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Preface

Welcome to the ACL Workshop on Computing and Historical Phonology, the 9th Meeting of ACL Special
Interest Group for Computational Morphology and Phonology, a meeting held in conjunction with the
45th Meeting of the ACL in Prague. An introductory article explains our motivation for holding the
workshop, which attracted 16 submissions, all but one of which is included in this volume of proceedings.
We are gratified not only by the level of interest, but also by the quality of submissions we received.

We hoped to attract interest not only in the computational linguistics community sensu stricto but also in
the broader linguistics community, and in the group of geneticists who have begun to apply phylogenetic
analysis to linguistic data. As the reader may verify in these proceedings, we were not disappointed in
this hope. Perhaps it is worth adding that, while we are in principle interested in further meetings of this
sort, there are at the time of this writing no concrete plans for follow-ups.

Our thanks are largely given in the acknowledgments section of the introductory article, but let’s add
thanks here to Simone Teufel, the workshop chair of the conference, who ushered us through the various
steps from the proposal through the production of this publication, and also to the committee she chaired.

John Nerbonne, T. Mark Ellison and Grzegorz Kondrak (Chairs)
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Abstract

We introduce the proceedings from the
workshop ‘Computing and Historical Pho-
nology: 9th Meeting of the ACL Special In-
terest Group for Computational Morphology
and Phonology’.

1 Background

Historical phonology is the study of how the sounds
and sound systems of a language evolve, and in-
cludes research issues concerning the triggering of
sound changes; their temporal and geographic prop-
agation (including lexical diffusion); the regular-
ity/irregularity of sound change, and its interaction
with morphological change; the role of borrowing
and analogy in sound change; the interaction of
sound change with the phonemic system (poten-
tially promoting certain changes, but also neutral-
izing phonemic distinctions); and the detection of
these phenomena in historical documents.

There is a substantial and growing body of work
applying computational techniques of various sorts
to problems in historical phonology. We mention a
few here to give the flavor of the sort of work we
hoped to attract for presentation in a coherent SIG-
MORPHON workshop. Kessler (2001) estimates
the likelihood of chance phonemic correspondences
using permutation statistics; Kondrak (2002) devel-
ops algorithms to detect cognates and sound corre-
spondences; McMahon and McMahon (2005) and
also Nakhleh, Ringe and Warnow (2005) apply phy-
logenetic techniques to comparative reconstruction;
and Ellison and Kirby (2006) suggest means of de-
tecting relationships which do not depend on word

by word comparisons. But we likewise wished to
draw on the creativity of the computational linguis-
tics (CL) community to see which other important
problems in historical phonology might also be ad-
dressed computationally (see below).

There has recently been a good deal of computa-
tional work in historical linguistics involving phylo-
genetic inference, i.e., the inference to the genealog-
ical tree which best explains the historical develop-
ments (Gray and Atkinson, 2003; Dunn et al., 2005).
While the application of phylogenetic analysis has
not universally been welcomed with open philolog-
ical arms (Holm, 2007), it has attracted a good deal
of attention, some of which we hoped to engage. We
take no stand on these controversies here, but note
that computing may be employed in historical lin-
guistics, and in particular in historical phonology in
a more versatile way, its uses extending well beyond
phylogenetic inference.

2 Introduction

The workshop thus brings together researchers inter-
ested in applying computational techniques to prob-
lems in historical phonology. We deliberately de-
fined the scope of the workshop broadly to include
problems such as identifying spelling variants in
older manuscripts, searching for cognates, hypothe-
sizing and confirming sound changes and/or sound
correspondences, modeling likely sound changes,
the relation of synchronic social and geographic
variation to historical change, the detection of pho-
netic signals of relatedness among potentially re-
lated languages, phylogenetic reconstruction based
on sound correspondences among languages, dating
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historical changes, or others.
We were emphatically open to proposals to ap-

ply techniques from other areas to problems in his-
torical phonology such as applying work on confus-
able product names to the modeling of likely sound
correspondences or the application of phylogenetic
analysis from evolutionary biology to the problem
of phonological reconstruction.

3 Papers

We provide a preview to some of the issues in the
papers in this bundle.

Brett Kessler’s invited contribution sketches the
opportunities for multiple string alignment, which
would be extremely useful in historical phono-
logy, but which is also technically so challenging
that Gusfield (1999, Ch. 14) refers to it as “the
holy grail” (of algorithms on strings, trees, and se-
quences).

3.1 Identification of Cognates

T. Mark Ellison combines Bayes’s theorem with gra-
dient descent in a method for finding cognates and
correspondences. A formal model of language is ex-
tended to include the notion of parent languages, and
a mechanism whereby parent languages project onto
their descendents. This model allows the quantifica-
tion of the probability of word lists in two languages
given a common ancestor which was the source for
some of the words. Bayes’s theorem reverses this
expression into the evaluation of possible parent lan-
guages. Gradient descent finds the best, or at least a
good one, of these. The method is shown to find
cognates in data from Russian and Polish.

Grzegorz Kondrak, David Beck and Philip Dilts
apply algorithms for the identification of cognates
and recurrent sound correspondences proposed by
Kondrak (2002) to the Totonac-Tepehua family of
indigenous languages in Mexico. Their long-term
objective is providing tools for rapid construction
of comparative dictionaries for relatively unfamiliar
language families. They show that by combining ex-
pert linguistic knowledge with computational analy-
sis, it is possible to quickly identify a large number
of cognate sets across related languages. The ex-
periments led to the creation of the initial version of
an etymological dictionary. The authors hope that

the dictionary will facilitate the reconstruction of
a more accurate Totonac-Tepehua family tree, and
shed light on the problem of the family origins and
migratory patterns.

Michael Cysouw and Hagen Jung use an itera-
tive process of alignment between words in differ-
ent languages in an attempt to identify cognates. In-
stead of using consistently coded phonemic (or pho-
netic) transciption, they use practical orthographies,
which has the advantage of being applicable without
expensive and error-prone manual processing. Pro-
ceeding from semantically equivalent words in the
Intercontinental Dictionary Series (IDS) database,
the program aligns letters using a variant of edit
distance that includes correspondences of one let-
ter with two or more, (“multi-n-gram”). Once ini-
tial alignments are obtained, segment replacement
costs are inferred. This process of alignment and
inferring segment replacement costs may then be
iterated. They succeed in distinguishing noise on
the one hand from borrowings and cognates on the
other, and the authors speculate about being able to
distinguish inherited cognates from borrowings.

3.2 A View from Dialectology
Several papers examined language change from the
point of view of dialectology. While the latter stud-
ies variation in space, the former studies variation
over time.

Hans Goebl, the author of hundreds of papers ap-
plying quantitative analysis to the analysis of lin-
guistic varieties in dialects, applies his dialectomet-
ric techniques both to modern material (1900) from
the Atlas Linguistique de France and to material dat-
ing from approximate 1300 provided by Dutch Ro-
manists. Dialectometry aims primarily at establish-
ing the aggregate distances (or conversely, similari-
ties), and Goebl’s analysis shows that these have re-
main relatively constant even while the French lan-
guage has changed a good deal. The suggestion is
that geography is extremely influential.

Wilbert Heeringa and Brian Joseph first recon-
struct a protolanguage based on Dutch dialect data,
which they compare to the proto-Germanic found in
a recent dictionary, demonstrating that their recon-
struction is quite similar to the proto-Germanic, even
though it is only based on a single branch of a large
family. They then apply a variant of edit distance to
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the pronunciation of the protolanguage, comparing
it to the pronunciation in modern Dutch dialects, al-
lowing on the one hand a quantitative evaluation of
the degree to which “proto-Dutch” correlates with
proto-Germanic (r = 0.87), and a sketch of conser-
vative vs. innovative dialect areas in the Netherlands
on the other.

Anil Singh and Harshit Surana ask whether
corpus-based measures can be used to compare lan-
guages. Most research has proceeded from the as-
sumption that lists of word pairs be available, as in-
deed they normally are in the case of dialect atlas
data or as they often may be obtained by construct-
ing lexicalizations of the concepts in the so-called
“Swadesh” list. But such data is not always avail-
able, nor is it straightforward to construct. Singh and
Surana construct n-gram models of order five (5),
and compare Indo-Iranian and Dravidian languages
based on symmetric cross-entropy.

Martijn Wieling, Therese Leinonen and John Ner-
bonne apply PAIR HIDDEN MARKOV MODELS

(PHMM), introduced to CL by Mackay and Kon-
drak (2005), to a large collection of Dutch dialect
pronunciations in an effort to learn the degree of
segment differentiation. Essentially the PHMM re-
gards frequently aligned segments as more similar,
and Wieling et al. show that the induced similar-
ity indeed corresponds to phonetic similarity in the
case of vowels, whose acoustic properties facilitate
the assessment of similarity.

3.3 Views from other Perspectives
Several papers examined diachronic change from
well-developed perspectives outside of historical
linguistics, including evolution and genetic algo-
rithms, language learning, biological cladistics, and
the structure of vowel systems.

Monojit Choudhury, Vaibhav Jalan, Sudeshna
Sarkar and Anupam Basu distinguish two compo-
nents in language developments, on the one hand
functional forces or constraints including ease of
articulation, perceptual contrast, and learnability,
which are modeled by the fitness function of a ge-
netic algorithm (GA). On the other hand, these func-
tional forces operate against the background of lin-
guistic structure, which the authors dub ‘genotype–
phenotype mapping’, and which is realized by the
set of forms in a given paradigm, and a small set

of possible atomic changes which map from form
set to form set. They apply these ideas to morpho-
logical changes in dialects of Bengali, an agglutina-
tive Indic language, and they are able to show that
some modern dialects are optimal solutions to the
functional constraints in the sense that any further
changes would be worse with respect to at least one
of the constraints.

Eric Smith applies the gradual learning algorithm
(GLA) developed in Optimality Theory by Paul
Boersma to the problem of reconstructing a dead
language. In particular the GLA is deployed to de-
duce the phonological representations of a dead lan-
guage, Elamite, from the orthography, where the
orthography is treated as the surface representation
and the phonological representation as the underly-
ing representation. Elamite was spoken in south-
western and central Iran, and survives in texts dating
from 2400– 360 BCE, written in a cuneiform script
borrowed from Sumerians and Akkadians. Special
attention is paid to the difficult mapping between or-
thography and phonology, and to OT’s Lexicon Op-
timization module.

Antonella Gaillard-Corvaglia, Jean-Léo Léonard
and Pierre Darlu apply cladistic analysis to dialect
networks and language phyla, using the detailed in-
formation in phonetic changes to increase the re-
solution beyond what is possible with simple word
lists. They examine Gallo-Romance vowels, south-
ern Italo-Romance dialects and Mayan languages,
foregoing analyses of relatedness based on global
resemblance between languages, and aiming instead
to view recurrent phonological changes as first-class
entities in the analysis of historical phonology with
the ambition of including the probability of specific
linguistic changes in analyses.

Animesh Mukherjee, Monojit Choudhury, Anu-
pam Basu and Niloy Ganguly examine the struc-
ture of vowel systems by defining a weighted net-
work where vowels are represented by the nodes
and the likelihood of vowels’ co-occurring in the
languages of the world by weighted edges be-
tween nodes. Using data from the 451 lan-
guages in the UCLA Phonological Segment Inven-
tory Database (UPSID), Mukherjee and colleagues
seek high-frequency symmetric triplets (with sim-
ilar co-occurrence weights). The vowel networks
which emerged tend to organize themselves to max-
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imize contrast between the vowels when inventories
are small, but they tend to grow by systematically
applying the same contrasts (short vs long, oral vs
nasal) across the board when they grow larger.

3.4 Methodology
Finally, there were three papers focusing on more
general methodological issues, one on non-linearity,
one on a direct manipulation interface to cross-
tabulation, and one on visualizing distance mea-
sures.

Hermann Moisl has worked a great deal with the
Newcastle Electronic Corpus of Tyneside English
(NECTE). NECTE is a corpus of dialect speech
from Tyneside in North-East England which was
collected in an effort to represent not only geograph-
ical, but also social variation in speech. In the con-
tribution to this volume, Moisl addresses the prob-
lem of nonlinearity in data, using the distribution of
variance in the frequency of phonemes in NECTE
as an example. He suggests techniques for spotting
nonlinearity as well as techniques for analyzing data
which contains it.

Tyler Peterson and Gessiane Picanco experiment
with cross tabulation as an aid to phonemic re-
construction. In particular they use PIVOT TA-
BLES, which are cross tabulations supported by new
database packages, and which allow direct manipu-
lation, e.g., drag and drop methods of adding and re-
moving new sets of data, including columns or rows.
This makes it easier for the linguist to track e.g.
phoneme correspondences and develop hypotheses
about them. Tupı́ stock is a South American lan-
guage family with about 60 members, mostly in
Brazil, but also in Bolivia and Paraguay. Pivot tables
were employed to examine this data, which resulted
in a reconstruction a great deal like the only pub-
lished reconstruction, but which nevertheless sug-
gested new possibilities.

Thomas Pilz, Axel Philipsenburg and Wolfram
Luther describe the development and use of an in-
terface for visually evaluating distance measures.
Using the problem of identifying intended modern
spellings from manuscript spellings using various
techniques, including edit distance, they note ex-
amples where the same distance measure performs
well on one set of manuscripts but poorly on another.
This motivates the need for easy evaluation of such

measures. The authors use multidimensional scal-
ing plots, histograms and tables to expose different
levels of overview and detail.

3.5 Other

Although this meeting of SIGMORPHON focused
on contributions to historical phonology, there was
also one paper on synchronic morphology.

Christian Monson, Alon Lavie, Jaime Carbonell
and Lori Levin describe ParaMor, a system aimed
at minimally supervised morphological analysis that
uses inflectional paradigms as its key concept.
ParaMor gathers sets of suffixes and stems that co-
occur, collecting each set of suffixes into a potential
inflectional paradigm. These candidate paradigms
then need to be compared and filtered to obtain a
minimal set of paradigms. Since there are many
hundreds of languages for which paradigm discov-
ery would be a very useful tool, ParaMor may be
interesting to researchers involved in language doc-
umentation. This paper sketches the authors’ ap-
proach to the problem and presents evidence for
good performance in Spanish and German.

4 Prospects

As pleasing as it to hear of the progress reported
on in this volume, it is clear that there is a great
deal of interesting work ahead for those interested
in computing and historical phonology. This is im-
mediately clear if one compares the list of potential
topics noted in Sections 1-2 with the paper topics
actually covered, e.g. by skimming Section 3 or the
table of contents. For example we did not receive
submissions on the treatment of older documents, on
recognizing spelling variants, or on dating historical
changes.

In addition interesting topics may just now be ris-
ing above the implementation horizon, e.g. com-
putational techniques which strive to mimic inter-
nal reconstruction (Hock and Joseph, 1996), or those
which aim at characterizing general sound changes,
or perspectives which attempt to tease apart histori-
cal, areal and typological effects (Nerbonne, 2007).
In short, we are optimistic about interest in follow-
up workshops!
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Abstract

Phylogenetic analyses of languages need to
explicitly address whether the languages un-
der consideration are related to each other at
all. Recently developed permutation tests al-
low this question to be explored by testing
whether words in one set of languages are
significantly more similar to those in another
set of languages when paired up by seman-
tics than when paired up at random. Seven
different phonetic similarity metrics are im-
plemented and evaluated on their effective-
ness within such multilateral comparison
systems when deployed to detect genetic re-
lations among the Indo-European and Uralic
language families.

1 Introduction

Because the historical development of languages is
analogous to the evolution of organisms, linguists
and biologists have been able to share much of their
cladistic theory and practice. But in at least one
respect, linguists are at a disadvantage. While all
cellular organisms on Earth are patently related to
each other, no such assumption can be made for lan-
guages. It is possible that languages were invented
multiple times, so that the proper cladistic analy-
sis of all human languages comprises a forest rather
than a single tree. Therefore historical linguists un-
dertaking a cladistic analysis – more often referred
to as subgrouping – have to ask a question that rarely
arises at all in biology: Are the entities for which I
am undertaking to draw a family tree related to each
other in the first place?

The question of whether two or more languages
are related is addressed by looking at characters that
differ between languages and asking whether ob-
served similarities in those characters are so great
as to lead to the conclusion that the languages have
a common ancestor. Researchers have investigated
many types of characters for this purpose, includ-
ing fairly abstract ones such as the structure of
paradigms, but the most commonly used charac-
ters have been the individual morphemes of the lan-
guage. Morphemes are associations between strings
of phones and specific language functions such as
lexical meanings or more general grammatical prop-
erties. Crucially, those associations are arbitrary
to a very great extent. Knowing that a ‘tree’ is
/strom/ in Czech will not help one figure out that it
is /ets/ in Hebrew; nor should Hebrew speakers con-
fronted with two Czech lexical morphemes, such as
/strom/ vs /Hrad/, be able to guess which one means
‘tree’ and which one means ‘castle’. An implica-
tion of this arbitrariness is that if one pairs mor-
phemes by meaning between two languages, that
set of pairs should not have any systematic phonetic
property that would not be obtained if morphemes
were paired up without regard to meaning. Thus, if
one does observe some systematic phonetic property
across the semantically paired morphemes, one can
conclude that there is some historical contingency
that gave those languages that property. Namely, one
can conclude that at one time the languages shared
the same morpheme for at least some of the mean-
ings, either because of borrowing or because of de-
scent from a common ancestor.

The most straightforward application of this prin-
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ciple is to see whether the morphemes for the same
concept in two different languages appear unusu-
ally similar to each other. Anyone seeing that the
morpheme for ‘all’ was /æAl:/ in Old English and
/al:/ in Old High German, that ‘animal’ was /de:or/
and /tior/, respectively, and that ‘back’ was /hryd:Z/
vs. /hruk:/, and so forth, might well conclude that
the languages were related to each other, as indeed
they were. Unfortunately, the universal properties
of language mean that even unrelated morphemes
have something in common; it is not always obvious
whether the amount of similarity between seman-
tically matched morphemes is significantly greater
than that between semantically mismatched mor-
phemes. For nearly two centuries now, the standard
recourse in case of doubt has been the comparative
method. One counts how many times the same pair
of sounds match up in semantically matched mor-
phemes; for example, Old English /d/ often corre-
sponds to Old High German /t/. A large number of
recurrent sound correspondences appearing in sev-
eral positions in a large number of different words
has been considered proof that languages are related.
This method is more sophisticated than eyeballing
similarities, not least because it recognizes the effect
of phonetic apomorphies − sound changes − such
as the change of /d/ to /t/ in Old High German. The
standard methodology gives no concrete guidance as
to how many recurrent sound correspondences con-
stitute proof. However, there have been attempts
to recast the comparative method in terms of mod-
ern statistical theory and experimental methodology,
providing clearcut quantification of the magnitude
and significance of the evidence that languages are
related (see Kessler, 2001, for recent developments
and a summary of earlier work).

One drawback to recent statistical adaptations of
the comparative method is that they have been lim-
ited to comparing two languages at a time. It has
been claimed, however, most prominently by Green-
berg (e.g., 1993), that when one wishes to test
whether a large set of languages are related, con-
ducting a series of bilateral tests loses power: there
may be information contained in a pattern of rela-
tions across three or more languages that is not man-
ifest in the bilateral partitioning of the set of lan-
guages. Greenberg’s approach to multilateral com-
parison was a step backward to the days before the

development of the comparative method (Poser &
Campbell, 1992). By his own account, he simply
eyed the data and apparently never failed to conclude
that languages were related.

Most linguists have rejected Greenberg’s ap-
proach and many have written detailed refutations
(e.g., Campbell, 1988; Matisoff, 1990; Ringe, 1996;
Salmons, 1992). But Kessler and Lehtonen (2006)
believed that multilateral comparison could be valid
and advantageous if applied with some statistical
rigour. Adapting Greenberg’s basic approach, they
developed a methodology that involved computing
phonetic similarity between semantically matched
morphemes across several languages at a time. This
was different from the comparative method, because
recurrent sound correspondences were not sought:
large numbers of recurrences are not typically found
across large numbers of languages. However, it
is conceptually straightforward to aggregate sim-
ilarity measures across morphemes in many lan-
guages. Crucially, the similarity across semantically
matched morphemes was compared to that obtained
across semantically mismatched morphemes. Thus,
this application of multilateral comparison is based
on the same principles about sound−meaning ar-
bitrariness on which the comparative method was
based. Because the similarity computations were
completely algorithmic and applied to data collected
in an unbiased fashion, the new methodology pro-
vided a way to reliably quantify and test the signif-
icance of phonetic similarity as evidence for histor-
ical connections between two sets of multiple lan-
guages. Kessler and Lehtonen demonstrated that the
method was powerful enough to detect the relation-
ship between 11 Indo-European languages and that
between 4 Uralic languages, but it did not detect any
connection between those two families.

The core of the multilateral comparison method-
ology is the phonetic similary metric. To my knowl-
edge, Greenberg never specified any particular met-
ric. However, many different phonetic comparison
algoriths have been proposed for many purposes,
including this task of looking for similarities be-
tween words (reviewed in Kessler, 2005); in partic-
ular, Baxter and Manaster Ramer (2000) and Oswalt
(1998) developed algorithms expressly for investi-
gating language relatedness, though only in bilat-
eral tests. In this paper I explore several different
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phonetic comparison algorithms and evaluate how
well they perform in Kessler and Lehtonen’s (2006)
multilateral comparison task for Indo-European and
Uralic.

2 Multilateral Comparison

The basic multilateral algorithm is described in
Kessler and Lehtonen (2006); here I give a sum-
mary of the relevant facts. For each of 15 languages,
we collected all of the words expressing concepts
in the Swadesh (1952) list of 200 concepts. How-
ever, words were discarded if they violated the key
assumptions discussed in the introduction. For ex-
ample, onomatopoeia and sound symbolism would
violate the assumption of arbitrariness: languages
could easily come up with similar words for the
same concept if they both resorted to natural asso-
ciations between sounds and their meanings. Gram-
matical words were rejected because they tend to
have certain phonetic properties in common across
languages, such as shortness; this also violates arbi-
trariness. Loanwords were discarded in order to fo-
cus on genetic relationships rather than other types
of historical connection.

In addition to rejecting some words outright, we
tagged others for their relative suitability for a histor-
ical analysis. The concepts themselves were scored
for how much confidence other researchers have
placed in their suitability for glottochronological
studies. Some of the contribution to this score was
quite subjective; other parts of it were derived from
studies of retention rates: how long words express-
ing the concept tend to survive before being replaced
by other words. The words were stripped down to
their root morpheme, and then tagged for how con-
cordant that root meaning is with the target concept;
for example, if a word for ‘dirty’ literally means ‘un-
clean’, the root ‘clean’ does not express the concept
‘dirty’ very well. None of the conditions indicated
by these suitability measures invalidates the use of
a word, but low retention rates and complex seman-
tic composition mean the word has a lower chance
of being truly old and consequently of being a very
good datum in a comparison of languages suspected
of being only distantly related. These suitability
scores were combined for each word in each lan-
guage. Then, in any given comparison between lan-

guages, the suitability scores for each concept were
aggregated across words, and the 100 concepts with
the best rankings were selected for actual compari-
son. This technique both ensures the availability of a
reasonably large amount of data and also attempts to
ensure that the words themselves will be reasonably
probative without biasing the test in either direction.

In any single multilateral test, it is assumed that
we have a single specific hypothesis: whether one
group of one or more languages is related to another
group of one or more languages. The approach taken
therefore is to determine for each concept how dif-
ferent the words in one group are to the words in
the other group. If there are more than one word
in each group, then all crosspairs are computed and
their average is taken. This approach applies both
to the situation where there are multiple languages
in a group and multiple words for a given language.
These averages are then summed across all 100 con-
cepts, giving a single distance measure: a score of
how different the two groups of languages are from
each other.

It is important to note, however, that this dis-
tance measure is not meaningful in itself. Sets of
languages could get relatively low distance mea-
sures just because their phonological inventories
and phonotactics are very similar to each other’s;
such typological similarity is not, however, strong
evidence for historical connectedness between lan-
guages. Rather, what is needed is a relative compar-
ison: how dissimilar would the words be across the
two sets of languages if they were not matched by
semantics? This is computed by randomly match-
ing concepts in one set of languages with concepts
in another set of languages and recomputing the
sum of the dissimilarity measures. Each such rear-
rangement may give a different total distance, which
may not be representative, so this procedure is done
100,000 times and the distance is averaged across
all those iterations, yielding a very close estimate of
the phonetic difference between words that are not
matched on semantics. From this one can compute
the proportion by which the semantically matched
distance is less than the semantically mismatched
distance. This proportion is the magnitude m of
the evidence in favour of the hypothesis that sets
of languages are related to each other. At the same
time that the magnitude is computed, one can also
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compute the significance level of the hypothesis,
by counting what proportion of the 100,000 rear-
rangements has a total distance score that is at least
as small as that between the semantically matched
words. That number estimates how likely it is that
the attested amount of evidence would have oc-
curred by chance, given the phonology of the sets
of languages. This paper follows the usual con-
vention in the social sciences of considering signifi-
cance levels, p, below .05 as being reasonably com-
fortable.

While each individual test can tell the probabil-
ity that two sets of languages are related, specific
studies may seek to find out which of three or more
sets of languages are related. To investigate that, a
nearest-neighbour hierarchical clustering is used. In
each cycle of the procedure, comparisons are made
between all pairs of sets of languages to see which
pairs have significant evidence (p < .05) of being
related. Of those, the pair with the highest magni-
tude m are combined to form a new, larger, set of
languages. The cycles repeat until all languages are
grouped into one large set, or no pair of sets have
sufficiently significant evidence of being related.

3 Phonetic Distance Metrics

Phonetic distance metrics can be evaluated on sev-
eral different principles. The ultimate goal is that
they should result in p values that are very low when
languages are related and high when they are not re-
lated. Unfortunately, that goal is only partly evalu-
able. There are no two languages known for sure
not to be related; otherwise there would be no mono-
geneticists. The best one can test for is m values that
correlate well with our incomplete knowledge of the
degree of relatedness between languages.

Beyond basic engineering goals of simplicity and
efficiency, therefore, a good algorithm should give
a relatively low distance score for words or lan-
guages known to be related. To the extent possible,
it should take minimal account of phonetic features
that change quickly over time, and weight more
heavily features that tend to be stable over time.

It is perhaps less obvious that a phonetic dis-
tance metric should be based on features that are
widespread, both across the languages of the world
and within individual languages. To take a clearly

absurd example, a bad metric would give a distance
of 0 if two words agree in whether or not they con-
tained a click, and 1 otherwise. For the vast major-
ity of languages, all word pairs would be assigned a
distance 0, because neither word has a click. Such
a metric would find no evidence that any pair of
clickless languages are related, because the distance
of the semantically matched pairs would be no less
than the distance of the mismatched pairs. Simi-
larly, even if a feature is found in both languages,
it should be neither too common nor too rare. For
example, many languages have a contrast between
lateral and central sounds, but lateral sounds tend
to be vastly less common than central sounds. A
metric that compares sounds based on central/lateral
distinctions may again end up finding little probative
evidence. This observation may seem commonplace
for statisticians, but is worth pointing out because
the tradition in historical linguistics has always been
to look for pieces of evidence that are individually
spectacular for their rarity, such as a pair of words
whose first five sounds are all identical. It is great
to report such evidence when it is found, but bad
to demand such evidence in advance, because typi-
cally any specific type of spectacular evidence will
not show up even for related languages. In a statis-
tical analysis it is much better to look for common
pieces of evidence to ensure that their distribution
in any particular study will be typical and therefore
reasonably conducive to a reliable quantitative anal-
ysis.

A much more subtle danger is that a poorly cho-
sen phonetic distance metric might be influenced by
parts of the phonology that are not as completely ar-
bitrary as one might like them to be. Because the ar-
bitrariness hypothesis is almost always observed to
be applicable in practice, and because it has attained
the status of dogma, linguists do not know all there
is to know about conditions in which the association
between sound and meaning may not be entirely ar-
bitrary and the ways in which that non-arbitrariness
may repeat across languages, spuriously indicating
that languages are related. However, one strong con-
tender for non-arbitrariness is word length. It ap-
pears to be true that words that are longer in one
language tend to be longer in another. If a pho-
netic distance metric is sensitive to word length, it
could indicate that semantically matched words are
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more or less similar than mismatched words, just be-
cause their length is similar. This study attempts
to minimize that effect by discarding grammatical
words, which tend to be systematically shorter than
lexical words. It also reduces words to their root
morpheme, in part because crosslinguistic tenden-
cies favouring longer words are probably due largely
to a tendency to use more morphemes when building
lower-frequency concepts. Nevertheless, even these
steps are not proof against matching-length effects,
and so it would be better for phonetic distance met-
rics not to be sensitive to word length.

3.1 Candidate Metrics
Seven different phonetic distance metrics were eval-
uated for this study.

C1-place. The phonetic distance metric used by
Kessler and Lehtonen (2006) was based on the ob-
servations that in language change, consonants tend
to be more stable than vowels, the front of the word
tends to be more stable than the end of the word,
and place of articulation tends to be more stable than
other features. Consequently it is based on the place
feature of the first consonants (C1) found in the com-
paranda; only if a comparandum has no consonant at
all is its first vowel used instead. Places of articula-
tion are assigned integer values from 0 (lips) to 10
(postvelar), and candidate phones are assigned a list
of these values, which allows for secondary and dou-
ble articulation. The phonetic distance between two
sounds is the smallest absolute difference between
the crosswise pairings of those place values. In ad-
dition, half a point is added if the two sounds are not
identical. For example, when comparing the Old En-
glish word for ‘child’, /tSild/, with the corresponding
Old High German word, /kind/, the algorithm would
extract the first consonants, /tS/ and /k/; assign the
postalveolar /tS/ a place value of 4 and the velar /k/
a value of 9; and report the difference plus an extra
0.5 for being non-identical: 5.5.

P1-Dolg. Baxter and Manaster Ramer (2000), in
a demonstration of bilateral comparison, used a
phonetic distance metric adapted fom Dolgopol-
sky (1986). Dolgopolsky grouped sounds into 10
classes, which were defined by a combination of
place and manner of articulation. Two sounds were
considered to have a distance of 0 between them if

they fell in the same class; otherwise the distance
was 1. Instead of using the first consonant in the
word, the first phoneme (P1) is used instead, but all
vowels are put in the same class. Dolgopolsky’s idea
was to group together sounds that tend to change
into each other over time; thus one class contains
both velar stops and postalveolar affricates, because
the sound change [k]→ [tS] is common. Thus in the
example of /tSild/ vs. /kind/, the reported distance
would be 0.

C1-Dolg and P1-place. These metrics were intro-
duced in order to factor apart the two main differ-
ences between C1-place and P1-Dolg. C1-Dolg uses
Dolgopolsky classes but operates on the first conso-
nant, if any, rather than on an initial vowel. P1-place
uses the place comparison metrics of C1-place, but
always operates on the first phoneme, even if it is a
vowel. So many morphemes begin with a consonant
that this is often a distinction without a difference,
as in the ‘child’ example. But note how in compar-
ing Old English /æ:G/ with Latin /o:w/, both ‘egg’,
the P1 versions would compare /æ:/ with /o:/, for a
distance of 3.5 by the P1-place metric (palatal vs.
velar vowels) and 0 by the P1-Dolg metric (all vow-
els are in the same class); whereas the C1 metrics
would compare /G/ with /w/, for a distance of 0.5 by
C1-place (both sounds have velar components) and
1 by C1-Dolg.

P1-voice. This metric is designed to be as sim-
ple as possible. Two words have a distance of 0 if
their first phones agree in voicing, 1 if they disagree.
Breathy voice was counted as voiced. The idea here
is that phonation contrast is reasonably universal,
and it is a relatively simple matter to partition all
known phones into two sets.

C*-DolgSeq. In the comparative method, the best
evidence for genetic relatedness is considered to
be the presence of several words that contain mul-
tiple sounds that all evince recurrent sound cor-
respondences. In particular, multiple consonant
matches between words are often sought as partic-
ularly probative evidence. This metric implements
this desideratum by lining up all the consonants (C*)
in the words sequentially (hence Seq). Each such
pair of aligned consonants contributes a distance of
1 to the cumulative distance between the words if the
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consonants are not in the same Dolgopolsky class.
If the one word has more consonants than the other
word, alignment begins at the beginning of the word,
and the extra consonants at the end are ignored. To
avoid making this metric sensitive to word length,
the total distance is divided by the number of conso-
nant pairs. Continuing the ‘child’ example, /tS/ and
/k/ contribute 0 because they are in the same Dol-
gopolsky class; /l/ and /n/ contribute 1 because they
are in different classes; and /d/ and /d/ contribute 0;
the sum 1 is averaged across 3 comparisons to give
a score of 0.33.

C*-DolgCross. Although the C*-DolgSeq metric
attempts to exploit information from multiple con-
sonants in each pair of words, it fails to exploit all
possible information. The extra consonants at the
end of the longer word are ignored. Further, there is
the possibility that the sequential alignment would
fail under some fairly common situations. For ex-
ample, if in one language a consonant is deleted or
vocalized, the later consonants will not be aligned
correctly. To address this issue, this metric exam-
ines all crosswise pairs of consonants and reports
their average Dolgopolsky metric. In the example,
/tS/ is compared to /k/ (0), /n/ (1), and /d/ (1); /l/ is
compared to /k/ (1), /n/ (1), and /d/ (1); and /d/ is
compared to /k/ (1), /n/ (1), and /d/ (0). Thus the
metric is 7/9, or 0.78.

3.2 Test

Data from 15 languages were used. These languages
were selected to give a reasonably wide range of
variation in their relatedness to each other. Eleven
of the languages were Indo-European, and four were
Uralic. Within both of those families there are
subclades that are noticeably more closely related
to each other than to other languages in the same
family. The Indo-European set contains four Ger-
manic languages (Old English, Old High German,
Gothic and Old Norse) and two Balto-Slavic lan-
guages (Lithuanian and Old Church Slavonic); all
the other languages are traditionally considered as
belonging to separate branches of Indo-European:
Latin, Albanian, Greek, Latin, Old Irish, and San-
skrit. The Uralic set contains three languages that
subgroup in a clade called Finno-Ugric (Finnish,
Hungarian, and Mari), which is rather distinct from

the Samoyedic branch, which contains Nenets. Sev-
eral linguists believe that the Indo-European and
Uralic languages are related to each other (e.g.,
Bomhard, 1996; Greenberg, 2000; Kortlandt, 2002),
though this hypothesis is far from being universally
accepted. For each of the 15 languages, transla-
tion equivalents were found for each of the Swadesh
200 concepts, as described in Kessler and Lehtonen
(2006).

The multilateral comparison algorithm described
above was performed once with each of the above-
described phonetic distance metrics. Each of the
analyses comprised a complete hierarchical clus-
tering of all 15 languages. For each metric, the
main concern was whether a multilateral analysis
performed with it would group together languages
known to be related, however remotely. A second
question was what similarity magnitudes would be
reported for languages known to be related. In gen-
eral one would expect a good phonetic distance met-
ric to yield high magnitudes and low p values for
languages known to be related, and that, all things
being equal, magnitudes should increase the more
closely related the languages are.

A large amount of information is available about
each run of the program. The algorithm begins by
performing bilateral comparisons for each pair of
languages, and it might be somewhat interesting to
compare those 105 data points across each of the
seven metrics. Perhaps more interesting and decid-
edly more succinct is to focus on the numbers for
each of the major clades described above (Table 1).
Because almost all of the runs of the program cre-
ated clusters that contained exactly the languages in
each of the clades named in the column headers, it
was possible to show the m value reported by the
program when that cluster was formed: the degree
of similarity between the two subsclusters that were
joined to form the cluster in question. For exam-
ple, when the algorithm using the C1-place metric
joined Old Norse up with a cluster containing Old
English, Old High German, and Gothic, it reported
an m value of .65 between those two groups. Be-
cause of the nature of the clustering algorithm, this
represents the weakest link within the clade: in gen-
eral, the similarity between languages in each of
those two subclades will be higher than this number.

A striking feature of Table 1 is the stability of
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Metric Germanic Balto- Indo- Finno- Uralic Indo-
Slavic European Ugric Uralic

C1-place .65** .43** .12** .23** .09* .00
C1-Dolg .65** .42** .12** .26** .09** .02*
C*-DolgCross .22** .14** .05** .10** .05** .01
C*-DolgSeq .57** .37** .09** .22** .07** .02*
P1-Dolg .66** .41** .13** .25** .10** .02
P1-place .66** .45** .13** .31** .09* -.01
P1-voice .68** .57** (.19) .37** (.05) (.05)

Table 1: Similarity Magnitudes Reported for Each Linguistic Clade. *p < .05. **p < .001. Numbers are
the m values reported when the clade is constructed via clustering. If the algorithm does not posit the clade
as a cluster, table reports in parentheses the average m reported for each pair of languages in the clade.

the algorithm across different phonetic distance met-
rics. All of them constructed the relatively easy sub-
clades (Germanic, Balto-Slavic, and Finno-Ugric),
reporting very strong significance values. All of
them except P1-voice constructed Indo-European
and Uralic, which are both fairly difficult to identify;
in fact P1-voice nearly did so, except that it mis-
classed Nenets with the Indo-European languages.
All of them assigned very low similarity magnitudes
to a proposed Indo-Uralic grouping: that is, they
found very little similarity between Indo-European
and Uralic words for the same concept. Further-
more, the magnitudes for the various clades are all
ranked in the same order. As one would hope, the
subclades within each family are given much higher
m values than the families themselves.

In direct comparisons between comparable ver-
sion of the place metric and the Dolgopolsky metric
(C1-place vs. C1-Dolg and P1-place vs. P1-Dolg),
no very consistent patterns emerge. But the Dolgo-
polsky metrics tend to reveal the Uralic family with
much higher significance levels than do the other
measures, and they are also the only metrics that
ever posit an Indo-Uralic clade at acceptable signif-
icance levels (C1-Dolg at p = .04; C*-DolgSeq at
p = .02). An optimistic explanation is that the Dol-
gopolsky classes are better at finding subtle evidence
of language relatedness, and that this may be due
to their being constructed eclectically. Sounds were
claimed to have been grouped into classes based on
the frequency with which they are known to develop
into each other in the course of language change
(Dolgopolsky, 1986:35), not based on any a priori

principle; place of articulation clearly is a consid-
eration, but there are many other factors involved.
For example, one group comprises the coronal ob-
struents, except that sibilant fricatives are in a sep-
arate group of their own, and sibilant affricates are
grouped with the velars. One might expect a system
based on empirical data to perform better than one
based on a monothetic property such as place of par-
ticulation. However, it must also be cautioned that
Dolgopolsky did not explain how he gathered the
statistics upon which his classes are based. Since
the classes were introduced in a paper designed to
show that Indo-European and Uralic, among other
families, are related to each other, it is possible that
the statistics were informed at least in part by pat-
terns he perceived between those language families.
There is therefore some small cause to be concerned
that Dolgopolsky classes may be, if only inadver-
tently, somewhat tuned to the Indo-Uralic data and
therefore not completely unbiased with respect to
the research question.

A more consistent trend in the table is that the
metrics that attempt to incorporate more informa-
tion about the comparanda return lower similarity
magnitudes. The C*-DolgSeq metric, which aligns
the consonants and reports the average distance
across all the pairs. gave substantially lower num-
bers than the metrics that analyze single phonemes.
This observation applies even more strongly to the
C*-DolgCross metric, which reported magnitudes a
third the size of other measures. The result is not
unexpected. It is common knowledge that initial
consonants tend to be more stable than other conso-
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nants in the word; incorporating non-initial conso-
nants into the metric means that a higher proportion
of the data the metric looks at will be more dissimi-
lar. This being the case, it may seem surprising that
C*-DolgSeq and C*-DolgCross showed essentially
the same connections between languages as did the
other metrics, and at strong significance levels. Even
though the similarity levels are close to background
levels (those of semantically unmatched pairs), they
are still measurably above background levels; the p
values are only concerned with whether the matched
data is more similar than the unmatched data, not by
how much they are different.

P1-voice was introduced to experiment with a
metric that takes the other approach: instead of in-
corporating more material into the measure, it incor-
porates less. Being based on a single binary pho-
netic feature, P1-voice is arguably the most mini-
mal metric possible. Perhaps not unexpectedly, it
has the opposite effect of that of C*-DolgSeq and
C*-DolgCross: m measures are raised. At the same
time, this metric too appears to reveal the known re-
lations between languages. The several gaps in the
table are due to a single odd choice that the algo-
rithm made: it concluded that the Uralic language
Nenets was quite similar to the Germanic languages,
at least with respect to whether the first sound is
voiced in semantically matched words. Presumably
this connection was just a chance accident; indeed,
saying that one is working with significance levels
of .05 is another way of saying that one is willing to
tolerate such errors about 5% of the time.

4 Conclusions

The evaluation of the methodology across 15 lan-
guages did not provide overwhelming evidence
favouring one type of phonetic distance metric over
another. Perhaps, by a small margin, the strongest
results are obtained by comparing what Dolgopol-
sky classes the first consonants − or, equally well,
the first phonemes− of the words fall into, but noth-
ing seriously warns the researcher away from other
approaches.

Conceivably further experiments with other data
sets will reveal strengths and weaknesses of different
metrics more convincingly. Until such time, how-
ever, it may be most useful to choose phonetic dis-

tance metrics primarily on theoretical, if not philo-
sophical, criteria. Metrics that look at many parts of
the word have the advantage of not missing infor-
mation, even if it turns up in unusual places. It is
not unknown for a branch of a language family to do
something unusual like drop all initial consonants;
in such an event, all the single-phoneme metrics ex-
plored here would fail entirely. One does not really
wish to change one’s metric for different sets of lan-
guages, because if one has the freedom to fish for
different metrics until a test succeeds, one can alm-
sot certainly − and spuriously − prove that almost
all languages are related. So there is some advan-
tage to having a metric that covers all the bases. But
the similarity measures returned under such circum-
stances do tend to be small, and although such re-
duction in m did not seem to have any deleterious ef-
fect in the present experiment, it is not unreasonable
to worry that weak similarity measures may cause
problems in some data sets. Further, the more of a
word one is looking at, the more likely it is that one
will inadvertently encode length information into the
metric.

The main conclusion to be drawn from this study
is that the basic methodology is very hospitable to
a variety of phonetic distance metrics and performs
adequately and stably with any reasonable met-
ric. Unlike parametric methods, this randomization-
based methodology does not require the researcher
to develop new formulas to compute strength and
significance values for each new distance metric.
The simple expedient of randomly rearranging the
data a large number of times and recomputing the
distance metric for each rearrangement provides the
most literal and straightforward way of applying the
key insight of the arbitrariness hypothesis: the pho-
netic similarity of semantically matched words will
be no greater than that of semantically mismatched
ones, unless some historical contingency such as de-
scent from a common language is involved.
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Bayesian Identi�
ation of Cognates and Corresponden
esT. Mark EllisonLinguisti
s, University of Western Australia,and Analith Ltdmark�markellison.net
Abstra
tThis paper presents a Bayesian approa
hto 
omparing languages: identifying 
og-nates and the regular 
orresponden
esthat 
ompose them. A simple model oflanguage is extended to in
lude these no-tions in an a

ount of parent languages.An expression is developed for the pos-terior probability of 
hild language formsgiven a parent language. Bayes' Theo-rem o�ers a s
hema for evaluating 
hoi
esof 
ognates and 
orresponden
es to ex-plain semanti
ally mat
hed data. An im-plementation optimising this value withgradient des
ent is shown to distinguish
ognates from non-
ognates in data fromPolish and Russian.Modern histori
al linguisti
s addresses ques-tions like the following. How did languageoriginate? What were histori
ally-re
orded lan-guages like? How related are languages? Whatwere the an
estors of modern languages like?Re
ently, 
omputation has be
ome a key tool inaddressing su
h questions.Kirby (2002) gives an overview of 
urrent 
ur-rent work on how language evolved, mu
h of itbased on 
omputational models and simulations.Ellison (1992) presents a linguisti
ally motivatedmethod for 
lassifying 
onsonants as 
onsonantsor vowels. An unexpe
ted result for the deadlanguage Gothi
 provides added weight to oneof two 
ompeting phonologi
al interpretations ofthe orthography of this dead language.

