering the MAP Bayesian approach
an instance of maximum likelihood determina-
tion. The value for the likelihood is differentiable
in each of the parameters. Consequently, gradi-
ent descent can be used to find the hypothesis
which maximises the probability of the data.

5 Results

In constructing the method, we made a number
of assumptions about independence of forms. It
is sensible that for testing, the method is applied
to data that conforms reasonably well to these
assumptions. The alternative is to apply it to
data which contradicts its fundamental assump-
tions, consequently hampering its effectiveness.

The data

Polish and Russian were chosen to provide the
data because they approximately obey assump-
tion 6: words have dependent structures if and
only if they are cognate. For our two lan-
guages, this means that borrowings from com-
mon sources are uncommon (numbering 45 in
our data set), at least in comparison with the
number of cognates (numbering 156).

The data was harvested from two online
dictionaries (Wordgumbo, 2007a; Wordgumbo,
2007b), one English-Polish, the other English-
Russian. Multiple translations were simplified,
with the shortest translation retained. The En-
glish glosses were used as the meanings for the
words. Where the gloss contained a capital let-
ter, indicating a proper noun, this was elimi-
nated from the data.

The data should also conform to assumption
4, that words for different meanings with a lan-
guage are independent. So where two meanings
in the data sets were realised with the same form,

5.1
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these meanings were deemed to be structurally
dependent, and so only the first was retained in
the wordlist.

The remaining data contains 407 aligned
Polish-Russian word pairs.

Polish and Russian both use a great deal of
derivational and inflectional morphology. The
simple language model used here does not take
this into account, so this will be a disturbing
influence on the results.

5.2 Evaluation

The aligned wordlists were hand-tagged as cog-
nate, common borrowing or non-cognate. A per-
missive rule of cognacy was used: if the roots
of words in the two languages were cognate,
they were cognate, even if represented with non-
cognate derivational and/or inflectional mor-
phology.

Figure 1 shows the evaluation of the program’s
performance on the data.

Borrowings as: cognates non-cognates
Found f 162 119
Missed m 41 37
Errant e 6 49
Accuracy f/(f +e) 96% 1%
Recall f/(f 4+ m) 81% 76%

Figure 1: Evaluation of program performance
on 407 meaning-matched pairs of Polish-Russian
words. Common borrowings are scored as cog-
nates in the first column, non-cognates in the
second.

The scores show that the method works well
in identifying cognates, particularly if common
borrowings are accepted as cognates, or excluded
manually. If common borrowings are scored as
non-cognates, then the accuracy falls.

Of the correspondences found between Polish
and Russian, 67 have a phonological basis. The
remaining 27 result from mismatch morphology
in cognates or differences in common borrowings.

6 Conclusion

This paper has presented a model of language
which allows the calculation of the posterior
probability of forms arising in the cases where



they are cognate, and where they are not. Bayes’
theorem relates these probabilities to the poste-
rior likelihood of particular correspondences and
cognacy relationships. Gradient descent can be
used to search this space for the best distribution
over correspondences, and best cognacy evalua-
tions for meaning-paired words. The application
to data from Polish and Russian shows remark-
able success identifying both cognates and non-
cognates.

Future work will proceed by relaxing con-
straints on the parent language. The parent in-
ventory will be widened to include multisegment
correspondences. Multiple parent languages will
be permitted, to the end of separating borrow-
ings from cognates. Finally, richer models of
language, incorporating syllable structure, will
allow more information to identify cognates.
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