Other re
ent work has applied 
omputationalmethods for phylogeneti
s to measuring linguis-ti
 distan
es, and/or 
onstru
ting taxonomi
trees from distan
es between languages and di-ale
ts (Dyen et al., 1992; Ringe et al., 2002; Grayand Atkinson, 2003; M
Mahon and M
Mahon,2003; Nakleh et al., 2005; Ellison and Kirby,2006).A 
entral fo
us of histori
al linguisti
s is there
onstru
tion of parent languages from the ev-iden
e of their des
endents. In histori
al lin-guisti
s proper, this is done by the 
ompara-tive method (Je�ers and Lehiste, 1989; Ho
k,1991) in whi
h shared arbitrary stru
ture is as-sumed to re�e
t 
ommon origin. At the phono-logi
al level, re
onstru
tion identi�es 
ognatesand 
orresponden
es, and then 
onstru
ts sound
hanges whi
h explain them.This paper presents a Bayesian approa
h toassessing 
ognates and 
orresponden
es. Bestsets of 
ognates and 
orresponden
es 
an thenbe identi�ed by gradient as
ent on this evalua-tion measure. While the work is motivated bythe eventual goal of o�ering software solutionsto histori
al linguisti
s, it also hopes to showthat Bayes' theorem applied to an expli
it, sim-ple model of language 
an lead to a prin
ipledand tra
table method for identifying 
ognates.The stru
ture of the paper is as follows. Thenext se
tion details the notions of histori
al lin-guisti
s needed for this paper. Se
tion 2 for-mally de�nes a model of language and parentlanguage. The subsequent se
tion situates thework amongst similar work in the literature,
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making use of 
on
epts des
ribed in the earlierse
tions. Se
tion 4 des
ribes the 
al
ulation ofthe probability of wordlist data given a hypoth-esised parent language. This is 
ombined withBayes' theorem and gradient sear
h in an algo-rithm to �nd the best parent language for thedata. Se
tion 5 des
ribes the results of apply-ing an implementation of the algorithm to datafrom Polish and Russian. The �nal se
tion sum-marises the paper and suggests further work.1 Cognates, Corresponden
es andRe
onstru
tionIn the neo-Grammarian model of language
hange, a population speaking a uniform lan-guage divides, and then the two populations un-dergo separate language 
hanges.Word forms with 
ontinuous histories in re-spe
tive daughter languages des
ending whi
hfrom a 
ommon word-form an
estor are 
alled
ognate, no matter what has happened to theirsemanti
s. Cognate word forms may have un-dergone deformations to make them less simi-lar to ea
h other, these deformations resultingfrom regular, phonologi
al 
hanges. Note thatin the �elds of applied linguisti
s, se
ond lan-guage a
quisition, and ma
hine translation, theterm 
ognate is used to mean any words that arephonologi
ally similar to ea
h other. This is notthe sense meant here.Phonologi
al 
hange produ
es modi�
ationsto the segmental inventory, repla
ing one seg-ment by another in all or only some 
ontexts.This sometimes has the e�e
t of 
ollapsing seg-ment types together. Other 
hanges may di-vide one segment type into two, depending ona 
ontextual 
ondition. The relation of parent-language segments to daughter-language seg-ments is, usually, a many-to-many relation.Parent-
hild segmental relations are re�e
tedin the 
orresponden
es between segment in-ventories in the daughter languages. Cor-responden
es are pairings of segments fromdaughter languages whi
h have derived froma 
ommon parent segment. For example, pin Latin frequently 
orresponds to f in En-glish, as in words like pater and father. Both

segments have developed from a (postulated)Proto-IndoEuropean *p. Be
ause 
orrespon-den
es only o

ur between 
ognates, identify-ing the two is often a bootstrap pro
ess: 
or-raling 
ognates helps �nd more 
orresponden
es,and forms sharing a number 
orresponden
es areprobably 
ognate.2 Formal Stru
turesThe method presented in this paper is based ona formal model of language. This is des
ribed inse
tion 2.1. The subsequent se
tion extends themodel to de�ne a parent language, whose seg-mental inventory is 
orresponden
es and whoselexi
on is 
ognates linking two des
endent lan-guages.2.1 Language modelThe language model is based on three assump-tions.Assumption 1 There is a universal, dis
reteset M of meanings.Assumption 2 A language L has its own set ofsegments Σ(L).Assumption 3 The lexi
on λ of a language L isa partial map of meanings to strings of segments
λ : M → Σ(L)∗.On the basis of these assumptions, we 
an de-�ne a language L to be a triple (M,Σ(L), λ(L))of meanings, segments and mappings from mean-ings onto strings of segments.For example, 
onsider written Polish. Theset of meanings 
ontains 
on
epts as to take-perfe
t-in�nitive, tree-nominative-singular,and so on. The segmental inventory 
ontainsthe 32 segments a a� b 
 �
 d e e� f g h i j k l
 l m n �n o �o p r s �s t u w y z 
z �z, ignoring
apitalisation. The lexi
on mat
hes meanings tostrings of segments, to take-perfe
t-in�nitiveto wzia��
, tree-nominative-singular to drzewo.2.2 Parent language modelDe�nition 1 A degree-(u, v) 
orresponden
ebetween L1 and L2 is a pair of strings (s, t) ∈
Σ(L1) × Σ(L2) over the segments of L1 and L2

16



respe
tively, with lengths at least u and no morethan v.As an example of a 
orresponden
e, 
onsiderthe pair of small strings from Polish and Russian,(�
,òü). This is a degree-(1, 2) 
orresponden
ebe
ause its members have lengths as low as oneand as high as two. It is also a degree-(u, v)
orresponden
e for any u ≤ 1 and v ≥ 2.Any 
orresponden
e 
an be mapped onto its
omponents by proje
tion fun
tions.De�nition 2 The proje
tions π1 and π2 mapa 
orresponden
e (s, t) onto its �rst π1(s, t) = sor se
ond π2(s, t) = t 
omponent string respe
-tively.The �rst proje
tion fun
tion will map (�
,òü)onto �
, while the se
ond maps (�
,òü) onto òü.Corresponden
es 
an be formed into strings.These strings also have proje
tions.De�nition 3 The proje
tions π1 and π2 mapa string of 
orresponden
es c1..ck onto the 
on-
atenation of the proje
tions of ea
h 
orrespon-den
e.
π1(c1..ck) = π1(c1)π1(c2)..π1(ck),

π2(c1..ck) = π2(c1)π2(c2)..π2(ck)Suppose we sequen
e four 
orresponden
esinto the string (w,â)(z,ç)(ia�,ÿ)(�
,òü). Thisstring has �rst and se
ond proje
tions, wzia��
and âçÿòü, formed by 
on
atenating the respe
-tive proje
tions of ea
h 
orresponden
e.We 
an now de�ne a parent language.De�nition 4 A degree-(u, v) parent L0 of twolanguages L1, L2 is a triple (M,Σ(L0), λ(L0))where Σ(L0) is a set of degree-(u, v) 
orrespon-den
es between L1 and L2, ex
luding the pair ofnull strings, and λ(L0) is a partial mapping from
M onto Σ(L0) whi
h obeys

π1 ◦ λ(L0) ⊆ λ(L1), π2 ◦ λ(L0) ⊆ λ(L2)The 
ir
le stands for fun
tion 
omposition.Continuing our past example, we will fo
uson the two meanings to take-perfe
t-in�nitive

and tree-nominative-singular. The segment in-ventory for the parent language 
ontains degree-
(0, 2) 
orresponden
es: (,å), (�
,òü), (d,ä),(e,å), (ia�,ÿ), (o,î), (rz,ð), (w,â), (z,ç). Thelexi
al fun
tion maps to take-perfe
t-in�nitiveonto the string of 
orresponden
es (w,â) (z,ç)(ia�,ÿ) (�
,òü) while tree-nominative-singularmaps to (d,ä) (,å) (rz,ð) (e,å) (w,â) (o,î).The parent language 
ondition is veri�ed by
he
king the proje
tions of the two 
orrespon-den
e strings. The �rst string has proje
-tions wzia��
 and âçÿòü, whi
h are forms forthe meaning to take-perfe
t-in�nitive in Pol-ish and Russian respe
tively. The se
ond stringhas proje
tions drzewo and äåðåâî, whi
h areforms for the meaning tree-nominative-singularin Polish and Russian respe
tively. So the pro-je
tion 
ondition is satis�ed. If the lexi
al fun
-tion is only de�ned on these two meanings, thenthis is a valid parent language.It is worth emphasising that the proje
tion
ondition for qualifying as a parent language ap-plies only for those meanings for whi
h the par-ent lexi
al mapping is de�ned. The 
orrespond-ing forms in the 
hild languages are said to be
ognate in this model. Where no parent formis re
onstru
ted, the forms are not 
ognate, andare to be a

ounted for in some way other thanthe parent language.3 Related WorkThe 
urrent work is, of 
ourse, far from the �rstto seek to identify 
ognates and/or 
orrespon-den
es. Here is an abbreviated overview of pre-vious work in the �eld1. More detailed surveys
an be found in 
hapter 3 of Kondrak's (2002)PhD thesis or Lowe's online survey 2 of prior artin this �eld.In perhaps the �rst 
omputational work onhistori
al linguisti
s, Kay (1964) des
ribed an al-gorithm for determining 
orresponden
es givena list of 
ognate pairs a
ross two daughter lan-guages. His method seeks to �nd the smallest set1An anonymous reviewer suggests that the 
urrentwork shares features with that of Kessler (2001). I havebeen unable to a

ess this book in time to in
lude dis-
ussion of it in this paper.2linguisti
s.berkeley.edu/̃ jblowe/REWWW/PriorArt.html
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of 
orresponden
es whi
h allows a degree-(1,∞)alignment for ea
h 
ognate pair. Unfortunately,the 
omplexity of the problem has pre
luded itsappli
ation to signi�
ant daa sets.Frantz (1970) developed a PL/1 programmingwhi
h returned numeri
al evaluations of 
orre-sponden
es and 
ogna
y, given a list of possi-ble 
ognate word-pairs. Ea
h word pair must besupplied as a degree-(0, 1) re
onstru
tion, thatis, aligning single segments with ea
h other orwith gaps.Guy (1984; 1994) presented a program 
alledCOGNATE whi
h �nds regular 
orresponden
esand identi�es 
ognates using statisti
al te
h-niques.For his Master's, Broza (1998) developedMDL-based software 
alled 
andid whi
h identi-�es 
orresponden
es from 
ognates and expressesthese as 
ontextual phonologi
al transformationrules.Kondrak's (2002) do
toral dissertation 
om-bines phonologi
al and semanti
 similarity meth-ods with 
orrespondan
e-learning. The algo-rithms for learning 
orresponden
es are takenfrom Melamed's (2000) probabilisti
 methodsfor identifying word-word translation equiva-len
e. These methods, like the 
urrent work,are Bayesian. Be
ause Melamed's problem seekspartial rather than 
omplete explanation of theinputs in terms of 
orresponden
es, the mat
h-ing problem is somewhat more di�
ult theoret-i
ally. As a result, he does not arrive at the de-
omposition of the sum of the probability of twoinputs given the set of possible 
orresponden
es,approximating this with a high probability align-ment.4 Conditional Probability of theDataThe 
ore of any Bayesian model is the 
ondi-tional probability of the data given the hypoth-esis. This se
tion details how probabilities as-signed to data, and the assumptions on whi
hthis assignment is based.The data is the mapping of meanings ontoforms in two daughter languages. If those twolanguages are L1 and L2, we want to determine

P (λ(L1), λ(L2)|h). The nature of h will be dis-
ussed in se
tion 4.6.For brevity, we will write λi for λ(Li).4.1 Meaning independen
eThe �rst step in de�ning the 
onditional prob-ability of the data is to de
ompose it intomeaning-by-meaning probabilities. This 
an bea
hieved by adopting the following two assump-tions.Assumption 4 In a given language, the formsfor di�erent meanings are sele
ted indepen-dently.This assumption states that within a singlelanguage 
hoosing, for example, a form wzia��
for meaning to take-perfe
t-in�nitive is no helpin predi
ting the form whi
h expresses tree-nominative-singular.Assumption 5 A
ross di�erent languages, theforms 
orresponding to di�erent meanings areindependent.A

ording to this assumption, the Polish wordwzia��
 and the Russian word âçÿòü 
an bestru
turally dependent be
ause they express thesame meaning. In 
ontrast, we 
an only ex-pe
t a 
han
e relationship between the Rus-sian word âçÿòü meaning to take-perfe
t-in�nitive, and the Polish word drzewo express-ing tree-nominative-singular.Together, these two assumptions imply thatthe only dependen
ies possible between any fourforms expressing the two meanings m1 and m2 intwo languages L1 and L2 are between λ(m1) and
λ(m1) on the one hand and λ(m2) and λ(m2) onthe other.Consequently the probability of generating theword forms in two languages 
an be de
omposedinto the produ
t of generating the two language-parti
ular forms for ea
h meaning.

P (λ1, λ2|h) =
∏

m∈M

P (λ1(m), λ2(m)|h)
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4.2 Cogna
y and independen
eThe next assumption holds that stru
tural 
or-relation between 
orresponding forms should beexplained as resulting from 
ogna
y.Assumption 6 A
ross di�erent languages,forms 
orresponding to the same meaning aredependent only if the forms are 
ognate.If the words for a parti
ular meaning do notderive from a 
ommon an
estral form, then theyare un
orrelated. To return to our Polish andRussian examples, we 
an expe
t dependen
iesin stru
ture between the 
ognate words drzewoand äåðåâî. But we should expe
t no su
h 
or-relation in the non-
ognate pair pomara�n
zaand àïåëüñèí meaning orange-nominative-singular.Let us write Mi for the domain of the lexi
alfun
tion in language Li. This is the set of mean-ings for whi
h this language has de�ned a wordform. The set of 
ognates is the domain of thelexi
al fun
tion of the parent language, M0. We
an de
ompose the evidential words into threesets: M0 of 
ognates, M1 \M0 of meanings onlyexpressed in language L1, and M2 \M0 of mean-ings only expressed in language L2. Words in these
ond and third 
ategories are non-
ognate, andso probabilisti
ally independent of ea
h other.The 
onditional probability of the data 
anthus be expressed as follows.
P (λ1, λ2|h) =

∏

m∈M0

P (λ1(m), λ2(m)|h)

∏

m∈M1\M0

P (λ1(m)|h)
∏

m∈M2\M0

P (λ2(m)|h)4.3 Probability of a wordWe now turn to the probability of generating astring in a language. The �rst assumption de-�nes the distribution over word-length.Assumption 7 The probability of a word hav-ing a parti
ular length is negative exponential inthat length.The se
ond assumption allows segment prob-ability to depend only on the segment identity,and not on its neighbourhood.

Assumption 8 Segment 
hoi
e is 
ontext-independent.These two assumptions together imply thatthe probability of strings is determined by a �xeddistribution over Σ(Li) ∪ {#}, where # is anend-of-word marker. For the des
endent lan-guages, this distribution 
an be taken as the rela-tive frequen
ies of the segments and end-of-wordmarker. Denote this distribution for language Liby fi.The probability of generating a word in a lan-guage, given relative frequen
ies fi, is the prod-u
t of the relative frequen
ies for ea
h lettern inthe word, multiplied by the relative frequen
y ofthe end-of-word marker.
P (λi(m)|h) = fi(#)

∏

a∈λi(m)

fi(a)Note that this expression only holds for wordsthat are independent of all others, su
h as 
om-ponents of non-
ognate pairs.4.4 Probability of generating a 
ognatepairThe probability of generating a 
ognate pair ofwords is similar to the above, be
ause des
en-dent forms are deterministi
ally derivable fromthe parent forms. If (λ1(m), λ2(m)) are a pair of
ognates derived from an an
estral form λ0(m),then there is unit probability that the des
en-dent forms are what they are given the parent:
P (λ1(m), λ2(m)|λ0(m)) = 1.Sin
e a 
ognate pair is derivable from a par-ent form, the probability of a 
ognate pair isthe sum of the probabilities of all parent formswhi
h will generate the two des
endents. Write
W (m) = W (λ1(m), λ2(m)) for the set of pos-sible 
orresponden
e strings in the parent whi
hproje
t onto wordforms λ1(m) and λ2(m). Thenthe probability of the word pair is given by:
P (λ1(m), λ2(m)|h) =

∑

s∈W (m)

P (λ0(m) = s|h)The summation poses a slight problem, however.How do we sum over all possible strings withgiven proje
tions? Fortunately, we 
an de
om-pose the summation. Start by re
ognising that
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the parent language is also a language, and sothe probability of forms in the language is de-termined by a distribution over segments � inthis 
ase 
orresponden
es � and the end-of-wordmarker. For 
onsisten
y, we 
all this distribution
f0.The only parent form whi
h proje
ts onto twoempty strings is the empty string, 
onsistingonly of the end-of-word marker. For brevity,we will drop the lambdas, writing P (x, y|h) for
P (λ1(m) = x, λ2(m) = y|h)

P (0, 0|h) = f0(#)We assume, without loss of generality, thatthe segmental inventory of the parent language
onsists of all degree-(u, v) 
orresponden
es be-tween L1 and L2. Parent segments whi
h arenever used 
an be ex
luded by giving them zerorelative frequen
y in f0.The fun
tion Pre(s;u, v) returns the set of bi-nary divisions (a, b) of the string s, su
h that thelength of the �rst part a is at least u and at most
v.

Pre(s;u, v) = {(a, b)|ab = s,m ≤ |a| ≤ n}With this fun
tion, we 
an re
ursively de�ne afun
tion W (s, t;u, v) on pairs of strings (s, t)whi
h returns the set of all degree-(u, v) parentlanguage strings whi
h proje
t onto s and t. Forbrevity, we will treat all u, v arguments as im-pli
it.
W (0, 0) = {0}By de�nition, the only parent language stringwhi
h 
an map onto the empty string in bothdes
endents is the empty string.The re
ursive step breaks the strings s and

t into all possible pre�xes a and c respe
tively.The 
orresponden
e (a, c) is then preposed on allstrings returned by W when it is applied to theremainders of s and t.
W (s, t) =

⊎

(a,b)∈Pre(s)

⊎

(c,d)∈Pre(t)

(a, c)W (b, d)Note that this is the set W (m) we de�ned earlier.
W (m) = W (λ1(m), λ2(m);u, v)

The re
ursive de�nition of W in terms of dis-joint unions and 
on
atenation 
an be trans-formed into a re
ursive de�nition for the proba-bility P0(s, t|h) of 
onstru
ting a member of theset. Disjoint union is repla
ed by summation,
on
atenation by produ
t. The probability ofan individual 
orresponden
e (a, c) is its (un-known) relative frequen
y f0(a, c) in the parentlanguage. On
e again, we hide the impli
it u, vparameters.
P0(0, 0|h) = f0(#)

P0(s, t|h) =
∑

(a,b)∈Pre(s)

∑

(c,d)∈Pre(t)

f0(a, c)P (b, d|h)4.5 Probability of a form-pairWe now have the pie
es to spe
ify the probabil-ity of �nding any parti
ular form as the form-pair for the des
endent languages. The prob-ability of the pair in the 
ase of 
ogna
y is
P0(λ1(m), λ2(m)|h). If the pair are not 
ognate,then they are independent, and their probabil-ity is P1(λ1(m))P2(λ2(m)|h). If we write c(m|h)for the likelihood that the pair is 
ognate, we
an 
ombine these two values to given a totalprobability of the two forms.

P0(λ1(m), λ2(m)|h)c(m|h)

+P1(λ1(m))P2(λ2(m)|h)(1.0 − c(m|h))Be
ause the word-pairs are independent (as-sumption 4), the produ
t of the above probabil-ity for ea
h meaning m gives the probability ofthe data given the hypothesis.4.6 HypothesisOne burning question remains, however. Whatis the hypothesis? The simple answer is that itis exa
tly those free variables in the spe
i�
ationof the probability of the dataThere were two groups of unknowns in theprobability of the data. The �rst is the rela-tive frequen
y f0 assigned to 
orresponden
es inparent-language forms. The se
ond is the like-lihood of 
ogna
y c, a ve
tor of values betweenzero and one indexed by meanings.A hypothesis is therefore any setting of valuesfor the pair of ve
tors (f, c).
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Note that while the degree variables u, v werenot �xed in the above derivation, they will beheld 
onstant for any parti
ular sear
h, and thusdo not de�ne a dimension in the hypothesisspa
e.4.7 Sear
hIn this se
tion, we have derived P (D|h), the like-lihood of our data given a hypothesis.For simpli
ity, we 
hoose a �at prior over hy-potheses, rendering the MAP Bayesian approa
han instan
e of maximum likelihood determina-tion. The value for the likelihood is di�erentiablein ea
h of the parameters. Consequently, gradi-ent des
ent 
an be used to �nd the hypothesiswhi
h maximises the probability of the data.5 ResultsIn 
onstru
ting the method, we made a numberof assumptions about independen
e of forms. Itis sensible that for testing, the method is appliedto data that 
onforms reasonably well to theseassumptions. The alternative is to apply it todata whi
h 
ontradi
ts its fundamental assump-tions, 
onsequently hampering its e�e
tiveness.5.1 The dataPolish and Russian were 
hosen to provide thedata be
ause they approximately obey assump-tion 6: words have dependent stru
tures if andonly if they are 
ognate. For our two lan-guages, this means that borrowings from 
om-mon sour
es are un
ommon (numbering 45 inour data set), at least in 
omparison with thenumber of 
ognates (numbering 156).The data was harvested from two onlinedi
tionaries (Wordgumbo, 2007a; Wordgumbo,2007b), one English-Polish, the other English-Russian. Multiple translations were simpli�ed,with the shortest translation retained. The En-glish glosses were used as the meanings for thewords. Where the gloss 
ontained a 
apital let-ter, indi
ating a proper noun, this was elimi-nated from the data.The data should also 
onform to assumption4, that words for di�erent meanings with a lan-guage are independent. So where two meaningsin the data sets were realised with the same form,

these meanings were deemed to be stru
turallydependent, and so only the �rst was retained inthe wordlist.The remaining data 
ontains 407 alignedPolish-Russian word pairs.Polish and Russian both use a great deal ofderivational and in�e
tional morphology. Thesimple language model used here does not takethis into a

ount, so this will be a disturbingin�uen
e on the results.5.2 EvaluationThe aligned wordlists were hand-tagged as 
og-nate, 
ommon borrowing or non-
ognate. A per-missive rule of 
ogna
y was used: if the rootsof words in the two languages were 
ognate,they were 
ognate, even if represented with non-
ognate derivational and/or in�e
tional mor-phology.Figure 1 shows the evaluation of the program'sperforman
e on the data.Borrowings as: 
ognates non-
ognatesFound f 162 119Missed m 41 37Errant e 6 49A

ura
y f/(f + e) 96% 71%Re
all f/(f + m) 81% 76%Figure 1: Evaluation of program performan
eon 407 meaning-mat
hed pairs of Polish-Russianwords. Common borrowings are s
ored as 
og-nates in the �rst 
olumn, non-
ognates in these
ond.The s
ores show that the method works wellin identifying 
ognates, parti
ularly if 
ommonborrowings are a

epted as 
ognates, or ex
ludedmanually. If 
ommon borrowings are s
ored asnon-
ognates, then the a

ura
y falls.Of the 
orresponden
es found between Polishand Russian, 67 have a phonologi
al basis. Theremaining 27 result from mismat
h morphologyin 
ognates or di�eren
es in 
ommon borrowings.6 Con
lusionThis paper has presented a model of languagewhi
h allows the 
al
ulation of the posteriorprobability of forms arising in the 
ases where
21



they are 
ognate, and where they are not. Bayes'theorem relates these probabilities to the poste-rior likelihood of parti
ular 
orresponden
es and
ogna
y relationships. Gradient des
ent 
an beused to sear
h this spa
e for the best distributionover 
orresponden
es, and best 
ogna
y evalua-tions for meaning-paired words. The appli
ationto data from Polish and Russian shows remark-able su

ess identifying both 
ognates and non-
ognates.Future work will pro
eed by relaxing 
on-straints on the parent language. The parent in-ventory will be widened to in
lude multisegment
orresponden
es. Multiple parent languages willbe permitted, to the end of separating borrow-ings from 
ognates. Finally, ri
her models oflanguage, in
orporating syllable stru
ture, willallow more information to identify 
ognates.Referen
esGil Broza. 1998. Inter-language regularity: thetransformation learning problem. Master's thesis,Institute of Computer S
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Abstract 

This present work deliberately abandons 
the purpose of capturing the global 
resemblance between languages and the 
ambition of giving a rational foundation to 
probability of changes in linguistics, to 
focus instead on cladistic approach, which 
was applied to different dialects and data 
(gallo-romance, southern italo-romance) 
through an original coding of philological 
derivations. Results show good congruence 
with linguistic classification and provide 
new insight on how tackle various 
dialectological problems as borrowings. 

1 Introduction 

In the last decades, theoretical developments in the 
field of the biological evolution of species and 
populations have been combined with increasing 
computer facilities, which are likely to change the 
practice of phylogeny reconstruction drastically. 
Attempts to shift such a practice in order to 
reconstruct the evolution of language have been 
proposed, since the middle of the 20th century, as 
evidenced by several publications that display the 
whole range of methodologies. One of these 
approaches, called Numerical Taxonomy, consists 
in estimating some linguistic distances between 
pairs of languages, from which evolutionary trees 
or networks are inferred to produce some linguistic 
classifications. This approach is classically used in 
dialectometry. (Evrard, 1964; Goebl, 1981, 1987, 
Scapoli et al., 2005, Ben Hamed, 2005). A more 
recent approach, based on Bayesian principles, 
suggests to attach some probabilities to each 

linguistic change (Gray et al, 2003), looking for the 
most likely tree, given the model and the observed 
data. Finally, the last kind of approach, inherited 
from XIXth century linguists, is the cladistic 
approach, as formalized by Hennig (1950) and 
clearly advocated by some linguists, although 
using various methodologies (Hoenigswald and 
Wiener, 1987; Wang, 1988; Holden, 2001; Ringe 
et al., 2002; Rexova et al., 2003; Nakhleh et al., 
2005; Ben Hamed et al., 2005). 
The present work is focusing on cladistics, 
abandoning the purpose of capturing the global 
resemblance between languages and the ambition 
of giving a rational foundation to probability of 
linguistic changes, adopting instead a strategy 
enabling us to integrate linguistic hypotheses 
before drawing inference on the evolution of 
linguistic traits and languages, and possibly to 
refute them. To check the heuristic value of this 
methodology, we endeavour to apply cladistics to 
dialectal data from different sources, hoping to 
bring forward and discuss some arguments on their 
diversification in space and time. As far as we 
know, cladistic is more often applied to language 
families than to dialect areas, so that our research 
is pioneering the field, raising the controversial 
question concerning the best representation of 
dialectal diversity: tree-like and/or networks. 

2 The data 

2.1 Oïl Dialect1. We began our experiment with 
the oïl dialects, our starting point being the 

                                                 
1 Oïl Dialect indicates the branch of the gallo-Romance 
languages developed in the North of France, south of 
Belgium (Walloon Area) and inthe Anglo-Normans 
islands. 
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Linguistic Atlas of France (ALF, Gilliéron and 
Edmont,1902-1910, reprint: 1968) which has 
already been extensively exploited by others in a 
context of global resemblance (Goebl, 1981, 
1992). In order to delimit a precise and 
homogeneous field, the characters observed are 
limited only to the vocalism of these dialects, 
mainly stressed and oral vowels, even if a few 
series of facts from nasal and unstressed vocalism 
are taken into account. As far as the Oïl data is 
concerned, the selected localities amount to 45, 
from East to West, in order to limit our scope in 
this first attempt (figure 2).  

 
 
 
 
A
L
F 

Beau <bĕllum (13); Bien<bĕne (8); Blé<blātum 
(11); Bœuf <bŏvem (5); Cher <cārum (9); 
Eau<ăquam (14); Fait <făctum (5); 
Faucille<fălcīculam (8); Faux<fălcem (15); 
Feuille<fŏliam (11); Fleurs <flōres (8); 
Lit<lĕctum (9); Mûr <matūrum (14); Mûre 
<matūram (7); Pain<pănem (15); Père<pătrem 
(7); Pied<pĕdem (13); Poing<pŭgnum (10); 
Pré<prātum (16); Puits<pŭteus 
(14);Seigle<sĕcalem (21); Tendre<tĕndere (7); 
Toile<tēlam (20);  

 
 
 
 
A
L
I 

Bocca < bŭccam (16); Braccio < brăchium (18); 
Capelli < capēllos/pĭlos (19); Dente < dĕntem 
(18); Dito < dĭgĭtum (16); Dolce < dŭlcem (17); 
Fegato < fĭcatum (15); Forte < fōrte (11); 
Ginocchio < genŭculum (16); Gengiva < 
gĕngīvam (19) Gomito < cŭbĭtum (18); Grasso < 
grăssum (10); Grida(lui) <critāre/allocutāre 
(12); Odore < odōrem (11); Piede < pĕdem (18); 
Ridere < rĭdĕre (16); Sopracciglia <supercĭlĭum 
(19); Sudore < sudōrem (17); Vedere < vĭdēre 
(18); Voce < vŏcem (16) 

Table 1. Selected words from ALF and ALI 
Atlases. In parentheses is the number of 
derivations (states) for each selected world 

 
We selected 23 words from the ALF (Table 1), 

yielding a variable number of forms or phonetic 
changes, representing the stressed vocalism of the 
dialects of Oïl (short/long, high/mid/low vowels in 
open and close syllabic context). 

 
2.2 Southern Italo-Romance (SIR). We then 
applied the same type of cladistic analysis to the 
dialects of the dialectal area of Southern Italo-
Romance. We made use of the data relating to the 
consonant system of these dialects, with ALI 
(Atlante Linguistico dell' Italia, 1995) as a source. 
In this case, 21 localities were sampled for this 

analysis, picking up three varieties for each main 
dialect of these areas (northern, central, and 
southern: 3 for Campanian, Basilian, Apulian, 
Calabrian, Sicilian and Salentinian, including also 
three varieties of Sardinian). The lexical sample 
amounts to 20 words (Table 1). 

3 Cladistic analysis  

3.1 Linguistic prolegomena. From the quoted 
corpora, diachronic trees were created using the 
existing bibliography (Chauveau, 1989; Pignon, 
1960). But we must reckon and point out that we 
had a very hard time in trying to make sense out of 
contradictory or underspecified accounts on chains 
of phonetic changes available in the literature. We 
found out – to our bewilderment – that most 
phonetic changes are quite often telescoped in 
handbooks of Romance dialectology, monographs, 
and Ph.D. dissertations, giving only the first and 
the last stage of phonetic changes: *A > D, instead 
of *A > *B > *C > D. We therefore had to rely on 
principles of areologic continuity, as the process of 
stepping is made hazardous by the vacuum on the 
successive stages of the sound changes in the 
literature, in particular in the peripheral varieties of 
oïl (except in Chauveau’s monographs on western 
Oïl dialects). These principles are the following: 

Pr.1. Principle of areologic continuity: implies a 
gradual theory of linguistic change whose stages 
can be reconstructed on the basis of areal 
configurations. It entails that stages *B and *C of a 
*A > D change are available on the maps in current 
dialects not far from a contiguous centre of gravity. 
For instance, in western oïl dialects, *e > oi goes 
through a *e > ei > ai > oi vowel shift whose *ai 
phase is still to be seen on the ALF maps in the 
neighbourhood, but it is not akin with the far 
distant *e > oi change in the East (in Romance 
lorrain), where the chain *e > ei >oi does not entail 
an *ai phase. 

Pr.2. Principle of parsimony: it claims that the 
vocalic system develops with parsimony the 
strategies of change; not more than two or three 
major structural options from which the later 
evolutions unfold.  

Pr.3. Principle of unitarianism and naturalness: 
dialectal idiosyncrasies should be rare upstream 
and abundant downstream. In other words, change 
is strongly constrained typologically closer to the 
root of the stepping tree, and gets more and more 
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free at the end of the branches. One should be 
cautious with the intricate complexity of 
explanations found in monographs and handbooks 
on idiosyncrasy of changes in local dialects. More 
simply, one could state that changes are 
constrained according to UG (Universal Grammar) 
principles on the first hand, and specified by local, 
language or dialect-specific parameters on the 
second hand. 
3.2. Cladistic procedure. In order to apply 
cladistic procedure to linguistic data, one has first 
to find a way to code the trees of philological 
derivations through a coding procedure which 
takes into account all the hypotheses assumed by 
the linguists. In a second step, the field 
observations have to be coded, and, finally, tree 
building algorithms are implemented to meet 
optimal criteria, i.e. parsimony in this context. 
However, within the framework of this necessarily 
short paper, we will only discuss tree structure, 
tackling briefly the feasible reconstruction of 
ancestral state at nodes, but keeping detailed 
development  for further presentation. 
3.2.1 Character coding 

Figure 1a shows how the relationships between 
vocalic variations of a given word (“Père”, as an 
example) are coded. Each variant takes the value 0 
or 1 depending on its place within the tree 
derivation. First, a matrix is built (figure 1b), 
where rows stand for the coding of the variants, 
whereas columns hold for the transformations from 
a plesiomorphic variant (the initial diachronic 
state, or etymon) to an apomorphic one (the 
terminal state, or synchronic reflexes). For 
example, the inferred variant, *aé (lettered A), 
derived from the late latin variant of the A[ 2 
variable, is coded by the vector [0000000], being 
the ancestral variant, while its derived reflexes are 
all coded 1, in the first column. Likewise, the 
apomorphic variant é:é (lettered F) is coded by the 
vector [1001100], the first 1 indicates that this 
variant is derived from the é variant (B), and the 
fourth and fifth 1 indicate that it is also derived 
successively from –é– to –à:é– (B−>E) and from –
à:é– to – é:é– (E−>F).  

                                                 
2 A[ reads as classical latin low vowel in open syllable 
as in PA-TREM, MA-REM (noted < [ >, whereas < ] > 
stands for a closed syllabe as in –AR- : AR-CUM, AR-
TEM). 

(b) W 4 2 3 4 3 3 5
A 0 0 0 0 0 0 0
B 1 0 0 0 0 0 0
C 1 1 0 0 0 0 0
D 1 1 1 0 0 0 0
E 1 0 0 1 0 0 0
F 1 0 0 1 1 0 0
G 1 0 0 0 0 1 0
H 1 0 0 0 0 1 1

A->B B->C C->D B->E E->F B->G G->H

*aé è:
é ei

à:è é:é

éè: o:é

A B

C D

E F

G H

4

2 3

4 3

3 5

(a)

(c)
A . 4 6 9 8 11 7 12
B i . 2 5 4 7 3 8
C i i . 3 i i i i
D i i i . i i i i
E i i i i . 3 i i
F i i i i i . i i
G i i i i i i . 5
H i i i i i i i .

A B C D E F G H

From

to ->

 
Figure 1: tree of derivation of the word “Père” (a), 
its factorized (c) and matrix (d) representations. 
Each column in (b) corresponds to a change in the 
tree derivation. The vector W allows a weighting 
of each shift (example of a 423433 weight-chain, 
values being expressed above each arrow, and in 
red colour). The arrows indicate the orientation of 
changes. Backward changes have an infinity 
weight. The (c) matrix provides equivalent 
information, with i holding for infinity weight. (b) 
and (c) representations are fitted for PHYLIP and 
PAUP respectively. 
 

Since the transformations can be estimated to be 
more or less current in term of phonological 
naturalness, they can be weighed by giving heavy 
weights for natural or rare transformations and 
light weights for easy transformations. In this 
work, character weight was ranged on a scale 
between 1 and 5 (e.g. w [423433], figure 1).  

Lastly, since the transformations are polarized, 
meaning that we hypothesize the absence of 
backward changes, we allocate an infinite weight 
for reversal transformation (i.e. no reversion 
allowed). This kind of coding is routinely used by 
phylogeneticists (see PHYLIP or PAUP software). 
All the derivation trees are available on request. 
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3.2.2. Data coding and tree reconstruction 
Once the character coding step is performed for 

all the words investigated (23 different words for 
the Oïl data (ALF), 20 for SIR (ALI)), each area or 
dialect is coded according to the previous coding. 
In the example of the Oïl investigation, data were 
collected for 45 geographical different areas 
(figure 2), each of them having its own way to 
pronounce each of the 23 words of the sample. For 
example (Table 2), the row « 16Bourg 3» has the 
variant C for the first word (“Père”) described on 
the first column. This means that this area as well 
as the area numbered 45, 59, 65, and 143 share the 
same derived variant: –é– (labelled C, figure 1), 
while the rows labelled 108 and 153 share the –è:– 
reflex variant (B), variants that they inherited 
either from some common ancestor or because of 
geographical proximity. 

 
16Bourg     CGLCREJB?NIFFDDEDDDJBBF 
45FrCom     CBB?FGEEENCIGIDEDEFJBCF 
59LorrRom   CILEMJFBEOFFDCHEDEFEDEF 
65FrcomE    CAB?HGE?GNNGKIHEDEFB?BF 
108BerNE    BILCGCGEENTFGBECDDDJ?MF 
146Champ    CJNHQHLHE?JGGGGEADDF?GC 
153Lorr     BILCEHCCEHGJJHHEGEED?BD 
Table 2: Part of the data matrix from the ALF 
sample. First column is “Père” coding.  

 
Finally, each letter of this data matrix is replaced 

by its coding (figure 1b), as it has been done in the 
previous step (character coding). For instance the 
letter C, column 1 (figure 2) is replaced by the 
vector [1100000], the letter B by [1000000]. The 
tree building reconstruction is carried out from this 
final matrix which sums up all the linguistic 
hypotheses (tree of philological derivation, polarity 
of changes, weighting, and geographic variants).  

Factorisation are performed with FACTOR 
software (Felsenstein, 2004), parsimonious trees 
being obtained with PAUP* (v4.0) (Swofford, 
2002), using TBR (tree-bisection-reconnection), 
random agglomeration option (100), holding 6 best 
trees at each steps. Tree length, consistency index 
and retention index are also estimated. The most 
parsimonious trees are then plotted figures 3 and 4. 
An example of inferred parallelism is also shown 
on figure 3. Once clades are well characterized, it 
becomes possible to count the number of 
parallelisms that are shared within each clade and 

                                                 
3 Number refers to the ALF or ALI areas 

those that are shared between clades, giving an 
estimation of the intensity of borrowing.  

 

 

Sardinian
Campanian

Apulian

Salentinian
Basilian

Calabrian

Sicilian

 
Figure 2: localization of the Oïl and SIR dialect 

samplings. Contour lines (upper map) correspond 
to clades from the figure 3. 

4 Results 

4.1. In the Oïl dialects tree (figures 2 and 3), the 
central varieties appear as a clade (C1, from 
251Champagne NO to 478Noirmoutier, fuchsia 
and yellow clades), which gathers the dialects of 
the Paris basin and those of the mid-west plains, 
and includes peripheral spots, like Noirmoutier 
(478) or Saintongeais (518Saintonge). This major 
node (Center-Western macro-area) makes up a unit 
of the great mid-west, having the subset Normano-
Picardo-Gallo (C2 and C3) as a peripheral compact 
core. Opposite to this, a very consistent and 
geographically gradual unit clustering the Franc-
Comtois and the Walloon (C4, from 153Lorraine S 
to 197Wallon O, green clade) varieties, in the 
Eastern part of the macro-dialect network of 
Northern Gallo-Romance (i.e., oïl), together with 
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the Romance Lorraine 4  dialects. In addition to 
these great divisions between Central-Western oïl 
and Peripheric Eastern oïl, which is fairly 
consistent with current classifications of oïl 
dialects (Goebl, 1984, 2002), the advantage of this 
tree lies in the consistency of the inner structures 
of the major or intermediate clades.  
 
Table 3 gives the estimation of the number of 
parallelisms and/or borrowings within and between 
clades. Clearly the number of parallelism observed 
within each clades turns out to be more intense 
within than between clades. 
 

 C1 C2 C3 C4 
C1: Fuchsia+Yellow 3.66 1.47 .084 1.19 
C2: Red 1.47 4.59 1.53 1.22 
C3: Blue 0.84 1.53 9.38 1.68 
C4: Green 1.19 1.22 1.68 6.19 

Table 3: Estimation of the number of parallelisms 
and/or borrowings within (diagonal) and between 
clades, standardized by the number of possible 
exchanges. Clades are defined as figure 3. 
 
4.2. Concerning the Southern Italo-Romance 
(SIR), from Naples to Sicily and Sardinia, the 
congruence between the cladistic tree (figure 4) 
and the philological classifications is satisfactory 
(Goebl, 1984; Grassi et al., 1997), and most of 
novelties lay in the inner structures of the tree. The 
phylogram of the SIR shows three major divisions 
(figure 4): two peripheries, the first one gathering 
Sardinian Central-Southerner varieties (786 and 
748) and the southernmost apulien (818) (red 
cluster), and the second one (fuchsia) grouping the 
central-northern apulian (846,828)) as an external 
branch with the southernmost basilian and central 
salentino (868 and 917) This last branch is 
connected to an inner group which separates the 
branch from Sicilian-Sardinian-Salentino (in blue) 
from the campano-calabro-basilian (green and 
yellow). A most interesting detail is the place of 
818Apul, a Gallo-Romance francoprovençal 
dialect settled in two villages (Faeto and Celle) San 
Vito by the Angevine dynasty in Northern Apulia 
during the 13th century. This dialect, previously 

                                                 
4  As opposed to German Lorrain dialects (Lower-
German type) spoken around Metz, whereas Romance 
Lorrain oïl dialects are or were spoken around Nancy 
and in the Vosges hills. 

spoken in the Ain and Isère departments in France, 
got into close, symbiotic contact with Apulian, a 
dialect of the SIR type. The cladistic procedure 
grasped accurately its allogenic structure, 
clustering it in the upper branch, along with 
Sardinian – also a distinct language as compared to 
SIR- which should therefore considered as a 
“foreign languages branch” rather than a peripheric 
node of the SIR continuum. 

5 Discussion  

The cladistic approach developed here provides a 
convenient way to integrate and test various 
hypotheses concerning the linguistic changes. 
Particularly, the rare or relative absence of 
backmutation in phonological characters is 
correctly taken into account by forbidden reverse 
changes, and complex relationships between states 
of traits are easily handled, unlike most of the other 
methods (as network approaches). The parsimony 
criterion consists to optimise the tree in minimising 
parallelism. The residual inferred parallelisms 
could clearly be visualized simply by looking at 
the places they occur along the tree (as exemplified 
figure 3). A way to circumvent the parallelism 
problem, when several parsimonious trees are 
found, would be using a successive weighting 
process which looks for parsimonious trees by 
assigning to each trait a weight inversely 
proportional to its degree of homoplasy (only 
parallelism in our case since reversion are not 
allowed) (Farris 1969). No such a process was 
necessary with our dataset since only one 
parsimonious tree was found. However, the 
robustness of the parsimonious tree remains 
difficult to evaluate, as long as only few words are 
integrated in our dataset (only 23 and 20 for Oil 
and SIR data respectively), particularly to 
appropriately implement resampling procedures 
(bootstrap or jackknife).  
At this stage of interpretation, one cannot 
differentiate between parallel development and 
borrowing, unless some a priori are introduced to 
do so. In our data set, parallelisms are frequent 
(leading to a weak CI) although our two 
parsimonious trees are unique and well resolved 
(actually, there is no simple relation between CI 
and tree resolution) preventing us using various  
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251ChampagneNO
227Seine-Oise

226Seine
202Berry C

408Tour
343NormandieC
108Berry NE

423AnjouE
349NormandieSO
446AnjouO

16BourgogneC
419PoitouC

531PoitouS
518Saintonge

459PoitouNO
478Noirmoutier
283PicardieArtois N
284PicardieArtois S

289PicardieO
298Artois Littoral N
167ChampagneArdennes
280PicardieE

282PicardieNE
286PicardieArtois C
264PicardieS

279PicardieLittoral S
299Artois Littoral C

394NormandieCotentinO
471GalloN
354NormandieC

486GalloO

65FrancheComtéE

171LorraineE
191WallonieE

197WallonieO

ANCESTOR

fuchsia

yellow

red

blue

green

B->C C->D = B->G E->F: : : :

=

=

changes

386NormandieCotentinE

153LorraineS
154Lorraine romaneC
164LorraineN
146ChampagneSE

45FrancheComtéC

59LorraineromaneS
174LorraineromaneN

182WallonieS
181LorraineRomaneNE

Figure 3. Oïl dialect parsimonious tree (tree length= 2558; Consistency Index (CI)=0.29; CI excluding 
uninformative characters = 0.22. Retention index (RI) = 0.74; Rescaled consistency index (RC) = 0.21). 
Branch lengths are proportional to the number of changes. Dialect numbers are labelled as in ALF. 
Parallel changes for “Père” are localized on the branches (see also figure 1)  
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Figure 4 : SIR’s parsimonious tree (Parsimonious tree: length = 1529, Consistency index (CI) = 0.59 ; CI 
excluding uninformative characters =0.40 ; Retention index (RI) = 0.53 ; Rescaled consistency index 
(RC) = 0.32) (Apu: Apulian;Si:Sicilian; Sar:Sardinian; Cal:Calabrian; Cam:Campanian; Bas: Basilian. N: 
North; C: Centre; S:South. (see also figure 2) 
 
network approaches5 (median network or median 
joining based on characters, definitively excluding 
neighbornet method which is based on global 
resemblance and is in any way cladistic). These 
approaches are not able, as far as we know, to 
handle large amount of polarized changes and 
complex weighted multistate relationships. On the 
other hand, our strategy turns out to be quite 
different from the one proposed by Nakhelh et al 
(2006) which first apply compatibility method to 
select the best traits allowing to retain few trees 
considered as “almost perfect phylogenies” 
(missing the phylogenetic information brought by 
the other traits), and then to parsimoniously handle 
the remaining traits as possible edges representing 
borrowing, (but not giving the possibility of 
modifying the tree structure accordingly). An 
additional advantage (only lightly evoked in this 
paper) of the cladistic approach is to allow 
inferring changes of the traits along the tree, 
suggesting some linguistic scenarios, as correlated 
changes, borrowings …  

                                                 
5 See SPLITTREE and NETWORK packages in ref. 

6 Conclusions  

We shall conclude this pioneering cladistic survey 
of phyla and dialect networks pointing out at three 
main assets of our data processing : i) unlike most 
of current and past research in taxonomy applied to 
linguistic data, we tried to do much more than 
merely computing distance and similarity between 
lists of lexical cognates with a binary procedure: 
we processed data according to geolinguistic 
analysis, using area linguistic procedures and 
phonological markedness theory in endowing 
weight to reflexes, ii) our results are mainly 
congruent and consistent with current 
classification, but intricate patterns in the inner 
structures of cladistic nodes also challenging these 
classifications, iii) In spite of the small number of 
words presently studied here, but thanks to 
accurate data and proper sampling from the ALF 
and ALI database, it turns out that, by applying 
cladistics, for long advocated by linguists, one can 
obtain consistent, reliable (and possibly refutable) 
results. This is not always the case in the 
processing of fuzzy data and mere lists of words. 
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Linguists and cladisticians should therefore be 
cautious about word-lists, and should as well rely 
on linguistic atlases, which provide the widest 
array of sampling, and high quality data gathered 
through fieldwork by highly trained professionals. 
In other words, to put it straightforwardly, well 
managed empiricism is a sine qua non condition 
for reliable results in quantitative linguistics, 
especially as far as cladistics is concerned, due to 
the powerfulness of the procedure. 
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Abstract 

In this paper we use the Reeks Nederlandse 
Dialectatlassen as a source for the recon-
struction of a ‘proto-language’ of Dutch 
dialects. We used 360 dialects from loca-
tions in the Netherlands, the northern part 
of Belgium and French-Flanders. The den-
sity of dialect locations is about the same 
everywhere. For each dialect we recon-
structed 85 words. For the reconstruction of 
vowels we used knowledge of Dutch his-
tory, and for the reconstruction of conso-
nants we used well-known tendencies 
found in most textbooks about historical 
linguistics. We validated results by com-
paring the reconstructed forms with pro-
nunciations according to a proto-Germanic 
dictionary (Köbler, 2003). For 46% of the 
words we reconstructed the same vowel or 
the closest possible vowel when the vowel 
to be reconstructed was not found in the 
dialect material. For 52% of the words all 
consonants we reconstructed  were the 
same. For 42% of the words, only one con-
sonant was differently reconstructed. We 
measured the divergence of Dutch dialects 
from their ‘proto-language’. We measured 
pronunciation distances to the proto-
language we reconstructed ourselves and 
correlated them with pronunciation dis-
tances we measured to proto-Germanic 
based on the dictionary. Pronunciation dis-
tances were measured using Levenshtein 
distance, a string edit distance measure. We 
found a relatively strong correlation 
(r=0.87). 

1 Introduction 

In Dutch dialectology the Reeks Nederlandse Dia-
lectatlassen (RND), compiled by Blancquaert & 
Pée (1925-1982) is an invaluable data source. The 
atlases cover the Dutch language area. The Dutch 
area comprises The Netherlands, the northern part 
of Belgium (Flanders), a smaller northwestern part 
of France, and the German county of Bentheim. 
The RND contains 1956 varieties, which can be 
found in 16 volumes. For each dialect 139 sen-
tences are translated and transcribed in phonetic 
script. Blancquaert mentions that the questionnaire 
used for this atlas was conceived of as a range of 
sentences with words that illustrate particular 
sounds. The design was such that, e.g., various 
changes of older Germanic vowels, diphthongs and 
consonants are represented in the questionnaire 
(Blancquaert 1948, p. 13). We exploit here the his-
torical information in this atlas.  

The goals of this paper are twofold. First we aim 
to reconstruct a ‘proto-language’ on the basis of 
the RND dialect material and see how close we 
come to the protoforms found in Gerhard Köbler’s 
neuhochdeutsch-germanisches Wörterbuch 
(Köbler, 2003). We recognize that we actually re-
construct a stage that would never have existed in 
prehistory. In practice, however, we are usually 
forced to use incomplete data, since data collec-
tions -- such as the RND – are restricted by politi-
cal boundaries, and often some varieties are lost.  
In this paper we show the usefulness of a data 
source like the RND. 

Second we want to measure the divergence of 
Dutch dialects compared to their proto-language. 
We measure the divergence of the dialect pronun-
ciations. We do not measure the number of 
changes that happened in the course of time. For 
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example if a [u] changed into a [y] and then the [y] 
changed into a [u], we simply compare the [u] to 
the proto-language pronunciation. However, we do 
compare Dutch dialects to both the proto-language 
we reconstruct ourselves, which we call Proto-
Language Reconstructed (PLR), and to the Proto-
language according to the proto-Germanic Dic-
tionary, which we call Proto-Germanic according 
to the Dictionary (PGD). 

2 Reconstructing the proto-language 

From the nearly 2000 varieties in the RND we 
selected 360 representative dialects from locations 
in the Dutch language area. The density of 
locations is about the same everywhere. 

In the RND, the same 141 sentences are trans-
lated and transcribed in phonetic script for each 
dialect. Since digitizing the phonetic texts is time-
consuming on the one hand, and since our proce-
dure for measuring pronunciation distances is a 
word-based method on the other hand, we initially 
selected from the text only 125 words.  Each set 
represents a set of potential cognates, inasmuch as 
they were taken from translations of the same sen-
tence in each case. In Köbler’s dictionary we found 
translations of 85 words only; therefore our analy-
ses are based on those 85 words. 

We use the comparative method (CM) as the 
main tool for reconstructing a proto-form on the 
basis of the RND material. In the following sub-
sections we discuss the reconstruction of vowels 
and consonants respectively. 

2.1 Vowels 

For the reconstruction of vowels we used knowl-
edge about sound developments in the history of 
Dutch. In Old Dutch the diphthongs /��/ and /��/ 
turned into monophthongs /��/ and /��/ respectively 
(Quak & van der Horst 2002, p. 32). Van Bree 
(1996) mentions the tendencies that lead /��/ and 
/��/ to change into /��/ and /��/ respectively. From 
these data we find the following chains: 

 
�� → �� → � → � 
�� → 	� → � → � 

 
An example is twee ‘two’ which has the vowel 

[�] in 11% of the dialects, the [�] in 14% of the 

dialects, the [�] in 43% of the dialects and the [�] in 
20% of the dialects. 1  According to the neu-
hochdeutsch-germanisches Wörterbuch the [�] or 
[��] is the original sound. Our data show that sim-
ply reconstructing the most frequent sound, which 
is the [�], would not give the original sound, but 
using the chain the original sound is easily found. 

To get evidence that the /��/ has raised to /�/ 
(and probably later to /�/) in a particular word, we 
need evidence that the /�/ was part of the chain. 
Below we discuss another chain where the /�/ has 
lowered to /��/, and where the /�/ is missing in the 
chain. To be sure that the /�/ was part of the chain, 
we consider the frequency of the /�/, i.e. the num-
ber of dialects with /�/ in that particular word. The 
frequency of /�/ should be higher than the fre-
quency of /�/ and/or higher than the frequency of 
/�/. Similarly for the change from /��/ to /�/ we 
consider the frequency of /�/. 

Another development mentioned by Van Bree is 
that high monophthongs diphthongize. In the tran-
sition from middle Dutch to modern Dutch, the 
monophthong /��/ changed into /��/, and the mo-
nophthong /
�/ changed into either /�
/ or /	�/ 
(Van der Wal, 1994). According to Van Bree 
(1996, p. 99), diphthongs have the tendency to 
lower. This can be observed in Polder Dutch where 
/��/ and /�
/ are lowered to /��/ and /��/ (Stroop 
1998). We recognize the following chains: 
 

� → �� → �� 

 → �
/	� → �� 
� → 	� → �� 

 
Different from the chains mentioned above, we 

do not find the /�/ and /�/ respectively in these 
chains. To get evidence for these chains, the fre-
quency of /�/ should be lower than both the fre-
quency of /�/ and /�/, and the frequency of /�/ 
should be lower than both /	/ and /�/.  

Sweet (1888, p. 20) observes that vowels have 
the tendency to move from back to front. Back 

                                                 
1 The sounds mentioned may be either monophthongs or 

diphthongs. 
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vowels favour rounding, and front vowels un-
rounding. From this, we derive five chains: 

 
� ← 
 ← � 
� ← 
 ← � 
� ← � ← � 
� ← � ← 	 
� ← ← ← � 

 
However, unrounded front vowels might be-

come rounded under influence from a labial or 
labiodental consonant. For example vijf ‘five’ is 
sometimes pronounced as [���] and sometimes as 
[�
�]. The [�] has been changed into [
] under in-
fluence of the labiodental [�] and [�]. 

Sweet (1888, p. 22) writes that the dropping of 
unstressed vowels is generally preceded by various 
weakenings in the direction of a vowel close to 
schwa. In our data we found that the word mijn 
‘my’ is sometimes [�] and sometimes [�]. A non-
central unstressed vowel might change into a cen-
tral vowel which in turn might be dropped. In gen-
eral we assume that deletion of vowels is more 
likely than insertion of vowels. 

Most words in our data have one syllable. For 
each word we made an inventory of the vowels 
used across the 360 varieties. We might recognize 
a chain in the data on the basis of vowels which 
appear at least two times in the data. For 37 words 
we could apply the tendencies mentioned above. In 
the other cases, we reconstruct the vowel by using 
the vowel found most frequently among the 360 
varieties, working with Occam’s Razor as a guid-
ing principle. When both monophthongs and diph-
thongs are found among the data, we choose the 
most frequent monophthong. Sweet (1888, p. 21) 
writes that isolative diphthongizaton “mainly af-
fects long vowels, evidently because of the diffi-
culty of prolonging the same position without 
change.” 

2.2 Consonants 

For the reconstruction of consonants we used ten 
tendencies which we discuss one by one below. 

Initial and medial voiceless obstruents become 
voiced when (preceded and) followed by a voiced 
sound. Hock & Joseph (1996) write that weakening 
(or lenition) “occurs most commonly in a medial 
voiced environment (just like Verner’s law), but 

may be found in other contexts as well.” In our 
data set zes ‘six’ is pronounced with a initial [�] in 
most cases and with an initial [�] in the dialects of 
Stiens and Dokkum. We reconstructed [�].2 

Final voiced obstruents of an utterance become 
voiceless. Sweet (1888, p. 18) writes that the natu-
ral isolative tendency is to change voice into un-
voiced. He also writes that the “tendency to un-
voicing is shown most strongly in the stops.” Hock 
& Joseph (1996, p. 129) write that final devoicing 
“is not confined to utterance-final position but ap-
plies word-finally as well.” 3  In our data set we 
found that for example the word-final consonant  
in op ‘on’ is sometimes a [p] and sometimes a [b]. 
Based on this tendency, we reconstruct the [b]. 

Plosives become fricatives between vowels, be-
fore vowels or sonorants (when initial), or after 
vowels (when final). Sweet writes that the “opening 
of stops generally seems to begin between vow-
els…” (p. 23). Somewhat further he writes that in 
Dutch the g has everywhere become a fricative 
while in German the initial g remained a stop. For 
example goed ‘good’ is pronounced as [�����] in 
Frisian dialects, while other dialects have initial [�] 
or [�]. Following the tendency, we consider the [�] 
to be the older sound. Related to this is the pronun-
ciation of words like schip ‘ship’ and school 
‘school’. As initial consonants we found [sk], [sx] 
and [�]. In cases like this we consider the [sk] as 
the original form, although the [k] is not found be-
tween vowels, but only before a vowel. 

Oral vowels become nasalized before nasals. 
Sweet (1888) writes that “nothing is more common  
than the nasalizing influence of a nasal on a pre-
ceding vowels” and that there “is a tendency to 
drop the following nasal consonant as superfluous” 
when “the nasality of a vowel is clearly developed” 
and “the nasal consonant is final, or stands before 
another consonant.” (p. 38) For example gaan ‘to 
go’ is pronounced as [�����] in the dialect of Dok-
                                                 
2 In essence, in this and other such cases, a version of 

the manuscript-editing principle of choosing the 
“lectio difficilior” was our guiding principle.  

3 We do feel, however, that word-final devoicing, even 
though common cross-linguistically, is, as Hock 
1976 emphasizes, not phonetically determined but 
rather reflects the generalization of utterance-final 
developments into word-final position, owing to the 
overlap between utterance-finality and word-finality. 
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kum, and as [������] in the dialect of Stiens. The na-
salized [����] in the pronunciation of Stiens already 
indicates the deletion of a following nasal.  

Consonants become palatalized before front 
vowels. According to Campbell (2004) “palataliza-
tion often takes place before or after i and j or be-
fore other front vowels, depending on the lan-
guage, although unconditioned palatalization can 
also take place.” An example might be vuur which 
is pronounced like [������] in Frisian varieties, 
while most other varieties have initial [�] or [�] 
followed by [�] or [
]. 

Superfluous sounds are dropped. Sweet (1888) 
introduced this principle as one of the principles of 
economy (p. 49). He especially mentioned that in 
[ �] the superfluous [�] is often dropped (p. 42). In 
our data we found that krom ‘curved’ is pro-
nounced [!���"] in most cases, but as [!����"#] in 
the dialect of Houthalen. In the reconstructed form 
we posit the final [#]. 

Medial [h] deletes between vowels, and initial 
[h] before vowels. The word hart ‘heart’ is some-
times pronounced with and sometimes without ini-
tial [$]. According to this principle we reconstruct 
the [$]. 

[r] changes to [�]. According to Hock and Jo-
seph (1996) the substitution of uvular [%] for trilled 
(post-)dental [�] is an example of an occasional 
change apparently resulting from misperception. In 
the word rijp ‘ripe’ we find initial [�] in most cases 
and [%] in the dialects of Echt and Baelen. We re-
constructed [�]. 

Syllable initial [w] changes in [�]. Under ‘Lip 
to Lip-teeth’ Sweet (1888) writes that in “the 
change of p into f, w into v, we may always assume 
an intermediate [&], ['],  the latter being the Mid-
dle German w“ (p. 26), and that  the “loss of back 
modification is shown in the frequent change of 
(w) into (v) through ['], as in Gm.” Since v – 
meant as “voiced lip-to-teeth fricative” – is close to 
[(] – lip-to-teeth sonorant –  we reconstruct [)] if 
both [)] and [(] are found in the dialect pronuncia-
tions. This happens for example in the word wijn 
‘wine’. 

The cluster ol+d/t diphthongizes to ou + d/t. For 
example English old and German alt have a /l/ be-

fore the /d/ and /t/ respectively. In Old Dutch ol 
changed into ou (Van Loey 1967, p. 43, Van Bree 
1987, p. 135/136). Therefore we reconstruct the /l/ 
with preceding /�/ or /�/. 

3 The proto-language according to the 
dictionary 

The dictionary of Köbler (2003) provides Ger-
manic proto-forms. In our Dutch dialect data set 
we have transcriptions of 125 words per dialect. 
We found 85 words in the dictionary. Other words 
were missing, especially plural nouns, and verb 
forms other than infinitives are not included in this 
dictionary. 

For most words, many proto-Germanic forms 
are given. We used the forms in italics only since 
these are the main forms according to the author. If 
different lexical forms are given for the same 
word, we selected only variants of those lexical 
forms which appear in standard Dutch or in one of 
the Dutch dialects. 

The proto-forms are given in a semi-phonetic 
script. We converted them to phonetic script in 
order to make them as comparable as possible to 
the existing Dutch dialect transcriptions. This ne-
cessitated some interpretation. We made the fol-
lowing interpretation for monophthongs: 
 

spel- 
ling 

pho- 
netic 

spel- 
ling 

pho- 
netic 

spel- 
ling 

pho- 
netic 

�� �* �� +* �� �*

��� ��* ��� +�* ��� ��*

�� �* 	� �* 
� 	*

��� ��* 	 �� ��* 
�� ��*
 
Diphthongs are interpreted as follows: 
 

spel- 
ling 

pho- 
netic 

spel- 
ling 

pho- 
netic 

ai ���* ei ���*

au ���* eu ���*

 
We interpreted the consonants according to the 
following scheme: 
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spel-
ling 

pho- 
netic 

spel- 
ling 

pho- 
netic 

spel- 
ling 

pho- 
netic 

 p #*  f �* m "*
 b ,, �* * �* n �,  *
 t �*  s �* ng  *
 d -*  z �* w ) 
 k !*  h  �, $* r �*
 g �, �*   l .*
    j �*

 
Lehmann (2005-2007) writes that in the early 

stage  of Proto-Germanic “each of the obstruents 
had the same pronunciation in its various 
locations…”. “Later, /b d g/ had fricative 
allophones when medial between vowels. 
Lehmann (1994) writes that in  Gothic “/b, d, g/ 
has stop articulation initially, finally and when 
doubled, fricative articulation between vowels.” 
We adopted this scheme, but were restricted by the 
RND consonant set. The fricative articulation of 
/,/ would be ['] or [�]. We selected the [�] since 
this sound is included in the RND set. The fricative 
articulation of /-/ would be [/], but this consonant 
is not in the RND set. We therefore used the [-] 
which we judge perceptually to be closer to the [/] 
than to the [�]. The fricative articulation of /�/ is 
/�/ which was available in the RND set. 

We interpreted the h as [$] in initial position, 
and as [�] in medial and final positions. An n be-
fore k, g or h is interpreted as [ ], and as [�] in all 
other cases. The  should actually be interpreted as 
[0], but this sound in not found in the RND set. 
Just as we use [-] for [/], analogously we use [�] 
for [0]. We interpret double consonants are gemi-
nates, and transcribe them as single long conso-
nants. For example nn becomes [��]. 

Several words end in a ‘-’ in Köbler’s diction-
ary, meaning that the final sounds are unknown or 
irrelevant to root and stem reconstructions. In our 
transcriptions, we simply note nothing.  

4 Measuring divergence of Dutch dialect 
pronunciations with respect to their 
proto-language 

Once a protolanguage is reconstructed, we are able 
to measure the divergence of the pronunciations of 
descendant varieties with respect to that protolan-
guage. For this purpose we use Levenshtein dis-
tance, which is explained in Section 4.1. In Sec-
tions 4.2 the Dutch dialects are compared to PLR 
and PGD respectively. In Section 4.3 we compare 
PLR with PGD. 

4.1 Levenshtein distance 

In 1995 Kessler introduced the Levenshtein dis-
tance as a tool for measuring linguistic distances 
between language varieties. The Levenshtein dis-
tance is a string edit distance measure, and Kessler 
applied this algorithm to the comparison of Irish 
dialects. Later the same technique was successfully 
applied to Dutch (Nerbonne et al. 1996; Heeringa 
2004: 213–278). Below, we give a brief explana-
tion of the methodology. For a more extensive ex-
planation see Heeringa (2004: 121–135). 
 
4.1.1 Algorithm 
 
Using the Levenshtein distance, two varieties are 
compared by measuring the pronunciation of 
words in the first variety against the pronunciation 
of the same words in the second. We determine 
how one pronunciation might be transformed into 
the other by inserting, deleting or substituting 
sounds. Weights are assigned to these three opera-
tions. In the simplest form of the algorithm, all op-
erations have the same cost, e.g., 1. 

Assume the Dutch word hart ‘heart’ is pro-
nounced as [$���] in the dialect of Vianen (The 
Netherlands) and as [+���] in the dialect of Naz-
areth (Belgium). Changing one pronunciation into 
the other can be done as follows: 

*

$���  delete $   1 
���  subst. �/+  1 
+��  insert �   1 
+���*
 
     3 
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In fact many string operations map [$���] to 
[+���]. The power of the Levenshtein algorithm is 
that it always finds the least costly mapping. 

To deal with syllabification in words, the 
Levenshtein algorithm is adapted so that only a 
vowel may match with a vowel, a consonant with a 
consonant, the [j] or [w] with a vowel (or oppo-
site), the [i] or [u] with a consonant (or opposite), 
and a central vowel (in our research only the 
schwa) with a sonorant (or opposite). In this way 
unlikely matches (e.g. a [p] with an [a]) are pre-
vented.4   The longest alignment has the greatest 
number of matches. In our example we thus have 
the following alignment: 

 
$* �* �* �*

* * +* �* �* �*
 
1 1   1 

 
4.1.2 Operations weights 

 
The simplest versions of this method are based on 
a notion of phonetic distance in which phonetic 
overlap is binary: non-identical phones contribute 
to phonetic distance, identical ones do not. Thus 
the pair [�,1] counts as different to the same degree 
as [�,�]. The version of the Levenshtein algorithm 
which we use in this paper is based on the com-
parison of spectrograms of the sounds. Since a 
spectrogram is the visual representation of the 
acoustical signal, the visual differences between 
the spectrograms are reflections of the acoustical 
differences. The spectrograms were made on the 
basis of recordings of the sounds of the Interna-
tional Phonetic Alphabet as pronounced by John 
Wells and Jill House on the cassette The Sounds of 
the International Phonetic Alphabet from 1995. 5 
The different sounds were isolated from the re-
cordings and monotonized at the mean pitch of 
each of the two speakers with the program 
PRAAT6 (Boersma & Weenink, 2005). Next, for 

                                                 
4 Rather than matching a vowel with a consonant, the 

algorithm will consider one of them as an insertion 
and another as a deletion. 

5 See 
http://www.phon.ucl.ac.uk/home/wells/cassette.htm. 

6 The program PRAAT is a free public-domain program 
developed by Paul Boersma and David Weenink at 

each sound a spectrogram was made with PRAAT 
using the so-called Barkfilter, a perceptually ori-
ented model. On the basis of the Barkfilter repre-
sentation, segment distances were calculated. In-
serted or deleted segments are compared to silence, 
and silence is represented as a spectrogram in 
which all intensities of all frequencies are equal to 
0. We found that the [2] is closest to silence and 
the [�] is most distant. This approach is described 
extensively in Heeringa (2004, pp. 79-119).  

In perception, small differences in pronunciation 
may play a relatively strong role in comparison to 
larger differences. Therefore we used logarithmic 
segment distances. The effect of using logarithmic 
distances is that small distances are weighted rela-
tively more heavily than large distances. 

 
4.1.3 Processing RND data 
 
The RND transcribers use slightly different nota-
tions. In order to minimize the effect of these dif-
ferences, we normalized the data for them. The 
consistency problems and the way we solved them 
are extensively discussed in Heeringa (2001) and 
Heeringa (2004). Here we mention one problem 
which is highly relevant in the context of this pa-
per. In the RND the ee before r is transcribed as 
[��] by some transcribers and as [��] by other tran-
scribers, although they mean the same pronuncia-
tion as appears from the introductions of the differ-
ent atlas volumes. A similar problem is found for 
oo before r which is transcribed either as  [��] or  
[��], and the eu before r which is transcribed as [��] 
or [
�]. Since similar problems may occur in other 
contexts as well, the best solution to overcome all 
of these problems appeared to replace all [�]’s by 
[�]’s, all [�]’s  by [�]’s, and all [
]’s by [�]’s, even 
though meaningful distinctions get lost. 

Especially suprasegmentals and diacritics might 
be used diffferently by the transcribers. We process 
the diacritics voiceless, voiced and nasal only. For 
details see Heeringa (2004, p. 110-111). 

The distance between a monophthong and a 
diphthong is calculated as the mean of the distance 
between the monophthong and the first element of 

                                                                             
the Institute of Pronunciation Sciences of the 
University of Amsterdam and is available at 
http://www.fon.hum.uva.nl/praat. 
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the diphthong and the distance between the mo-
nophthong and the second element of the diph-
thong. The distance between two diphthongs is 
calculated as the mean of the distance between the 
first elements and the distance between the second 
elements. Details are given in Heeringa (2004, p. 
108). 

4.2 Measuring divergence from the proto-
languages 

The Levenshtein distance enables us to compare 
each of the 360 Dutch dialects to PLR and PGD. 
Since we reconstructed 85 words, the distance be-
tween a dialect and a proto-language is equal to the 
average of the distances of 85 word pairs. 

Figures 1 and 2 show the distances to PLR and 
PGD respectively. Dialects with a small distance 
are represented by a lighter color and those with a 
large distance by a darker color. In the map, dia-
lects are represented by polygons, geographic dia-
lect islands are represented by colored dots, and 
linguistic dialect islands are represented by dia-
monds. The darker a polygon, dot or diamond, the 
greater the distance to the proto-language. 

The two maps show similar patterns. The dia-
lects in the Northwest (Friesland), the West 
(Noord-Holland, Zuid-Holland, Utrecht) and in the 
middle (Noord-Brabant) are relatively close to the 
proto-languages. More distant are dialects in the 
Northeast (Groningen, Drenthe, Overijssel), in the 
Southeast (Limburg), close to the middle part of 
the Flemish/Walloon border (Brabant) and in the 
southwest close to the Belgian/French state border 
(West-Vlaanderen).  

According to Weijnen (1966), the Frisian, Lim-
burg and West-Flemish dialects are conservative. 
Our maps shows that Frisian is relatively close to 
proto-Germanic, but Limburg and West-Flemish 
are relatively distant. We therefore created two 
maps, one which shows distances to PGD based on 
vowel substitutions in stressed syllables only, and 
another showing distances to PGD on the basis of 
consonant substitutions only.7  

Looking at the map based on vowel substitutions 
we find the vowels of the Dutch province of Lim-
burg and the eastern part of the province Noord-
Brabant relatively close to PGD. Looking at the 
map based on consonant substitutions we find the 
consonants of the Limburg varieties distant to 
                                                 
7 The maps are not included in this paper. 

PGD. The Limburg dialects have shared in the 
High German Consonant Shift. Both the Belgium 
and Dutch Limburg dialects are found east of the 
Uerdinger Line between Dutch ik/ook/-lijk and 
High German ich/auch/-lich. The Dutch Limburg 
dialects are found east of the Panninger Line be-
tween Dutch sl/sm/sn/sp/st/zw and High German 
schl/schm/schn/schp/scht/schw (Weijnen 1966). 
The Limburg dialects are also characterized by the 
uvular [%] while most Dutch dialects have the al-
veolar [�]. All of this shows that Limburg conso-
nants are innovative. 

The map based on vowel substitutions shows 
that Frisian vowels are not particularly close to 
PGD. Frisian is influenced by the Ingvaeonic 
sound shift. Among other changes, the [
] changed 
into [�], which in turn changed into [�] in some 
cases (Dutch dun ‘thin’ is Frisian tin) (Van Bree 
1987, p. 69).8 Besides, Frisian is characterized by 
its falling diphthongs, which are an innovation as 
well. When we consulted the map based on conso-
nant substitutions, we found the Frisian consonants 
close to PGD. For example the initial /g/ is still 
pronounced as a plosive as in most other Germanic 
varieties, but in Dutch dialects – and in  standard 
Dutch – as a fricative. 

When we consider West-Flemish, we find the 
vowels closer to PGD than the consonants, but 
they are still relatively distant to PGD. 

4.3 PLR versus PGD 

When correlating the 360 dialect distances to PLR 
with the 360 dialect distances to PGD, we obtained 
a correlation of r=0.87 (p<0.0001)9. This is a sig-
nificant, but not perfect correlation. Therefore we 
compared the word transcriptions of PLR with 
those of PGD. 

                                                 
8 The Ingvaeonic sound shift affected mainly Frisian 

and English, and to a lesser degree Dutch. We 
mention here the phenomenon found in our data 
most frequently. 

9 For finding the p-values we used with thanks: 
VassarStats: Website for Statistical Computation at: 
http://faculty.vassar.edu/lowry/VassarStats.html. 
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Figure 1. Distances of 360 Dutch dialects com-
pared to PLR. Dialects are represented by poly-
gons, geographic dialect islands are represented by 
colored dots, and linguistic dialect islands are rep-
resented by diamonds. Lighter polygons, dots or 
diamonds represent more conservative dialects and 
darker ones more innovative dialects. 
 

First we focus on the reconstruction of vowels. 
We find 28 words for which the reconstructed 
vowel of the stressed syllable was the same as in 
PGD10. In 15 cases, this was the result of applying 
the tendencies discussed in Section 2.1. In 13 cases 
this was the result of simply choosing the vowel 
found most frequently among the 360 word pro-
nunciations. When we do not use tendencies, but 
simply always choose the most frequent vowel, we 
obtain a correlation which is significantly lower 
(r=0.74, p=0). 
We found 29 words for which vowel was recon-
structed different from the one in PGD, although 
the PGD vowel was found among at least two dia-
lects. For 28 words the vowel in the PGD form was 
not found among the 360 dialects, or only one 
time. For 11 of these words, the closest vowel 
found in the inventory of that word, was recon-
structed. For example the vowel in ook ‘too’ is 
[��] in PGD, while we reconstructed [	�]. 

 

                                                 
10 For some words PGD gives multiple pronunciations. 

We count the number of words which has the same 
vowel in at least one of the PGD pronunciations. 

 
Figure 2. Distances of 360 Dutch dialects com-
pared to PGD. Dialects are represented by poly-
gons, geographic dialect islands are represented by 
colored dots, and linguistic dialect islands are rep-
resented by diamonds. Lighter polygons, dots or 
diamonds represent more conservative dialects and 
darker ones more innovative dialects. 

 
Looking at the consonants, we found 44 words 

which have the same consonants as in PGD.11 For 
36 words only one consonant was different, where 
most words have at least two consonants. This 
shows that the reconstruction of consonants works 
much better than the reconstruction of vowels. 

5 Conclusions 

In this paper we tried to reconstruct a ‘proto-
language’ on the basis of the RND dialect material 
and see how close we come to the protoforms 
found in Köbler’s proto-Germanic dictionary. We 
reconstructed the same vowel as in PGD or the 
closest possible vowel for 46% of the words. 
Therefore, the reconstruction of vowels still needs 
to be improved further.  

The reconstructions of consonants worked well. 
For 52% of the words all consonants reconstructed  
are the same as in PGD. For 42% of the words, 
only one consonant was differently reconstructed. 

And, as a second goal, we measured the diver-
gence of Dutch dialects compared to their proto-

                                                 
11 When PGD has multiple pronunciations, we count the 

number of words for which the consonants are the 
same as in at least one of the PGD pronunciations. 
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language. We calculated dialect distances to PLR 
and PGD, and found a correlation of r=0.87 be-
tween the PLR distances and PGD distances. The 
high correlation shows the relative influence of 
wrongly reconstructed sounds.  

When we compared dialects to PLR and PGD, 
we found especially Frisian close to proto-
Germanic. When we distinguished between vowels 
and consonants, it appeared that southeastern dia-
lects (Dutch Limburg and the eastern part of 
Noord-Brabant) have vowels close to proto-
Germanic. Frisian is relatively close to proto-
Germanic because of its consonants. 
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Abstract

Quantitative measurement of inter-language
distance is a useful technique for studying
diachronic and synchronic relations between
languages. Such measures have been used
successfully for purposes like deriving lan-
guage taxonomies and language reconstruc-
tion, but they have mostly been applied to
handcrafted word lists. Can we instead
use corpus based measures for comparative
study of languages? In this paper we try to
answer this question. We use three corpus
based measures and present the results ob-
tained from them and show how these results
relate to linguistic and historical knowledge.
We argue that the answer is yes and that such
studies can provide or validate linguistic and
computational insights.

1 Introduction

Crosslingual and multilingual processing is acquir-
ing importance in the computational linguistics
community. As a result, semi-automatic crosslin-
gual comparison of languages is also becoming
a fruitful area of study. Among the fundamen-
tal tools for crosslingual comparison are measures
of inter-language distances. In linguistics, the
study of inter-language distances, especially for lan-
guage classification, has a long history (Swadesh,
1952; Ellison and Kirby, 2006). Basically, the
work on this problem has been along linguistic,
archaeological and computational streams. Like
in other disciplines, computational methods are in-

creasingly being combined with other more conven-
tional approaches (Dyen et al., 1992; Nerbonne and
Heeringa, 1997; Kondrak, 2002; Ellison and Kirby,
2006). The work being presented in this paper be-
longs to the computational stream.

Even in the computational stream, most of the
previous work on inter-language distances had a
strong linguistic dimension. For example, most
of the quantitative measures of inter-language dis-
tance have been applied on handcrafted word
lists (Swadesh, 1952; Dyen et al., 1992). However,
with increasing use of computational techniques and
the availability of electronic data, a natural ques-
tion arises: Can languages be linguistically com-
pared based on word lists extracted from corpora.
A natural counter-question is whether such compar-
ison will be valid from linguistic and psycholinguis-
tic points of view. The aim of this paper is to exam-
ine such questions.

To calculate inter-language distances on the basis
of words in corpora, we propose two corpus based
distance measures. They internally use a more lin-
guistically grounded distance measure for compar-
ing strings. We also present the results obtained with
one purely statistical measure, just to show that even
naive corpus based measures can be useful. The
main contribution is to show that even noisy corpora
can be used for comparative study of languages. Dif-
ferent measures can give different kinds of insights.

2 Related Work

Typology or history of languages can be studied us-
ing spoken data or text. There has been work on
the former (Remmel, 1980; Kondrak, 2002), but we
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will focus only on text. An example of a major work
on text based similarity is the paper by Kondrak and
Sherif (Kondrak and Sherif, 2006). They have evalu-
ated various phonetic similarity algorithms for align-
ing cognates. They found that learning based al-
gorithms outperform manually constructed schemes,
but only when large training data is used.

A recent work on applications of such techniques
for linguistic study is by Heeringa et al. (Heeringa
et al., 2006). They performed a study on differ-
ent variations of string distance algorithms for di-
alectology and concluded that order sensitivity is
important while scaling with length is not. It may
be noted that Ellison and Kirby (Ellison and Kirby,
2006) have shown that scaling by distance does give
significantly better results. Nakleh et al. (Nakleh
et al., 2005) have written about using phyloge-
netic techniques in historical linguistics as men-
tioned by Nerbonne (Nerbonne, 2005) in the review
of the book titled ‘Language Classification by Num-
bers’ by McMahon and McMahon (McMahon and
McMahon, 2005). All these works are about using
quantitative techniques for language typology and
classification etc.

3 Inter-Language Comparison

Inter-language comparison is more general than
measuring inter-language distance. In addition to
the overall linguistic distance, the comparison can
be of more specific characteristics like the propor-
tion of cognates derived vertically and horizontally.
Or it can be of specific phonetic features (Nerbonne,
2005; McMahon and McMahon, 2005). Quantita-
tive measures for comparing languages can first be
classified according to the form of data being com-
pared, i.e., speech, written text or electronic text.
Assuming that the text is in electronic form, the most
common measures are based on word lists. These
lists are usually prepared by linguists and they are
often in some special notation, e.g. more or less a
phonetic transcription.

The measures can be based on inter-lingual or on
intra-lingual comparison of phonetic forms (Ellison
and Kirby, 2006). They may or may not use statis-
tical techniques like measures of distributional sim-
ilarity (cross entropy, KL-divergence, etc.). These
characteristics of measures may imply some linguis-

tic or psycholinguistic assumptions. One of these is
about a common phonetic space.

4 Common Phonetic Space

Language distance can be calculated through
crosslingual as well as intra-lingual comparison.
Many earlier attempts (Nerbonne and Heeringa,
1997; Kondrak, 2002) were based on crosslingual
comparison of phonetic forms, but some researchers
have argued against the possibility of obtaining
meaningful results from crosslingual comparison of
phonetic forms. This is related to the idea of a
common phonetic space. Port and Leary (Port and
Leary, 2005) have argued against it. Ellison and
Kirby (Ellison and Kirby, 2006) argue that even if
there is a common space, language specific catego-
rization of sound often restructures this space. They
conclude that if there is no language-independent
common phonetic space with an equally common
similarity measure, there can be no principled ap-
proach to comparing forms in one language with
another. They suggest that language-internal com-
parison of forms is better and psychologically more
well-grounded.

This may be true, but should we really abandon
the approach based on crosslingual comparison? As
even Ellison and Kirby say, it is possible to argue
that there is a common phonetic space. After all,
the sounds produced by humans are determined by
human physiology. The only matter of debate is
whether common phonetic space makes sense from
the cognitive point of view. We argue that it does.
In psychology, there has been a long debate about
a similar problem which can be stated in terms of a
common chromatic space. Do humans in different
cultures see the same colors? There is still no con-
clusive answer, but many computational techniques
have been tried to solve real world problems like
classifying human faces, seemingly with the implicit
assumption that there is a common chromatic space.
Such techniques have shown some success (sheng
Chen and kai Liu, 2003).

Could it be that we are defining the notion of a
common chromatic (or phonetic) space too strictly?
Or that the way we define it is not relevant for com-
putational techniques? In our view the answer is
yes. We will give a simple, not very novel, exam-
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ple. The phonemet as in the English wordbatteryis
not present in many languages of the world. When
a Thai speaker can not saybattery, with the correct
t, he will saybatterywith t as in the French word
entre. Such substitution will be very regular. The
point is that even if phonetic space is restructured
for a particular language, we can still find which
segments or sections of two differently structured
phonetic spaces are close.Cyan may span different
ranges (on the spectrum) in different cultures, but the
ranges are likely to be near to one another. Even if
some culture has no color which can be calledcyan,
one or two of the colors that it does have will be
closer tocyan than the others. The same is true
for all the other colors and also for sounds. If we
use fuzzy similarity measures to take care of such
differently structured cognitive spaces, cross-lingual
comparison may still be meaningful for certain pur-
poses. This argument is in defence of cross-lingual
comparison, not against intra-lingual comparison.

5 Common Orthographic Space

Writing systems used by languages differ very
widely. This can be taken to mean that there
is no common orthographic space for meaning-
ful crosslingual comparison of orthographic forms.
This may be true in general, but for sets of languages
using related scripts, we can assume a similar ortho-
graphic space. For example, most of the major South
Asian languages use scripts derived from Brahmi.
The similarity among these scripts is so much that
crosslingual comparison of text is possible for var-
ious purposes such as identifying cognates without
any phonetic transcription. This is in spite of the fact
that the letter shapes differ so much that they are not
mutually identifiable. Such similarity is relevant for
corpus based measures.

6 Corpus Based Measures

Since we use (non-parallel) corpora of the two lan-
guages for finding out the cognates and hence com-
paring two languages, the validity of the results de-
pends on how representative the corpora are. How-
ever, if they are of enough size, we might still be
able to make meaningful, even if limited, compar-
ison among languages. We restrict ourselves to
word list based comparison. In such a case, cor-

pus based measures can be effective if the corpora
contain a representative portion of the vocabulary,
or even of word segments. The second case (of seg-
ments) is relevant for then-gram measure described
in section-7.

This category of measures have to incorporate
more linguistic information if they are to provide
good results. Designing such measures can be a
challenging problem as we will be mainly relying
on the corpus for our information. Knowledge about
similarities and differences of writing systems can
play an important role here. The two cognate based
measures described in sections 9 and 10 are an at-
tempt at this. But first we describe a simplen-gram
based measure.

7 Symmetric Cross Entropy (SCE)

The first measure is purely a lettern-gram based
measure similar to the one used by Singh (Singh,
2006b) for language and encoding identification. To
calculate the distance, we first prepare letter5-gram
models from the corpora of the languages to be com-
pared. Then we combinen-grams of all orders and
rank them according to their probability in descend-
ing order. Only the topN n-grams are retained and
the rest are pruned.1 Now we have two probability
distributions which can be compared by a measure
of distributional similarity. We have used symmetric
cross entropy as such a measure:

dsce =
∑

gl=gm

(p(gl) log q(gm) + q(gm) log p(gl))

(1)
wherep and q are the probability distributions for
the two languages andgl andgm aren-grams in lan-
guagesl andm, respectively.

The disadvantage of this measure is that it does
not use any linguistic (e.g., phonetic) information,
but the advantage is that it can measure the similar-
ity of distributions ofn-grams. Such measures have
proved to be very effective in automatically iden-
tifying languages of text, with accuracies nearing
100% for fairly small amounts of training and test
data (Adams and Resnik, 1997; Singh, 2006b).

1This is based on the results obtained by Cavnar (Cavnar and
Trenkle, 1994) and our own studies, which show that the topN

(300 according to Cavnar)n-grams have a high correlation with
the identity of the language.
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8 Method for Cognate Identification

The other two measures are based on cognates, in-
herited as well as borrowed. Both of them use an
algorithm for identification of cognates. Many such
algorithms have been proposed. Estimates ofsur-
face similaritycan be used for finding cognate words
across languages for related languages. By surface
similarity we mean the orthographic, phonetic and
(possibly) morphological similarity of two words or
strings. In spite of the name, surface similarity is
deeper than string similarity as calculated by edit
distances. Ribeiro et al. (Ribeiro et al., 2001) have
surveyed some of the algorithms for cognate align-
ment. However, since they studied methods based
on parallel text, we cannot use them directly.

For identifying cognates, we are using the compu-
tational model of scripts or CPMS (Singh, 2006a).
This model takes into account the characteristics of
Brahmi origin scripts and calculates surface simi-
larity in a fuzzy way. This is achieved by using
a stepped distance function (SDF) and a dynamic
programming (DP) algorithm. We have adapted the
CPMS for identifying cognates.

Different researchers have argued about the im-
portance of order sensitivity and scaling in using
string comparison algorithms (Heeringa et al., 2006;
Ellison and Kirby, 2006). The CPMS takes both
of these into account, as well as using knowledge
about the script. In general, the distance between
two strings can be defined as:

clm = fp(wl, wm) (2)

where fp is the function which calculates surface
similarity based cost between the wordwl of lan-
guagel and the wordwm of languagem.

Those word pairs are identified as cognates which
have the least cost.

9 Cognate Coverage Distance (CCD)

The second measure used by us is a corpus based
estimate of the coverage of cognates across two lan-
guages. Cognate coverage is defined as the num-
ber of words (out of the vocabularies of the two lan-
guages) which are of the same origin. The decision
about whether two words are cognates or not is made
on the basis of surface similarity of the two words

as described in the previous section. We use (non-
parallel) corpora of the two languages for identify-
ing the cognates.

The normalized distance between two languages
is defined as:

t′

lm = 1−
tlm

max(t)
(3)

wheretlm andtml are the number of cognates found
when comparing from languagel to m and from lan-
guagem to l, respectively.

Since the CPMS based measure of surface lexical
similarity is asymmetric, we calculate the average
number of unidirectional cognates:

dccd =
t′

lm + t′

ml

2
(4)

10 Phonetic Distance of Cognates (PDC)

Simply finding the coverage of cognates may in-
dicate the distance between two languages, but a
measure based solely on this information does not
take into account the variation between the cognates
themselves. To include this variation into the esti-
mate of distance, we use another measure based on
the sum of the CPMS based cost ofn cognates found
between two languages:

C
pdc
lm =

n∑

i = 0

clm (5)

wheren is the minimum oftlm for all the language
pairs compared.

The normalized distance can be defined as:

C ′

lm =
C

pdc
lm

max(Cpdc)
(6)

A symmetric version of this cost is then calcu-
lated:

dpdc =
C ′

lm + C ′

ml

2
(7)

11 Experimental Setup

For synchronic comparison, we selected ten lan-
guages for our experiment (table-1), mainly be-
cause sufficient corpora were available for these lan-
guages. These languages, though belonging to two
different families (Indo-Iranian and Dravidian), have
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Figure 1: Graphical view of synchronic comparison among tenmajor South Asian languages using CCD
and PDC measures. The layout of the graph is modeled on the geographical locations of these languages.
The connections among the nodes of the graph are obtained by joining each node to its two closest neighbors
in terms of the values obtained by using the two measures.

a lot of similarities (Emeneau, 1956). The cognate
words among them are loanwords as well as inher-
ited words. In fact, the similarity among these lan-
guages is due to common origin (intra-family) as
well as contact and borrowing over thousands of
years (intra- and inter-family). Moreover, they also
use scripts derived from the same origin (Brahmi),
which allows us to use the CPMS for identifying
cognates. The corpora used for these ten languages
are all part of the CIIL (Central Institute of Indian
Languages) multilingual corpus. This corpus is a
collection of documents from different domains and
is one of best known corpora for Indian languages.
Still, the representativeness of this corpus may be a
matter of debate as it is not as large and diverse as
the BNC (British National Corpus) corpus for En-
glish.

For the cognate measures (CCD and PDC), the
only information we are extracting from the cor-
pora are the word types and their frequencies.
Thus, in a way, we are also working with word
lists, but our word lists are extracted from cor-
pora. Word lists handcrafted by linguists may be
very useful, but they are not always available for
all kinds of inter-language or inter-dialectal compar-
ison, whereas electronic corpora are more likely to
be available. Currently we are not doing any prepro-
cessing or stemming on the word lists before running
the cognate extraction algorithm. For SCE,n-gram

models are being prepared as described in section-
7. For all three measures, we calculate the distances
among all possible pairs of the languages.

For diachronic comparison, we selected modern
standard Hindi, medieval Hindi (actually, Avadhi)
and Sanskrit. The corpus for modern Hindi was the
same as that used for synchronic comparison. The
medieval Hindi we have experimented with is of two
different periods. These are the varieties used by
two great poets of that period, namely Jaayasi (1477-
1542 A.D.) and Tulsidas (1532-1623 A.D.). We took
some of their major works available in electronic
form as the corpora. For Sanskrit, we used the elec-
tronic version of Mahabharata (compiled during the
period 1000 B.C. to 500 A.D. approximately) as the
corpus. We calculate the distances among all pos-
sible pairs of the four varieties using the three mea-
sures. We also compare the ten modern languages
with Sanskrit using the same Mahabharata corpus.

For synchronic comparison, we first extract the
list of word types with frequencies from the corpus.
Then we rank them according to frequency. TopN

of these are retained. This is done because other-
wise a lot of less relevant word types like proper
nouns get included. We are interested in compar-
ing the core vocabulary of languages. The assump-
tion is that words in the core vocabulary are likely
to be more frequent. Another reason for restricting
the experiments to the topN word types is that there
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BN HI KN ML MR OR PA TA TE
AS 0.02 0.39 0.71 0.86 0.61 0.20 0.61 0.93 0.73

0.12 0.25 0.39 0.61 0.45 0.11 0.58 0.95 0.46
0.05 0.30 0.51 0.50 0.43 0.18 0.42 0.70 0.64

BN 0.32 0.68 0.86 0.57 0.07 0.56 0.96 0.70
0.29 0.42 0.64 0.42 0.05 0.56 0.90 0.50
0.29 0.47 0.45 0.43 0.14 0.42 0.74 0.43

HI 0.61 0.81 0.42 0.40 0.20 0.93 0.61
0.17 0.56 0.16 0.27 0.16 0.87 0.38
0.43 0.46 0.16 0.33 0.20 0.74 0.34

KN 0.77 0.68 0.75 0.73 0.88 0.53
0.45 0.17 0.31 0.50 0.82 0.25
0.18 0.38 0.52 0.58 0.42 0.09

ML 0.89 0.88 0.88 0.62 0.72
0.65 0.59 0.77 0.56 0.31
0.42 0.53 0.55 0.07 0.19

MR 0.64 0.52 0.95 0.68
0.40 0.37 0.94 0.46
0.34 0.39 0.60 0.30

OR 0.63 0.98 0.74
0.45 0.89 0.44
0.65 0.83 0.64

PA 0.90 0.71
0.90 0.59
0.92 0.48

TA 0.85
0.81
0.39

Table 1: Inter-language comparison among ten ma-
jor South Asian languages using three corpus based
measures. The values have been normalized and
scaled to be somewhat comparable. Each cell con-
tains three values: by CCD, PDC and SCE.

are huge differences in sizes of corpora of different
languages. In the next step we identify the cognates
among these word lists. No language specific fea-
tures or thresholds are used. Only common thresh-
olds are used. We now branch out to using either
CCD or PDC.

The method used for diachronic comparison is
similar except thatN is much smaller because the
amount of classical corpus being used (Jaayasi, Tul-
sidas) is also much smaller. Two letter codes are
used for ten languages and four varieties2.

12 Analysis of Results

The results of our experiments are shown tables 1
to 3 and figures 1 and 2. Table-1 shows the dis-
tances among pairs of languages using the three

2AS: Assamese,BN: Bengali, HI: Hindi, KN: Kannada,
ML: Malayalam, MR: Marathi, OR: Oriya, PA: Punjabi,
TA: Tamil, TE: Telugu, TL: Avadhi (Tulsidas),JY: Avadhi
(Jaayasi),MB: Sanskrit (Mahabharata)

measures. Figure-1 shows a graph showing the dis-
tances according to CCD and PDC. Figure-2 shows
the effect of the size of word lists (N ) on com-
parison for three linguistically close language pairs.
Table-2 shows the comparison of ten languages with
Sanskrit. Table-3 gives the diachronic comparison
among four historical varieties.

12.1 Synchronic Comparison

As table-1 shows, all three measures give results
which correspond well to the linguistic knowledge
about differences among these languages. Cognate
based measures give better results, but even then-
gram based measure gives good results. However,
there are some differences among the values ob-
tained with different measures. These differences
are also in accordance with linguistic insights. For
example, the distance between Hindi and Telugu
was given as 0.61 by CCD and 0.38 by PDC. Simi-
larly, the distance between Hindi and Kannada was
given as 0.61 by CCD and 0.17 by PDC. These val-
ues, in relative terms, indicate that the number of
cognates between these languages is in the medium
range as compared to other pairs. But less PDC cost
shows that topN cognates are very similar. This
is because most cognates aretatsamwords directly
borrowed from Sanskrit without any change.

The results presented in the table have been nor-
malized on all language pairs using the maximum
and minimum cost. The results would be differ-
ent and more comparable if we normalize over lan-
guage families (Indo-Iranian and Dravidian). With
such normalization, Punjabi-Oriya and Marathi-
Assamese are identified as the farthest language
pairs with costs of 0.92 and 0.90, respectively. This
corresponds well with the actual geographical and
linguistic distances.

While comparing with Sanskrit, it is clear that
different languages have different levels of cognate
coverage. However, except for Punjabi and Tamil,
all languages have very similar PDC cost with the
Mahabharata corpus. This again shows that the
closest cognates among these languages aretatsam
words. These results agree well with linguistic
knowledge, even though the Sanskrit corpus (Ma-
habharata) is highly biased.

Figure-1 makes the results clearer. It shows that
just by connecting each node to its nearest two
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Distance AS BN HI KN ML MR OR PA TA TE
CCD 0.71 0.70 0.65 0.78 0.87 0.73 0.71 0.78 0.94 0.77
PDC 0.37 0.38 0.40 0.43 0.37 0.41 0.37 0.50 0.63 0.30

Table 2: Comparison with Sanskrit (Mahabharata)

Figure 2: Effect of the size of word lists on inter-
language comparison.

TL JY MB
HI 0.45 0.54 0.82

0.45 0.42 0.70
0.64 0.56 0.49

TL 0.01 0.84
0.02 0.72
0.16 0.91

JY 0.98
0.95
0.81

Table 3: Diachronic comparison among four histor-
ical varieties.

neighbors we can get a very good graphical repre-
sentation of the differences among languages. It also
shows that different measures capture different as-
pects. For example, CCD fails to connect Marathi
with Kannada and Kannada with Malayalam. Sim-
ilarly, PDC fails to connect Bengali with Hindi.
We get this missing information by combining the
graphs obtained with the two measures. More so-
phisticated methods for creating such graphs may
give better results. Note that the Hindi-Telugu and
Marathi-Kannada connections are valid as these lan-
guage pairs are close, even though they are not ge-
netically related. The results indicate closeness be-
tween two languages, but they do not distinguish be-

tween inheritance and borrowing.
We also experimented with several word list sizes.

In figure-2 the CCD values are plotted against word
list sizes for three close language pairs. There is
variation for Hindi-Punjabi and Malayalam-Telugu,
but not for Assamese-Bengali. The following obser-
vations can be derived from the three lines on the
plot. Malayalam-Telugu share a lot of common core
words but not less common words. Hindi-Punjabi
share a lot of less common words, but core words
are not exactly similar. Finally, Assamese-Bengali
share both core as well as less common words.

12.2 Diachronic Comparison

Table-4 shows the results. We can see that Hindi is
closer to Tulsidas than to Jaayasi by the CCD mea-
sure. PDC gives almost similar results for both. Tul-
sidas and Jaayasi are the nearest. Tulsidas is much
nearer to Mahabharata than Jaayasi, chiefly because
Tulsidas’ language has more Sanskrit origin words.
Our results put Tulsidas nearest to Hindi, followed
by Jaayasi and then Sanskrit. This is historically as
well as linguistically correct.

13 Conclusions and Further Work

In this paper we first discussed the possibility and
validity of using corpus based measures for compar-
ative study of languages. We presented some ar-
guments in favor of this possibility. We then de-
scribed three corpus based measures for comparative
study of languages. The first measure was symmet-
ric cross entropy of lettern-grams. This measure
uses the least amount of linguistic information. The
second and third measures were cognate coverage
distance and phonetic distance of cognates, respec-
tively. These two are more linguistically grounded.
Using these measures, we presented a synchronic
comparison of ten major South Asian languages and
a diachronic comparison of four historical varieties.
The results of our experiments show that even these
simple measures based on crosslingual comparison
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and on the data extracted from not very representa-
tive and noisy corpora can be used for obtaining or
validating useful linguistic insights about language
divergence, classification etc.

These measures can be tried for more languages
to see whether they have any validity for less related
languages than the languages we experimented with.
We can also try to design measures and find meth-
ods for distinguishing between borrowed and inher-
ited words. Proper combination of synchronic and
diachronic comparison might help us in doing this.
Other possible applications could be for language re-
construction, classification, dialectology etc.

Better versions of the two cognate based measures
can be defined by using the idea of confusion prob-
abilities (Ellison and Kirby, 2006) and the idea of
distributional similarity. If intra-lingual comparison
is more meaningful than inter-lingual comparison,
then these modified versions should be even more
useful for comparative study of languages.
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International Finno-Ugric Congress, Turku.

A. Ribeiro, G. Dias, G. Lopes, and J. Mexia. 2001. Cog-
nates alignment.Machine Translation Summit VIII,
Machine Translation in The Information Age, pages
287–292.

Duan sheng Chen and Zheng kai Liu. 2003. A novel
approach to detect and correct highlighted face re-
gion in color image. InAVSS ’03: Proceedings of
the IEEE Conference on Advanced Video and Signal
Based Surveillance, page 7, Washington, DC, USA.
IEEE Computer Society.

Anil Kumar Singh. 2006a. A computational phonetic
model for indian language scripts. InConstraints on
Spelling Changes: Fifth International Workshop on
Writing Systems, Nijmegen, The Netherlands.

Anil Kumar Singh. 2006b. Study of some distance mea-
sures for language and encoding identification. InPro-
ceedings of ACL 2006 Workshop on Linguistic Dis-
tance, Sydney, Australia.

M. Swadesh. 1952. Lexico-dating of prehistoric ethnic
contacts. InProceedings of the American philosophi-
cal society, 96(4).

47



Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology, pages 48–56,
Prague, June 2007. c©2007 Association for Computational Linguistics

Inducing Sound Segment Differences using Pair Hidden Markov Models

Martijn Wieling
Alfa-Informatica

University of Groningen
wieling@gmail.com

Therese Leinonen
Alfa-Informatica

University of Groningen
t.leinonen@rug.nl

John Nerbonne
Alfa-Informatica

University of Groningen
j.nerbonne@rug.nl

Abstract

Pair Hidden Markov Models (PairHMMs)
are trained to align the pronunciation tran-
scriptions of a large contemporary collec-
tion of Dutch dialect material, the Goeman-
Taeldeman-Van Reenen-Project (GTRP, col-
lected 1980–1995). We focus on the ques-
tion of how to incorporate information about
sound segment distances to improve se-
quence distance measures for use in di-
alect comparison. PairHMMs induce seg-
ment distances via expectation maximisa-
tion (EM). Our analysis uses a phonologi-
cally comparable subset of 562 items for all
424 localities in the Netherlands. We evalu-
ate the work first via comparison to analyses
obtained using the Levenshtein distance on
the same dataset and second, by comparing
the quality of the induced vowel distances to
acoustic differences.

1 Introduction

Dialectology catalogues the geographic distribution
of the linguistic variation that is a necessary condi-
tion for language change (Wolfram and Schilling-
Estes, 2003), and is sometimes successful in iden-
tifying geographic correlates of historical develop-
ments (Labov, 2001). Computational methods for
studying dialect pronunciation variation have been
successful using various edit distance and related
string distance measures, but unsuccessful in us-
ing segment differences to improve these (Heeringa,
2004). The most successful techniques distinguish

consonants and vowels, but treat e.g. all the vowel
differences as the same. Ignoring the special treat-
ment of vowels vs. consonants, the techniques re-
gard segments in a binary fashion—as alike or
different—in spite of the overwhelming consensus
that some sounds are much more alike than others.
There have been many attempts to incorporate more
sensitive segment differences, which do not neces-
sarily perform worse in validation, but they fail to
show significant improvement (Heeringa, 2004).

Instead of using segment distances as these are
(incompletely) suggested by phonetic or phonolog-
ical theory, we can also attempt to acquire these
automatically. Mackay and Kondrak (2005) in-
troduce Pair Hidden Markov Models (PairHMMs)
to language studies, applying them to the problem
of recognising “cognates” in the sense of machine
translation, i.e. pairs of words in different languages
that are similar enough in sound and meaning to
serve as translation equivalents. Such words may
be cognate in the sense of historical linguistics, but
they may also be borrowings from a third language.
We apply PairHMMs to dialect data for the first time
in this paper. Like Mackay and Kondrak (2005) we
evaluate the results both on a specific task, in our
case, dialect classification, and also via examination
of the segment substitution probabilities induced by
the PairHMM training procedures. We suggest us-
ing the acoustic distances between vowels as a probe
to explore the segment substitution probabilities in-
duced by the PairHMMs.

Naturally, this validation procedure only makes
sense if dialects are using acoustically more similar
sounds in their variation, rather than, for example,
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randomly varied sounds. But why should linguistic
and geographic proximity be mirrored by frequency
of correspondence? Historical linguistics suggests
that sound changes propagate geographically, which
means that nearby localities should on average share
the most changes. In addition some changes are con-
vergent to local varieties, increasing the tendency
toward local similarity. The overall effect in both
cases strengthens the similarity of nearby varieties.
Correspondences among more distant varieties are
more easily disturbed by intervening changes and
decreasing strength of propagation.

2 Material

In this study the most recent Dutch dialect data
source is used: data from the Goeman-Taeldeman-
Van Reenen-project (GTRP; Goeman and Taelde-
man, 1996). The GTRP consists of digital tran-
scriptions for 613 dialect varieties in the Netherlands
(424 varieties) and Belgium (189 varieties), gath-
ered during the period 1980–1995. For every vari-
ety, a maximum of 1876 items was narrowly tran-
scribed according to the International Phonetic Al-
phabet. The items consisted of separate words and
word groups, including pronominals, adjectives and
nouns. A more detailed overview of the data collec-
tion is given in Taeldeman and Verleyen (1999).

Since the GTRP was compiled with a view to
documenting both phonological and morphological
variation (De Schutter et al., 2005) and our pur-
pose here is the analysis of variation in pronunci-
ation, many items of the GTRP are ignored. We
use the same 562 item subset as introduced and dis-
cussed in depth by Wieling et al. (2007). In short,
the 1876 item word list was filtered by selecting
only single word items, plural nouns (the singular
form was preceded by an article and therefore not in-
cluded), base forms of adjectives instead of compar-
ative forms and the first-person plural verb instead
of other forms. We omit words whose variation is
primarily morphological as we wish to focus on pro-
nunciation.

Because the GTRP transcriptions of Belgian vari-
eties are fundamentally different from transcriptions
of Netherlandic varieties (Wieling et al., 2007), we
will focus our analysis on the 424 varieties in the
Netherlands. The geographic distribution of these
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Figure 1. Distribution of GTRP localities.

varieties is shown in Figure 1. Furthermore, note
that we will not look at diacritics, but only at the
phonetic symbols (82 in total).

3 The Pair Hidden Markov Model

In this study we will use a Pair Hidden Markov
Model (PairHMM), which is essentially a Hidden
Markov Model (HMM) adapted to assign similar-
ity scores to word pairs and to use these similarity
scores to compute string distances. In general an
HMM generates an observation sequence (output)
by starting in one of the available states based on the
initial probabilities, going from state to state based
on the transition probabilities while emitting an out-
put symbol in each state based on the emission prob-
ability of that output symbol in that state. The prob-
ability of an observation sequence given the HMM
can be calculated by using well known HMM algo-
rithms such as the Forward algorithm and the Viterbi
algorithms (e.g., see Rabiner, 1989).

The only difference between the PairHMM and
the HMM is that it outputs a pair of symbols in-
stead of only one symbol. Hence it generates two
(aligned) observation streams instead of one. The
PairHMM was originally proposed by Durbin et al.
(1998) and has successfully been used for aligning
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Figure 2. Pair Hidden Markov Model. Image cour-
tesy of Mackay and Kondrak (2005).

biological sequences. Mackay and Kondrak (2005)
adapted the algorithm to calculate similarity scores
for word pairs in orthographic form, focusing on
identifying translation equivalents in bilingual cor-
pora.

Their modified PairHMM has three states repre-
senting the basic edit operations: a substitution state
(M), a deletion state (X) and an insertion state (Y). In
the substitution state two symbols are emitted, while
in the other two states a gap and a symbol are emit-
ted, corresponding with a deletion and an insertion,
respectively. The model is shown in Figure 2. The
four transition parameters are specified by λ, δ, ε
and τ . There is no explicit start state; the proba-
bility of starting in one of the three states is equal to
the probability of going from the substitution state to
that state. In our case we use the PairHMM to align
phonetically transcribed words. A possible align-
ment (including the state sequence) for the two ob-
servation streams [mO@lk@] and [mEl@k] (Dutch di-
alectal variants of the word ‘milk’) is given by:

m O @ l k @
m E l @ k
M M X M Y M X

We have several ways to calculate the similarity
score for a given word pair when the transition and
emission probabilities are known. First, we can use
the Viterbi algorithm to calculate the probability of
the best alignment and use this probability as a sim-

ilarity score (after correcting for length; see Mackay
and Kondrak, 2005). Second, we can use the For-
ward algorithm, which takes all possible alignments
into account, to calculate the probability of the ob-
servation sequence given the PairHMM and use this
probability as a similarity score (again corrected for
length; see Mackay, 2004 for the adapted PairHMM
Viterbi and Forward algorithms).

A third method to calculate the similarity score is
using the log-odds algorithm (Durbin et al., 1998).
The log-odds algorithm uses a random model to rep-
resent how likely it is that a pair of words occur to-
gether while they have no underlying relationship.
Because we are looking at word alignments, this
means an alignment consisting of no substitutions
but only insertions and deletions. Mackay and Kon-
drak (2005) propose a random model which has only
insertion and deletion states and generates one word
completely before the other, e.g.

m O @ l k @
m E l @ k

X X X X X X Y Y Y Y Y

The model is described by the transition proba-
bility η and is displayed in Figure 3. The emis-
sion probabilities can be either set equal to the inser-
tion and deletion probabilities of the word similarity
model (Durbin et al., 1998) or can be specified sepa-
rately based on the token frequencies in the data set
(Mackay and Kondrak, 2005).

The final log-odds similarity score of a word pair
is calculated by dividing the Viterbi or Forward
probability by the probability generated by the ran-
dom model, and subsequently taking the logarithm
of this value. When using the Viterbi algorithm
the regular log-odds score is obtained, while using
the Forward algorithm yields the Forward log-odds
score (Mackay, 2004). Note that there is no need
for additional normalisation; by dividing two mod-
els we are already implicitly normalising.

Before we are able to use the algorithms de-
scribed above, we have to estimate the emission
probabilities (i.e. insertion, substitution and dele-
tion probabilities) and transition probabilities of the
model. These probabilities can be estimated by us-
ing the Baum-Welch expectation maximisation al-
gorithm (Baum et al., 1970). The Baum-Welch algo-
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Figure 3. Random Pair Hidden Markov Model. Im-
age courtesy of Mackay and Kondrak (2005).

rithm iteratively reestimates the transition and emis-
sion probabilities until a local optimum is found and
has time complexity O(TN2), where N is the num-
ber of states and T is the length of the observa-
tion sequence. The Baum-Welch algorithm for the
PairHMM is described in detail in Mackay (2004).

3.1 Calculating dialect distances
When the parameters of the complete model have
been determined, the model can be used to calculate
the alignment probability for every word pair. As in
Mackay and Kondrak (2005) and described above,
we use the Forward and Viterbi algorithms in both
their regular (normalised for length) and log-odds
form to calculate similarity scores for every word
pair. Subsequently, the distance between two dialec-
tal varieties can be obtained by calculating all word
pair scores and averaging them.

4 The Levenshtein distance

The Levenshtein distance was introduced by Kessler
(1995) as a tool for measuring linguistic distances
between language varieties and has been success-
fully applied in dialect comparison (Nerbonne et al.,
1996; Heeringa, 2004). For this comparison we use
a slightly modified version of the Levenshtein dis-
tance algorithm, which enforces a linguistic syllab-
icity constraint: only vowels may match with vow-
els, and consonants with consonants. The specific
details of this modification are described in more de-
tail in Wieling et al. (2007).

We do not normalise the Levenshtein distance
measurement for length, because Heeringa et al.
(2006) showed that results based on raw Levenshtein
distances are a better approximation of dialect dif-
ferences as perceived by the dialect speakers than
results based on the normalised Levenshtein dis-
tances. Finally, all substitutions, insertions and dele-
tions have the same weight.

5 Results

To obtain the best model probabilities, we trained
the PairHMM with all data available from the 424
Netherlandic localities. For every locality there were
on average 540 words with an average length of 5
tokens. To prevent order effects in training, every
word pair was considered twice (e.g., wa − wb and
wb−wa). Therefore, in one training iteration almost
100 million word pairs had to be considered. To be
able to train with these large amounts of data, a par-
allel implementation of the PairHMM software was
implemented. After starting with more than 6700
uniform initial substitution probabilities, 82 inser-
tion and deletion probabilities and 5 transition prob-
abilities, convergence was reached after nearly 1500
iterations, taking 10 parallel processors each more
than 10 hours of computation time.

In the following paragraphs we will discuss the
quality of the trained substitution probabilities as
well as comment on the dialectological results ob-
tained with the trained model.

5.1 Trained substitution probabilities

We are interested both in how well the overall se-
quence distances assigned by the trained PairHMMs
reveal the dialectological landscape of the Nether-
lands, and also in how well segment distances in-
duced by the Baum-Welch training (i.e. based on
the substitution probabilities) reflect linguistic real-
ity. A first inspection of the latter is a simple check
on how well standard classifications are respected by
the segment distances induced.

Intuitively, the probabilities of substituting a
vowel with a vowel or a consonant with a conso-
nant (i.e. same-type substitution) should be higher
than the probabilities of substituting a vowel with a
consonant or vice versa (i.e. different-type substitu-
tion). Also the probability of substituting a phonetic
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symbol with itself (i.e. identity substitution) should
be higher than the probability of a substitution with
any other phonetic symbol. To test this assumption,
we compared the means of the above three substi-
tution groups for vowels, consonants and both types
together.

In line with our intuition, we found a higher prob-
ability for an identity substitution as opposed to
same-type and different-type non-identity substitu-
tions, as well as a higher probability for a same-type
substitution as compared to a different-type substitu-
tion. This result was highly significant in all cases:
vowels (all p′s ≤ 0.020), consonants (all p′s <
0.001) and both types together (all p′s < 0.001).

5.2 Vowel substitution scores compared to
acoustic distances

PairHMMs assign high probabilities (and scores)
to the emission of segment pairs that are more
likely to be found in training data. Thus we expect
frequent dialect correspondences to acquire high
scores. Since phonetic similarity effects alignment
and segment correspondences, we hypothesise that
phonetically similar segment correspondences will
be more usual than phonetically remote ones, more
specifically that there should be a negative correla-
tion between PairHMM-induced segment substitu-
tion probabilities presented above and phonetic dis-
tances.

We focus on segment distances among vowels,
because it is straightforward to suggest a measure
of distance for these (but not for consonants). Pho-
neticians and dialectologists use the two first for-
mants (the resonant frequencies created by different
forms of the vocal cavity during pronunciation) as
the defining physical characteristics of vowel qual-
ity. The first two formants correspond to the ar-
ticulatory vowel features height and advancement.
We follow variationist practice in ignoring third and
higher formants. Using formant frequencies we can
calculate the acoustic distances between vowels.

Because the occurrence frequency of the pho-
netic symbols influences substitution probability, we
do not compare substitution probabilities directly to
acoustic distances. To obtain comparable scores, the
substitution probabilities are divided by the product
of the relative frequencies of the two phonetic sym-
bols used in the substitution. Since substitutions in-

volving similar infrequent segments now get a much
higher score than substitutions involving similar, but
frequent segments, the logarithm of the score is used
to bring the respective scores into a comparable
scale.

In the program PRAAT we find Hertz values
of the first three formants for Dutch vowels pro-
nounced by 50 male (Pols et al., 1973) and 25 fe-
male (Van Nierop et al., 1973) speakers of stan-
dard Dutch. The vowels were pronounced in a /hVt/
context, and the quality of the phonemes for which
we have formant information should be close to the
vowel quality used in the GTRP transcriptions. By
averaging over 75 speakers we reduce the effect of
personal variation. For comparison we chose only
vowels that are pronounced as monophthongs in
standard Dutch, in order to exclude interference of
changing diphthong vowel quality with the results.
Nine vowels were used: /i, I, y, Y, E, a, A, O, u/.

We calculated the acoustic distances between all
vowel pairs as a Euclidean distance of the formant
values. Since our perception of frequency is non-
linear, using Hertz values of the formants when cal-
culating the Euclidean distances would not weigh
F1 heavily enough. We therefore transform frequen-
cies to Bark scale, in better keeping with human per-
ception. The correlation between the acoustic vowel
distances based on two formants in Bark and the log-
arithmical and frequency corrected PairHMM sub-
stitution scores is r = −0.65 (p < 0.01). But
Lobanov (1971) and Adank (2003) suggested using
standardised z-scores, where the normalisation is
applied over the entire vowel set produced by a given
speaker (one normalisation per speaker). This helps
in smoothing the voice differences between men and
women. Normalising frequencies in this way re-
sulted in a correlation of r = −0.72 (p < 0.001)
with the PairHMM substitution scores. Figure 4 vi-
sualises this result. Both Bark scale and z-values
gave somewhat lower correlations when the third
formant was included in the measures.

The strong correlation demonstrates that the
PairHMM scores reflect phonetic (dis)similarity.
The higher the probability that vowels are aligned
in PairHMM training, the smaller the acoustic dis-
tance between two segments. We conclude therefore
that the PairHMM indeed aligns linguistically corre-
sponding segments in accord with phonetic similar-
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Figure 4. Predicting acoustic distances based on
PairHMM scores. Acoustic vowel distances are cal-
culated via Euclidean distance based on the first two
formants measured in Hertz, normalised for speaker.
r = −0.72

ity. This likewise confirms that dialect differences
tend to be acoustically slight rather than large, and
suggests that PairHMMs are attuned to the slight
differences which accumulate locally during lan-
guage change. Also we can be more optimistic
about combining segment distances and sequence
distance techniques, in spite of Heeringa (2004,
Ch. 4) who combined formant track segment dis-
tances with Levenshtein distances without obtaining
improved results.

5.3 Dialectological results
To see how well the PairHMM results reveal the di-
alectological landscape of the Netherlands, we cal-
culated the dialect distances with the Viterbi and
Forward algorithms (in both their normalised and
log-odds version) using the trained model parame-
ters.

To assess the quality of the PairHMM results,
we used the LOCAL INCOHERENCE measurement
which measures the degree to which geographically
close varieties also represent linguistically similar
varieties (Nerbonne and Kleiweg, 2005). Just as
Mackay and Kondrak (2005), we found the over-
all best performance was obtained using the log-
odds version of Viterbi algorithm (with insertion and
deletion probabilities based on the token frequen-

cies).
Following Mackay and Kondrak (2005), we also

experimented with a modified PairHMM obtained
by setting non-substitution parameters constant.
Rather than using the transition, insertion and dele-
tion parameters (see Figure 2) of the trained model,
we set these to a constant value as we are most
interested in the effects of the substitution param-
eters. We indeed found slightly increased perfor-
mance (in terms of LOCAL INCOHERENCE) for the
simplified model with constant transition parame-
ters. However, since there was a very high corre-
lation (r = 0.98) between the full and the simplified
model and the resulting clustering was also highly
similar, we will use the Viterbi log-odds algorithm
using all trained parameters to represent the results
obtained with the PairHMM method.

5.4 PairHMM vs. Levenshtein results

The PairHMM yielded dialectological results quite
similar to those of Levenshtein distance. The LOCAL

INCOHERENCE of the two methods was similar, and
the dialect distance matrices obtained from the two
techniques correlated highly (r = 0.89). Given that
the Levenshtein distance has been shown to yield re-
sults that are consistent (Cronbach’s α = 0.99) and
valid when compared to dialect speakers judgements
of similarity (r ≈ 0.7), this means in particular that
the PairHMMs are detecting dialectal variation quite
well.

Figure 5 shows the dialectal maps for the results
obtained using the Levenshtein algorithm (top) and
the PairHMM algorithm (bottom). The maps on the
left show a clustering in ten groups based on UP-
GMA (Unweighted Pair Group Method with Arith-
metic mean; see Heeringa, 2004 for a detailed expla-
nation). In these maps phonetically close dialectal
varieties are marked with the same symbol. How-
ever note that the symbols can only be compared
within a map, not between the two maps (e.g., a di-
alectal variety indicated by a square in the top map
does not need to have a relationship with a dialec-
tal variety indicated by a square in the bottom map).
Because clustering is unstable, in that small differ-
ences in input data can lead to large differences in
the classifications derived, we repeatedly added ran-
dom small amounts of noise to the data and iter-
atively generated the cluster borders based on the
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Figure 5. Dialect distances for Levenshtein method (top) and PairHMM method (bottom). The maps on
the left show the ten main clusters for both methods, indicated by distinct symbols. Note that the shape of
these symbols can only be compared within a map, not between the top and bottom maps. The maps in the
middle show robust cluster borders (darker lines indicate more robust cluster borders) obtained by repeated
clustering using random small amounts of noise. The maps on the right show for each locality a vector
towards the region which is phonetically most similar. See section 5.4 for further explanation.
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noisy input data. Only borders which showed up
during most of the 100 iterations are shown in the
map. The maps in the middle show the most ro-
bust cluster borders; darker lines indicate more ro-
bust borders. The maps on the right show a vector at
each locality pointing in the direction of the region
it is phonetically most similar to.

A number of observations can be made on the
basis of these maps. The most important observa-
tion is that the maps show very similar results. For
instance, in both methods a clear distinction can
be seen between the Frisian varieties (north) and
their surroundings as well as the Limburg varieties
(south) and their surroundings. Some differences
can also be observed. For instance, at first glance
the Frisian cities among the Frisian varieties are sep-
arate clusters in the PairHMM method, while this
is not the case for the Levenshtein method. Since
the Frisian cities differ from their surroundings a
great deal, this point favours the PairHMM. How-
ever, when looking at the deviating vectors for the
Frisian cities in the two vector maps, it is clear that
the techniques again yield similar results. Note that
a more detailed description of the results using the
Levenshtein distance on the GTRP data can be found
in Wieling et al. (2007).

Although the PairHMM method is much more so-
phisticated than the Levenshtein method, it yields
very similar results. This may be due to the fact
that the data sets are large enough to compensate for
the lack of sensitivity in the Levenshtein technique,
and the fact that we are evaluating the techniques at
a high level of aggregation (average differences in
540-word samples).

6 Discussion

The present study confirms Mackay and Kondrak’s
(2004) work showing that PairHMMs align linguis-
tic material well and that they induce reasonable seg-
ment distances at the same time. We have extended
that work by applying PairHMMs to dialectal data,
and by evaluating the induced segment distances via
their correlation with acoustic differences. We noted
above that it is not clear whether the dialectological
results improve on the simple Levenshtein measures,
and that this may be due to the level of aggregation
and the large sample sizes. But we would also like

to test PairHMMs on a data set for which more sen-
sitive validation is possible, e.g. the Norwegian set
for which dialect speakers judgements of proximity
is available (Heeringa et al., 2006); this is clearly a
point at which further work would be rewarding.

At a more abstract level, we emphasise that the
correlation between acoustic distances on the one
hand and the segment distances induced by the
PairHMMs on the other confirm both that align-
ments created by the PairHMMs are linguistically
responsible, and also that this linguistic structure in-
fluences the range of variation. The segment dis-
tances induced by the PairHMMs reflect the fre-
quency with which such segments need to be aligned
in Baum-Welch training. It would be conceivable
that dialect speakers used all sorts of correspon-
dences to signal their linguistic provenance, but they
do not. Instead, they tend to use variants which are
linguistically close at the segment level.

Finally, we note that the view of diachronic
change as on the one hand the accumulation of
changes propagating geographically, and on the
other hand as the result of a tendency toward local
convergence suggests that we should find linguis-
tically similar varieties nearby rather than further
away. The segment correspondences PairHMMs in-
duce correspond to those found closer geographi-
cally.

We have assumed a dialectological perspective
here, focusing on local variation (Dutch), and using
similarity of pronunciation as the organising varia-
tionist principle. For the analysis of relations among
languages that are further away from each other—
temporally and spatially—there is substantial con-
sensus that one needs to go beyond similarity as a
basis for postulating grouping. Thus phylogenetic
techniques often use a model of relatedness aimed
not at similarity-based grouping, but rather at creat-
ing a minimal genealogical tree. Nonetheless sim-
ilarity is a satisfying basis of comparison at more
local levels.
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Abstract

This paper discusses the reconstruction of
the Elamite language’s phonology from its
orthography using the Gradual Learning Al-
gorithm, which was re-purposed to “learn”
underlying phonological forms from surface
orthography. Practical issues are raised re-
garding the difficulty of mapping between
orthography and phonology, and Optimal-
ity Theory’s neglected Lexicon Optimiza-
tion module is highlighted.

1 Introduction

The purpose of this paper is to reconstruct the
phonology of Elamite, an extinct language known
only from written sources, whose phonology is cur-
rently poorly understood. Given that the mecha-
nisms provided by Optimality Theory are powerful
enough for a language learner to acquire a natural
language given only overt forms, it should be possi-
ble to apply the same mechanisms to “learn” Elamite
phonology given only its orthography.

The research described here was carried out with
the aid of a piece of software, nicknamed Grote-
fend, which was developed as part of a larger re-
search project into Elamite.1 The data used in this
paper consisted of the contents of the Elamisches
Wörterbuch (Hinz and Koch, 1987) marked up as
XML with attributes such as morphology, cognates,

1Grotefend was written in C++ using Trolltech’s Qt toolkit,
and runs under Mac OS X. The portions that implement the
Gradual Learning Algorithm (§4.3) were adapted from Paul
Boersma’s Visual Basic source code for the OTSoft program,
which was kindly provided by Bruce Hayes.

semantics, corpus frequency, and chronology. The
Wörterbuch was used because it is the only source
that incorporates Elamite data from all historical pe-
riods. It also has the virtue of containing every sin-
gle attested form known to the authors, which is par-
ticularly useful for this project, since we have spe-
cial interest in alternative spellings of given words.

2 Elamite Language

2.1 Historical and geographical context
Elamite is an extinct language spoken in what is now
southwestern and central Iran. Elamite-language
texts dating from 2400 BCE until 360 BCE are
attested, written in the cuneiform script borrowed
from the Sumerians and Akkadians.2 Elamite has
no known linguistic affiliations, although a connec-
tion to the Dravidian family has been proposed by
McAlpin (1982) and others.

Since both the language and scribal practices are
certain to have changed over such a long time-span,
this study will restrict itself to text from a single era.
The Achæmenid Elamite period (539 BCE to 360
BCE) was chosen, because this period contains the
largest volume of texts, and also because those texts
are particularly rich in Old Persian names and loan-
words that provide a useful starting point for esti-
mating the phonology.

2.2 The cuneiform writing system
As part of their adaptation of cuneiform, the
Elamites abandoned most of the logographic ele-

2Early texts from Elam using two other indigenous writing
systems are not well-enough understood to provide useful lin-
guistic information.
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ments found in Sumerian and Akkadian usage, mov-
ing to an almost completely phonetic system, which
would be a “core syllabary” in Sproat’s (2000) typol-
ogy. That is, each grapheme represents a syllable,
but the system lacks graphemes to represent all of
the language’s syllables. This is particularly the case
for many 〈CVC〉 graphemes, which must be writ-
ten using “syllable telescoping”, where a 〈CV-VC〉
combination is written, with the internal vowel being
repeated. For example, lacking a 〈lan〉 grapheme,
the syllable /lan/ would have to be written 〈la-an〉3.
Even when the 〈CVC〉 grapheme does exist, the
〈CV-VC〉 writing is often preferred.

2.3 Hypotheses to be tested
The strategy of this research is to use the techniques
of Optimality Theory to reconstruct the language’s
phonology. We will take the various hypotheses pre-
sented by earlier authors and attempt to encapsulate
each in the form of an OT constraint.

Altogether 30 separate hypotheses were evalu-
ated, arranged into 11 major groupings. Within
each grouping, the sub-hypotheses (which may or
may not be mutually exclusive) refer to a related
context or related orthographic phenomenon. This
paper will largely restrict its discussion to only two
of the groupings: H3 (Geminate consonants) and
H4 (Nasal vowels).4

H3 Geminate consonants
H3a Geminate orthographies represent underlying
geminate phonologies.
H3b Geminate orthographies indicate voicelessness
(Reiner, 1969).
H3c Certain geminate spellings indicate a distinc-
tion other than voicing, such as retroflex/alveolar
(McAlpin, 1982).

H4 Nasal vowels
H4a Alternations in the writing of nasals indicate

3Or 〈7
〉, but since the readership of this paper is un-
likely to be familiar with cuneiform, all graphemes will be pre-
sented in the traditional transliterated form used in Assyriology.

4The full list of hypothesis groups also includes: H1 (In-
terpretation of broken 〈CV1-V2C〉 writings), H2 (Voicing of
stops), H5 (Word-final vowels), H6 (Sibilants), H7 (Existence
of an /h/ phoneme), H8 (Existence of an /f/ or /v/ phoneme), H9
(Existence of a /j/ phoneme), H10 (Existence of a /w/ phoneme),
and H11 (Existence of an /e/ phoneme). Full discussion of the
results for these hypotheses can be found in Smith (2004).

the presence of nasal vowels (e.g. /hũban/ →
〈hu-um-ban〉, 〈hu-ban〉).
H4b Alternations in the writing of nasals can be
explained by underlying nasal consonants (e.g.
/humban/ → 〈hu-um-ban〉, 〈hu-ban〉).

3 Theory of Writing Systems

The discussion of Elamite orthography will be
framed within the theory of writing systems pro-
posed by Sproat (2000), whose core claim that “par-
ticular (sets of) linguistic elements license the oc-
currence of (sets of) orthographic elements”. The
details of which linguistic elements license which
orthographic ones are specific to any given combi-
nation of spoken language and writing system.

The licensing is implemented by a mapping func-
tion, MORL→Γ, whose input is the Orthographically
Relevant Level (ORL), and whose output is the
orthography(Γ). In the case of Elamite, the rele-
vant level is the surface phonology after the applica-
tion of phonological processes such as assimilation
and cluster simplification, so in Sproat’s schema,
Elamite is classified as having a “shallow” ORL.5

4 Applying OT to Orthography

In the normal application of Optimality Theory, the
input and the output are both the same type of lin-
guistic entity. However, in the problem dealt with
here, the relationship is between an input that is
phonological and an output that is orthographic. The
comparison of phonological apples to orthographic
oranges leads to complications that will be discussed
in §6.1. All the modules of Optimality Theory must
be adapted for use with orthography.

4.1 Background
As originally formulated, Optimality Theory can be
considered as a set of three interconnected modules:
GEN, H-EVAL, and Lexicon Optimization (Prince
and Smolensky, 1993). Together GEN and H-EVAL

comprise the grammar proper. For any given in-
put, GEN generates a set of output candidates, and
these candidates are then evaluated against a set of
constraints by the H-EVAL module. Lexicon Opti-
mization is not part of the grammar, but it provides

5For instance, the noun kittin ‘length’ is spelled 〈ki-it-ti-im-
ma〉 when followed by the locative suffix -ma, while the 3SG
object prefix in- is written 〈id〉 before a verb like dunih ‘I gave’.
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a mechanism by which language learners can use
that grammar to determine underlying forms based
on the overt forms that are presented to them.

Optimality Theory can be seen as a model for how
a language learner acquires a natural language, pre-
sented only with overt forms (Tesar and Smolensky,
2000). At first, the learner’s constraint rankings and
underlying forms will be inaccurate, but as more in-
formation is presented the estimates of the under-
lying forms become more accurate, which in turn
improves the constraint rankings, which further im-
proves the estimates of the underlying forms, and so
on. In this study, the “learner” is the Grotefend soft-
ware, which is presented with surface orthography
and attempts to deduce the phonology.

4.2 Adaptation for orthography
The GEN module must be adapted to generate plau-
sible overt forms (i.e. rival orthographies). The gen-
eral strategy for GEN is described in §5, with the
specific details given in §5.2.

The constraints are used by a ranking algorithm
(§4.3) that compares the rival orthographies from
GEN against underlying phonological forms in or-
der to determine the number of constraint violations.
In order to start the process, those underlying forms
have to be seeded with reasonable initial estimates.
If the word is a loanword, the initial estimate is
based on the Old Persian or Akkadian phonology.
If there is no available loanword phonology, the ini-
tial estimate is a direct transcription of the grapheme
values as if the word were being read in Akkadian.

Once the constraints have been ranked, Lexical
Optimization takes the orthographic forms and the
newly-ranked constraints, and calculates an esti-
mated phonology for each of the forms. At this
point, the process can stop, or else it can proceed
through another iteration of the ranking algorithm,
using the new improved estimated phonologies as
underlying forms.

4.3 Gradual Learning Algorithm
The Gradual Learning Algorithm (Boersma, 1997;
Boersma and Hayes, 2001) is an evolution of the
Constraint Demotion algorithm (Tesar, 1995), but
avoids the infinite-looping which can arise in Con-
straint Demotion if underlying forms have more than
one overt form. This limitation of Constraint Demo-

tion is a serious one given the data from Elamite or-
thography; not only are the orthographic forms sub-
ject to considerable variation, but also this variation
is a key piece of information in attempting to recon-
struct the phonology.

In the GLA, constraints each have a numeric rank-
ing value associated with them. It is no longer the
case that Constraint A consistently outranks Con-
straint B; whenever a constraint is evaluated, a ran-
dom “noise” factor is added to each of the ranking
values, and an instantaneous constraint ordering is
determined based on these adjusted values. If the
ranking values for two constraints are far apart, the
noise is unlikely to alter the ordering, and the re-
sults will be effectively the same as ordinary OT. If
the ranking values for two constraints are close to-
gether, the noise could put either constraint on top,
but ties are avoided.

In the GLA implementation within Grotefend, all
constraints start with ranking values of 100.00. With
each iteration of the algorithm, one of the observed
forms is selected as an exemplar, and rivals (pro-
duced by GEN) are compared against the observed
exemplar form. Whenever a rival beats the exemplar
form, the constraint ranking values must be adjusted:
all constraints that picked the wrong winner are pe-
nalized (adjusted downwards), and all constraints
that picked the right winner are rewarded (adjusted
upwards). The size of this adjustment is determined
by a variable called “plasticity”, which starts at 2.00
and is reduced gradually to 0.002 as the algorithm
proceeds through its iterations.

5 Implementation of GEN

The purpose of GEN is to generate a set of plausi-
ble overt forms consisting of the real form and a set
of rivals which will lose out to the real form. In
this problem the overt forms are orthographies, so
for any underlying form the challenge is to gener-
ate orthographic strings that compete with the real
orthography, but which are “wrong” with respect to
one or more of the constraints.

5.1 Background

There have been a number of computational imple-
mentations of GEN, but the most promising one for
our purposes was that of Heiberg (1999). Heiberg’s
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algorithm proceeds by choosing a starting point and
then adding constraints to the system. As each con-
straint is added, new candidates are generated using
what she calls “relevant” GEN operations. A GEN

operation is considered to be relevant for the current
constraint if the operation could affect a candidate’s
harmony relative to that constraint. So for instance,
if the constraint being added evaluates the [+back]
feature, the only GEN operations that are relevant
are those which affect [+back] or its associations.

The candidates at each stage of the algorithm are
not fully formed, and are slowly refined as the con-
straints are added to the system. One advantage of
Heiberg’s algorithm is that it functions even if the
relative rankings of the constraints are not known. If
the constraint rankings are known, the algorithm can
operate more efficiently, by culling known losers,
but knowing the rankings is not essential.

5.2 Adaptation of GEN for orthography

Generating all “plausible” orthographic candidates
for a given form is computationally prohibitive.6

So, borrowing Heiberg’s notion of “relevant” oper-
ations, our approach is to generate candidates that
specifically exercise one of the constraints in the
constraint system.

Each of the hypothesis groups described in §2.3
refers to a particular orthographic context, and each
context has a miniature version of GEN to generate
appropriately test-worthy rivals. For example, the
mini-GEN function for context H3 is as follows:

GEN H3 (Geminate consonants)
Rule Whenever a geminate consonant is found
in the orthography, generate a rival with the non-
geminate equivalent.
Example 〈hu-ut-ta〉 → { 〈hu-ta〉 }

6 Implementation of H-EVAL

The H-EVAL module is responsible for the actual
evaluations of the various candidates. It takes any
output candidate produced by GEN, and counts the
violation marks for each of the constraints.

6Initial experiments indicated that a moderately long string
of four graphemes would generate in the neighbourhood of
18000 rivals. It seemed unrealistic to evaluate tens of thousands
of rivals for each of the 8000+ forms in the database.

um

PHON

SEM divinity: d  

a h u

ORTH u mas ‡ da

mar a z d h

ri

a¤

Figure 1: Annotation graph for Ahuramazdāh →
〈du-ri-um-maš-da〉

Each constraint is implemented as a function
which takes two inputs (an underlying form and a
surface form), and produces as an output the num-
ber of violations incurred by the comparing the two
inputs. For full generality, both inputs are anno-
tation graphs (Bird and Liberman, 1999; Sproat,
2000) such as the one shown in Figure 1. As imple-
mented in Grotefend, the comparison involves only
the PHON tier of the underlying form’s graph and the
ORTH tier of the surface form’s graph.

Constraints were written to test each of the hy-
potheses described in §2.3. Since there is no prior
art in the area of constraints involving orthography
and phonology, they were developed in the most
straightforward way possible. The implementation
of these functions is described in §6.2.

6.1 Implementation of alignment

In order to count violations, the two inputs must
be properly aligned. For an annotation graph to
be “aligned”, every grapheme must be licensed by
some part of the phonology, and every phoneme
must be represented in the orthography. Without
such a licensing relationship, it is impossible to
make the comparisons needed to count constraint vi-
olations.

There is considerable previous work in the area of
alignment, most recently summarized by Kondrak
and Sherif (2006). The algorithm used in this study
is a similarity-based approach, not unlike ALINE
(Kondrak, 2000). It differs in some significant re-
spects, notably the use of binary features.

Determining the eligibility of two phonemes for
matching requires a distance function. The approach
taken was to assign a weight to each phonological
feature, and to calculate the distance as the sum of
the weights of all features that differ between the
two phonemes. The full listing of feature weights is
shown in Table 1. The weighting values were deter-
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Table 1: Feature weights for computing distance
Phonological Feature Weight
delayed release, voice, labio-dental,
anterior, distributed, strident

1

approximant, continuant, nasal, lateral,
round, low, pharyngeal

2

syllabic, consonantal, constricted glot-
tis, spread glottis, high, front, back

4

sonorant, place of articulation 8

mined empirically, selecting the weightings that did
the best job of aligning the orthography for the Old
Persian loanwords given by Hinz and Koch (1987).

For the actual alignment, several approaches
were tried, but the most effective one was simply
to line up the consonants and let the vowels fall
where they may. For instance, the licensing of
〈du-ri-um-maš-da〉 in Figure 1 used the Old Persian
phonology as the best available initial estimate for
the Elamite phonology, and proceeded as follows:

〈d〉 is the divine determinative, and is licensed
by the semantic tier of the annotation graph, so it
does not need to be anchored to the phonology.
〈u〉 is anchored at the left edge of the phonology.
〈ri〉 starts at /r/, but has no clear right edge. The
anchoring of /r/ sets a right boundary on the 〈u〉,
which must therefore be licensed by the initial /ahu/
of /ahuramazdāh/.
〈um〉 right edge at phoneme /m/; since the 〈um〉 has
no clear left edge, the second /a/ of /ahuramazdāh/
is left floating between the 〈ri〉 and the 〈um〉. Since
there is no clear choice between the two locations,
the /a/ will be shared by 〈ri〉 and 〈um〉.
〈maš〉 starts at /m/ and ends at /z/, which is suffi-
ciently similar to match š. The /m/ will be shared by
〈um〉 and 〈maš〉.
〈da〉 starts at /d/; since 〈da〉 is the last grapheme, it
must be licensed by the remainder of the phonology.

The general strategy of aligning consonants
proved to be an effective one. In the working dataset
of Achæmenid Elamite words, there were 3045 that
used Old Persian or Akkadian data to provide an ini-
tial estimate of the underlying phonology. The algo-
rithm successfully aligned 2902 of those words, for

a success rate of over 95%.

6.2 Implementation of constraints

Once the orthography has been successfully aligned
with the underlying phonology, it is possible to
evaluate the forms for violations against all the con-
straints in the system. In terms of the tiers shown in
annotation graphs like Figure 1, the constraints are
performing comparisons between the underlying
forms in the PHON tier and overt forms in the ORTH

tier. For example, the rules for calculating constraint
violations for H3 are as follows:

H3a Geminate spellings indicate geminate pronun-
ciations.
Rule Count a violation if the orthography contains
a geminate consonant not matched by a geminate in
the phonology.7

Violation /ata/ → 〈at-ta〉
Non-violations /atta/ → 〈at-ta〉, /atta/ → 〈a-ta〉

H3b Geminate spellings indicate voicelessness.
Rule Count a violation if 1) the orthography con-
tains an intervocalic geminate stop not matched by a
voiceless stop in the phonology, or 2) the orthogra-
phy contains an intervocalic non-geminate stop not
matched by a voiced stop in the phonology, or 3) the
phonology contains an intervocalic voiceless stop
not matched by a geminate in the orthography, or 4)
the phonology contains an intervocalic voiced stop
not matched by a non-geminate in the orthography.8

Violations /duba:la/ → 〈du-ib-ba-la〉, /garmapada/
→ 〈dkar-ma-ba-taš〉
Non-violations /gauma:ta/ → 〈kam-ma-ad-da〉,
/babili/ → 〈ba-pi-li〉

H3c Certain geminate spellings indicate a distinc-
tion other than voicing, such as retroflex/alveolar.
Rule Count a violation if 1) the orthography con-
tains a 〈Vl-lV〉 or 〈Vr-rV〉 sequence not matched by
a retroflex in the phonology, or 2) the phonology
contains a /í/ or /ó/ not matched by a 〈Vl-lV〉 or

7The claim made by Grillot-Susini and Roche (1988) was
only that a geminate orthography represents a geminate phonol-
ogy; a non-geminate orthography could still conceal a geminate
phonology.

8Reiner (1969) restricted her claim about gemination repre-
senting voicelessness to intervocalic stops. Word-initial stops
and intervocalic non-stops were not relevant here.
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〈Vr-rV〉 in the orthography.
Violations /talu/ → 〈ta-al-lu〉, /taíu/ → 〈ta-lu〉
Non-violation /taíu/ → 〈ta-al-lu〉

7 Implementation of Lexicon Optimization

Given the set of constraints provided in §6.2 and
rankings determined by the Gradual Learning Algo-
rithm (§4.3), it is now possible to move on to the
final stage of the “learning” process: Lexicon Opti-
mization, which is responsible for choosing the most
harmonic input form for any given output form.

There has been surprisingly little literature de-
voted to Lexicon Optimization, and discussions of
how it might be implemented have been restricted to
toy algorithms such as Itô et al’s (1995) “tableau des
tableaux”. Hence, a novel approach was devised,
based on the observation that Lexicon Optimization
is a sort of mirror image of H-EVAL. For H-EVAL,
there exists a separate GEN module whose task is
to generate the possible output candidates. Clearly,
Lexicon Optimization needs an equivalent module,
but one that would generate a range of rival input
forms. Since the GEN algorithm described in §5.2
uses a constraint-driven technique for generating
output candidates, it seems appropriate to also use
a constraint-driven technique for generating input
candidates. Accordingly, this anti-GEN is imple-
mented as a set of miniature anti-GENs, each of
which is responsible for generating “relevant” input
candidates for one of the hypothesis groupings. For
example, the anti-GEN function for H3 is as follows:

Anti-GEN H3 (Geminate consonants)
Rule Whenever a geminate consonant is found
in the orthography, create input candidates with
the geminate phonology and the equivalent non-
geminate phonology. If the geminate orthography is
a 〈Vl-lV〉 or 〈Vr-rV〉, also create an input candidate
with a “retroflex” phonology.9

Example 〈ta-al-lu〉 → { /tallu/, /talu/, /taíu/ }

8 Results and Discussion

We ran 40000 iterations of the Gradual Learning
Algorithm against the Achæmenid Elamite forms

9McAlpin (1982) hedges on whether the phonology repre-
sented by these geminates actually represents retroflexion, but
he then proceeds to discuss Proto-Elamo-Dravidian cognates as
if this orthography actually did represent a retroflex articulation.

Table 2: Final constraint rankings for H3 and H4

Hypo-
thesis

Constraint Ranking
Value

H4b NasalConsonants −136.93
H3b 〈Geminate〉=/Voiceless/ −283.70
H4a NasalVowels −1434.77
H3c 〈Geminate〉=/Retroflex/ −1629.74
H3a 〈Geminate〉=/Geminate/ −3189.11

found in the Elamisches Wörterbuch. The final con-
straint rankings for hypothesis groups H3 and H4 are
shown in Table 2.10 The combination of constraints,
GEN, and anti-GEN functions used by Grotefend
tends to penalize constraints much more often than
it rewards them. The absolute ranking values are not
significant; what matters is their relative values.

8.1 Results for H3 (Geminate consonants)

The results for H3 strongly support the hypothesis
(Reiner, 1969) that geminate orthographies are an
attempt to indicate voicelessness; the opposing hy-
pothesis (Grillot-Susini and Roche, 1988) that gem-
inate orthographies represent geminate phonologies
ended up being very heavily penalized.

What was surprising was that hypothesis H3c, that
〈Vl-lV〉 and 〈Vr-rV〉 geminates represent a sepa-
rate phoneme from the non-geminate orthographies,
ranked so poorly. The problem here is a side-effect
of the process for generating input candidates.

Consider the Akkadian name Nabû-kudurri-us. ur;
the 〈ur-ri〉 sequence that occurs in the various
spellings of this name would appear to be an ideal
context for evaluating H3c. However, when gen-
erating input candidates for Nabû-kudurri-us. ur, the
various anti-GEN functions create 238 permutations
(mostly permutations of voicing), but only four of
those input candidates contain an /ó/ phoneme, with
the rest having an /rr/ or an /r/. Since the anti-GEN

function produces so few /ó/ input candidates for the
〈ur-ri〉 orthography, it is likely that the software will
find an /r/ in the underlying phonology, and will
count a violation against this constraint.

The prejudice against /í/ and /ó/ highlights the im-
portance of having a fair and balanced anti-GEN

10Results for the other nine groups are in Smith (2004).
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1 H4a (nasal vowel) violation
0 H4b (nasal consonant) violations

0 H4a (nasal vowel) violations
1 H4b (nasal consonant) violation

Figure 2: Licensing of 〈hi-in-du-iš〉 ‘Indian’

function. The proposal to be discussed in §8.3 for
cross-permuting the results of the constraint-specific
anti-GEN functions would probably also improve
the results for this hypothesis.

8.2 Results for H4 (Nasal vowels)
The effectiveness of the constraints for evaluating
nasals was undermined by choices made in the align-
ment algorithm. Although constraint H4b (Nasal-
Consonants) is ranked significantly higher than H4a
(NasalVowels), this may be merely a side-effect of
the alignment algorithm.

Consider the word for ‘Indian’, which shows up
as 〈hi-du-iš〉, 〈hi-in-du-iš〉, or 〈in-du-iš〉. It is not
unreasonable to postulate an underlying phonol-
ogy of /h̃ıduS/, based both on the range of written
forms, and on the Old Persian phonology. However,
when the alignment algorithm attempts to deter-
mine which phoneme sequences are licensing which
graphemes, it has a difficult choice to make for the
〈in〉 grapheme. Licensing the vowel portion of 〈in〉
is straightforward, but what should be done for the
consonant? If the software assumes that the most
salient features are [+consonantal] and [−syllabic],
we get the first annotation graph shown in Figure
2, but if the most salient features are [+nasal] and
[+sonorant], we get the second graph.

The choice of how to license the 〈in〉 grapheme
makes a difference for how the H4a and H4b con-
straints are evaluated. Using the weightings given
in Table 1, the software will align 〈in〉 with /ı̃d/, be-
cause the distance between /n/ and /d/ is less than
that between /n/ and /ı̃/. Hence, the alignment algo-
rithm chooses the first of the two annotation graphs

given in Figure 2. This has the result of prejudic-
ing the learning algorithm in favour of H4b instead
of H4a. Ideally, the alignment algorithm should be
neutral with respect to the various constraints.

The licensing of the 〈in〉 sign in this example
is one case of several where it appears that us-
ing phonological segments as the basis for licensing
may be the wrong thing to do. It would be better to
think of the second portion of the 〈in〉 sign in 〈hi-in-
du-iš〉 as being licensed by a [+nasal] feature, with-
out attempting to tie the feature down to either the
/i/ or the /d/ segment.11

8.3 Discussion of Lexicon Optimization

The generation of useful input candidates is limited
by the information that is available to us. For all
we know, Elamite had an /W/ vowel, and Grotefend
could even generate input candidates that contained
an /W/. However, none of the constraints would
weigh either for or against it, so there is no point in
generating such an input candidate. Consequently,
the correct underlying form may well be inaccessi-
ble to Lexicon Optimization. At best, Lexicon Opti-
mization can produce an estimated underlying form
that leaves as underspecified any features that can-
not be verified by a corresponding constraint. This
is a limitation of Lexicon Optimization in general,
not just of the implementation in Grotefend.

One problem specific to our constraint-based gen-
eration of input candidates is that the anti-GEN func-
tions work in isolation from each other. For exam-
ple, when processing 〈da-iš〉, the H1 (broken-vowel)
anti-GEN produces /daiS/, /dajS/, /dES/, and /daS/.
Separately, the H6 (sibilant) anti-GEN will produce
/dais/, /daiS/, /daiz/, /daitS/, and /daits/. Since the
two functions operate independently, the software
fails to generate a whole range of candidates. If
the actual underlying phonology were /dEtS/, Grote-
fend would never find it, since that particular phonol-
ogy will never be generated and presented to Lexi-
con Optimization as a possible input candidate. A
more sophisticated anti-GEN implementation would
allow for the input candidates produced by one con-
straint’s anti-GEN function to be further permuted

11Sproat (2000) uses phonological segments to describe li-
censing, but there is nothing in his theory that requires this; in
fact, he says that his use of segments is merely a “shorthand”
for a set of overlapping gestures.
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by the anti-GEN function of another constraint.

9 Conclusions

This project represented an expedition into three
largely unexplored territories: the application of Op-
timality Theory to orthography, the implementation
of Lexicon Optimization in software, and the mass
analysis of Elamite phonology. All three presented
unanticipated challenges.

The problem of implementing GEN algorithmi-
cally appears to be at an early stage even in the pro-
cessing of phonological data. The constraint-driven
GEN adopted from Heiberg (1999) does appear to be
a useful starting point for working with orthography.

The determination of the mapping between
phonology and orthography can have unexpected
consequences for the evaluation of constraints. Even
when properly aligned, implementing meaningful
constraints to evaluate the mismatches between
phonology and orthography proved to be surpris-
ingly complex. An alternative representation, licens-
ing graphemes based on bundles of features rather
than phonemes, might be more effective.

The whole area of Lexicon Optimization has re-
ceived surprisingly little mention in the literature of
Optimality Theory. The notion that there must be
some form of anti-GEN module to produce suitable
input candidates appears never to have been raised
at all. The existence of anti-GEN is hardly specific
to the study of orthography, but would seem to be an
omission from Optimality Theory in general.

The constraint-driven implementation of the anti-
GEN function does seem like a promising strategy,
although the details need work. In particular, there
is a need for the outputs of the various constraint-
specific anti-GENs to be permuted together in order
to produce all plausible input candidates.

Elamite has always been problematic both due to
its status as an isolate and because the available clues
end up being obscured by the writing system. So
far, we can claim that this computational analysis
of the body of Elamite vocabulary has succeeded in
duplicating some of the tentative conclusions drawn
from a century of hard work “by hand”.
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Abstract

The verb inflections of Bengali underwent
a series of phonological change between
10th and18th centuries, which gave rise
to several modern dialects of the language.
In this paper, we offer a functional ex-
planation for this change by quantifying
the functional pressures of ease of artic-
ulation, perceptual contrast and learnabil-
ity through objective functions or con-
straints, or both. The multi-objective and
multi-constraint optimization problem has
been solved through genetic algorithm,
whereby we have observed the emergence
of Pareto-optimal dialects in the system
that closely resemble some of the real
ones.

1 Introduction

Numerous theories have been proposed to explain
the phenomenon oflinguistic change, which, of late,
are also being supported by allied mathematical or
computational models. See (Steels, 1997; Perfors,
2002) for surveys on computational models of lan-
guage evolution, and (Wang et al., 2005; Niyogi,
2006) for reviews of works on language change.
The aim of these models is to explain why and how
languages change under specific socio-cognitive as-
sumptions. Although computational modeling is a
useful tool in exploring linguistic change (Cangelosi
and Parisi, 2002), due to the inherent complexi-
ties of our linguistic and social structures, modeling
of real language change turns out to be extremely
hard. Consequently, with the exception of a few

(e.g., Hare and Elman (1995); Dras et al. (2003);
Ke et al. (2003); Choudhury et al. (2006b)), all the
mathematical and computational models developed
for explaining language change are built for artifi-
cial toy languages. This has led several researchers
to cast a doubt on the validity of the current compu-
tational models as well as the general applicability
of computational techniques in diachronic explana-
tions (Hauser et al., 2002; Poibeau, 2006).

In this paper, we offer afunctional explanation1

of a real world language change – the morpho-
phonological change affecting the Bengali verb
inflections (BVI). We model the problem as a
multi-objective and multi-constraint optimization
and solve the same using Multi-Objective Genetic
Algorithm2 (MOGA). We show that the different
forms of the BVIs, as found in the several modern
dialects, automatically emerge in the MOGA frame-
work under suitable modeling of the objective and
constraint functions. The model also predicts several

1Functionalist accounts of language change invoke the basic
function of language, i.e. communication, as the driving force
behind linguistic change (Boersma, 1998). Stated differently,
languages change in a way to optimize their function, such that
speakers can communicate maximum information with min-
imum effort (ease of articulation) and ambiguity (perceptual
contrast). Often, ease of learnability is also considered a func-
tional benefit. For an overview of different explanations in di-
achronic linguistics see (Kroch, 2001) and Ch. 3 of (Blevins,
2004).

2Genetic algorithm was initially proposed by Hol-
land (1975) as a self-organizing adaptation process mimicking
the biological evolution. They are also used for optimization
and machine learning purposes, especially when the nature of
the solution space is unknown or there are more than one objec-
tive functions. See Goldberg (1989) for an accessible introduc-
tion to single and multi-objective Genetic algorithms. Note that
in case of a multi-objective optimization problem, MOGA gives
a set of Pareto-optimal solutions rather than a single optimum.
The concept of Pareto-optimality is defined later.
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other possible dialectal forms of Bengali that seems
linguistically plausible and might exist or have ex-
isted in the past, present or future. Note that the
evolutionary algorithm (i.e., MOGA) has been used
here as a tool for optimization, and has no relevance
to the evolution of the dialects as such.

Previously, Redford et al. (2001) has modeled the
emergence of syllable systems in a multi-constraint
and multi-objective framework using Genetic al-
gorithms. Since the model fuses the individual
objectives into a single objective function through
a weighted linear combination, it is not a multi-
objective optimization in its true sense and nei-
ther does it use MOGA for the optimization pro-
cess. Nevertheless, the present work draws heavily
from the quantitative formulation of the objectives
and constraints described in (Redford, 1999; Red-
ford and Diehl, 1999; Redford et al., 2001). Ke et
al. (2003) has demonstrated the applicability and ad-
vantages of MOGA in the context of the vowel and
tonal systems, but the model is not explicit about the
process of change that could give rise to the optimal
vowel systems. As we shall see that the conception
of thegenotype, which is arguably the most impor-
tant part of any MOGA model, is a novel and signif-
icant contribution of this work. The present formu-
lation of the genotype not only captures a snapshot
of the linguistic system, but also explicitly models
the course of change that has given rise to the partic-
ular system. Thus, we believe that the current model
is more suitable in explaining a case of linguistic
change.

The paper is organized as follows: Sec. 2 intro-
duces the problem of historical change affecting the
BVIs and presents a mathematical formulation of the
same; Sec. 3 describes the MOGA model; Sec. 4
reports the experiments, observations and their in-
terpretations; Sec. 5 concludes the paper by sum-
marizing the contributions. In this paper, Bengali
graphemes are represented in Roman script follow-
ing the ITRANS notation (Chopde, 2001). Since
Bengali uses a phonemic orthography, the phonemes
are also transcribed using ITRANS within two /s.

2 The Problem

Bengali is anagglutinative language. There are
more than 150 different inflected forms of a single

Attributes Classical (Λ0) SCB ACB Sylheti
PrS1 kari kori kori kori
PrS2 kara karo kara kara
PrS3 kare kare kare kare
PrSF karen karen karen karoin

PrC1 kariteChi korChi kartAsi koirtAsi
PrC2 kariteCha korCho kartAsa koirtAsae
PrC3 kariteChe korChe kartAse koirtAse
PrCF kariteChen korChen kartAsen kortAsoin

PrP1 kariAChi koreChi korsi koirsi
PrP2 kariACha koreCho karsa koirsae
PrP3 kariAChe koreChe karse koirse
PrPF kariAChen koreChen karsen korsoin

Table 1: The different inflected verb forms of Clas-
sical Bengali and three other modern dialects. All
the forms are in the phonetic forms and for the verb
root kar. Legend: (tense) Pr – present; (aspects) S
– simple, C – continuous, P – perfect, ; (person) 1
– first, 2 – second normal, 3 – third, F – formal in
second and third persons. See (Bhattacharya et al.,
2005) for list of all the forms.

verb root in Bengali, which are obtained through af-
fixation of one of the 52 inflectional suffixes, option-
ally followed by the emphasizers. The suffixes mark
for the tense, aspect, modality, person and polarity
information (Bhattacharya et al., 2005). The ori-
gin of modern Bengali can be traced back to Vedic
Sanskrit (circa 1500 BC 600 BC), which during
the middle Indo-Aryan period gave rise to the di-
alects likeMāgadhī, andArdhamāgadhī (circa
600 BC 200 AD), followed by theMāgadhī −
apabhramsha, and finally crystallizing to Bengali
(circa 10th century AD) (Chatterji, 1926). The ver-
bal inflections underwent a series of phonological
changes during the middle Bengali period (1200 -
1800 AD), which gave rise to the several dialectal
forms of Bengali, including the standard form – the
Standard Colloquial Bengali (SCB).

The Bengali literature of the 19th century was
written in the Classical Bengali dialect or the
sādhubhāshā that used the older verb forms and
drew heavily from the Sanskrit vocabulary, even
though the forms had disappeared from the spoken
dialects by17th century. Here, we shall take the lib-
erty to use the terms “classical forms” and “Classi-
cal Bengali” to refer to the dialectal forms of middle
Bengali and not Classical Bengali of the 19th cen-

66



tury literature. Table 1 enlists some of the corre-
sponding verb forms of classical Bengali and SCB.
Table 3 shows the derivation of some of the current
verb inflections of SCB from its classical counter-
parts as reported in (Chatterji, 1926).

2.1 Dialect Data

Presently, there are several dialects of Bengali that
vary mainly in terms of the verb inflections and in-
tonation, but rarely over syntax or semantics. We do
not know of any previous study, during which the
different dialectal forms for BVI were collected and
systematically listed. Therefore, we have collected
dialectal data for the following three modern dialects
of Bengali by enquiring the n̈aive informants.

• Standard Colloquial Bengali(SCB) spoken in a
region around Kolkata, the capital of West Ben-
gal,

• Agartala Colloquial Bengali(ACB) spoken in
and around Agartala, the capital of Tripura, and

• Sylheti, the dialect of the Sylhet region of
Bangladesh.

Some of the dialectal forms are listed in Table 1.
The scope of the current study is restricted to 28 in-
flected forms (12 present tense forms + 12 past tense
forms + 4 forms of habitual past) of a single verb
root, i.e.,kar.

2.2 Problem Formulation

Choudhury et al. (2006a) has shown that a sequence
of simple phonological changes, which we shall
call theAtomic Phonological Operatorsor APO for
short, when applied to the classical Bengali lexicon,
gives rise to the modern dialects. We conceive of
four basic types of APOs, namelyDel or deletion,
Met or metathesis,Asm or assimilation, andMut
or mutation. The complete specification of an APO
includes specification of its type, the phoneme(s)
that is(are) affected by the operation and the left and
right context of application of the operator specified
as regular expressions on phonemes. The seman-
tics of the basic APOs in terms of rewrite rules are
shown in Table 2.2. Since Bengali features assim-
ilation only with respect to vowel height, here we
shall interpretAsm(p, LC,RC) as the height as-
similation of the vowelp in the context ofLC or

APO Semantics

Del(p, LC,RC) p→ φ/LC—RC
Met(pipj , LC,RC) pipj → pjpi/LC—RC
Asm(p, LC,RC) p→ p′/LC—RC
Mut(p, p′, LC,RC) p→ p′/LC—RC

Table 2: Semantics of the basic APOs in terms of
rewrite rules. LC and RC are regular expressions
specifying the left and right contexts respectively.p,
p′, pi andpj represent phonemes.

Rule APO Example Derivations
No. kar − iteChe kar − iten kar − iAChi

1 Del(e, φ, Ch) kar − itChe NA NA
2 Del(t, φ, Ch) kar − iChe NA NA
3 Met(ri, φ, φ) kair − Che kair − ten kair −AChi
5 Mut(A, e, φ, Ch) NA NA kair-eChi
6 Asm(a, i, φ, φ) koir − Che koir − ten koir − eChi
7 Del(i, o, φ) kor − Che kor − ten kor − eChi

Table 3: Derivations of the verb forms of SCB from
classical Bengali using APOs. “NA” means the rule
is not applicable for the form. See (Choudhury et
al., 2006a) for the complete list of APOs involved in
the derivation of SCB and ACB forms

RC. Also, we do not considerepenthesisor inser-
tion as an APO, because epenthesis is not observed
for the case of the change affecting BVI.

The motivation behind defining APOs rather than
representing the change in terms of rewrite rules is
as follows. Rewrite rules are quite expressive and
therefore, it is possible to represent complex phono-
logical changes using a single rewrite rule. On the
other hand, APOs are simple phonological changes
that can be explained independently in terms of pho-
netic factors (Ohala, 1993). In fact, there are also
computational models satisfactorily accounting for
cases of vowel deletion (Choudhury et al., 2004;
Choudhury et al., 2006b) and assimilation (Dras et
al., 2003).

Table 3 shows the derivation of the SCB verb
forms from classical Bengali in terms of APOs. The
derivations are constructed based on the data pro-
vided in (Chatterji, 1926).

2.3 Functional Explanation for Change of BVI

Let Λ0 be the lexicon of classical Bengali verb
forms. Let Θ : θ1, θ2, · · · θr be a sequence ofr
APOs. Application of an APO on a lexicon implies
the application of the operator on every word of the
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lexicon. The sequence of operatorsΘ, thus, repre-
sent a dialect obtained through the process of change
from Λ0, which can be represented as follows.

Θ(Λ0) = θr(· · · θ2(θ1(Λ0)) · · ·) = Λd

The derivation of the dialectΛd from Λ0 can be con-
structed by following the APOs in the sequence of
their application.

We propose the following functional explanation
for the change of BVI.

A sequence of APOs,Θ is preferred ifΘ(Λ0) has
some functional benefit overΛ0. Thus, the modern
Bengali dialects are those, which have some func-
tional advantage over the classical dialect.

We would like to emphasize the word “some” in
the aforementioned statements, because the modern
dialects arenot betterthan the classical one (i.e., the
ancestor language) in an absolute sense. Rather, the
classical dialect is suboptimal compared to the mod-
ern dialects only with respect to “some” of the func-
tional forces and is better than the them with respect
to “some other” forces. Stated differently, we expect
both the classical as well as the modern dialects of
Bengali to be Pareto-optimal3 with respect to the set
of functional forces.

In order to validate the aforementioned hypoth-
esis, we carry out a multi-objective and multi-
constraint optimization over the possible dialectal
forms of Bengali, thereby obtaining the Pareto-
optimal set, which has been achieved through
MOGA.

3 The MOGA Model

Specification of a problem within the MOGA frame-
work requires the definition of thegenotype, phe-
notypeand genotype-to-phenotype mapping plus the
objective functions and constraints. In this section,
we discuss the design choices explored for the prob-
lem of BVI.

3Consider an optimization problem withn objective func-
tions f1 to fn, where we want to minimize all the objectives.
Let S be the solution space, representing the set of all possible
solutions. A soulutionsinS is said to be Pareto-optimal with re-
spect to the objective functionsf1 tofn, if and only if there does
not exist any other solutions′ ∈ S such thatfi(s

′) ≤ fi(s) for
all 1 ≤ i ≤ n andfi(s

′) < fi(s) for at least onei.

3.1 Phenotype and Genotype

We define thephenotypeof a dialectd to be the lex-
icon of the dialect,Λd, consisting of the 28 inflected
forms of the root verbkar. This choice of phenotype
is justified because, at the end of the optimization
process, we would like to obtain the Pareto-optimal
dialects of Bengali and compare them with their real
counterparts.

Thegenotypeof a dialectd could also be defined
asΛd, where the word forms are the genes. How-
ever, for such a choice of genotype, crossover and
mutation lead to counter-intuitive results. For ex-
ample, mutation would affect only a single word in
the lexicon, which is against theregularityprinciple
of sound change (see Bhat (2001) for explanation).
Similarly, exchanging a set of words between a pair
of lexica, as crossover would lead to, seems insensi-
ble.

Therefore, considering the basic properties of
sound change as well as the genetic operators used
in MOGA, we define a chromosome (and thus the
genotype) as a sequence of APOs. The salient fea-
tures of the genotype are described below.
• Gene: A gene is defined as an APO. Since in

order to implement the MOGA, every gene must be
mapped to a number, we have chosen an 8-bit binary
representation for a gene. This allows us to spec-
ify 256 distinct genes or APOs. However, for rea-
sons described below, we use the first bit of a gene
to denote whether the gene (i.e., the APO) is active
(the bit is set to 1) or not. Thus, we are left with
128 distinct choices for APOs. Since the number of
words in the lexicon is only 28, the APOs forDel,
Asm andMet are limited, even after accounting for
the various contexts in which an APO is applicable.
Nevertheless, there are numerous choices forMut.
To restrain the possible repertoire of APOs to 128,
we avoided any APO related to the mutation of con-
sonants. This allowed us to design a comprehensive
set of APOs that are applicable on the classical Ben-
gali lexicon and its derivatives.
• Chromosome: A chromosome is a sequence of

15 genes. The number 15 has been arrived through
experimentation, where we have observed that in-
creasing the length of a chromosome beyond 15
does not yield richer results for the current choice
of APOs andΛ0. Since the probability of any gene
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Figure 1: Schematic of genotype, phenotype and
genotype-to-phenotype mapping.

being switched off (i.e., the first bit being 0) is 0.5,
the expected number of active APOs on a chromo-
some with 15 genes is 7.5. It is interesting to note
that this value is almost equal to the number of APOs
required (7 to be precise) for derivation of the SCB
verb forms.
•Genotype to phenotype mapping: Let for a given

chromosome, the set of active APOs (whose first bit
is 1) in sequence beθ1, θ2, · · · , θr. Then the pheno-
type corresponding to this chromosome is the lex-
icon Λd = θr(· · · θ2(θ1(Λ0)) · · ·). In other words,
the phenotype is the lexicon obtained by successive
application of the active APOs on the chromosome
on the lexicon of classical Bengali.

The concepts of gene, chromosome and the map-
ping from genotype to the phenotype are illustrated
in Fig. 3.1. It is easy to see that the regularity hy-
pothesis regarding the sound change holds good for
the aforementioned choice of genotype. Further-
more, crossover in this context can be interpreted as
a shift in the course of language change. Similarly,
mutation of the first bit turns a gene on or off, and of
the other bits changes the APO. Note that according
to this formulation, a chromosome not only models
a dialect, but also the steps of its evolution from the
classical forms.

3.2 Objectives and Constraints

Formulation of the objective functions and con-
straints are crucial to the model, because the linguis-
tic plausibility, computational tractability and the re-
sults of the model are overtly dependent on them.
We shall define here three basic objectives of ease

of articulation, perceptual contrast and learnability,
which can be expressed as functions or constraints.

Several models have been proposed in the past for
estimating the articulatory effort (Boersma (1998),
Ch. 2, 5 and 7) and perceptual distance between
phonemes and/or syllables (Boersma (1998), Ch.
3, 4 and 8). Nevertheless, as we are interested in
modeling the effort and perceptual contrast of the
whole lexicon rather than a syllable, we have cho-
sen to work with simpler formulations of the objec-
tive functions. Due to paucity of space, we are not
able to provide adequate details and justification for
the choices made.

3.2.1 fe: Articulatory Effort

Articulatory effortof a lexiconΛ is a positive real
number that gives an estimate of the effort required
to articulate the words inΛ in some unit. Iffe de-
notes the effort function, then

fe(Λ) =
1
|Λ|

∑
w∈Λ

fe(w) (1)

The termfe(w) depends on three parameters: 1)
the length ofw in terms of phonemes, 2) the struc-
ture of the syllables, and 3) the features of adjacent
phonemes, as they control the effort spent in co-
articulation. We definefe(w) to be a weighted sum
of these three.

fe(w) = α1fe1(w) + α2fe2(w) + α3fe3(w) (2)

where,α1 = 1, α2 = 1 andα3 = 0.1 are the relative
weights.

The value offe1 is simply the length of the word,
that is

fe1(w) = |w| (3)

Supposeψ = σ1σ2 · · ·σk is the usual syllabifica-
tion ofw, where the usual or optimal syllabification
for Bengali is defined similar to that of Hindi as de-
scribed in (Choudhury et al., 2004). Then,fe2 is
defined as follows.

fe2(w) =
k∑

i=1

hr(σi) (4)

hr(σ) measures the hardness of the syllableσ and is
a function of the syllable structure (i.e. the CV pat-
tern) ofσ. The values ofhr(σ) for different syllable
structures are taken from (Choudhury et al., 2004).
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Since vowel height assimilationis the primary
co-articulation phenomenon observed across the di-
alects of Bengali, we definefe3 so as to model
only the effort required due to the difference in the
heights of the adjacent vowels.

Let there ben vowels inw represented byVi,
where1 ≤ i ≤ n. Thenfe3 is defined by the fol-
lowing equation.

fe3(w) =
n−1∑
i=1

|ht(Vi)− ht(Vi+1)| (5)

The functionht(Vi) is the tongue height associ-
ated with the vowelVi. The value of the function
ht(Vi) for the vowels/A/, /a/, /E/ /o/, /e/, /i/
and /u/ are 0, 1, 1, 2, 2, 3, and 3 respectively. Note
that the values are indicative of the ordering of the
vowels with respect to tongue height, and do not re-
flect the absolute height of the tongue in any sense.

3.2.2 fd andCd: Acoustic Distinctiveness

We define the acoustic distinctiveness between
two wordswi andwj as the edit distance between
them, which is denoted ased(wi, wj). The cost of
insertion and deletion of any phoneme is assumed to
be 1; the cost of substitution of a vowel (consonant)
for a vowel (consonant) is also 1, whereas that of a
vowel (consonant) for a consonant (vowel) is 2, ir-
respective of the phonemes being compared. Since
languages are expected to increase the acoustic dis-
tinctiveness between the words, we define a mini-
mizing objective functionfd over a lexiconΛ as the
sum of the inverse of the edit distance between all
pair of words inΛ.

fd(Λ) =
2

|Λ|(|Λ| − 1)

∑
ij,i6=j

ed(wi, wj)−1 (6)

If for any pair of wordswi andwj , ed(wi, wj) =
0, we redefineed(wi, wj)−1 as 20 (a large penalty).

We say that a lexiconΛ violates the acoustic dis-
tinctiveness constraintCd, if there are more than two
pairs of words inΛ, which are identical.

3.2.3 Cp: Phonotactic constraints

A lexicon Λ is said to violate the constraintCp if
any of the words inΛ violates the phonotactic con-
straints of Bengali. As described in (Choudhury et

al., 2004), the PCs are defined at the level of sylla-
ble onsets and codas and therefore, syllabification is
a preprocessing step before evaluation ofCp.

3.2.4 fr andCr: Regularity

Although learnability is a complex notion, one
can safely equate the learnability of a system to the
regularity of the patterns within the system. In fact,
in the context of morphology, it has been observed
that the so calledlearning bottleneckhas a regular-
izing effect on the morphological structures, thereby
leaving out only the most frequently used roots to
behave irregularly (Hare and Elman, 1995; Kirby,
2001).

In the present context, we define the regularity
of the verb forms in a lexicon as the predictability
of the inflectional suffix on the basis of the mor-
phological attributes. Brighton et al. (2005) discuss
the use of Pearson correlation between phonologi-
cal edit distance and semantic/morphological ham-
ming distance measures as a metric for learnabil-
ity. On a similar note, we define the regularity func-
tion fr as follows. For two wordswi, wj ∈ Λ, the
(dis)similarity between them is given byed(wi, wj).
Letma(wi, wj) be the number of morphological at-
tributes shared bywi andwj . We define the reg-
ularity of Λ, fr(Λ), as thePearson correlation co-
efficient betweened(wi, wj) and ma(wi, wj) for
all pairs of words inΛ. Note that for a regular
lexicon, ed(wi, wj) decreases with an increase in
ma(wi, wj). Therefore,fr(Λ) is negative for a reg-
ular lexicon and 0 or positive for an irregular one.
In other words,fr(Λ) is also a minimizing objective
function.

We also define a regularity constraintCr, such
that a lexiconΛ violatesCr if fr(Λ) > −0.8.

4 Experiments and Observations

In order to implement the MOGA model, we have
used the Non-dominated Sorting GA-II or NSGA-
II (Deb et al., 2002), which is a multi-objective,
multi-constraint elitist GA. Different MOGA mod-
els have been incrementally constructed by intro-
ducing the different objectives and constraints. The
motivation behind the incorporation of a new ob-
jective or constraint comes from the observations
made on the emergent dialects of the previous mod-
els. For instance, with two objectivesfe and fd,
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and no constraints, we obtain dialects that violate
phonotactic constraints or/and are highly irregular.
One such example of an emergent dialect4 is Λ =
{ kor, kara, kar, kore, korea, kore, karA, karAa,
karA, *korAlm, *korl, korla, *koreAlm, korel, ko-
rela, *karAlm, karAl, karAla}. The* marked forms
violate the phonotactic constraints. Also note that
the forms are quite indistinct or close to each other.
These observations led to the formulation of the con-
straintsCp andCd.

Through a series of similar experiments, finally
we arrived at a model, where we could observe the
emergence of dialects, some of which closely resem-
ble the real dialects and others also seem linguisti-
cally plausible. In this final model, there are two
objectives,fe andfd, and 3 constraints,Cp, Cd and
Cr. Table 4 lists the corresponding forms of some
of the emergent dialects, whose real counterparts are
shown in Table 1.

Fig. 2 shows the Pareto-optimal front obtained
for the aforementioned model after 500 generations,
with a population size of 1000. Since the objectives
are minimizing in nature, the area on the plot below
and left of the Pareto-optimal front represents im-
possible languages, whereas the area to the right and
top of the curve pertains to unstable or suboptimal
languages. It is interesting to note that the four real
dialects lie very close to the Pareto-optimal front. In
fact, ACB and SCB lie on the front, whereas clas-
sical Bengali and Sylheti appears to be slightly sub-
optimal. Nevertheless, one should always be aware
that impossibilityandsuboptimalityare to be inter-
preted in the context of the model and any general-
ization or extrapolation of these concepts for the real
languages is controversial and better avoided.

Several inferences can be drawn from the exper-
iments with the MOGA models. We have observed
that the Pareto-optimal fronts for all the MOGA
Models look like rectangular hyperbola with a hori-
zontal and vertical limb; the specific curve of Fig. 2
satisfies the equation:

fd(Λ)0.3(fe(Λ)− 5.6) = 0.26 (7)

Several interesting facts, can be inferred from the
above equation. First, the minimum value offe un-
der the constraintsCr andCd, and for the given

4Due to space constraints, we intentionally omit the corre-
sponding classical forms.

Figure 2: The Pareto-optimal front. The gray trian-
gles (light blue in colored version available online)
show the position of the real dialects: 0 – Classi-
cal Bengali, 1 – SCB, 2 – ACB, 3 – Sylheti. The
top-most dot in the plot corresponds to the emergent
dialect D0 shown in Table 4.

repertoire of APOs is 5.6. Second, atfe(Λ) = 6,
the slope of the front, i.e.dfd/dfe, is approximately
−2, and the second derivatived2fd/df

2
e is around

20. This implies that there is sharp transition be-
tween the vertical and horizontal limbs at around
fe(Λ) = 6.

Interestingly, all the real dialects studied here lie
on the horizontal limb of the Pareto-optimal front
(i.e., fe(Λ) ≥ 6), classical Bengali being placed at
the extreme right. We also note the negative corre-
lation between the value offe for the real dialects,
and the number of APOs invoked during derivation
of these dialects from classical Bengali. These facts
together imply that the natural direction of language
change in the case of BVIs has been along the hor-
izontal limb of the Pareto-optimal front, leading to
the formation of dialects with higher and higher ar-
ticulatory ease. Among the four dialects, SCB has
the minimum value forfe(Λ) and it is positioned on
the horizontal limb of the front just before the begin-
ning of the vertical limb.

Therefore, it is natural to ask whether there are
any real dialects of modern Bengali that lie on the
vertical limb of the Pareto-optimal front; and if not,
what may be the possible reasons behind their inex-
istence? In the absence of any comprehensive col-
lection of Bengali dialects, we do not have a clear
answer to the above questions. Nevertheless, it may
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Attributes D0 D1 D2 D3
PrS1 kar kor kori kori
PrS2 kara kora kora kora
PrS3 kare kore kore korA
PrSF karen koren koren koren

PrC1 kartA karChi karteChi kairteChi
PrC2 kartAa karCha karteCha kairteCha
PrC3 kartAe karChe karteChe kairteChA
PrCF kartAen karChen karteChen kairteChen

PrP1 karA korChi koriChi koriChAi
PrP2 karAa korCha koriCha koriACha
PrP3 karAe korChe koriChe koriAChA
PrPF karAen korChen koriChen koriAChen

Table 4: Examples of emergent dialects in the
MOGA model. Note that the dialects D1, D2 and
D3 resemble SCB, ACB and Sylheti, whereas D0
seems to be linguistically implausible. For legends,
refer to Table 1

be worthwhile to analyze the emergent dialects of
the MOGA models that lie on the vertical limb. We
have observed that the vertical limb consists of di-
alects similar to D0 – the one shown in the first
column of Table 4. Besides poor distinctiveness,
D0 also features a large number of diphthongs that
might result in poorer perception or higher effort of
articulation of the forms. Thus, in order to eliminate
the emergence of such seemingly implausible cases
in the model, the formulations of the objectivesfe

andfd require further refinements.

Similarly, it can also be argued that the structure
of the whole lexicon, which has not been modeled
here, has also a strong effect on the BVIs. This is
because even though we have measured the acous-
tic distinctivenessfd with respect to the 28 inflected
forms of a single verb rootkar, ideallyfd should be
computed with respect to the entire lexicon. Thus,
change in other lexical items (borrowing or extinc-
tion of words or change in the phonological struc-
tures) can trigger or restrain an event of change in
the BVIs.

Furthermore, merging, extinction or appearence
of morphological attributes can also have significant
effects on the phonological change of inflections. It
is interesting to note that while Vedic Sanskrit had
different morphological markers for three numbers
(singular, dual and plural) and no gender markers

for the verbs, Hindi makes a distinction between the
genders (masculine and feminine) as well as num-
bers (but only singular and plural), and Bengali has
markers for neither gender nor number. Since both
Hindi and Bengali are offshoots of Vedic Sanskrit,
presumably the differences between the phonologi-
cal structure of the verb inflections of these two lan-
guages must have also been affected by the loss or
addition of morphological attributes. It would be in-
teresting to study the precise nature of the interac-
tion between the inflections and attributes within the
current computational framework, which we deem
to be a future extension of this work.

5 Conclusions

In this paper, we have described a MOGA based
model for the morpho-phonological change of BVIs.
The salient contributions of the work include: (1) the
conception of the genotype as a sequence of APOs,
whereby we have been able to capture not only the
emergent dialects, but also the path towards their
emergence, and (2) a plausible functional explana-
tion for the morpho-phonological changes affecting
the BVIs. Nevertheless, the results of the experi-
ments with the MOGA models must be interpreted
with caution. This is because, the results are very
much dependent on the formulation of the fitness
functions and the choice of the constraints. The set
of APOs in the repertoire also play a major role in
shaping the Pareto-optimal front of the model.

Before we conclude, we would like to re-
emphasize that the model proposed here is a func-
tional one, and it does not tell us how the dialects
of Bengali have self-organized themselves to strike
a balance between the functional pressures, if at all
this had been the case. The evolutionary algorithm
(i.e., MOGA) has been used here as a tool for op-
timization, and has no relevance to the evolution of
the dialects as such. Nevertheless, if it is possible
to provide linguistically grounded accounts of the
sources ofvariation and the process ofselection,
then the MOGA model could qualify as an evolu-
tionary explanation of language change as well. Al-
though such models have been proposed in the liter-
ature (Croft, 2000; Baxter et al., 2006), the fact, that
global optimization can be an outcome of local inter-
actions between the speakers (e.g., Kirby (1999), de
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Boer (2001), Choudhury et al. (2006b)), alone pro-
vides sufficient ground to believe that there is also an
underlying self-organizational model for the present
functional explanation.
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Abstract 

With the supply of 8 closely interpreted 
dialectometrical maps, this paper analyses 
the linguistic change of the geolinguistic 
deep structures in Northern France (Do-
maine d’Oïl)  between 1300 and 1900. As a 
matter of fact, the result will show – with 
one exception – the great stability of these 
deep structures.  

1 Introduction to the issue 

Through the comparison of two data sets of  1300 
and of 1900, the present contribution discusses, if 
and in which way the basic geolinguistic structure 
of Northern France (Domaine d’Oïl) changed in 
the course of this period. In this investigation, a 
number of different methods of dialectometry 
(DM) will be applied. DM is a subdiscipline of 
quantitative linguistics which concentrates on the 
exploration of the actual deep geolinguistic structu-
res of a given space, using as data source linguistic 
atlases or similarly structured data collections 
(consisting of N inquiry points and p atlas or wor-
king maps). Of course, it has to be assumed that 
these deep structures were generated by a genuine 
specific activity of man (i.e of of the homo lo-

quens), that is to say: the « linguistic (or dialectal) 
management of space by the homo loquens ». Inso-
far as man has obviously many other opportunities 
of managing a given natural space besides the lin-

guistic management, there result many opportuni-
ties for interdisciplinary cooperation with DM. 

 

The Salzburg-based DM (Goebl 2006a) pursues 
the genuine principles of traditional (Romance) 
linguistic geography with quantitative means. It 
therefore defines its main aim in the empowering 
of the diagnostic virtue of traditional linguistic 
geography by introducing global or synthetic 
(quantitative) methods.  
 

2 Data basis 

It consists of two machine-readable data matrices, 
the first resuming the period around 1300, the 
other one resuming the period around 1900. 

2.1 Corpus 1300 (drawn from Dees 1980) 

The medieval corpus was borrowed from the scrip-
ta-atlas (1980) of the Amsterdam Romance linguist 
A. Dees. This atlas is based on the comprehensive  
interpretation of 3300 original charters of Northern 
France of the second half of the 13th century, 
which were analysed in that instance according to a 
list of ca. 300 written (or scripta-) attributes. These 
scripta-attributes are mainly of phonetic relevance, 
most of them referring to vocalism (189 attributes), 
but also to consonantism (87 attributes), and some 
of them even to morphology (22 attributes). As a 
result, the data matrix holds 298 attributes and 85 
« inquiry points ». The latter correspond actually to 
scripta-centres (scriptoria, chanceries) which are 
distributed as evenly as possible all over the Do-
maine d’Oïl. For the measuring of the graphic va-
riation in the 3300 charters, A. Dees developped a 
specific method. As a result, he was able to deter-
mine – for each single attribute – its relative occur-
rence (in percentage) in the charters of the 85 
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scripta-centres.  The content of the data matrix lies 
therefore on a metrical scale.  
 
In the ninetees, A. Dees and his collaborator Piet 
von Reenen handed me over this data matrix, as a 
basis which allowed me to realize many dialecto-
metrical experiments. Its only disadvantage is that 
the machine-readable matrix holds less attributes 
(268) than the printed atlas (298). Nevertheless, by 
applying the « Average Euclidean Metric » 
(AEM), the « Average Manhattan Metric » (AMM) 
and the « Bravais-Pearson correlation coefficent » 
[r(BP)], the dialectometrical results are very profi-
table (see Goebl 2006b). The scripta-atlas publis-
hed by Dees in 1980 shows quantitative visualisa-
tions of the spatial distribution of the 298 attribu-
tes, but does not encompass global data interpreta-
tion with dialectometrical (or similar) methods. 

 

2.1.1 The Dees-data: one illustrative example 

In his scripta-atlas (1980: carte 87, p. 93), A. Dees 
also investigated the regional variation in the spel-
ling of the French possessive pronoun: leur, leurs, 

leurz etc. which are all derived from the Latin ety-
mon ILLÓRU. Most probably they were created 
under the influence of a specific regional dialect 
pronunciation. At the end of the 13th century, the 
geographic contrast between these eu-spellings and 
the older equivalent forms lor, lors, lors etc. was 
quite sharp in the Domaine d’Oïl. Hence, Dees 
checked the number of all occurrences of eu-
spellings (belonging to the possessive pronoun) in 
the 3300 above mentioned charters and listed, for 
each of the 85 scripta-centres of his atlas, the per-
centages of those charters which show at least one 
occurence of the spelling -eu-. As a result, 81 out 
of the 93 charters of the scripta-region 26 
« Somme, Pas-de-Calais » (located in the medieval 
Artois: see the top of the figures 1, 3, 5 and 7) 
showed a considerable amount of eu-spellings, un-
like the remaining 12 charters. In the 105 charters 
of the scripta-region 1 « Charente, Charente-
Maritime » (South-western corner of the Domaine 
d’Oïl), no occurrences of the eu-spellings were 
found. Obviously, the different spellings of the 
possessive pronoun in that region were still on -o-. 
Thus, Dees registered the value 87% (= 81 : 93) for 
the scripta-region 26 in the North and the value 0% 
for the scripta-region 1 in the South-west. 
 

As Dees analysed 298 scripta-features in the same 
way, he succeeded in covering the whole range of 
the stressed and unstressed vocalism and conso-
nantism of Old French. 
 

2.2 Corpus 1900 (drawn from ALF) 

The second corpus, referring to 1900, was drawn 
from the data of the French linguistic atlas ALF, 
precisely: from a data matrix which had been esta-
blished in the process of dialectometrization of the 
total ALF grid. The dimensions of this data matrix 
are: N = 641 inquiry points (distributed all over 
France), p = 1687 working maps, 1117 referring to 
phonetics (612 to vocalism, and 505 to consonan-
tism), 417 referring to vocabulary, and 99 to mor-
phology. 347 inquiry points (out of the 641 points 
on the total ALF grid) are located in Northern 
France : they represent therefore the Domaine 
d’Oïl. Among these 347 inquiry points, 85 points 
were selected in geographic correspondance to the 
85 scripta-centres of the Dees-atlas, and subse-
quently reunited to a new grid (see the right halves 
of Maps 1-8). 
 
Among the 1687 workings maps mentioned above, 
we took only into consideration those of phonetic 
relevance, thus: 1117 maps. They derived from 
247 original maps of the ALF by phonetic typiza-
tion, which is a common procedure in Romance 
linguistics. The units of this ALF data matrix are 
upon the nominal scale. With the supply of the 
« Weighted Identity Value (with the weight 1) » 
[WIV (1)], the dialectometrical interpretation of 
this data matrix proved to be very successful (see 
Goebl 1984, I: 83-86, and 2006a: 418-419). 

 

2.2.1 The ALF-data : two illustrative examples  

An example for two characteristic phonetic featu-
res is given in Map 812 of the ALF le marché « the 
market ». The 85 occurrences in the Domaine 
d’Oïl all derive from the Latin etymon MERCÁ-
TU. The different dialectal followers of the 
stressed Á which is considered in this instance 
show the following results: a) pronunciation with -i 
(19 ALF-points), b) with (closed) -é (60 ALF-
points), c) with (open) -è (1 ALF-point), d) with -ö 
(4 ALF-points), e) with (neutral) -e (1 ALF-point). 
From the metrological point of view, these five 
phonetic types represent what is called « (nominal) 
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multistate characters ». As the corresponding wor-
king map contains five different (phonetic) types 
(or « taxates » in Salzburg terminology), it is called 
as well a « 5-nymic working map ». 
 
Nevertheless, the data of the same ALF-map can 
also be analysed according to consonantal princi-
ples, which is realized by listing the dialectal re-
sults of the postconsonantal C before stressed Á in 
MERCÁTU. The results are as follows: a) š (72 
ALF-points), b) šy (2), c) ts (1), d) tšy (3), e) k (2), 
f) tš (3), g) ky (1), h) ty (1). On the map, these eight 
consonantal types show a geographic distribution 
which is far from being similar to the former one 
of the five vocalic types. Actually, this experience 
is also valid for the great majority of our ALF-
working maps. 
 
The reduced data matrix drawn from the integral 
ALF-grid (with 1687 working maps) consists of 
914 working maps: it starts with 2-nymic maps and 
has up to 23-nymic maps, embracing a total of 
4263 phonetic types or « taxates ». 

3 Establishement of the dialectometrical 

maps 

DM is a map-based discipline: It visualises sys-
tematically all its results by using previously de-
fined cartographic standards and by a very hand-
some computer program called VDM (« Visual 
DialectoMetry »), which supports and resets these 
visualisations perfectly. With VDM, choropleth 
maps and isarithmic maps, as well as trees can be 
generated. The results are always mapped in col-
ours that are ranged according to the solar (or rain-
bow) spectrum, the warm colours lying above the 
arithmetic means of the respective frequency dis-
tribution, and the cold colours below it. The trees 
are all « spatialized » in principle, which means 
that their structural information is projected di-
rectly from the tree on the map. 
 
The comparison between the medieval versus the 
modern data occurs basically in visual form, a me-
thodically correct procedure, as the two corre-
sponding iconic patterns are established according 
to the same cartographic norms. Further, the re-
spective frequency distributions may also be corre-
lated in order to gain a correlation map. For rea-

sons of space, this procedure will not be demon-
strated in this paper.  
 
All the maps shown in section 4 are taken from 
two square similarity matrices (N x N) consisting 
of 85 items (N = 85), calculated by means of spe-
cial similarity indexes – AEM and WIV(1) – on 
the basis of two data matrices (N = 85 ; p1300 = 268 
metrical attributes, p1900 = 1117 nominal attrib-
utes). Hence, this demonstration includes two simi-
larity maps, two parameter maps, two interpoint 
maps and two trees (with the respective spatializa-
tions). These four comparison planes are actually 
of special relevance, by allowing a global compari-
son which is also precise to the last detail of the 
medieval versus the modern data. 

4 Four comparison planes between 1300 

and 1900 

4.1 Comparison plane 1 : two similarity maps 

The most important instrument of DM is the simi-
larity map. Each similarity map consists of a refer-
ence point and N-1 similarity values distributed in 
space, which values decrease proportionally with 
their geographical distance from the reference 
point. The geographic pattern of the progressive 
drop of these measurement values is clearly shown 
with the cartographic means of DM. In Maps 1 and 
2, the reference point is located in the Poitou 
(South-west). The visual comparison of the two 
choropleth profiles shows their great similarity. 
The same effect occurs also from the remaining 84 
reference points. This means that the linguistic 
management of the Domaine d’Oïl was very simi-
lar in the Middle Ages (through the linguistic ac-
tivity of the scribes) and in modern times (through 
the linguistic activity of the dialect speakers). It 
must be added that, generally speaking, medieval 
non-Latin charters of the 13th and the 14th centu-
ries (mainly) had a strong dialectal colouring, a 
phenomenon which was noted not in France only, 
they showed therefore a great number of local 
and/or regional written attributes. In the 19th cen-
tury already, it was assumed  that this graph(et)ic 
variation was generated or at least partly caused by 
the oral variation of the different medieval dialects. 
In Northern France, this regional colouring of the 
charters decreases rapidly after ca. 1400, and van-
ishes after 1450. 
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4.2 Comparison plane 2 : two parameter-

maps : synopsis of the skewness values 

Maps 3 and 4 reveal an entirely different question. 
The synopsis (or combination) of the N skewness 
values of a given similarity matrix indicates the 
degree of variation between different regions in 
regard to the so-called « linguistic compromise or 
exchange ». This phenomenon is defined as the 
degree of the intermixing of geolinguistic attributes 
with (respectively) regionally varying extension 
and/or intensity. Our DM-classification distinguis-
hes therefore zones of high linguistic compromise 
(here : clear shadings) and zones of weak linguistic 
compromise (here : dark shadings). Where this lin-
guistic exchange is high or great, a strong linguis-
tic intermixing is prevailing. Where it is weak, the 
linguistic interaction is also low: these areas went 
on keeping a strong linguistic autonomy and were 
not yet seized by the general intermixing. 
 
In Map 3 (left), the zones of high linguistic com-
promise or exchange form a kind of cross: they are 
located in the centre of the Domaine d’Oïl, whe-
reas on its peripherical boarders the areas of diffe-
rent historical provinces (such as: Normandy, Pi-
cardy, Lorraine, etc.) are found. In Map 4 (right), 
the clear shaded zone occupies now the main part 
of the grid of the Domaine d’Oïl: in comparison 
with the left map it has virtually « exploded » (note 
the black circle), as a consequence of the conti-
nuous expansion of the language type of the Ile-de-
France, which had been strongly supported by the 
French kings and after 1789 also by the Republic. 
Only on the Eastern peripherical boarders, some 
provinces (Picardy, the Walloons, Lorraine, etc.) 
could elude the general language compromise and 
thus the general linguistic intermixing. 
 
Both maps consist of respectively 85 skewness 
values which were gained by respectively 85 simi-
larity distributions. Since almost 20 years, it is 
well-known that the skewness value is an excellent 
instrument for measuring language compromise or 
exchange; in many instances, evidence of this fact 
has been given with different data sets (see Goebl 
1984, I: 150-153, and 2006a: 419-420). 

4.3 Comparison plane 3 : two interpoint or 

honeycomb maps 

Actually, Maps 5 and 6 represent two honeycomb 
maps, each of them consisting of 225 polygon si-
des which vary according to thickness and dark-
ness. Every one of these polygon sides lies bet-
ween (= inter) contiguous inquiry points (hence the 
name interpoint map), and indicates virtually the 
relative dialectal differences. Instead of the linguis-
tic similarities (sim), the potential linguistic diffe-

rences or distances (dist) were mapped. In quanti-
tative regard, they are interrelated according to the 
formula: dist + sim = 100. Thus, the distance re-
lated counterpart of the above mentioned similarity 
index WIV(1) is the WDV (1) (« Weighted Dis-
tance Value (with the weight 1)) ». 
 
The cartographic message of the two maps largely 
corresponds to the evidence of the traditional iso-
gloss syntheses which were commonly established 
during the 20th century in Romance, German and 
English linguistics. The thick (and dark) polygon 
sides represent the so called « linguistic bounda-
ries», a linguistic term which is rather colloquial 
and imprecise. One clearly recognizes that in Map 
5 (left) in the North (Picardy) and the South-west 
(Poitou, Saintonge) there are very prominent and 
distinct « boundaries ». But it also shows very 
clearly in Map 6 (right) that in the period between 
1300 and 1900 these « boundaries » were moved to 
the North (and East) as well as to the utmost bor-
ders of the South by an « invisible force » and that 
a zone with only very weak interpunctual demarca-
tions emerged in the middle of the Domaine d’Oïl.  
Our knowledge of the history of the French lan-
guage allows us to identify this « invisible force »: 
it is the irradiation of the linguistic type of the Ile-
de-France, pushed by the politics. 

4.4 Comparison plane 4: two dendrographic 

analyses (following Ward’s method) 

Moreover, the two similarity matrices can first be 
processed by dendrographic methods, in a next 
step, the two trees are compared. In this procedure, 
one has to pay attention to those bifurcations of the 
tree which are located near the trunk (or the root). 
Among the relevant « hierarchic agglomerative 
methods » applied for the generation of trees, 
Ward’s method has proved to be most appropriate. 
In Maps 7 and 8, the tree and the map were drawn 
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and visualised, isolating thereby (respectively) 
three distinct cartographic clusters. These clusters 
are called « dendremes » in the tree, and their cor-
respondences on the map « choremes ». The heu-
ristic comparison of Maps 7 and 8 concentrates on 
the position of the dendremes in the tree and simul-
taneously on the position of the choremes on the 
map. First, the perfect spatial coherence of all cho-
remes is striking. Further, it clearly results that the 
three dendremes (No. 1-3) at the top seize the East, 
the North and the Centre (including the West) of 
the Domaine d’Oïl, though in such a way that the 
central dendreme-choreme (No. 1) expanded in the 
course of the six centuries between 1300 and 1900 
at the expense of the Eastern (No. 3) and the Nor-
thern (No. 2) choreme-dendreme. Again, this is a 
consequence of the irradiation of the dialect of the 
Ile-de-France, supported by the French royal dy-
nasty and the Republic. 
 

5 Final remarks  

By the visual comparison of four pairs of maps 
established with dialectometrical methods, evi-
dence was given that the geolinguistic deep struc-
tures of the Domaine d’Oïl (Northern France) – in 
the period between 1300 and 1900 – maintained a 
large stability, that is to say : remained mostly 
identical in regard to their phonetics. Hence the 
question arises on determining the chronological 
development and elaboration before 1300 of  these 
phonetic deep structures. Nevertheless, the present 
investigation revealed the actual expansion of the 
linguistic type of the Ile-de-France between 1300 
and 1900 which represents the typological basis for 
standard French. The dialectometrical techniques, 
which were again applied in this contribution, have 
proven many times their great diagnostic value in 

the last three decades. 
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Frequently used abbreviations (also in the 

legends of the Figures 1-8) 

 

AEM: Average Euclidean Metric: see chapter 2.1. 

ALF: Atlas linguistique de la France: see also the Refe-
rences  

AMM: Average Manhattan Metric: see chapter 2.1. 

DM: Dialectometry 

r(BP): Bravais-Pearson correlation coefficent: see chap-
ter 2.1. 

VDM: Visual DialectoMetry 

WDV(1): Weighted Distance Value (with the weight 1): 
see chapter 4.3. 

WIV(1): Weighted Identity Value (with the weight 1): 
see chapter 2.2. 
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Abstract 

This paper describes the development and 
use of an interface for visually evaluating 
distance measures. The combination of 
multidimensional scaling plots, histograms 
and tables allows for different stages of 
overview and detail. The interdisciplinary 
project Rule-based search in text databases 
with nonstandard orthography develops a 
fuzzy full text search engine and uses dis-
tance measures for historical text document 
retrieval. This engine should provide easier 
text access for experts as well as interested 
amateurs. 

1 Introduction 

In recent years interest in historical digitization 
projects has markedly increased, bearing witness to 
a growing desire to preserve cultural heritage 
through new media. All over Europe projects are 
arising digitizing not only monetary but also intel-
lectually valuable text documents. While more and 
more documents are being digitized and often pro-
vided with well designed interfaces, they are not 
necessarily easy to work with, especially for 
nonlinguists. Spelling variants, faulty character 
recognition (OCR) and typing errors hamper if not 
circumvent sensible utilization of the data. One 

such example is the archive of Jewish periodicals 
in German language, Compact Memory 
(www.compactmemory.de). Even though of great 
cultural value and very well maintained, the opera-
tors of this project simply did not have the re-
sources required to postprocess or annotate their 
automatically recognized text documents. A user 
for example searching for the word “Fruchtbarkeit” 
(=fertility) will not be able to find a certain peri-
odical from 1904 even though it clearly contains 
the word. Worse, he will not even come to know 
that this text was missed. Because the full text 
aligned with the graphical representation of the 
text contains recognition errors, only the search for 
the misspelled word “Piuchtbaikeit” instead of 
“Fruchtbarkeit” finds the correct page (cf. Figure 
1). The same problem arises when dealing with 
historical spelling variation. German texts prior to 
1901 often contain historical spelling variants. 
Numerous projects are dealing with similar prob-
lems of optical character recognition or spelling 
variation. 

To meet those problems linguistics and com-
puter science are closing ranks. Fuzzy full-text 
search functions provide access to nonstandard text 
databases. Since the amount of data on the one 
hand and the divergence of users on the other in-
creases day by day, search methods are continu-
ously presented with new challenges. The project 
RSNSR (Rule-based search in text databases with 

 
Figure 1. OCR errors prevent successful retrieval on digitized texts if misspelled variants are used for full 

text search. 

 

84



nonstandard orthography) seeks to improve the 
retrieval of nonstandard texts. Such texts might 
include historical documents, texts with re-
gional/dialectal or phonetic variation, typos or 
OCR errors. The project’s funding by the Deutsche 
Forschungsgemeinschaft (DFG [German Research 
Foundation]) was recently extended by two years. 

2 Comparing similarity measures 

One of the important issues in building a search 
engine for nonstandard spellings is a reliable way 
to allow the comparison of words, that is, to meas-
ure the similarity between the search expression 
and the results provided. Given the abundance of 
distance measures and edit-distances available, 
methods are needed for efficiently comparing dif-
ferent similarity measures. In (Kempken et al. 
2006) we evaluated 13 different measures with the 
calculation of precision and recall to determine 
which were most qualified to deal with historical 
German spelling variants. We mainly used our own 
database of historical spellings, manually collected 
from the German text archives Bibliotheca Augus-
tana, documentArchiv.de and Digitales Archiv 
Hessen-Darmstadt. Currently our database consists 
of 12,687 modern-historical word pairs (that we 
call evidences) originating between 1293 and 1919. 

The algorithm that proved best for calculating 
the edit costs between the modern and the histori-
cal spellings is called Stochastic distance (SM) and 
was originally proposed in 1975 by Bahl and 
Jelinek. In 1997 Ristad and Yianilos (Ristad et al, 
1997) took it up again and extended the approach 
to machine learning abilities. Due to the complex-
ity of language, apparently similar scopes can ob-
viously favor totally different mechanisms. The 
Variant Detector VARD developed by Rayson et 
al. to detect spelling variants in historical English 
texts uses the standard Soundex algorithm with 
convincing efficiency (Rayson et al, 2005). The 
same algorithm yields an error rate 6.7 times 
higher than the stochastic distance for the compari-
son of German spelling variants. Cases like these 
suggest that finding one “most suitable” distance 
measure for all data might not be possible. As soon 
as the inherent structures change, another measure 
can prove to be more efficient. Even though, with 
the SM, we already found a suitable measure, its 
dependency on the underlying training data forces 
us to evaluate the training results: what is the size 

of an optimal training set? Is the training set well 
chosen? Does 14th-century data appropriately rep-
resent 13th-century spellings? Answers to these and 
similar questions not only help to ensure better 
retrieval but can also give an insight into phonetic 
or graphematic changes of language. Since stan-
dard calculations of retrieval quality, as we did for 
the 13 measures, require not only extensive work 
but are also difficult to evaluate, we propose possi-
bilities for visual evaluation means to speed up and 
ease this process. The prototype we developed is 
but one example for those possibilities and is 
meant to encourage scientists to benefit from vis-
ual information representation.  

3 Development and functions of an inter-
active visual interface  

Since our project already deals with different 
methods for calculating word distance, the defini-
tion of a generic interface was necessary. Priority 
was given to the development of a slim and easily 
accessible device that allows the connection of ar-
bitrary concepts of word distance. Our SM, a rule 
based measure using regular expressions, Soundex 
(Knuth, 1973), Jaro(-Winkler) (Jaro, 1995) and a 
number of additional measures are already imple-
mented in our system. It was built in Java and is 
embedded in our general environment for the proc-
essing of nonstandard spellings. 

Information Visualization is a fairly new field of 
research that is rapidly evolving. A well estab-
lished definition of information visualization is 
“the use of computer-supported, interactive, visual 
representations of abstract data to amplify cogni-
tion” (Card et al, 1999). While planning the proto-
type, we also kept Shneiderman’s paradigm in 
mind: “Overview first, zoom and filter details on 
demand” (Shneiderman, 1996). In dealing with 
distance measures, our main task is to represent 
word distance. We employed multidimensional 
scaling (MDS) to display abstract distance in 2D 
space (see below). Interactivity is gained with the 
ability to select and remove spellings from the cal-
culations, lower or raise cutoff frequencies and 
filters and even change replacement costs with in-
stantaneous effect (see below). This led to a user 
interface separated into three main views:  

• The Histogram allows an overview of 
thousands of data items. The selection of a 
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certain portion of data triggers MDS and ta-
ble views.  

• Multidimensional Scaling (MDS) func-
tions as a detail view. Such visualization is 
used to display sets of several dozen to a 
few hundred items. 

• The Table View can display different lev-
els of detail. In (Kempken et al, 2007) we 
presented a TreeMap approach, another way 
to display details of single word derivations 
as an add-on for table views. 

3.1 Histograms 

Histograms are a widely spread tool for display of 
statistical distribution of values. In favor of Shnei-
derman’s paradigm, the histogram view represents 
a combination of overview and zoom functionality. 
This first stage allows for the reduction of the data 
set from up to several thousand items down to 
much more manageable sizes. 

To get a first impression of how a spelling dis-
tance performs on a set of evidences, we calculate 
the distance between a spelling variant and the en-
tries in a dictionary. It is ensured that the collection 
also contains the standard spelling related to the 
variant. The results are sorted in ascending order 
by their distance from the spelling variant. After-
wards, the rank of the corresponding spellings is 
determined. In the best case, the correct relation 
will appear as the first entry in this list, that is, at 
the smallest distance from the variant. Often, other 
spellings appear “closer” to the variant and thus 
have a higher rank, pushing the spelling we sought 
for further down the list (cf. Figure 2).  

By applying this procedure to a collection of 
word pairs, we get a distribution of spelling ranks 
over the set of evidences based on the spelling col-

lection. Good distance measures produce a histo-
gram with most of its largest bars close to the first 
rank on the left. A good example is the evaluation 
in section 5 (cf. Figure 5). 

The histogram provides a good representation of 
the overall performance of a spelling distance 
given for a set of test data. The user will quickly 
notice if a large number of spellings are found in 
the acceptable ranking range, if there are notice-
able isolated outliers or if the values are spread 
widely over the whole interval. In addition, histo-
grams can be useful as tools for comparing differ-
ent spelling distances. Usually multiple histograms 
are viewed one after another or arranged next to 
each other. While this might be enough to perceive 
considerable differences in distributions, small-
scale variations may pass unnoticed. An easy solu-
tion to this problem is to arrange the different his-
tograms in a combined display area, where the 
relevant subinterval bars are lined up next to one 
another and made distinguishable by color or tex-
ture. Through this simple rearrangement, even 
small changes become noticeable to the user. 
Slight height differences between bars of the same 
value interval can be noticed as can shifts in peaks 
along the value range. 

For more quantitative performance measurement 
mean value and standard deviation are calculated 
and presented in numerical form. A distance defi-
nition that performs well will have a low mean 
value as more spellings are found with a good 
ranking. However, a mean value that is not espe-
cially high or low by itself is usually not enough to 
characterize a distribution. For this reason, it is 
important to know the values’ spread around the 
distribution’s mean value measured by the standard 
deviation (SD). A distribution with only a few, 
tightly packed value peaks provides a small SD 
whereas a widely spread one will have a large SD. 
A spelling distance that performs well can be rec-
ognized by a low mean value accompanied by a 
low SD. Both key values can also be made visible 
in a histogram by drawing markers in its back-
ground. In this way, even the key values are easy 
to compare when comparing spelling distances. 

3.2 Multidimensional scaling 

The MDS view displays smaller subsets, thus al-
lowing further refinement while providing addi-
tional information detail. 

 
Figure 2. The standard spelling "liebe" corre-
sponding to variant "liebd" was pushed back 
by "lieb" because deletion of <d> is cheaper 

than the replacement of <d> with <e>. 
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MDS is a class of statistical methods that has its 
roots in psychological research. The main applica-
tion of such techniques is to assign the elements of 
an item set to a spatial configuration in such a way 
that it represents the elements’ relationships with 
as little distortion as possible. In this context, MDS 
can be used to arrange spellings in a two-
dimensional space according to their spelling dis-
tances from one another. Every available dimen-
sion reduces the need for distortion but increases 
the difficulty to interpret. Two or three dimensions 
are a good trade-off. This allows for an intuitive 
display of distances and clusters of spelling vari-
ants. It also makes it possible to discover distance 
anomalies. If this representation is provided with 
filtering features, it can be used to select subsets of 
elements quickly and comfortably. These subsets 
can then be displayed in detailed information 
views that would be too cluttered with greater 
numbers of items. 

The “distortion” is evaluated by comparing the 
distances calculated by the spelling distances with 
the configuration’s geometric distances (i.e. dis-
tances following geometric rules). A common cal-

culation for this distortion is the so-called “raw 
stress” factor. Kruskal (Kruskal, 1964) defined raw 
stress as the sum of distance errors over a configu-
ration. To calculate this error, we use the distance 
matrix D, where each entry holds the calculated 
distance δij between the spellings of the relevant 
row and column. These values can be modified by 
f(δij)=a δij to achieve a scaling more fit for visual 
distances, thus reducing stress. Comparison with 
geometric distances also requires this matrix to be 
symmetric. Because spelling distances are not nec-
essarily symmetric (distance A – B differs from B 
– A), we use the mean value of both distance direc-
tions to create symmetry, as Kruskal suggests. The 
second part of the error calculation requires the 
geometric distances dij between the spellings, 
which is determined by i and j of the current con-
figuration X. The actual error is the difference be-
tween the two distances squared. 
 

2
)()( ⎥⎦
⎤

⎢⎣
⎡ −= Xijdijfije δ  

 

 
Figure 3. The user interface of the Metric Evaluation Tool showing the evaluation of six metrics 

trained on different historical training sets, polygon selection in the MDS view and cut-off sliders. 
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Kruskal’s “raw stress” value is then determined 
by summarizing the error over the elements of the 
upper triangular matrix. The sum can be restricted 
to this reduced element set due to the symmetric 
nature of the matrix. 
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In our Metric Evaluation Tool (MET) we used the 
SMACOF algorithm (see below) to calculate a 
stress-minimizing configuration. Finding such a 
configuration is a numerical optimization problem. 
Because a direct solution of such a problem is of-
ten not feasible, numerous iterative algorithms 
have been developed to calculate an approximate 
solution close enough to the direct solution, where 
one actually exists. The SMACOF algorithm (scal-
ing by majorizing a complicated function) is such 
an approach (De Leeuw, 1977). We start by ar-
ranging the items in a checkerboard grid configura-
tion. The algorithm then calculates the raw stress, 
modifies the current configuration so that it yields 
a lesser stress value by applying a Guttman Trans-
formation (Guttman, 1968) and then compares the 
new configuration’s stress with the old one. This 
step is repeated until the change in stress drops 
below a set threshold or a maximum number of 
iteration steps is exceeded.  

The resulting configuration is usually not an op-
timal one. Optimal in this case would be a distor-
tionless representation with vanishing stress value. 
Such a configuration is rarely, if ever, achieved in 
MDS. There are three main reasons for this: 

 
• Some calculated spelling distances can 

conflict such that there is no spatial configu-
ration that represents the distances without 
distortion. For example, a spelling may be 
determined to be close to several other spell-
ings, which, however, are widely spread out. 
This is due to the fact that spelling distances 
do not always fulfill the triangle inequality.  

• Although geometric distances, being 
mathematical metrics, require the spelling 
distances to be symmetric, the spelling dis-
tances calculated will not necessarily be so. 
For instance, the distance between spellings 
A and B could be different from that be-
tween spellings B and A. 

• Even if an optimal configuration were to 
exist, the iterative optimization process 
might not actually find it. The algorithm 
might terminate due to iteration limits or be-
cause of being “trapped” in a local mini-
mum. 

This restriction on the MDS result, however, is 
not severe enough to derogate its usage as a visu-
alization tool. Its task is not to reconstruct the cal-
culated distance perfectly but to uncover character-
istics of the spelling distances and spelling sets 
used. These characteristics, such as clusters and 
outliers, usually outweigh the distortions. Applied 
to a set of spellings and their distance measure, 
MDS generates a spatial configuration fit for a plot 
view. The spellings’ positions in relation to one 
another represent their similarity. Clusters of 
closely related spellings and outliers are easy to 
recognize and can be used as starting points for 
detailed analyses of subsets. 

An advantage of this type of visualization is that 
it considers the calculated distances among all 
spellings instead of only two. An initial compari-
son of the difference or similarity of multiple spell-
ings is possible at a single glance and without 
switching between different views. Additional vis-
ual hints can improve the overview even further. 
Certain spellings, such as the standard spelling or 
the variant, can be made easily recognizable 
through color or shape indications. The selection of 
subsets is aided by zoom and filtering features ap-
plied to the plot view. Densely packed clusters can 
be made less cluttered by changing the plot’s zoom 
factor or by blending irrelevant items into the 
background. Selecting the spellings by either click-
ing or encircling allows the subsets to be deter-
mined easily. The reduced item set can then be 
used for a detail view, for example the display of 
operations and distances like the tabular view. In 
the MET, the components used to calculate a dis-
tance for a given subset can be viewed. In this way, 
it is easy to understand, for example, why a certain 
spelling is not as “close” to another spelling as ex-
pected. 

This visualization approach is applicable to a 
wide variety of spelling distances as long as they 
provide a quantitative measurement of two spell-
ings. There are no assumptions made about the 
distance value except that small values represent a 
high degree of similarity.  
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3.3 Tabular views 

After refining the selections from several thousand 
down to a few items, a detailed display of relevant 
information about the spellings and their calculated 
distances is needed. At this stage the actual values 
are more important than a visually comprehensible 
display of relations.  
Two different views in the MET use a tabular ar-
rangement of values. One represents the distance 
matrix between a set of spellings, similar to the one 
used to calculate the MDS solution. However, in 
this case, the distances are not combined to a mean 
value for both directions. At this point the differ-
ence between the two directions can be of interest 
and should be visible. Standard spelling and spell-
ing variant are displayed in different colors so they 
can be found more easily. 

The second tabular view displays the distances 
between the standard spelling and the ranked vari-
ants. To obtain a better understanding, the results 
are split up into their components using a Leven-
shtein-based distance mirroring the replacement 
costs that occurred when transforming one spelling 
into the other. These components are displayed in 
the rows according to their classification, while the 
different spelling variants appear in the columns  
(cf. Figure 4). By reordering the columns, the user 
can move the spellings next to each other in order 
to compare them more closely. 

Another benefit of representing the values in this 
way is that detailed modifications to the spelling 
distance can be made interactively. Here, the re-
placement costs can be changed inside the table 
itself, allowing an instant evaluation on what effect 
such a change will have on the distance measure. 

4 Interaction 

There are several ways to interact with the applica-
tion. Selection of data triggers an update of the 
view(s) on the next level of detail: by selecting 
columns of the histogram, the ranking table is acti-
vated; selecting spellings in the ranking table trig-

gers the MDS view where spellings can be selected 
to be shown in the distance matrix and metric edi-
tor. While selections in the tabular views and the 
histogram can easily be performed with a rectangu-
lar selection box, the MDS needed a more elabo-
rate way of selecting data. A polygonal form can 
be drawn with the mouse that also allows inverted 
selection (cf. Figure 3). Using two sliders or nu-
merical input, the upper and lower cut-off for se-
lection can be defined. For example, all spellings 
with a distance higher than 2.5 to the search term 
can be excluded (cf. right side of Figure 3). Zoom-
ing can be performed using the mouse wheel. In 
the metric editor, showing the highest degree of 
detail, the costs for the operations of deletion, in-
sertion and replacement can be adjusted. These 
changes are instantly represented in the MDS view, 
therefore allowing for the manual calibration of the 
distance measures (cf. Figure 4).  

5 Exemplary application of the interface 

To give an example of our MET, we will apply it 
to a situation we have encountered more than once 
in the last two years of our research: a set of his-
torical German text documents T from between 
1500 and 1600 which contains nonstandard spell-
ings. As shown in (Kempken, 2006), the number of 
spelling variants in old documents is monotoni-
cally nondecreasing with advancing age. T might 
also contain errors originating from bad OCR or 
obsolete characters. Nonetheless, we want to be 
able to perform retrieval on the document. To 
simulate a successful full-text search, we manually 
collected all 1,165 spelling variants V in T and 
aligned them with their equivalent standard spell-
ings S. We will call those word pairs evidences. S 
is now merged into a contemporary dictionary—
the OpenOffice German dictionary, which contains 
approximately 80,000 words. For a reliable evalua-
tion we need a high quality dictionary without ty-
pos or historical spellings. The OO-dictionary is 
the best such wordlist available to us. Our algo-
rithm is able to process dictionaries of up to ~5 

 
Figure 4. Table view of replacement costs mirroring deletion, insertion and replacement costs. These costs 

can be manually adjusted to trigger an MDS view update. 
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million words. Bigger dictionaries can be kept in a 
database instead of the computer’s main memory. 

We used the MET applied with six different dis-
tance measures to determine the one that works 
best in finding all the standard spellings S “hidden” 
in the dictionary related to the spelling variants V. 
A normal search task in a historical database would 
be to find a spelling variant by querying a standard 
spelling. Because a coherent wordlist of historical 
spellings was not available, to ensure a more reli-
able result, we performed the task the other way 
around. This conforms to the way automatic anno-
tators like VARD work (see above). 

Such experiments can be used not only to find 
the best metric but also to answer general ques-
tions: 

• Will an SM specifically trained on data 
from the same time period as T work best or 
will the extension of the time period lower 
or raise the retrieval quality? 

• Is there a level where a “saturation” of 
training data is reached and the measures’ 
quality cannot be enhanced any further? 

• Does the amount of necessary training data 
vary with the time/location of T? 

For our first experiment the six measures M1, 
M2…M6 were trained by the same number of evi-
dences from 14th- to 19th-century German texts. 
Prior to the training, the evidences had been dia-
chronically clustered (1300-1500, 1300-1700, 
1300-1900, 1500-1700, 1500-1900, 1700-1900) 
into sets, each containing 1,500 word pairs. In gen-
eral, performance is measured in precision (propor-
tion of retrieved and relevant documents to all 
documents retrieved) and recall (proportion of re-
trieved and relevant documents to all relevant 
documents). Since we ensured that for every his-
torical spelling there is a standard spelling, re-
trieved and relevant documents are equal and so 
are precision and recall. We therefore use precision 
at n (P@n). This measure is often used in cases 
where instead of boolean retrieval a ranking of 
documents is returned, for example in web-
retrieval. Precision at 10 is the precision that rele-
vant documents are retrieved within the 10 docu-
ments with the highest ranking. In standard settings 
the MET is using n≤15. 

The task of our prototype now was  
• to determine the metric most suitable for 

the retrieval task, and  

• to figure out deficiencies in the metrics to 
further enhance their quality. 

 
 DMV SD 

1300–1500 1.37 3.174 
1300–1700 1.384 3.222 
1300–1900 1.261 2.983 
1500–1700 1.375 3.1825 
1500–1900 1.29 3.052 
1700–1900 1.43 3.342 

Table 1. Distribution mean value and standard de-
viation of the evaluated measures 

 
Looking at P@1 the measures 1300-1500 (58.6%), 
1300-1700 (58.7%), 1500-1700 (59.1%) and 1700-
1900 (59.4%) seem to be more or less equally effi-
cient. However, by looking at Table 1 we can see 
that this assumption is not totally correct. The 
measure trained on evidences from 1700 to 1900 
holds a slightly higher distribution mean value and 
standard deviation than the other two. Interestingly 
the 1500-1700 measure is not the most efficient 
one. 1300-1900 and 1500-1900 show better results 
in P@1, DMV and SD. Even though the inclusion 
of 1300-1500 evidences seems to be of minor sig-
nificance, the 1300-1900 measure is still slightly 
better (60.5% P@1). Those results are – of course – 
not significant because of the small dictionary we 
used. We hope to acquire a bigger freely available 
dictionary for more expressive results. 

The ranking table is now able to show the actual 
words that led to the result, therefore supporting 
the expert in further interpretations. The MDS plot 
and distance matrix let the user explore the words 
at each rank interactively. Especially interesting 
are, of course, those words that could not be found 
within the top 15 ranks. The 1500-1900 and 1700-
1900 measures have some difficulties with elder 
spellings (e.g. sammatin [=velvety]). It is also evi-
dent that many of the 3.9% of words > P@10 share 
certain characteristics:  
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• a lot of words are short in length (e.g. vmb, 
nit, het, eer). Even a single letter replace-
ment changes a high percentage of the 
word’s recognizability 

• some words consist of very frequent 
graphemes, therefore increasing the space of 
potential matches in standard spelling (e.g. 
hendlen – enden, handeln, hehlen …) 

• some evidences feature high variability 
(e.g. ewig – eehefig)  

Those cases complicate successful retrieval. 
Comparing the replacement costs in the metric 

editor (cf. Figure 4) indicates where the SM needs 
improvement. In our example we noticed that the 
costs for the replacement of <s> with the German 
ess-tset <ß> were a little too high, and therefore 
spellings were not optimally retrieved. A slight 
manual correction, a control in the MDS view and 
a recalculation of the histogram showed improved 
quality of the SM. 

Further experiments suggested a “training satu-
ration” (see above) of about 4,000 variants. We 
trained M1 on 1,500 evidences from 1300-1900, 
M2 on 4,000, M3 on 6,000 and M4 on 12,000. 
While M1 still shows a small drop in retrieval qual-
ity, the differences between M2 to M4  are almost 
unnoticeable. We also performed a cross-language 
evaluation between historical English and German 
as we already did manually in (Archer et al, 2006). 
Our prior results could be confirmed using the 
MET. 

For the comparison of truly different distance 
measures, as we did in (Kempken, 2006), we used 
the same data as above with our SM 1300-1900, 
Jaro metric (Jaro, 1995) and a standard bigram 
measure (cf. Figure 5). The histogram values of 
p@<4 for the SM (86.6%) are already 9.2% better 
than Jaro (77.4%) and 9.9% better than the bigram 
measure (76.7%). DMV and SD also show how 
much better the SM performed (cf. Table 2). 

 
 
 

 
 DMV SD 

SM 1300-1900 1.604 3.73 
Jaro 2.731 5.124 

Bigrams 2.533 4.754 

Table 2. DMV and SD comparison of SM, Jaro-
Winkler and bigram measure. 

 

6 Conclusion and outlook 

While table views will probably not become obso-
lete any time soon, there are multiple ways to ease 
and enhance the understanding of abstract data. It 
has already been documented that users often pre-
fer visual data representations when dealing with 
complex problems (Kempken, 2007).  

In this paper we presented the prototype of our 
Metric Evaluation Tool and showed that this soft-
ware is helpful in the evaluation of distance meas-
ures. The combination of overview, details and 
interactivity eases the complex task of determining 
quality problem-specific distance measures. 

Because the MET is a prototype, there is room 
for improvement. The graphical MDS display 
could be extended in various ways to further im-
prove the configuration found. Displaying the nu-
merical distance values between spellings as a 
tooltip or graphical overlay, group highlighting and 
interactive insertion or removal of additional spell-
ing variants are just a few examples. The bar charts 
of the histogram view could easily be extended 
using pixel-matrix displays as proposed by (Hao et 
al, 2007) to conveniently represent additional in-
formation like the distribution of distance ranges. 

The MET is only one of the visualization tools 
we are working on at the moment. No single appli-
cation will be able to satisfy all the many and vari-
ous needs that arise in the field of language re-
search. It is our goal to build applications that ac-
cess and reflect spelling variation in a more natural 
and intuitive manner. To narrow the field of poten-
tially suitable distance measures, we are also work-
ing on automatic text classification. The Word-

 
Figure 5. Histogram and DMV comparison of Jaro metric, standard bigram measure and SM 1300-1900. 
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Explorer, for instance, is an additional approach to 
presenting details. Similar to the MDS view in ap-
pearance, it is used to further examine words’ pos-
sible spelling variants, the graphematic space of 
solution (Neef, 2005). Based on the renowned Pre-
fuse-package for Java (prefuse.org), it provides 
methods that support easy access and usability, 
including fisheye, zoom and context menus. 
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A b s t r a c t  
D a ta  n o n lin e a r ity  h a s  h is to r ic a lly  n o t b e e n  
a n d  c u r r e n tly  is  n o t a n  is s u e  in  w o r k  o n  
e x p lo r a to r y  m u ltiv a r ia te  a n a ly s is  o f  
la n g u a g e  c o r p o r a . H o w e v e r , th e  p r e s e n c e  
o f  n o n lin e a r ity  in  d a ta  h a s  a  f u n d a m e n ta l 
b e a r in g  o n  th e  c o n d u c t o f  e x p lo r a to r y  
a n a ly s is . T h e  f ir s t p a r t o f  th e  d is c u s s io n  
e x p la in s  w h y  th is  is  s o  in  p r in c ip le , a n d  
th e  s e c o n d  e x e m p lif ie s  th e  e x p la n a tio n  v ia  
e x p lo r a to r y  a n a ly s is  o f  th e  Ne w c a s tle  
E le c tr o n ic  C o r p u s  o f T y n e s id e  E n g lis h  
( N E C T E ) , a n  h is to r ic a l s p e e c h  c o r p u s . 
T h e  c o n c lu s io n  is  th a t d a ta  s h o u ld  b e  
s c r e e n e d  f o r  n o n lin e a r ity  p r io r  to  a n a ly s is  
a n d , if  a  s u b s ta n tia l d e g r e e  o f  it is  f o u n d , a  
n o n lin e a r  a n a ly tic a l m e th o d  s h o u ld  b e  
u s e d . 
 

1 . I n t r o d u c t io n  
 E x p lo r a to r y  m u ltiv a r ia te  a n a ly s is  m e th o d s  
a r e  u s e d  a c r o s s  a  w id e  r a n g e  o f  r e s e a r c h  d is c ip lin e s  
to  id e n tif y  in te r e s tin g  s tr u c tu r e  in  m u ltid im e n s io n a l 
d a ta  w h o s e  c h a r a c te r is tic s  a r e  n o t w e ll k n o w n , a n d , 
if  s tr u c tu r e  is  f o u n d , to  g e n e r a te  h y p o th e s e s  a b o u t 
th e  d o m a in  w h ic h  th e  d a ta  d e s c r ib e s  ( A n d r ie n k o  
a n d  A n d r ie n k o , 2 0 0 5 ) . C o r p u s - b a s e d  lin g u is tic s  
h a s  lo n g  b e e n  a m o n g  th e s e  d is c ip lin e s , a n d , a s  
c o m p u ta tio n a l p o w e r  h a s  in c r e a s e d  a n d  e v e r - la r g e r  
n a tu r a l la n g u a g e  c o r p o r a  h a v e  b e c o m e  a v a ila b le , 
th e  a p p lic a tio n  o f  e x p lo r a to r y  a n a ly s is  in  e m p ir ic a l 
lin g u is tic  r e s e a r c h  h a s  g r o w n . W h e n  o n e  s u r v e y s  
th e  r e le v a n t lin g u is tic s  lite r a tu r e , it b e c o m e s  c le a r  
th a t d a ta  n o n lin e a r ity  h a s  h is to r ic a lly  n o t b e e n  a n d  
is  n o t c u r r e n tly  a n  is s u e . A n  e x h a u s tiv e  r e v ie w  
c a n n o t b e  u n d e r ta k e n  h e r e , b u t a  s n a p s h o t o f  r e c e n t 
lite r a tu r e  is  s y m p to m a tic : n e ith e r  th e  r e le v a n t 
p a p e r s  in  th e  L ite r a r y  a n d  L in g u is tic  C o m p u tin g  

jo u r n a l's  s p e c ia l is s u e  o n  'P r o g r e s s  in  
D ia le c to m e tr y ' ( 2 0 0 6 )  n o r  M a n n in g  a n d  S c h ütz e 's  
d is c u s s io n  o f  c lu s te r in g  in  th e ir  s u b je c t- s ta n d a r d  
F o u n d a tio n s  o f S ta tis tic a l Na tu r a l L a n g u a g e  
P r o c e s s in g  ( 2 0 0 0 )  r e f e r  to  it, e x c e p t p e r h a p s  in  
p a s s in g . H o w e v e r , th e  p r e s e n c e  o f  n o n lin e a r ity  in  
d a ta  h a s  a  f u n d a m e n ta l b e a r in g  o n  th e  c o n d u c t o f  
e x p lo r a to r y  a n a ly s is . T h e  f ir s t p a r t o f  th e  
d is c u s s io n  e x p la in s  w h y  th is  is  s o  in  p r in c ip le , a n d  
th e  s e c o n d  e x e m p lif ie s  th e  e x p la n a tio n  v ia  
e x p lo r a to r y  a n a ly s is  o f  th e  Ne w c a s tle  E le c tr o n ic  
C o r p u s  o f T y n e s id e  E n g lis h  ( N E C T E ) , a n  h is to r ic a l 
s p e e c h  c o r p u s . T h e  c o n c lu s io n  is  th a t d a ta  s h o u ld  
b e  s c r e e n e d  f o r  n o n lin e a r ity  p r io r  to  a n a ly s is  a n d , if  
a  s u b s ta n tia l d e g r e e  o f  it is  f o u n d , a  n o n lin e a r  
a n a ly tic a l m e th o d  s h o u ld  b e  u s e d . 
 
2 . N o n lin e a r it y  a n d  e x p lo r a t o r y  a n a ly s is   
 I n  p h y s ic a l s y s te m s , n o n lin e a r ity  is  th e  
b r e a k d o w n  o f  p r o p o r tio n a lity  b e tw e e n  c a u s e  a n d  
e f f e c t, a n d  it m a n if e s ts  its e lf  in  a  v a r ie ty  o f  
c o m p le x  a n d  o f te n  u n e x p e c te d  - - in c lu d in g  c h a o tic -
-  b e h a v io u r s . S in c e  n o n lin e a r ity  p e r v a d e s  th e  
p h y s ic a l w o r ld  ( s e e  f o r  e x a m p le  B e r tu g lia , 2 0 0 5 ) , 
d a ta  th a t d e s c r ib e s  it is  lik e ly  to  c o n ta in  
n o n lin e a r ity  a s  w e ll. I f  th e  d a ta  is  in  v e c to r  s p a c e  
r e p r e s e n ta tio n , s u c h  n o n lin e a r ity  m a n if e s ts  its e lf  a s  
c u r v a tu r e  in  th e  d a ta  m a n if o ld , w h ic h  c a n  r a n g e  
f r o m  s im p le  c u r v e s  a n d  s u r f a c e s  to  h ig h ly  
c o n v o lu te d  f r a c ta ls . 
 M a n y  o f  th e  c o m m o n ly  u s e d  e x p lo r a to r y  
m u ltiv a r ia te  m e th o d s , h e n c e f o r th  c a lle d  'lin e a r  
m e th o d s ', a r e  in s e n s itiv e  to  n o n lin e a r ity , a n d  a s  
s u c h  c a n  g e n e r a te  r e s u lts  th a t m is r e p r e s e n t th e  
s tr u c tu r e  o f  a  n o n lin e a r  d a ta  m a n if o ld . T h is  
in s e n s itiv ity  s te m s  f r o m  th e  w a y  in  w h ic h  th e  lin e a r  
m e th o d s  m e a s u r e  d is ta n c e  b e tw e e n  p a ir s  o f  v e c to r s  
in  th e  m a n if o ld  - - a s  th e  s h o r te s t s tr a ig h t- lin e  
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d is ta n c e  b e tw e e n  th e m . T h is  is  n o t, h o w e v e r , th e  
o n ly  p o s s ib le  m e a s u r e . T h is  d is ta n c e  b e tw e e n  tw o  
c itie s  c a n  b e  m e a s u r e d  lin e a r ly  a s  in  f ig u r e  1 a  o r  
n o n lin e a r ly  a lo n g  th e  c u r v e  o f  th e  e a r th 's  s u r f a c e , 
a s  in  f ig u r e  1 b : 
 

a  

 

b  

 
 

F ig u r e  1 : L in e a r  a n d  n o n lin e a r  d is ta n c e  m e a s u r e  
 
L in e a r  d is ta n c e  in  th is  c a s e  s e r io u s ly  m is r e p r e s e n ts  
th e  tr u e  d is ta n c e . T h e  s a m e  a p p lie s  to  n o n lin e a r  
d a ta  m a n if o ld s . F ig u r e  2  s h o w s  a n  e x tr e m e  
e x a m p le  f r e q u e n tly  u s e d  in  d is c u s s io n s  o f  
n o n lin e a r  d im e n s io n a lity  r e d u c tio n  ( i.e . 
T e n e n b a u m  e t a l., 2 0 0 0 ) , in  w h ic h  lin e a r  d is ta n c e  
a n d  d is ta n c e  a lo n g  th e  s u r f a c e  o f  th e  m a n if o ld  
d if f e r  m a r k e d ly .  
 

 
 

F ig u r e  2 : L in e a r  a n d  n o n lin e a r  d is ta n c e  in  a  
n o n lin e a r  m a n if o ld  

 
L in e a r  e x p lo r a to r y  m e th o d s  b a s e  th e ir  
r e p r e s e n ta tio n  o f  d a ta  s tr u c tu r e  o n  lin e a r  d is ta n c e  
b e tw e e n  v e c to r s  in  th e  d a ta  s p a c e . I f  th e  m a n if o ld  
d iv e r g e s  s ig n if ic a n tly  f r o m  lin e a r ity , lin e a r  d is ta n c e  
m e a s u r e s  c a n  g iv e  d is to r te d  r e s u lts . 
 T h e  c la s s ic  r e s p o n s e  to  th e  d is c o v e r y  o f  
n o n lin e a r ity  in  d a ta  is  to  r e m o v e  it u s in g  w e ll 
e s ta b lis h e d  m e th o d s  lik e  lo g - tr a n s f o r m a tio n  ( i.e . 
C la r k e  a n d  C o o k e , 1 9 9 8 :5 7 1 - 4 ) , a n d  th e n  to  
a n a ly z e  th e  lin e a r iz e d  d a ta  u s in g  a  lin e a r  m e th o d . 
T h is  r is k s  th r o w in g  th e  p r o v e r b ia l b a b y  o u t w ith  
th e  b a th w a te r . N o n lin e a r ity  is  n o t a lw a y s  ju s t a  
n u is a n c e  to  b e  e lim in a te d , b u t m a y  r e f le c t a  
f u n d a m e n ta l a s p e c t o f  th e  th in g  b e in g  s tu d ie d ; in  
f a c t, th e  s tu d y  o f  n o n lin e a r ity  in  n a tu r a l s y s te m s  is  

n o w  w e ll e s ta b lis h e d  a c r o s s  a  r a n g e  o f  d is c ip lin e s  
( S c o tt, 2 0 0 4 ) . I f  n o n lin e a r ity  is  f o u n d  in  n a tu r a l 
la n g u a g e  c o r p u s  d a ta , th e  d e f a u lt s h o u ld  b e  to  
r e ta in  it o n  th e  g r o u n d s  th a t it m ig h t r e f le c t a  
s c ie n tif ic a lly  in te r e s tin g  a s p e c t o f  c o r p u s  s tr u c tu r e . 
I f  it is  r e ta in e d , h o w e v e r , lin e a r  a n a ly tic a l m e th o d s  
b e c o m e  in a p p lic a b le  in  p r in c ip le , a n d  n o n lin e a r  
o n e s  w h ic h  m e a s u r e  d is ta n c e  a lo n g  th e  c u r v a tu r e  o f  
th e  m a n if o ld  m u s t b e  u s e d . 
   
3 . E x p lo r a t o r y  a n a ly s is  o f t h e  N E C T E  d a t a  
 
3 .1  T h e  N E C T E  d a t a   
 T h e  Ne w c a s tle  E le c tr o n ic  C o r p u s  o f 
T y n e s id e  E n g lis h  ( N E C T E )  is  a  c o r p u s  o f  d ia le c t 
s p e e c h  f r o m  T y n e s id e  in  N o r th - E a s t E n g la n d  
( A lle n  e t a l., 2 0 0 5 ) . I t in c lu d e s  p h o n e tic  
tr a n s c r ip tio n s  o f  6 3  in te r v ie w s  to g e th e r  w ith  s o c ia l 
d a ta  a b o u t th e  s p e a k e r s , a n d  a s  s u c h  o f f e r s  a n  
o p p o r tu n ity  to  s tu d y  th e  s o c io p h o n e tic s  o f  
T y n e s id e  s p e e c h  o f  th e  la te  1 9 6 0 s . M o is l e t a l. 
( 2 0 0 6 )  a n d   M o is l a n d  M a g u ir e  ( 2 0 0 7 )  h a v e  b e g u n  
th a t s tu d y  u s in g  e x p lo r a to r y  a n a ly s is  o f  th e  
tr a n s c r ip tio n s  w ith  th e  a im  o f  g e n e r a tin g  
h y p o th e s e s  a b o u t p h o n e tic  v a r ia tio n  a m o n g  
s p e a k e r s  in  th e  T y n e s id e  d ia le c t a r e a . T h e s e  s tu d ie s  
w e r e  b a s e d  o n  c o m p a r is o n  o f  p r o f ile s  a s s o c ia te d  
w ith  e a c h  o f  th e  in f o r m a n ts . A  p r o f ile  f o r  a n y  
s p e a k e r  S  is  th e  n u m b e r  o f  tim e s  S  u s e s  e a c h  o f  th e  
p h o n e tic  s e g m e n ts  in  th e  N E C T E  tr a n s c r ip tio n  
s c h e m e  in  h is  o r  h e r  in te r v ie w . M o r e  s p e c if ic a lly , 
th e  p r o f ile  P  a s s o c ia te d  w ith  S  is  a  v e c to r  h a v in g  a s  
m a n y  e le m e n ts  a s  th e r e  a r e  s e g m e n ts  s u c h  th a t 
e a c h  v e c to r  e le m e n t P j r e p r e s e n ts  th e  j’ th  s e g m e n t, 
w h e r e  j is  in  th e  r a n g e  1 ..n u m b e r  o f  s e g m e n ts  in  
th e  N E C T E  p h o n e tic  tr a n s c r ip tio n  s c h e m e , a n d  th e  
v a lu e  s to r e d  a t P j is  a n  in te g e r  r e p r e s e n tin g  th e  
n u m b e r  o f  tim e s  S  u s e s  th e  j’ th   s e g m e n t. T h e r e  a r e  
1 5 6  s e g m e n ts , a n d  s o  a  s p e a k e r  p r o f ile  is  a  le n g th -
1 5 6  v e c to r . T h e r e  a r e  6 3  T L S  s p e a k e r s , a n d  th e ir  
p r o f ile s  a r e  r e p r e s e n te d  in  a  m a tr ix  M  h a v in g  6 3  
r o w s , o n e  f o r  e a c h  p r o f ile .  
 
3 .2  I d e n t ify in g  n o n lin e a r it y  
 W h e r e  th e  d a ta  d im e n s io n a lity  is  3  o r  le s s , 
n o n lin e a r ity  c a n  b e  id e n tif ie d  b y  c r e a tin g  a  
s c a tte r p lo t o f  th e  m a n if o ld  a n d  lo o k in g  f o r  
c u r v a tu r e . V is u a l in te r p r e ta tio n  is  s u b je c tiv e , 
h o w e v e r . I t c a n  b e  u n r e lia b le  w h e n  th e  s h a p e  o f  th e  
m a n if o ld  is  n o t a s  c le a r  c u t a s , s a y , in  f ig u r e  2 , a n d  
n e e d s  to  b e  s u p p le m e n te d  w ith  s o m e  q u a n tita tiv e  

94



m e a s u r e  o f  n o n lin e a r ity ; f o r  h ig h - d im e n s io n a l d a ta  
d ir e c t g r a p h ic a l r e p r e s e n ta tio n  is  im p o s s ib le  
( A n d r ie n k o  a n d  A n d r ie n k o , 2 0 0 5 , c h . 4 ) , a n d  
q u a n tita tiv e  m e a s u r e m e n t is  th e  o n ly  a lte r n a tiv e . 
T h e  m o s t s tr a ig h tf o r w a r d  m e a s u r e s  a r e  b a s e d  th e  
r e s id u a ls  in  lin e a r  a n d  n o n lin e a r  r e g r e s s io n : th e  
s u m  o f  s q u a r e s  o f  r e s id u a ls , o r  S S R , g iv e s  th e  to ta l 
d iv e r g e n c e  o f  th e  d a ta  v a r ia b le s  f r o m  th e  lin e  o f  
b e s t f it, a n d  th e  s ta n d a r d  e r r o r  th e ir  a v e r a g e  
d is p e r s io n  a r o u n d  th e  lin e  in  a  w a y  a n a lo g o u s  to  
u n iv a r ia te  s ta n d a r d  d e v ia tio n . 
 

a  

 

b  

 
F ig u r e  3 : L in e s  o f  b e s t f it in  lin e a r  a n d  n o n lin e a r  

r e g r e s s io n  
 
F o r  a  g iv e n  p a ir  o f  v a r ia b le s , if  th e  S S R  a n d  
s ta n d a r d  e r r o r  f r o m  a  n o n lin e a r  r e g r e s s io n  a r e  le s s  
th a n  th o s e  f r o m  a  lin e a r  o n e , th e n  a  c u r v e  f its  th e  
d a ta  b e tte r  th a n  a  s tr a ig h t lin e  a n d  th e  r e la tio n s h ip  
o f  th e  tw o  v a r ia b le s  is  n o n lin e a r .  
 I n  a p p lic a tio n s  w h e r e  th e  d im e n s io n a lity  
o f  th e  d a ta  c a n  b e  in  th e  h u n d r e d s  o r  e v e n  
th o u s a n d s , p a ir w is e  r e g r e s s io n - b a s e d  te s tin g  o f  
n o n lin e a r ity  c a n  q u ic k ly  b e c o m e  o n e r o u s  s in c e , 
f o r  a n y  g iv e n  d im e n s io n a lity  n ,  

2

)1( −= nn
p n

 
F o r  n  =  1 0 0 , th e r e  w o u ld  b e  4 9 5 0  d if f e r e n t v a r ia b le  
p a ir s  to  c o n s id e r . T h e  s itu a tio n  c a n  b e  s a lv a g e d  in  
c a s e s  w h e r e  s o m e  v a r ia b le s  a r e  m o r e  im p o r ta n t 
th a n  o th e r s  r e la tiv e  to  th e  r e s e a r c h  q u e s tio n  b y  
e x a m in in g  o n ly  a  tr a c ta b le  s u b s e t o f  im p o r ta n t 
v a r ia b le s . S e v e r a l c r ite r ia  f o r  v a r ia b le  im p o r ta n c e  
a r e  a v a ila b le , s u c h  a s  v a r ia n c e , te r m  f r e q u e n c y  / 

in v e r s e  d o c u m e n t f r e q u e n c y  ( R o b e r ts o n , 2 0 0 4 )  a n d  
P o is s o n  d is tr ib u tio n  ( C h u r c h  a n d  G a le , 1 9 9 5 a , 
1 9 9 5 b ) ; th e  u s e  o f  v a r ia n c e  f o r  th is  p u r p o s e  is  
e x e m p lif ie d  b e lo w . 
 W ith  a  d im e n s io n a lity  o f  1 5 6 , 1 2 0 9 0  
v a r ia b le  p a ir s  w o u ld  h a v e  to  b e  te s te d  f o r  
n o n lin e a r ity , w h ic h  is  n o t im p o s s ib le  b u t c e r ta in ly  
o n e r o u s . T h e  n u m b e r  o f  p a ir s  to  b e  c o n s id e r e d  w a s  
th e r e f o r e  r e d u c e d  to  a  m a n a g e a b le  le v e l u s in g  th e  
r e la tiv e  v a r ia n c e s  o f  th e  1 5 6  v a r ia b le s  a s  a  
s e le c tio n  c r ite r io n . T h e  ju s tif ic a tio n  f o r  u s in g  
v a r ia n c e  f o r  th is  p u r p o s e  is  a s  f o llo w s . 
C la s s if ic a tio n  o f  o b je c ts  in  a n y  d o m a in  o f  s tu d y  
d e p e n d s  o n  th e r e  b e in g  v a r ia tio n  in  th e ir  
c h a r a c te r is tic s . W h e n  th e  o b je c ts  to  b e  c la s s if ie d  
a r e  d e s c r ib e d  b y  v a r ia b le s , th e n  a  v a r ia b le  is  o n ly  
u s e f u l f o r  th e  p u r p o s e  if  th e r e  is  s ig n if ic a n t 
v a r ia tio n  in  th e  v a lu e s  th a t it ta k e s ; th o s e  w ith  little  
o r  n o  v a r ia tio n  c a n  b e  d is r e g a r d e d . T h e  v a r ia n c e s  
o f  th e  c o lu m n  v e c to r s  o f  M  w e r e  c a lc u la te d , s o r te d  
in  d e s c e n d in g  o r d e r  o f  m a g n itu d e , a n d  p lo tte d  in  
f ig u r e  4 . 
 

 
 

F ig u r e  4 : V a r ia n c e s  o f  c o lu m n  v e c to r s  o f  N  
 
T h e  h ig h e s t- v a r ia n c e  d o z e n  v a r ia b le s  w e r e  
s e le c te d  a n d  lin e a r , q u a d r a tic , a n d  c u b ic  r e g r e s s io n  
w e r e  a p p lie d  to  a ll 6 6  d is tin c t p a ir in g s  o f  th e m , in  
e a c h  c a s e  c a lc u la tin g  S S R  a n d  s ta n d a r d  e r r o r . 
T h r e e  e x a m p le s  a r e  g iv e n : f ig u r e  5 a  is  
r e p r e s e n ta tiv e  o f  th e  lin e a r ly - r e la te d  p a ir s , f ig u r e  
5 b  o f  m o d e r a te ly  n o n lin e a r  p a ir s , a n d  f ig u r e  5 c  o f  
s tr o n g ly  n o n lin e a r  o n e s . T h e  f r e q u e n c ie s  o f  th e s e  
a r e  1 2  lin e a r , 2 5  m o d e r a te ly  n o n lin e a r , a n d  2 9  
s tr o n g ly  n o n lin e a r . 
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  R e g r e s s io n  p lo t s  Q u a n t if ic a t io n s  

a  

 

L in e a r   
S S R  2 6 6 8 2 .0 0  

S ta n d a r d  E r r o r  2 0 .7 4  
Q u a d r a t ic   

S S R  2 6 6 2 2 .4 0  
S ta n d a r d  E r r o r  2 0 .8 9  

C u b ic   
S S R  2 6 5 9 8 .2 0  

S ta n d a r d  e r r o r  2 1 .0 5   

b  

 

L in e a r   
S S R  5 3 7 0 3 .4 3  

S ta n d a r d  E r r o r  2 9 .6 7  
Q u a d r a t ic   

S S R  5 3 4 9 6 .5 8  
S ta n d a r d  E r r o r  2 9 .8 6  

C u b ic   
S S R  3 8 8 8 0 .4 0  

S ta n d a r d  e r r o r  2 5 .6 7   

c  

 

L in e a r   
S S R  9 5 0 7 1 .2 1  

S ta n d a r d  e r r o r  3 9 .1 6  
Q u a d r a t ic   

S S R  4 9 2 8 1 .2 0  
S ta n d a r d  e r r o r  2 8 .4 2  

C u b ic   
S S R  2 2 2 0 6 .8 8  

S ta n d a r d  e r r o r  1 9 .2 4   

 
F ig u r e  5 : S a m p le  r e g r e s s io n s  o f  v a r ia b le  p a ir s  fr o m  d a ta  m a tr ix  M  

 
T h e  e s s e n tia lly  lin e a r  r e la tio n s h ip  o f  v 1  a n d  v 2  is  
c le a r  b o th  v is u a lly  a n d  in  th e  u n if o r m ity  o f  S S R  
a n d  s ta n d a r d  e r r o r  m e a s u r e s , w h e r e  th e  n o n lin e a r  
r e g r e s s io n s  y ie ld  n o  m e a n in g f u l im p r o v e m e n t o v e r  
th e  lin e a r . F o r  v 1  a n d  v 9  c u b ic  r e g r e s s io n  s h o w s  
s o m e  im p r o v e m e n t o v e r  lin e a r  a n d  q u a d r a tic  b o th  
v is u a lly  a n d  q u a n tita tiv e ly . F o r  v 6  a n d  v 1 2  th e  
q u a d r a tic  r e g r e s s io n  lin e  is  v is u a lly  a  m u c h  b e tte r  
f it to  th e  d a ta  th a n  th e  lin e a r  o n e , a n d  th e  c u b ic  

o n e  is  e v e n  b e tte r ; c o r r e s p o n d in g ly , th e  q u a d r a tic  
q u a n tif ic a tio n s  s h o w  a  s u b s ta n tia l im p r o v e m e n t 
o v e r  th e  lin e a r  o n e s , a n d  th e  c u b ic  o n e s  e v e n  m o r e  
s o . T h e  r e la tio n s h ip s  b e tw e e n  th e  h ig h e s t- v a r ia n c e  
v a r ia b le s  in  M  c a n , th e r e f o r e , b e  s a id  to  r a n g e  
f r o m  lin e a r  to  s tr o n g ly  n o n lin e a r .  
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3 .3  L in e a r  a n d  n o n lin e a r  a n a ly s is  o f  t h e  N E C T E  
d a t a   
 M o is l e t a l. ( 2 0 0 6 )  a n a ly z e d  th e  N E C T E  
d a ta  w ith  w h a t is  p r o b a b ly  th e  m o s t w id e ly  u s e d  o f  
th e  lin e a r  e x p lo r a to r y  m e th o d s : h ie r a r c h ic a l c lu s te r  
a n a ly s is  ( E v e r itt e t a l., 2 0 0 1 ) . T h is  is  a c tu a lly  a  
c la s s  o f  m e th o d s  e a c h  o f  w h ic h  d e f in e s  c lu s te r s  
d if f e r e n tly , b u t a ll o f  w h ic h  r e p r e s e n t c lu s te r  
s tr u c tu r e  a s  n e s te d  c o n s titu e n c y  tr e e s . I n f a m o u s ly  -
- a n d  u n s u r p r is in g ly , g iv e n  th a t e a c h  u s e s  a  d if f e r e n t 
d e f in itio n  o f  w h a t c o n s titu te s  a  c lu s te r - -  th e  v a r ia n t 
m e th o d s  c a n  a n d  o f te n  d o  a s s ig n  d if f e r e n t tr e e  
s tr u c tu r e s  to  th e  s a m e  d a ta , a n d  it is  n o t u s u a lly  
c le a r  w h ic h  is  to  b e  p r e f e r r e d  ( E v e r itt e t a l., 2 0 0 1 , 
c h . 4 ) . I n  th e  N E C T E  c a s e , h o w e v e r , a  r a n g e  o f  
v a r ia n ts  ( s in g le  lin k , c o m p le te  lin k , a v e r a g e  lin k , 
W a r d 's  M e th o d )  c o n v e r g e d  o n  a  s ta b le  s tr u c tu r e  o f  
f o u r  m a in  c lu s te r s  e x e m p lif ie d  b y  th e  W a r d  tr e e  
s h o w n  in  f ig u r e  6 . 

 
F ig u r e  6 : W a r d 's  M e th o d  c lu s te r  tr e e  f o r  d a ta  

m a tr ix  M  
 
W h e n  in te r p r e te d  in  te r m s  o f  th e  s o c ia l d a ta  th a t 
N E C T E  p r o v id e s  f o r  th e  s p e a k e r s , a  c le a r  
c o r r e la tio n  b e tw e e n  p h o n e tic  u s a g e  a n d  s o c ia l 
f a c to r s  e m e r g e d . T h e  m a in  d is tin c tio n  is  b e tw e e n  
m id d le  c la s s , w e ll e d u c a te d  s p e a k e r s  f r o m  

N e w c a s tle  o n  th e  n o r th  s id e  o f  th e  r iv e r  T y n e , 
la b e lle d  N , a n d  w o r k in g  c la s s , le s s  w e ll e d u c a te d  
s p e a k e r s  f r o m  G a te s h e a d  o n  th e  s o u th  s id e  o f  th e  
T y n e , la b e lle d  G . T h e  G a te s h e a d  s p e a k e r s  a r e  
c a te g o r iz e d  in to  G 2  ( e x c lu s iv e ly  m a le ) , a n d  G 1  
( m a in ly  th r o u g h  n o t e x c lu s iv e ly  f e m a le ) ; G 1  is  
s u b c a te g o r iz e d  in to  G 1 a  ( w o r k in g  c la s s  m a le s  a n d  
f e m a le s )  a n d  G 1 b  ( m a le s  a n d  f e m a le s  w ith  
r e la tiv e ly  h ig h e r  s o c io e c o n o m ic  s ta tu s ) . M o is l a n d  
M a g u ir e  ( 2 0 0 7 )  s u b s e q u e n tly  u s e d  th e  c e n tr o id s  o f  
th e s e  c lu s te r s  to  id e n tif y  th e  p h o n e tic  f e a tu r e s  m o s t 
c h a r a c te r is tic  o f  e a c h . T h r e e  s e ts  o f  v o w e ls  w e r e  
f o u n d  to  b e  o f  p a r tic u la r  im p o r ta n c e . A lth o u g h  a ll 
o f  th e s e  h a d  b e e n  c o m m e n te d  o n  b e f o r e , th e ir  
r e la tiv e  ( a n d  c u m u la tiv e )  s o c io lin g u is tic  
im p o r ta n c e  h a d  h ith e r to  e s c a p e d  a tte n tio n . T h e y  
a r e : 

• v a r io u s  ty p e s  o f  [ � ] . 

• [ ��� ]  a n d  [ ��� ] , w h ic h  c o r r e s p o n d  to  R P  [ ��� ] , 
a n d  a r e  f o u n d  in  w o r d s  o f  th e  G O A T  
le x ic a l s e t a s  d e f in e d  b y  W e lls  ( 1 9 8 2 :1 4 6 -
7 ) . 

• [ a � ] , [ �	� ], a n d  [ e � ] , w h ic h  c o r r e s p o n d  to  R P  

[ a � ] , a n d  a r e  f o u n d  in  w o r d s  b e lo n g in g  to  
th e  P R I C E  le x ic a l s e t a s  d e f in e d  b y  W e lls  
( 1 9 8 2 :1 4 9 - 5 0 ) .  

 F o r  n o n lin e a r  a n a ly s is  th e  s e lf - o r g a n iz in g  
m a p , o r  S O M , w a s  s e le c te d  f r o m  a m o n g  th e  
v a r io u s  a v a ila b le  n o n lin e a r  e x p lo r a to r y  m e th o d s  
b e c a u s e  it h a s  b e e n  s u c c e s s f u lly  u s e d  in  a  v e r y  
w id e  r a n g e  o f  a p p lic a tio n s  ( K a s k i e t a l., 1 9 9 8 ; O ja  
e t a l., 2 0 0 1 ) . T h e  s ta n d a r d  S O M  ( K o h o n e n , 2 0 0 1 )  
p r o je c ts  th e  to p o lo g y  o f  a  d a ta  m a n if o ld  in  a  s p a c e  
o f  a r b itr a r y  d im e n s io n a lity  n  o n to  a  tw o -
d im e n s io n a l la ttic e , w h e r e  th e  s tr u c tu r e  o f  th e  
m a n if o ld  c a n  b e  v is u a lly  in s p e c te d . I t d o e s  th is  b y  
p a r titio n in g  th e  v e c to r s  o n  th e  m a n if o ld  s u r f a c e  
in to  a  V o r o n o i te s s e la tio n  ( A u r e n h a m m e r  a n d  
K le in , 2 0 0 0 ) , th e r e b y  a s s ig n in g  a ll th e  d a ta  v e c to r s  
w ith in  a  d e f in e d  to p o lo g ic a l n e ig h b o r h o o d  to  th e  
s a m e  c e ll o f  th e  te s s e la tio n , a s  s h o w n  in  f ig u r e  7 . 
 

 
F ig u r e  7 : V o r o n o i te s s e la tio n  o f  a  m a n if o ld  s u r f a c e  
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F o r  e x a m p le , th e  d o u g h n u t s h a p e  o n  th e  le f t o f  
f ig u r e  7  is  a  m a n if o ld  in  3 - d im e n s io n a l s p a c e , a n d  
th e  s q u a r e  o n  th e  r ig h t r e p r e s e n ts  th e  w a y  in  w h ic h  
a  S O M  p a r titio n s  its  s u r f a c e : e a c h  d o t r e p r e s e n ts  a  
q u a n tiz e d  v e c to r  a n d  th e  lin e s  e n c lo s in g  a  d o t 
r e p r e s e n t th e  b o u n d a r ie s  o f  th e  a r e a  o f  th e  
te s s e la tio n  c e ll c o n ta in in g  th e  k  v e c to r s  w ith in  th e  
s p e c if ie d  to p o lo g ic a l n e ig h b o r h o o d . A ll th e  v e c to r s  
in  a  g iv e n  c e ll a r e  m a p p e d  to  th e  s a m e  la ttic e  u n it, 
a n d  th e  v e c to r s  in  a d jo in in g  c e lls  a r e  m a p p e d  to  
a d ja c e n t la ttic e  u n its . T h e  r e s u lt o f  th is  to p o lo g y  
p r e s e r v a tio n  is  th a t a ll v e c to r s  c lo s e  to  o n e  a n o th e r  
in  th e  in p u t s p a c e  in  th e  s e n s e  th a t th e y  a r e  in  th e  
s a m e  o r  a d jo in in g  to p o lo g ic a l n e ig h b o u r h o o d s  w ill 
b e  c lo s e  o n  th e  S O M  o u tp u t la ttic e  ( f o r  f u r th e r  

d is c u s s io n  s e e  R itte r  e t a l., ( 1 9 9 2 ) , c h . 4 ) . T h e  
to p o lo g y  p r e s e r v a tio n  is , m o r e o v e r , n o n lin e a r  
b e c a u s e  th e  te s s e la tio n  is  b a s e d  n o t o n  a  g lo b a l 
d is ta n c e  m e a s u r e  b e tw e e n  v e c to r s  o n  th e  m a n if o ld  
b u t o n  lo c a l n e ig h b o r h o o d  d is ta n c e , a n d  a s  s u c h  th e  
te s s e la tio n  f o llo w s  th e  m a n if o ld  s u r f a c e : if  th e  
s u r f a c e  is  n o n lin e a r , s o  is  th e  to p o lo g y - p r e s e r v in g  
r e p r e s e n ta tio n  o f  it.  
 T h e  N E C T E  d a ta  w a s  a n a ly z e d  u s in g  a  
r a n g e  o f  S O M  p a r a m e te r s  f o r  o u tp u t la ttic e  s iz e  
a n d  s h a p e  a n d  v a r io u s  in itia liz a tio n s  s u c h  a s  
s ta r tin g  n e ig h b o r h o o d , le a r n in g  r a te , a n d  r a te  o f  
n e ig h b o r h o o d  d e c r e a s e . T h e  r e s u lts  c o n v e r g e d  o n  a  
s ta b le  a n a ly s is  o f  w h ic h  th e  f o llo w in g  m a p  is  
r e p r e s e n ta tiv e . 

 
F ig u r e  8 : S O M  a n a ly s is  o f  th e  N E C T E  d a ta  

 
T h e  s p e a k e r  la b e ls  w e r e  p o s itio n e d  a u to m a tic a lly  
o n  th e  la ttic e  b y  th e  S O M 's  in p u t- to - la ttic e  
m a p p in g  f u n c tio n , a n d  th e  s h a d in g  w a s  g e n e r a te d  
u s in g  th e  U - m a tr ix  m e th o d  ( U lts c h , 1 9 9 3 ) . T h is  
s h a d in g  m u s t b e  u n d e r s to o d  in  o r d e r  to  in te r p r e t th e  
a b o v e  S O M  c o r r e c tly , s o  a  b r ie f  e x p la n a tio n  is  
g iv e n  h e r e . I t h a s  a lr e a d y  b e e n  n o te d  th a t th e  S O M  
p r e s e r v e s  th e  to p o lo g y  o f  th e  n - d im e n s io n a l in p u t 
m a n if o ld  in  th e  s e n s e  th a t v e c to r s  w h ic h  a r e  c lo s e  
in  th e  in p u t s p a c e  a r e  a ls o  c lo s e  in  th e  tw o -
d im e n s io n a l o u tp u t s p a c e . T h e  c o n v e r s e  is  n o t tr u e , 
h o w e v e r : ju s t b e c a u s e  v e c to r s  a r e  c lo s e  in  th e  
o u tp u t s p a c e  d o e s  n o t n e c e s s a r ily  m e a n  th a t th e y  
a r e  c lo s e  o n  th e  in p u t m a n if o ld . T h is  a p p a r e n tly -
p a r a d o x ic a l s itu a tio n  a r is e s  b e c a u s e  th e  S O M  

m a p p in g  f u n c tio n  d o e s  n o t u s e  a  g lo b a l d is ta n c e  
m e a s u r e  b u t o n ly  lo c a l n e ig h b o r h o o d  d is ta n c e , a n d  
it c o n s e q u e n tly  c a n n o t a n d  d o e s  n o t r e p r e s e n t 
p r o p o r tio n a lity  o f  d is ta n c e  b e tw e e n  v e c to r  p a ir s  in  
th e  in p u t s p a c e . I n s te a d , is  s q u e e z e s  its  
r e p r e s e n ta tio n  o f  th e  in p u t to p o lo g y  o n to  th e  la ttic e  
in  s u c h  a  w a y  th a t c lo s e ly  a d ja c e n t la ttic e  c e lls  m a y  
r e p r e s e n t v e c to r s  w h ic h  a r e  f a r  a p a r t o n  th e  in p u t 
m a n if o ld . B e c a u s e , th e r e f o r e , s p a tia l d is ta n c e  is  a  
d e lp h ic  g u id e  to  in te r p r e ta tio n  o f  th e  S O M , s o m e  
w a y  m u s t b e  f o u n d  o f  d e m a r c a tin g  th e  s h a p e  o f  th e  
m a n if o ld  r e p r e s e n ta tio n  g iv e n  b y  th e  la ttic e . T h e  
U - m a tr ix  is  a  w a y  o f  d o in g  th is . H o w  it w o r k s  c a n  
o n ly  b e  e x p la in e d  in  te r m s  o f  th e  d e ta ils  o f  S O M  
a r c h ite c tu r e , w h ic h  c a n n o t b e  g iv e n  h e r e  o n  
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a c c o u n t o f  s p a c e  c o n s tr a in ts . I t is , h o w e v e r , 
im p o r ta n t to  u n d e r s ta n d  th a t lig h te r  r e g io n s  o f  th e  
m a p  r e p r e s e n t m a n if o ld  b o u n d a r ie s  a n d  d a r k e r  o n e s  
th e  m a n if o ld  s u r f a c e ; m e ta p h o r ic a lly , th e  d a r k e r  
a r e a s  a r e  is la n d s  r e p r e s e n tin g  th e  s h a p e  o f  th e  
m a n if o ld , a n d  th e  lig h te r  a r e a s  th e  s e a  s e p a r a tin g  
th e m . T h e  r e m a in in g  a n n o ta tio n s  in  f ig u r e  8 , 
f in a lly , w e r e  a d d e d  b y  h a n d  to  f a c ilita te  d is c u s s io n  
in  th e  n e x t s u b s e c tio n , a n d  a r e  e x p la in e d  th e r e . 
 
3 .4  Dis c u s s io n  
 A s s o c ia te d  w ith  e a c h  s p e a k e r  o n  th e  S O M  
is  a  la b e l w h ic h  s h o w s  th a t s p e a k e r 's  p la c e  in  th e  
h ie r a r c h ic a l c lu s te r  tr e e  - - tls g 0 8  o n  th e  S O M  is  in  
c lu s te r  G 1 a  in  th e  tr e e , f o r  e x a m p le . I n  a d d itio n , 
s o lid - lin e  c u r v e s  h a v e  b e e n  a d d e d  to  th e  S O M  
w h ic h  s h o w  th e  a p p r o x im a te  a r e a s  o f  th e  m a p  th a t 
c o r r e s p o n d  to  th e  m a in  h ie r a r c h ic a l c lu s te r s  a n d , 
f o r  e a c h  r e g io n , th e  r e le v a n t h ie r a r c h ic a l c lu s te r  
la b e l h a s  b e e n  s h o w n  s u r r o u n d e d  b y  a  s q u a r e  - - th e  
u p p e r  le f t c o r n e r  o f  th e  S O M , f o r  e x a m p le , is  
b o u n d e d  b y  a  s o lid  c u r v e  a n d  la b e lle d  N  to  s h o w  
th a t th e  s p e a k e r  v e c to r s  f o u n d  th e r e  c o r r e s p o n d  to  
th o s e  in  th e  N  h ie r a r c h ic a l c lu s te r . U s in g  th e s e  
a n n o ta tio n s , it m ig h t a p p e a r  th a t th e  h ie r a r c h ic a l 
a n d  S O M  a n a ly s e s  a r e  s im ila r : th e  h ie r a r c h ic a l 
a n a ly s is  s h o w s  f o u r  m a in  c lu s te r s , a n d  th e  S O M  
h a s  f o u r  d is jo in t r e g io n s  c o r r e s p o n d in g  to  th o s e  
c lu s te r s . T h is  p e r c e p tio n  o f  c o r r e s p o n d e n c e  is , 
h o w e v e r , b a s e d  o n  s p a tia l p la c e m e n t o f  th e  s p e a k e r  
v e c to r s  o n  th e  S O M , a n d , a s  w e  h a v e  s e e n , r e la tiv e  
s p a tia l d is ta n c e  o n  a  S O M  c a n  b e  m is le a d in g . I f  
o n e  lo o k s  in s te a d  a t th e  U - m a tr ix  s h a d in g  th a t 
d e m a r c a te s  th e  m a n if o ld  b o u n d a r ie s , th e  N e w c a s tle  
g r o u p  is  a s  c le a r ly  d is tin g u is h e d  f r o m  th e  
G a te s h e a d  s p e a k e r s  b y  th e  S O M  a s  b y  th e  
h ie r a r c h ic a l a n a ly s is , b u t th e  G a te s h e a d  s p e a k e r s  
a r e  g r o u p e d  in  a  w a y  th a t d if f e r s  s u b tly  f r o m  th e  
h ie r a r c h ic a l a n a ly s is . T h e  h ie r a r c h ic a l a n a ly s is  s a y s  
th a t th e r e  a r e  th r e e  d is tin c t G a te s h e a d  g r o u p s : G 1 a  
c o n s is ts  o f  w o r k in g  c la s s  m e n  a n d  w o m e n , G 1 b  o f  
lo w e r  m id d le  c la s s  m e n  a n d  w o m e n , a n d  G 2  o f  
w o r k in g  c la s s  m e n . T h e  S O M , o n  th e  o th e r  h a n d , 
s a y s  th a t th e  G a te s h e a d  s p e a k e r s  f a ll in to  o n ly  tw o  
m a in  g r o u p s  th e  b o u n d a r y  b e tw e e n  w h ic h  is  s h o w n  
in  f ig u r e  8  a s  a  d o tte d - lin e  c u r v e . T h e  o n e  a b o v e  
a n d  to  th e  r ig h t o f  th e  d o tte d  lin e  ( a n d  e x c lu d in g  
th e  N e w c a s tle  g r o u p )  c o n s is ts  o f  lo w e r  m id d le  
c la s s  m e n  a n d  w o m e n  a n d  w o r k in g  c la s s  w o m e n . 
T h e  o th e r , b e lo w  a n d  to  th e  le f t o f  th e  d o tte d  lin e , 
c o m p r is e s  w o r k in g  c la s s  m e n  to g e th e r  w ith  tw o  

w o m e n  ( tls g 3 7  a n d  tls g 4 0 )  w h o  a r e  c la s s if ie d  w ith  
m e n  b o th  h e r e  a n d  in  th e  h ie r a r c h ic a l a n a ly s is . 
 T h e  lin e a r  a n d  n o n lin e a r  m e th o d s , 
th e r e f o r e , o f f e r  r e s u lts  th a t d if f e r  s u b s ta n tiv e ly . 
F r o m  a  m e th o d o lo g ic a l p o in t o f  v ie w , th e  S O M  
r e s u lt m u s t b e  p r e f e r r e d  b e c a u s e  th e  d a ta  c o n ta in s  
n o n lin e a r ity , a n d  a  n o n lin e a r  m e th o d  c a n  b e  
e x p e c te d  to  g iv e  a  m o r e  a c c u r a te  a n a ly s is  o f  
n o n lin e a r  d a ta  th a n  a  lin e a r  o n e . A  s o c io lin g u is t 
m ig h t f in d  th e  S O M  a n a ly s is  p r e f e r a b le  o n  g r o u n d s  
o f  s im p lic ity : th e r e  is  n o  o b v io u s  d is tin c tio n  in  th e  
s o c ia l d a ta  b e tw e e n  th e  w o r k in g  c la s s  m e n  th a t th e  
h ie r a r c h ic a l a n a ly s is  a s s ig n s  to  s e p a r a te  c lu s te r s . 
T h e  p r e s e n t p a p e r  is , h o w e v e r , a  m e th o d o lo g ic a l 
o n e , a n d  n o  f u r th e r  c o m m e n t is  v e n tu r e d  o n  th is . 
 
5 . C o n c lu s io n  
 T h e  d is c u s s io n  b e g a n  w ith  th e  o b s e r v a tio n  
th a t e x is tin g  w o r k  o n  e x p lo r a to r y  a n a ly s is  o f  
lin g u is tic  c o r p o r a  d o e s  n o t ta k e  th e  p o s s ib ility  o f  
d a ta  n o n lin e a r ity  in to  a c c o u n t, a n d  c la im e d  th a t th e  
p r e s e n c e  o f  n o n lin e a r ity  in  d a ta  h a s  a  f u n d a m e n ta l 
b e a r in g  o n  th e  c o n d u c t o f  e x p lo r a to r y  a n a ly s is . T h e  
f ir s t p a r t o f  th e  d is c u s s io n  e x p la in e d  w h y  th is  is  s o  
in  p r in c ip le , a n d  th e  s e c o n d  e x e m p lif ie d  th e  
e x p la n a tio n  v ia  e x p lo r a to r y  a n a ly s is  o f  th e  
Ne w c a s tle  E le c tr o n ic  C o r p u s  o f T y n e s id e  E n g lis h  
u s in g  b o th  lin e a r  a n d  n o n lin e a r  m e th o d s . T h a t th e  
tw o  ty p e s  o f  m e th o d  g a v e  s u b s ta n tiv e ly  d if f e r e n t 
r e s u lts  s u p p o r ts  th e  c a s e  in  p r in c ip le  th a t d a ta  
s h o u ld  b e  s c r e e n e d  f o r  n o n lin e a r ity  p r io r  to  
e x p lo r a to r y  a n a ly s is  a n d  th a t, if  s u b s ta n tia l d e g r e e  
o f  it is  f o u n d , a  n o n lin e a r  a n a ly tic a l m e th o d  s h o u ld  
b e  u s e d . 
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Abstract

In this work, we attempt to capture patterns
of co-occurrence across vowel systems and
at the same time figure out the nature of the
force leading to the emergence of such pat-
terns. For this purpose we define a weighted
network where the vowels are the nodes
and an edge between two nodes (read vow-
els) signify their co-occurrence likelihood
over the vowel inventories. Through this
network we identify communities of vow-
els, which essentially reflect their patterns
of co-occurrence across languages. We ob-
serve that in the assortative vowel communi-
ties the constituent nodes (read vowels) are
largely uncorrelated in terms of their fea-
tures indicating that they are formed based
on the principle of maximal perceptual con-
trast. However, in the rest of the communi-
ties, strong correlations are reflected among
the constituent vowels with respect to their
features indicating that it is the principle of
feature economy that binds them together.

1 Introduction

Linguistic research has documented a wide range of
regularities across the sound systems of the world’s
languages (Liljencrants and Lindblom, 1972; Lind-
blom, 1986; de Boer, 2000; Choudhury et al., 2006;
Mukherjee et al., 2006a; Mukherjee et al., 2006b).
Functional phonologists argue that such regulari-
ties are the consequences of certain general princi-
ples like maximal perceptual contrast (Liljencrants

and Lindblom, 1972), which is desirable between
the phonemes of a language for proper percep-
tion of each individual phoneme in a noisy envi-
ronment, ease of articulation (Lindblom and Mad-
dieson, 1988; de Boer, 2000), which requires that
the sound systems of all languages are formed of
certain universal (and highly frequent) sounds, and
ease of learnability (de Boer, 2000), which is re-
quired so that a speaker can learn the sounds of
a language with minimum effort. In the study of
vowel systems the optimizing principle, which has
a long tradition (Jakobson, 1941; Wang, 1968) in
linguistics, is maximal perceptual contrast. A num-
ber of numerical studies based on this principle have
been reported in literature (Liljencrants and Lind-
blom, 1972; Lindblom, 1986; Schwartz et al., 1997).
Of late, there have been some attempts to explain the
vowel systems through multi agent simulations (de
Boer, 2000) and genetic algorithms (Ke et al., 2003);
all of these experiments also use the principle of per-
ceptual contrast for optimization purposes.

An exception to the above trend is a school of
linguists (Boersma, 1998; Clements, 2004) who ar-
gue that perceptual contrast-based theories fail to ac-
count for certain fundamental aspects such as the
patterns of co-occurrence of vowels based on sim-
ilar acoustic/articulatory features1 observed across

1In linguistics, features are the elements, which distinguish
one phoneme from another. The features that describe the
vowles can be broadly categorized into three different classes
namely the height, the backness and the roundedness. Height
refers to the vertical position of the tongue relative to either the
roof of the mouth or the aperture of the jaw. Backness refers
to the horizontal tongue position during the articulation of a
vowel relative to the back of the mouth. Roundedness refers to
whether the lips are rounded or not during the articulation of a
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the vowel inventories. Instead, they posit that the
observed patterns, especially found in larger size in-
ventories (Boersma, 1998), can be explained only
through the principle of feature economy (de Groot,
1931; Martinet, 1955). According to this principle,
languages tend to maximize the combinatorial pos-
sibilities of a few distinctive features to generate a
large number of sounds.

The aforementioned ideas can be possibly linked
together through the example illustrated by Figure 1.
As shown in the figure, the initial plane P constitutes
of a set of three very frequently occurring vowels /i/,
/a/ and /u/, which usually make up the smaller in-
ventories and do not have any single feature in com-
mon. Thus, smaller inventories are quite likely to
have vowels that exhibit a large extent of contrast
in their constituent features. However, in bigger in-
ventories, members from the higher planes (P′ and
P ′′) are also present and they in turn exhibit fea-
ture economy. For instance, in the plane P′ com-
prising of the set of vowels /̃i/, /ã/, /ũ/, we find a
nasal modification applied equally on all the three
members of the set. This is actually indicative of an
economic behavior that the larger inventories show
while choosing a new feature in order to reduce the
learnability effort of the speakers. The third plane
P ′′ reinforces this idea by showing that the larger
the size of the inventories the greater is the urge for
this economy in the choice of new features. An-
other interesting facet of the figure are the relations
that exist across the planes (indicated by the bro-
ken lines). All these relations are representative of a
common linguistic concept of robustness (Clements,
2004) in which one less frequently occurring vowel
(say /̃i/) implies the presence of the other (and not
vice versa) frequently occurring vowel (say /i/) in a
language inventory. These cross-planar relations are
also indicative of feature economy since all the fea-
tures present in the frequent vowel (e.g., /i/) are also
shared by the less frequent one (e.g., /̃i/). In sum-
mary, while the basis of organization of the vowel
inventories is perceptual contrast as indicated by
the plane P in Figure 1, economic modifications of
the perceptually distinct vowels takes place with the

vowel. There are however still more possible features of vowel
quality, such as the velum position (e.g., nasality), type of vocal
fold vibration (i.e., phonation), and tongue root position (i.e.,
secondary place of articulation).

increase in the inventory size (as indicated by the
planes P ′ and P ′′ in Figure 1).

In this work we attempt to corroborate the above
conjecture by automatically capturing the patterns of
co-occurrence that are prevalent in and across the
planes illustrated in Figure 1. In order to do so,
we define the “Vowel-Vowel Network” or VoNet,
which is a weighted network where the vowels are
the nodes and an edge between two nodes (read vow-
els) signify their co-occurrence likelihood over the
vowel inventories. We conduct community struc-
ture analysis of different versions of VoNet in or-
der to capture the patterns of co-occurrence in and
across the planes P , P ′ and P ′′ shown in Figure 1.
The plane P consists of the communities, which
are formed of those vowels that have a very high
frequency of occurrence (usually assortative (New-
man, 2003) in nature). We observe that the con-
stituent nodes (read vowels) of these assortative
vowel communities are largely uncorrelated in terms
of their features. On the other hand, the commu-
nities obtained from VoNet, in which the links be-
tween the assortative nodes are absent, corresponds
to the co-occurrence patterns of the planes P′ and
P ′′. In these communities, strong correlations are
reflected among the constituent vowels with respect
to their features. Moreover, the co-occurrences
across the planes can be captured by the community
analysis of VoNet where only the connections be-
tween the assortative and the non-assortative nodes,
with the non-assortative node co-occurring very fre-
quently with the assortative one, are retained while
the rest of the connections are filtered out. We find
that these communities again exhibit a high correla-
tion among the constituent vowels.

This article is organized as follows: Section 2 de-
scribes the experimental setup in order to explore
the co-occurrence principles of the vowel inven-
tories. In this section we formally define VoNet,
outline its construction procedure, and present a
community-finding algorithm in order to capture the
co-occurrence patterns across the vowel systems. In
section 3 we report the experiments performed to
obtain the community structures, which are repre-
sentative of the co-occurrence patterns in and across
the planes discussed above. Finally, we conclude in
section 4 by summarizing our contributions, point-
ing out some of the implications of the current work
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Figure 1: The organizational principles of the vowels (in decreasing frequency of occurrence) indicated
through different hypothetical planes.

and indicating the possible future directions.

2 Experimental Setup

In this section we systematically develop the ex-
perimental setup in order to investigate the co-
occurrence principles of the vowel inventories. For
this purpose, we formally define VoNet, outline
its construction procedure, describe a community-
finding algorithm to decompose VoNet to obtain the
community structures that essentially reflects the co-
occurrence patterns of the vowel inventories.

2.1 Definition and Construction of VoNet

Definition of VoNet: We define VoNet as a network
of vowels, represented as G = 〈 VV , E 〉 where VV

is the set of nodes labeled by the vowels and E is
the set of edges occurring in VoNet. There is an
edge e ∈ E between two nodes, if and only if there
exists one or more language(s) where the nodes
(read vowels) co-occur. The weight of the edge e
(also edge-weight) is the number of languages in
which the vowels connected by e co-occur. The
weight of a node u (also node-weight) is the number
of languages in which the vowel represented by u
occurs. In other words, if a vowel vi represented by

the node u occurs in the inventory of n languages
then the node-weight of u is assigned the value
n. Also if the vowel vj is represented by the node
v and there are w languages in which vowels vi
and vj occur together then the weight of the edge
connecting u and v is assigned the value v. Figure 2
illustrates this structure by reproducing some of the
nodes and edges of VoNet.

Construction of VoNet: Many typological stud-
ies (Lindblom and Maddieson, 1988; Ladefoged
and Maddieson, 1996; Hinskens and Weijer, 2003;
Choudhury et al., 2006; Mukherjee et al., 2006a;
Mukherjee et al., 2006b) of segmental inventories
have been carried out in past on the UCLA Phono-
logical Segment Inventory Database (UPSID) (Mad-
dieson, 1984). Currently UPSID records the sound
inventories of 451 languages covering all the major
language families of the world. The selection of the
languages for the inclusion on UPSID is governed
by a quota principle seeking maximum genetic di-
versity among extant languages in order to reduce
bias towards any particular family. In this work we
have therefore used UPSID comprising of these 451
languages and 180 vowels found across them, for
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Figure 3: A partial illustration of VoNet. All edges in this figure have an edge-weight greater than or equal to
15. The number on each node corresponds to a particular vowel. For instance, node number 72 corresponds
to /̃i/.

constructing VoNet. Consequently, the set VV com-
prises 180 elements (nodes) and the set E comprises
3135 elements (edges). Figure 3 presents a partial
illustration of VoNet as constructed from UPSID.

2.2 Finding Community Structures

We attempt to identify the communities appearing
in VoNet by the extended Radicchi et al. (Radic-
chi et al., 2003) algorithm for weighted networks
presented in (Mukherjee et al., 2006a). The ba-
sic idea is that if the weights on the edges form-
ing a triangle (loops of length three) are comparable
then the group of vowels represented by this trian-
gle highly occur together rendering a pattern of co-
occurrence while if these weights are not compara-

ble then there is no such pattern. In order to capture
this property we define a strength metric S (in the
lines of (Mukherjee et al., 2006a)) for each of the
edges of VoNet as follows. Let the weight of the
edge (u,v), where u, v ∈ VV , be denoted by wuv.
We define S as,

S =
wuv√∑

i∈VC−{u,v} (wui − wvi)
2

(1)

if
√∑

i∈VC−{u,v} (wui − wvi)2 > 0 else S = ∞.
The denominator in this expression essentially tries
to capture whether or not the weights on the edges
forming triangles are comparable (the higher the
value of S the more comparable the weights are).
The network can be then decomposed into clusters
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Figure 2: A partial illustration of the nodes and
edges in VoNet. The labels of the nodes denote the
vowels represented in IPA (International Phonetic
Alphabet). The numerical values against the edges
and nodes represent their corresponding weights.
For example /i/ occurs in 393 languages; /e/ occurs
in 124 languages while they co-occur in 117 lan-
guages.

or communities by removing edges that have S less
than a specified threshold (say η).

At this point it is worthwhile to clarify the sig-
nificance of a vowel community. A community of
vowels actually refers to a set of vowels which occur
together in the language inventories very frequently.
In other words, there is a higher than expected prob-
ability of finding a vowel v in an inventory which al-
ready hosts the other members of the community to
which v belongs. For instance, if /i/, /a/ and /u/ form
a vowel community and if /i/ and /a/ are present in
any inventory then there is a very high chance that
the third member /u/ is also present in the inventory.

3 Experiments and Results

In this section we describe the experiments per-
formed and the results obtained from the analysis of
VoNet. In order to find the co-occurrence patterns
in and across the planes of Figure 1 we define three
versions of VoNet namely VoNetassort, VoNetrest

and VoNetrest′ . The construction procedure for
each of these versions are presented below.

Construction of VoNetassort: VoNetassort com-
prises the assortative2 nodes having node-weights

2The term “assortative node” here refers to the nodes having
a very high node-weight, i.e., consonants having a very high

above 120 (i.e, vowels occurring in more than 120
languages in UPSID), along with only the edges
inter-connecting these nodes. The rest of the nodes
(having node-weight less than 120) and edges are
removed from the network. We make a choice
of this node-weight for classifying the assortative
nodes from the non-assortative ones by observing
the distribution of the occurrence frequency of the
vowels illustrated in Figure 4. The curve shows
the frequency of a vowel (y-axis) versus the rank
of the vowel according to this frequency (x-axis)
in log-log scale. The high frequency zone (marked
by a circle in the figure) can be easily distinguished
from the low-frequency one since there is distinct
gap featuring between the two in the curve.

Figure 4: The frequency (y-axis) versus rank (x-
axis) curve in log-log scale illustrating the distrib-
ution of the occurrence of the vowels over the lan-
guage inventories of UPSID.

Figure 5 illustrates how VoNetassort is con-
structed from VoNet. Presently, the number of
nodes in VoNetassort is 9 and the number of edges
is 36.

Construction of VoNetrest: VoNetrest comprises
all the nodes as that of VoNet. It also has all
the edges of VoNet except for those edges that
inter-connect the assortative nodes. Figure 6 shows
how VoNetrest can be constructed from VoNet. The
number of nodes and edges in VoNetrest are 180

frequency of occurrence.
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Figure 5: The construction procedure of VoNetassort

from VoNet.

and 12933 respectively.

Construction of VoNetrest′: VoNetrest′ again
comprises all the nodes as that of VoNet. It con-
sists of only the edges that connect an assorta-
tive node with a non-assortative one if the non-
assortative node co-occurs more than ninety five per-
cent of times with the assortative nodes. The basic
idea behind such a construction is to capture the co-
occurrence patterns based on robustness (Clements,
2004) (discussed earlier in the introductory section)
that actually defines the cross-planar relationships in
Figure 1. Figure 7 shows how VoNetrest′ can be
constructed from VoNet. The number of nodes in
VoNetrest′ is 180 while the number of edges is 1144.

We separately apply the community-finding al-
gorithm (discussed earlier) on each of VoNetassort,
VoNetrest and VoNetrest′ in order to obtain the re-
spective vowel communities. We can obtain dif-
ferent sets of communities by varying the threshold
η. A few assortative vowel communities (obtained
from VoNetassort) are noted in Table 1. Some of the

3We have neglected nodes with node-weight less than 3
since these nodes correspond to vowels that occur in less than 3
languages in UPSID and the communities they form are there-
fore statistically insignificant.

4The network does not get disconnected due to this construc-
tion since, there is always a small fraction of edges that run be-
tween assortative and low node-weight non-assortative nodes of
otherwise disjoint groups.

communities obtained from VoNetrest are presented
in Table 2. We also note some of the communities
obtained from VoNetrest′ in Table 3.

Tables 1 , 2 and 3 indicate that the communi-
ties in VoNetassort are formed based on the princi-
ple of perceptual contrast whereas the formation of
the communities in VoNetrest as well as VoNetrest′

is largely governed by feature economy. Hence,
the smaller vowel inventories which are composed
of mainly the members of VoNetassort are orga-
nized based on the principle of maximal percep-
tual contrast whereas the larger vowel inventories,
which also contain members from VoNetrest and
VoNetrest′ apart from VoNetassort, show a consider-
able extent of feature economy. Note that the groups
presented in the tables are quite representative and
the technique described above indeed captures many
other such groups; however, due to paucity of space
we are unable to present all of them here.

4 Conclusion

In this paper we explored the co-occurrence prin-
ciples of the vowels, across the inventories of the
world’s languages. In order to do so we started with
a concise review of the available literature on vowel
inventories. We proposed an automatic procedure
to extract the co-occurrence patterns of the vowels
across languages.

Some of our important findings from this work
are,

• The smaller vowel inventories (corresponding
to the communities of
VoNetassort) tend to be organized based on the
principle of maximal perceptual contrast;

• On the other hand, the larger vowel invento-
ries (mainly comprising of the communities of
VoNetrest) reflect a considerable extent of fea-
ture economy;

• Co-occurrences based on robustness are preva-
lent across vowel inventories (captured through
the communities of VoNetrest′) and their emer-
gence is again a consequence of feature econ-
omy.

Until now, we have concentrated mainly on the
methodology that can be used to automatically cap-
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Figure 6: The construction procedure of VoNetrest from VoNet.

Figure 7: The construction procedure of VoNetrest′ from VoNet.

Community Features in Contrast
/i/, /a/, /u/ (low/high), (front/central/back), (unrounded/rounded)

/e/, /o/ (higher-mid/mid), (front/back), (unrounded/rounded)

Table 1: Assortative vowel communities. The contrastive features separated by slashes (/) are shown within
parentheses. Comma-separated entries represent the features that are in use from the three respective classes
namely the height, the backness, and the roundedness.

ture the co-occurrence patterns across the vowel sys-
tems. However, it would be also interesting to in-
vestigate the extent to which these patterns are gov-

erned by the forces of maximal perceptual contrast
and feature economy. Such an investigation calls
for quantitative definitions of the above forces and
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Community Features in Common

/̃i/, /ã/, /ũ/ nasalized

/̃i:/, /ã:/, /ũ:/ long, nasalized
/i:/, /u:/, /a:/, /o:/, /e:/ long

Table 2: Some of the vowel communities obtained from VoNetrest.

Community Features in Common

/i/, /̃i/ high, front, unrounded
/a/, /ã/ low, central, unrounded
/u/, /ũ/ high, back, rounded

Table 3: Some of the vowel communities obtained from VoNetrest′ . Comma-separated entries represent the
features that are in use from the three respective classes namely the height, the backness, and the rounded-
ness.

a thorough evaluation of the vowel communities in
terms of these definitions. We look forward to ac-
complish the same as a part of our future work.
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Abstract

We use an iterative process of multi-gram
alignment between associated words in dif-
ferent languages in an attempt to identify
cognates. To maximise the amount of data,
we use practical orthographies instead of
consistently coded phonetic transcriptions.
First results indicate that using practical or-
thographies can be useful, the more so when
dealing with large amounts of data.

1 Introduction

The comparison of lexemes across languages is a
powerful method to investigate the historical rela-
tions between languages. A central prerequisite for
any interpretation of historical relatedness is to es-
tablish lexical cognates, i.e. lexemes in different
languages that are of shared descend (in contrast to
similarity by chance). If a pair of lexemes in two dif-
ferent languages stem from the same origin, this can
be due to the fact that both languages derive from a
common ancestor language, but it can also be caused
by influence from one language on another (or influ-
ence on both language from a third language). To
decide whether cognates are indicative of a common
ancestor language (“vertical transmission”) or due to
language influence (“horizontal transmission”) is a
difficult problem with no shortcuts. We do not think
that one kind of cognacy is more interesting that an-
other. Both loans (be it from a substrate or a super-
strate) and lexemes derived from a shared ancestor
are indicative of the history of a language, and both
should be acknowledged in the unravelling of lin-
guistic (pre)history.

In this paper, we approach the identification of
cognate lexemes on the basis of large parallel lex-
ica between languages. This approach is an explicit
attempt to reverse the “Swadesh-style” wordlist
method. In the Swadesh-style approach, first mean-
ings are selected that are assumed to be less prone
to borrowing, then cognates are identified in those
lists, and these cognates are then interpreted as in-
dicative of shared descend. In contrast, we propose
to first identify (possible) cognates among all avail-
able information, then divide these cognates into
strata, and then interpret these strata in historical
terms. (Because of limitations of space, we will
only deal with the first step, the identification of cog-
nates, in this paper.) This is of course exactly the
route of the traditional historical-comparative ap-
proach to language comparison. However, we think
that much can be gained by applying computational
approaches to this approach.

A major problem arises when dealing with large
quantities of lexical material from many different
languages. In most cases it will be difficult (or very
costly and time consuming in the least) to use co-
herent and consistent phonetic transcriptions of all
available information. Even if we would have dictio-
naries with phonetic transcriptions for all languages
that we are interested in, this would not necessarily
help, as the details of phonetic transcription are nor-
mally not consistent across different authors. In this
paper, we will therefore attempt to deal with unpro-
cessed material in practical orthographies. This will
of course pose problems for history-ridden orthogra-
phies like in English or French. However, we beleve
that for most of the world’s languages the practical
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orthographies are not as inconsistent as those (be-
cause they are much younger) and might very well
be useful for linguistic purposes.

In this paper, we will first discuss the data used in
this investigation. Then we will describe the algo-
rithm that we used to infer alignments between word
pairs. Finally, we will discuss a few of the results
using this algorithm on large wordlists in practical
orthography.

2 Resources

In this study we used parallel wordlists that
we extracted from the Intercontinental Dictio-
nary Series (IDS) database, currently under
development at the Max Planck Institute for
Evolutionary Anthropology in Leipzig (see
http://www.eva.mpg.de/lingua/files/ids.html for
more information). The IDS wordlists contain
more than thousand entries of basic words from
each language, and many entries contain alternative
wordforms. At this time, there are only a few
basic transcription languages (English, French
and Portuguese) and some Caucasian languages
available. We choose some of them for the purpose
of the present study and preprocessed the data.
To compare languages, we chose only word pairs
that were available and non-compound in both
languages. For all words that occurred several times
in the whole collection of a language, we accepted
only one randomly choosen wordform and left out
all others. We also deleted content in brackets or
in between other special characters. If, after these
preparation, a wordform is still longer than twelve
UTF-8 characters, we disregard these for reasons
of computational efficiency. After this, we are still
left with a large number of about900 word pairs for
each pair of languages.

3 Alignment

An alignment of two wordswa andwb is a bijective
and maintained ordered one-to-one correspondence
from all subsequencessa of the wordwa with wa =
concat(sa1

, sa2
, . . . , sak

) to all subsequencessb of
the wordwb with wb = concat(sb1

, sb2
, . . . , sbk

). It
is possible that one of the associated subsequences
is the empty wordε. In general one may construct
a distance measure from such a linked sequence of

two given words by assigning a cost for each single
link of the alignment. There are many such align-
ment/cost functions described in the literature, and
they are often used to calculate a distance measure
between two sequences of characters (Inkpen et al.,
2005). A measurement regularly used for linguistic
sequences is the Levenshtein distance, or a modi-
fications of it. Other distance measures detect, for
example, the longest common subsequences or the
longest increasing subsequences.

It is our special interest to use multi-character
mappings for calculating a distance between two
words. Therefore, we adapt and extend the Leven-
shtein measurement. First, we allow for mapping
of any arbitrary string length (not just strings of one
character as in Levenshtein) and, second, we assign
a continuous cost between0 and1 for every map-
ping.

Our algorithm consist basically of two steps. In
the first step, all possible subsequence pairs between
associated words are considered, and a cost function
is extracted for every multi-gram pair from their co-
occurrences in the whole wordlist. In a second step,
this cost function is used to infer an alignment be-
tween whole words. On the basis of this alignment
a new cost function is established for all multi-gram
pairs. This second step can be iterated until the cost
function stabilizes.

3.1 Cost of an multi-gram pair

For every pair of subsequencessai
andsbj

we count
the number of co-occurrences. The subsequences
sai

andsbj
co-occur when they are found in two as-

sociated wordswa andwb from a language wordlist
of two languagesLa andLb. We then use a sim-
ple Dice coefficient as a cost function between all
possible subsequences. For computational reasons,
it is necessary to limit the size of the multi-grams
considered. We decided to limit the multi-gram
size to a number of maximally four UTF-8 char-
acters. Still, in the first step of our algorithm,
there is a very large set of such subsequence pairs
because all possible combinations are considered.
When an alignment is inferred in the iterative pro-
cess, only the aligned subsequences are counted as
co-occurrences, so the number of possible combi-
nations is considerably lower. Further, to prevent
low frequent co-occurrences to have a dispropor-
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tional impact, we added an attestation threshold of
2% of the wordlist size for two subsequences to be
accepted for the alignment process.

3.2 Alignment of words

An alignment of two words is a complete ordered
linking of subsequences. We annotate it in the
following way (vertical dashes delimit the subse-
quences; note that subsequences may be empty):

( | w | ool)(wers | t~ | )

There is a huge amount of possible combinations
of aligned subsequences. On the basis of the cost
function, a distance is established for every word
pair alignment. The summation of all multi-gram
mapping costs represents the distance of the align-
ment. Because we are dealing with multi-grams of
variable length, alternative alignments of the same
word pair will consist of a different number of sub-
sequences. So, simple summation would lead to dis-
tances out of the range from 0 to 1. To counteract
this, we normalized the word distance. We weighted
each subsequence relative to the number of charac-
ters in the subsequence. For example, the mapping
of w andt~ in the example above would be multi-
plied by 3

10
, because w andt~ have together3 char-

acters and the complete words have in total10 char-
acters.

To make use of efficient divide and conquer solv-
ing strategies and to get meaningful linguistic state-
ments with the base of the calculated best align-
ments, we decided to look for a special subset of
best alignments. As (Kondrak, 2002) pointed out,
there are some situations in which the consideration
of local alignment gets the required results. If only
a part of a word aligning sequence is of high simi-
larity then sometimes a linguistic justification of the
whole word similarity is given. Those alignments
contain the lowest cost multi-gram pairs, but are not
necessarily of best similarity in total.

To illustrate the difference between local and
global alignment, consider an example that shows
different results, depending whether the total sum of
multi-gram similarities is taken or the best local one.
Look at the two words ‘abc’ and ‘αβγ’ and a part of
its multi-gram cost function in Table 1. The sum-
mation of the costs would prefer alignmentA2, as
can be seen in Table 2. But we preferA1, because
it contains the subsequence pair(ab | αβ) with the

multi-gram 1 multi-gram 2 cost
ab αβ 0.1
bc βγ 0.3
a α 0.4
c γ 0.8
...

...
...

Table 1: Costs for constructed subsequence pairs
(ordered by cost)

Index Alignment Distance
A2 (a | bc)(α | βγ) 0.4 + 0.3 = 0.7
A1 (ab | c)(αβ | γ) 0.1 + 0.8 = 0.9
...

...
...

Table 2: Alignments with distance

lowest cost.
With these assumptions, we composed a fast and

easy method to find the best alignment. We pre-
fer alignments where some links are very good,
but the rest might not be. We assume that words
are more related to each other, if there are such
highly rated pairs. This approach can also be found
in other string based comparing methods like, for
example, the Longest Common Increasing Subse-
quence method, which calculates the longest equal
multi-gram and neglects the rest of the word. We
first order all possible multi-gram mappings by their
costs and pick the subsequence pair with the low-
est cost. Starting from this mapping seed, we look
for mappings for the rest of the word pair, both be-
fore and after the initial mapped subsequence. For
both these suffixes and prefixes, we again search for
the subsequence with the lowest cost. This process
is re-applied until the whole words are mapped. If
there is more than one optimal linking subsequence
pair, then all possible alignments are considered. In
this way, we do not restrict, in contrast to Kondrak,
which position for the multi-gram mapping will be
preferred for the local alignment. The algorithm
runs inO(n6). It takesO(n4) time for all combina-
tions of different multi-gram pairs withinO(n) steps
in O(n) iterations.
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4 Experimental Evaluation

As mentioned above, we applied our model to some
test data from the IDS database. For later anal-
yses, we also constructed some random wordlists.
With these we are able to say something about how
significant our results are. To make these random
wordlists we remap each wordwa from La to an ar-
bitrarily chosen wordwb from collectionLb. This
new mapped word was adjusted to the size of the
originally associated word fromLb. The adjustment
works by stretching or shrinking the new word to the
required length by doubling the word several times
and cutting of the overlaying head or tail afterwards.
In this way, we controlled for word length and multi-
gram frequencies. This randomization process was
performed five times fromLa to Lb, and five the
times fromLb to La, and the results were averaged
over all these ten cases.

For the calculation process, we stored all lists in
SQL tables. We first built a preprocessed work-
ing table with the lexemes from the languages to be
compared, and afterwards we constructed the result-
ing tables that hold all the results:

• compare table: the word pairs, their alignments
and alignment goodness;

• subsequence table: the subsequence pairs
found and their co-occurrence coefficients;

• random compare table: pseudo random word
pairs like the compare table;

• random subsequence table: the subsequence
pairs found from random compare table.

Table 3 consists of the best alignments for word pairs
of English and French after30 iterations, and Table
4 shows the best alignments for the comparison of
English and Hunzib (a Caucasian language). First
note that our algorithm works independently of the
orthography used. We do not assume that the same
UTF-8 characters in the two languages are identi-
cal. The fact that〈c〉 is mapped between English
clan and Frenchclan is a result of the statistical dis-
tribution of these characters in the two languages.

This orthography-independence means that we can
apply our algorithm without modifications to cyrillic
scripts as shown with the English-Hunzib compari-
son. Second, we payed close attention to the fact that
the word similarity values are comparable among
different language comparisons. This means that it
is highly significant that the highest word similar-
ities between English and French are much higher
than those between English and Hunzib (actually,
the alignments between English and Hunzib are non-
sensical, but more about that later). Further, our al-
gorithm finds vowel-consonant multi-grams in some
cases (e.g. see Table 5). As far as we can see, there
are not linguistically meaningful and should be con-
sidered an artifact of our current approach. We hope
to fine-tune the algorithm in the future to prevent this
behavior.

Our method finds alignments, but also the subse-
quences in the alignments are of interest. The best
mapped multi-grams between English and French
are illustrated in Table 5. Strangely, the highest
ranked ones are a few vowel+consonant bigrams,
that occur not very often. Since the Dice coefficient
depends on the size of the investigated collection, we
assumed a minimum frequency of co-occurrences in
each calculation step of2% of the collection size
(which is 20 cases in the English-French compari-
son). The high-ranked bigrams are all just above this
threshold. Therefore, we might argue that all the bi-
grams from the top of the list are a side-effect of the
collection size itself.

Following these bigrams are many one-to-
one matches of all alphabetic characters except
〈j,k,q,w,x,y,z〉. These mappings are found without
assuming any similarity based on the UTF-8 encod-
ing of the characters. What we actually find here is
a mapping for the orthography of the stratum of the
French loan words in English. As can be seen in the
histogram in Figure 1, the mapping between multi-
grams falls off dramatically after these links.
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English French Alignment similarity
tribe,clan tribu,clan ( | c | | l | | an| ) ( | c | | l | | an | ) 0.955872

long long ( | l | | on | | g | ) ( | l | | on | | g | ) 0.925542
lion lion ( | l | | i | | on | ) ( | l | | i | | on | ) 0.916239

canoe canoe,pirogue ( | c | | an | | o | | e | ) ( | c | | an | | o | | e | ) 0.911236
famine famine,disette ( | f | | a | | m | | in | | e | ) ( | f | | a | | m | | in | | e | ) 0.910465

innocent innocent ( | in | | n | | o | | c | | e | | n | | t | ) ( | in | | n | | o | | c | | e | | n | | t | ) 0.908913
prison,jail prison ( | p | | r | | i | | s | | on | ) ( | p | | r | | i | | s | | on | ) 0.9089
poncho poncho ( | p | | on | | c | | h | | o | ) ( | p | | on | | c | | h | | o | ) 0.907496

sure,certain sûr,certain ( | c | | e | | r | | t | | a | | in | ) ( | c | | e | | r | | t | | a | | in | ) 0.905022
tapioca,manioc manioc ( | m | | an | | i | | o | | c | ) ( | m | | an | | i | | o | | c | ) 0.904811

...
...

...
...

Table 3: English-French best rated alignments after 30 iterations

English Hunzib Alignment similarity
jewel �avg~ar,�ak�ut ( | j | | e | | w | | e | | l | ) ( | � | | a | v | g~ | | a | | r | ) 0.507094
see nacIa ( | s | | e | | e | ) ( | n | | a | cI | a | ) 0.489442

grease,fat ma�a (g | r | | e | a | s | | e | ) ( | m | | a | | � | | a | ) 0.464667
heaven gIal�an ( | h | | e | | a | | v | | e | | n | ) (g | I | | a | | l | | � | | a | | n | ) 0.445626
ocean akean ( | o | | c | | e | a | n | ) (a | k | | e | | a | | n | ) 0.419629
pocket kisa,�ibi (p | o | | c | | k | | e | t) ( | k | | i | | s | | a | ) 0.410143
sweep l�alIa ( | s | w | e | | e | p) (l | � | | a | lI | a | ) 0.395264

measure masa ( | m | | e | a | s | ur | e | ) ( | m | | a | | s | | a | ) 0.393806
flower g~akI (flo | w | | e | | r | ) ( | g~ | | a | | k | I) 0.391867

rebuke,scold ak~a (r | e | | b | | u | k | e | ) ( | a | | k | | ~ | | a | ) 0.387163
...

...
... . . .

Table 4: English-Hunzib best rated alignments after 30 iterations
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E F freq dice
ar ar 21 1
in in 26 1
on on 22 1
an an 22 1
m m 80 0.92786
n n 188 0.92161
c c 120 0.91815
p p 78 0.91798
r r 277 0.91665
f f 35 0.90647
l l 132 0.90534
v v 26 0.90346
t t 165 0.8719
b b 44 0.86301
s s 126 0.85915
d d 66 0.82913
o o 192 0.82325
e e 417 0.81479
a a 229 0.81367
g g 34 0.79683
h h 53 0.7856
i i 183 0.75961
u u 94 0.69546
...

...
...

...

Table 5: Best English (E) and French (F) multi-gram
mappings after 30 iterations.

The character-independence of our method is il-
lustrated by the character mapping between English
and Russian in Table 6. Shown in the table are only
the highest ranked orthographic mappings. Again
we see an almost complete alphabetic linkage, prob-
ably caused by the French loanwords shared by both
English and Russian.

With this approach, we are also able to find some
vestiges of sound changes, as illustrated by the char-
acter mapping between Spanish and Portuguese in
Table 7. Shown here are only the highest ranked
non-identical multi-grams. The dice coefficients of
the pairs〈h〉−〈ll〉, 〈f〉−〈h〉 show the results of sound
changes that were dramatically enough to be repre-
sented in the orthography. The pairs〈ç〉 − 〈z〉 and
〈n〉−〈ñ〉 show difference in orthographic convention
(though the best pair should have been〈nh〉 − 〈ñ〉).
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Figure 1: Histogram of dice-coefficients for
English-French multi-gram mappings.

E R freq dice
r r 184 0.88874745
n n 115 0.8461936
l l 104 0.79646295
s s 114 0.7927922
t t 165 0.7701921
m m 47 0.7699933
o o 184 0.7510106
k t~ 21 0.74458015
p p 50 0.7388723
i i 102 0.7034591
a a 221 0.6866478
u u 40 0.6449104
c k 77 0.6251676
e e 219 0.59066784
b b 32 0.525643
w v 46 0.46787763
d d 42 0.381996
...

...
...

...

Table 6: Best English (E) and Russian (R) multi-
gram mappings after 30 iterations.
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P S freq dice
...

...
...

...
ç z 20 0.6316202
h ll 20 0.4552776
f h 34 0.43381172
n ñ 24 0.37720457
ã n 33 0.31106696
h h 23 0.23646937
v b 32 0.2165933
t h 29 0.2127131
z c 24 0.15424858
o e 305 0.12838262
...

...
...

...

Table 7: Spanish (S) and Portuguese (P) multi-gram
mappings after 30 iterations. Only the
highest ranking non-identical mappings are
shown

A promising indicator for cognate identification is
the comparison of word alignment similarities with
the similarities between randomly associated word
pairs. We generated pseudo random word pairs as
described above. Therefore we caluclate for each
word from one language one coeffiecent value for
the linkage with the assocciated word and a sec-
ond avarage value for the linkage with some ran-
dom words. In Figure 2 we plot these two values
for all words of English and all words of French (af-
ter 30 iterations) against each other. Each dot repre-
sents a word. The x-axis shows the similarity coef-
ficient between the real words and the y-axis shows
the similarity coefficient from the comparison with
the pseudo random words. As can be seen, many
of the actual similarities are more to the right of the
y = x line indicating more than chance frequency
similarity.

In contrast, in comparing English with Hunzib in
Figure 3 there is only a slight tendency of stretching
of the scatterplot. So one could conclude that En-
glish and Hunzib have probably no cognates at all,
although there are some strongly related word pairs.
However, some slight stretching will always be seen,
because of the usage of an algorithm with iterations.
Such a process will always strengthen some random
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Figure 2: English-French similarities for word
alignments plotted against the similarities
with random language entries.

tendencies.
The iterative process is illustrated in Figure 4.

Shown here are the alignment similarities for all
word pairs between French and Portuguese. After
the first round of alignment, there is only a slight
stretch in the scatterplot. Already after the second
iteration, the plot is stretched strongly. In the further
iterations the situation changes only slightly. Appar-
ently, two rounds of alignment and reassignment of
the cost function suffice for convergence.

5 Conclusion

The big advantage of using original orthographies
in the study of linguistic relationships is that much
more information is readily available. Because of
the wealth of available data, we can use computa-
tional approaches for the comparison of wordlists.
In principle, the kind of approach that we have
sketched out in this paper can just as well be used
for the comparison of complete dictionaries. The
comparison of real wordlists with randomly shuf-
fled wordlists indicated that even on purely statis-
tical grounds it might be possible to separate mean-
ingful alignments from random alignments.

The most promising result of our investigation is
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Figure 3: English-Hunzib similarities for word
alignments plotted against the similarities
with random language entries.

that we were able to find cognates even without any
knowledge about the orthographic conventions used
in the languages that were compared. In the com-
parison English-French and English-Russian there
appear to be many French loanwords among the
well-aligned wordpairs. If this impresion holds, we
are in fact only able to infer the stratum of French
influence in European languages. An interesting
next step would then be to redo the analyses af-
ter removing this stratum from the data and look
for deeper strata in the lexicon. As shown by the
Spanish-Portuguese comparison, sound changes can
be picked up by our approach as long as the changes
have left a trace in the orthography.
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Abstract 

Paradigms provide an inherent 
organizational structure to natural language 
morphology. ParaMor, our minimally 
supervised morphology induction 
algorithm, retrusses the word forms of raw 
text corpora back onto their paradigmatic 
skeletons; performing on par with state-of-
the-art minimally supervised morphology 
induction algorithms at morphological 
analysis of English and German. ParaMor 
consists of two phases. Our algorithm first 
constructs sets of affixes closely mimicking 
the paradigms of a language. And with 
these structures in hand, ParaMor then 
annotates word forms with morpheme 
boundaries. To set ParaMor’s few free 
parameters we analyze a training corpus of 
Spanish. Without adjusting parameters, we 
induce the morphological structure of 
English and German. Adopting the 
evaluation methodology of Morpho 
Challenge 2007 (Kurimo et al., 2007), we 
compare ParaMor’s morphological 
analyses with Morfessor (Creutz, 2006), a 
modern minimally supervised morphology 
induction system. ParaMor consistently 
achieves competitive F1 measures. 

1 Introduction 

Words in natural language (NL) have internal 
structure. Morphological processes derive new lex-
emes from old ones or inflect the surface form of 
lexemes to mark morphosyntactic features such as 
tense, number, person, etc. This paper address 
minimally supervised induction of productive natu-

ral language morphology from text. Minimally su-
pervised induction of morphology interests us both 
for practical and theoretical reasons. In linguistic 
theory, the morpheme is often defined as the 
smallest unit of language which conveys meaning. 
And yet, without annotating for meaning, recent 
work on minimally supervised morphology induc-
tion from written corpora has met with some suc-
cess (Creutz, 2006). We are curious how far this 
program can be pushed. From a practical perspec-
tive, minimally supervised morphology induction 
would help create morphological analysis systems 
for languages outside the traditional scope of NLP. 
However, to develop our method we induce the 
morphological structure of three well-understood 
languages, English, German, and Spanish. 

1.1 Inherent Structure in NL Morphology 

The approach we have taken to induce morpho-
logical structure has explicit roots in linguistic the-
ory. Cross-linguistically, natural language organ-
izes inflectional morphology into paradigms and 
inflection classes. A paradigm is a set of mutually 
exclusive operations that can be performed on a 
word form. Each mutually exclusive morphologi-
cal operation in a paradigm marks a lexeme for 
some set or cell of morphosyntactic features. An 
inflection class, meanwhile, specifies the proce-
dural details that a particular set of adherent lex-
emes follow to realize the surface form filling each 
paradigm cell. Each lexeme in a language adheres 
to a single inflection class for each paradigm the 
lexeme realizes. The lexemes belonging to an in-
flection class may have no relationship binding 
them together beyond an arbitrary morphological 
stipulation that they adhere to the same inflection 
class. But for this paper, an inflection class may 
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also refer to a set of lexemes that inflect similarly 
for phonological or orthographic reasons. Working 
with text we intentionally blur phonology and or-
thography. 

A simple example will help illustrate paradigms, 
inflection classes, and the mutual exclusivity of 
cells. As shown in Table 1, all English verbs 
belong to a single common paradigm of five cells: 
One cell marks a verb for the morphosyntactic 
feature values present tense 3rd person, as in eats; 
another cell marks past tense, as in ate; a third cell 
holds a surface form typically used to mark 
progressive aspect, eating; a fourth produces a 
passive participle, eaten; and finally there is the 
unmarked cell, in this example eat.  

Aside from inflection classes each containing 
only a few irregular lexemes, such as that 
containing eat, there are no English verbal 
inflection classes that arbitrarily differentiate 
lexemes on purely morphological grounds. There 
are, however, several inflection classes that realize 
surface forms only for verbs with particular 
phonology or orthography. The ‘silent-e’ inflection 
class is one such. To adhere to the ‘silent-e’ 
inflection class a lexeme must fill the unmarked 
paradigm cell with a form that ends in an unspoken 
character e, as in dance. The other paradigm cells 
in the ‘silent-e’ inflection class are filled by 
applying orthographic rules such as:  

Progressive Aspect Cell – replace the final e of 
the unmarked form with the string ing, 
dance � dancing  

Past Cell – substitute ed, dance � danced  

Paradigm cells are mutually exclusive. In the Eng-
lish verbal paradigm, although English speakers 
can express progressive past actions with a 
grammatical construction, viz. was eating, there is 
no surface form of the lexeme eat that 
simultaneously fills both the progressive and the 
past cells of the verbal paradigm, *ateing. 

1.2 ParaMor 

Paradigms and inflection classes, the inherent 
structure of natural language morphology, form the 
basis of ParaMor, our minimally supervised 
morphological induction algorithm. In ParaMor’s 
first phase, we find sets of mutually exclusive 
strings which closely mirror the inflection classes 
of a language—although ParaMor does not 
differentiate between syncretic word forms of the 
same lexeme filling different paradigm cells, such 
as ed-suffixed forms which can fill either the past 
or the passive cells of English verbs. In ParaMor’s 
second phase we employ the structured knowledge 
contained within the discovered inflection classes 
to segment word forms into morpheme-like pieces.  

Languages employ a variety of morphological 
processes to arrive at grammatical word forms—
processes including suffix-, prefix-, and infixation, 
reduplication, and template filling. Furthermore, 
the application of word forming processes often 
triggers phonological (or orthographic) change, 
such a as the dropped final e of the ‘silent-e’ 
inflection class, see Table 1. Despite the wide 
range of morphological processes and their 
complicating concomitant phonology, a large caste 
of inflection classes, and hence paradigms, can be 
represented as mutually exclusive substring 
substitutions. In the ‘silent-e’ inflection class, for 
example, the word-final strings e.ed.es.ing can be 
substituted for one another to produce the surface 
forms that fill the paradigm cells of lexemes 
belonging to this inflection class. In this paper we 
focus on identifying word final suffix morphology. 
While we focus on suffixes, the methods we 
employ can be straightforwardly generalized to 
prefixes and ongoing work seeks to model 
sequences of concatenative morphemes. 

Inducing the morphology of a language from a 
naturally occurring text corpus is challenging. In 
languages with a rich morphological structure, sur-
face forms filling particular cells of an inflection 
class may be relatively rare. In the Spanish news-
wire text over which we developed ParaMor there 
are 50,000 unique types. Among these types, in-

Table 1: The English verbal paradigm, left col-
umn, and two inflection classes of the verbal 
paradigm. The verb eat fills the cells of its in-
flection class with the five surface forms 
shown in the second column. Verbs belonging 
to the ‘silent-e’ inflection class inflect follow-
ing the pattern of the third column. 

            Inflection Class Paradigm 
Cells ‘eat’ ‘silent-e’ 

Unmarked eat dance, erase, … 
Present, 3rd eats dances, erases, … 
Past Tense ate danced, erased, … 
Progressive eating dancing, erasing, … 

Passive eaten danced, erased, … 
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stances of first and second person verb forms are 
few. The suffix imos which fills the first person 
plural indicative present cell for the ir  verbal in-
flection class of Spanish occurs on only 77 unique 
lexemes. And yet we aim to identify candidate in-
flection classes which closely model the true in-
flection classes of a language, covering as many 
inflectional paradigm cells as possible. 

Fortunately, we can leverage the paradigm struc-
ture of natural language morphology itself to retain 
many inflections which, because of data sparse-
ness, might be missed if considered in isolation. 
ParaMor begins with a recall-centric search for 
partial candidate inflection classes. Many of the 
candidates which result from this initial search are 
incorrect. But intermingled with the false positives 
are candidates which collectively model significant 
fractions of true inflection classes. Hence, Pa-
raMor’s next step is to cluster the initial partial 
candidate inflection classes into larger groups. This 
clustering effectively uses the larger correct initial 
candidates as nuclei to which smaller correct can-
didates accrete. With as many initial true candi-
dates as possible safely corralled with other candi-
dates covering the same inflection class, ParaMor 
completes the paradigm discovery phase by dis-
carding the large number of erroneous initially se-
lected candidate inflection classes. Finally, with a 
strong grasp on the paradigm structure, ParaMor 
straightforwardly segments the words of a corpus 
into morphemes. 

1.3 Related Work 

In this section we highlight previously proposed 
minimally supervised approaches to the induction 
of morphology that, like ParaMor, draw on the 
unique structure of natural language morphology. 
One facet of NL morphological structure com-
monly leveraged by morphology induction algo-
rithms is that morphemes are recurrent building 
blocks of words. Brent et al. (1995), Goldsmith 
(2001), and Creutz (2006) emphasize the building 
block nature of morphemes when they each use 
recurring word segments to efficiently encode a 
corpus. These approaches then hypothesize that 
those recurring segments which most efficiently 
encode a corpus are likely morphemes. Another 
technique that exploits morphemes as repeating 
sub-word segments encodes the lexemes of a cor-
pus as a  character tree, i.e. trie, (Harris, 1955; 
Hafer and Weis, 1974), or as a finite state automa-
ton (FSA) over characters (Johnson, H. and Martin, 

2003; Altun and M. Johnson, 2001). A trie or FSA 
conflates multiple instances of a morpheme into a 
single sequence of states. Because the choice of 
possible succeeding characters is highly con-
strained within a morpheme, branch points in the 
trie or FSA are likely morpheme boundaries. Often 
trie similarities are used as a first step followed by 
further processing to identify morphemes (Schone 
and Jurafsky, 2001).  

The paradigm structure of NL morphology has 
also been previously leveraged. Goldsmith (2001) 
uses morphemes to efficiently encode a corpus, but 
he first groups morphemes into paradigm like 
structures he calls signatures. To date, the work 
that draws the most on paradigm structure is 
Snover (2002). Snover incorporates paradigm 
structure into a generative statistical model of 
morphology. Additionally, to discover paradigm 
like sets of suffixes, Snover designs and searches 
networks of partial paradigms. These networks are 
the direct inspiration for ParaMor’s morphology 
scheme networks described in section 2.1. 

2 ParaMor: Inflection Class Identification 

2.1 Search 

A Search Space: The first stage of ParaMor is a 
search procedure designed to identify partial in-
flection classes containing as many true productive 
suffixes of a language as possible. To search for 
these partial inflection classes we must first define 
a space to search over. In a naturally occurring 
corpus not all possible surface forms occur. In a 
corpus, each stem adhering to an inflection class 
will likely be observed in combination with only a 
subset of the suffixes in that inflection class. Each 
box in Figure 1 depicts a small portion of the em-
pirical co-occurrence of suffixes and stems from a 
Spanish newswire corpus of 50,000 types. Each 
box in this figure contains a list of suffixes at the 
top in bold, together with the total number, and a 
few examples (in italics), of stems that occurred in 
separate word forms with each suffix in that box. 
For example, the box containing the suffixes e, 
erá, ieron, and ió contains the stems deb and 
padec because the word forms debe, padece, de-
berá, padecerá, etc. all occurred in the corpus. We 
call each possible pair of suffix and stem sets a 
scheme, and say that the e.erá.ieron.ió scheme 
covers the words debe, padece, etc. Note that a 
scheme contains both stems that occurred with ex-
actly the set of suffixes in that scheme, as well as 
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stems that occurred with suffixes beyond just those 
in the scheme. For example, in addition to the four 
suffixes e, erá, ieron, and ió, the stem deb oc-
curred with the suffixes er and ido, as evident from 
the top left scheme e.er.erá.ido.ieron.ió which 
contains the stem deb. Intuitively, a scheme is a 
subset of the suffixes filling the paradigm cells of a 
true inflection class together with the stems that 
empirically occurred with that set of suffixes.  

The schemes in Figure 1 cover portions of the er 
and the ir  Spanish verbal inflection classes. The 
top left scheme of the figure contains suffixes in 
the er inflection class, while the top center scheme 
contains suffixes in the ir  inflection class. The six 
suffixes in the top left scheme and the six suffixes 
in the top center scheme are just a few of the 
suffixes in the full er and ir  inflection classes. As 
is fairly common for inflection classes across 
languages, the sets of suffixes in the Spanish er 
and ir  inflection classes overlap. That is, verbs that 
belong to the er inflection class can take as a suffix 
certain strings of characters that verbs belonging to 
the ir  inflection class can also take. The suffixes 
that are unique to the er verb inflection class in the 
top left scheme are er and erá; while the unique 
suffixes for the ir  class in the top center scheme are 
ir  and irá . In the third row of the figure, the 
scheme e.ido.ieron.ió contains only suffixes found 
in both the er and ir  schemes. 

 While the example schemes in Figure 1 are cor-
rect and do occur in a real Spanish newswire cor-
pus, the schemes are atypically perfect. There is 
only one suffix appearing in Figure 1 that is not a 
true suffix of Spanish—azar in the upper right 
scheme. In unsupervised morphology induction we 
do not know a priori the correct suffixes of a lan-
guage. Hence, we form schemes by proposing can-

didate morpheme boundaries at every character 
boundary in every word, including the character 
boundary after the final character in each word 
form, to allow for empty suffixes. 

Schemes of suffixes and their exhaustively co-
occurring stems define a natural search space over 
partial inflection classes because schemes readily 
organize by the suffixes and stems they contain. 
We define a parent-child relationship between a 
parent scheme, P  and a child scheme C , when P  
contains all the suffixes that C  contains and when 
P  contains exactly one more suffix than C . In 
Figure 1, parent child relations are represented by 
solid lines connecting boxed schemes. The scheme 
e.er.erá.ido.ieron.ió, for example, is the parent of 
three depicted children in Figure 1, one of which is 
e.er.erá.ieron.ió.  

Our search strategy exploits a fundamental 
aspect of the relationship between parent and child 
schemes. Consider the number of stems in a parent 
scheme P  as compared to the number of stems in 
any one of its children C . Since P  contains all the 
suffixes which C  contains, and because P  only 
contains stems that occurred with every suffix in 
P , P  can at most contain exactly the stems C  
contains and typically will contain fewer. In the 
Spanish corpus from which the scheme network of 
Figure 1 was built, 32 stems occur in forms with 
each of the five suffixes e, er, erá, ieron, and ió 
attached. But only 28 of these 32 stems occur in 
yet another form involving ido—the stem deb did 
but the stems padec and romp did not, for example. 

A Search Strategy: To search for schemes 
which cover portions of the true inflection classes 
of a language, ParaMor’s search starts at the bot-
tom of the network. The lowest level in the scheme 

e.er.erá.ido.ieron.ió  
28: deb, escog, ofrec, roconoc, vend, ... 

e.ido.ieron.ir.ir á.ió 
28: asist, dirig, exig, ocurr, sufr, ... 

e.erá.ido.ieron.ió  
28: deb, escog, ... 

e.er.ido.ieron.ió  
46: deb, parec, recog... 

e.ido.ieron.ir á.ió 
28: asist, dirig, ... 

 

e.ido.ieron.ir.i ó 
39: asist, bat, sal, ... 

e.er.erá.ieron.ió  
32: deb, padec, romp, ... 

e.ido.ieron.ió  
86: asist, deb, hund,... 

e.erá.ieron.ió  
32: deb, padec, ... 

er.ido.ieron.ió  
58: ascend, ejerc, recog, ... 

ido.ieron.ir.ió  
44: interrump, sal, ... 

Figure 1: A small portion of a morphology scheme network—our search space of partial empirical in-
flection classes. This network was built from a Spanish Newswire corpus of 50,000 types, 1.26 million 
tokens. Each box contains a scheme. The suffixes of each scheme appear in bold at the top of each box. 
The total number of adherent stems for each scheme, together with a few exemplar stems, is in italics. 
Stems are underlined if they do not appear in any parent shown in this figure. 

azar.e.ido.ieron.ir.i ó 
1: sal 
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network consists of schemes which contain exactly 
one suffix together with all the stems that occurred 
in the corpus with that suffix attached. ParaMor 
considers each one-suffix scheme in turn beginning 
with that scheme containing the most stems, work-
ing toward schemes containing fewer. From each 
bottom scheme, ParaMor follows a single greedy 
upward path from child to parent. As long as an 
upward path takes at least one step, making it to a 
scheme containing two or more alternating suf-
fixes, our search strategy accepts the terminal 
scheme of the path as likely modeling a portion of 
a true inflection class. 

Each greedily chosen upward step is based on 
two criteria. The first criterion considers the 
number of adherent stems in the current scheme as 
compared to its parents’ adherent sizes. A variety 
of statistics could judge the stem-strength of parent 
schemes: ranging from simple ratios through 
(dis)similarity measures, such as the dice 
coefficient or mutual information, to full fledged 
statistical tests. After experimenting with a range 
of such statistics we found, somewhat surprisingly, 
that measuring the ratio of parent stem size to child 
stem size correctly identifies parent schemes which 
contain only true suffixes just as consistently as 
more sophisticated tests. While a full report of our 
experiments is beyond the scope of this paper, the 
short explanation of this behavior is data 
sparseness. Many upward search steps start from 
schemes containing few stems. And when little 
data is available no statistic is particularly reliable.  

Parent-child stem ratios have two additional 
computational advantages over other measures. 
First, they are quick to compute and second, the 
parent with the largest stem ratio is always that 
parent with the most stems. So, being greedy, each 
search step simply moves to that parent, P , with 
the most stems, as long as the parent-child stem 
ratio to P  is large. The threshold above which a 
stem ratio is considered large enough to warrant an 
upward step is a free parameter. As the goal of this 
initial search stage is to identify schemes contain-
ing as wide a variety of productive suffixes as pos-
sible, we want to set the parent-child stem ratio 
threshold as low as possible. But a ratio threshold 
that is too small will allow search paths to schemes 
containing unproductive and spurious suffixes. In 
practice, for Spanish, we have found that setting 
the parent-child stem ratio cutoff much below 0.25 
results in schemes that begin to include only mar-
ginally productive derivational suffixes. For this 

paper we leave the parent-child stem ratio cutoff 
parameter at 0.25.  

Alone, stem strength assessments of parent 
schemes, such as parent-child stem ratios, falter as 
a search path nears the top of the morphology 
scheme network. Monotonically decreasing adher-
ent stem size causes statistics that assess parents’ 
stem-strength to become less and less reliable. 
Hence, the second criterion governing each search 
step helps to halt upward search paths before judg-
ing parents’ worth becomes impossible. While 
there are certainly many possible stopping criteria, 
ParaMor’s policy stops each upward search path 
when there is no parent scheme with more stems 
than it has suffixes. We devised this halting condi-
tion for two reasons. First, requiring each path 
scheme to contain more stems than suffixes attains 
high suffix recall. High recall results from setting a 
low bar for upward movement at the bottom of the 
network. Search paths which begin from schemes 
whose single suffix is rare in the text corpus can 
often take one or two upward search steps and 
reach a scheme containing the necessary three or 
four stems. Second, this halting criterion requires 
the top scheme of search paths that climb high in 
the network to contain a comparatively large num-
ber of stems. Reigning in high-reaching search 
paths before the stem count falls too far, captures 
path-terminal schemes which cover a large number 
of word types. In the second stage of ParaMor’s 
inflection class identification phase these larger 
terminal schemes effectively vacuum up the useful 
smaller paths that result from the more rare suf-
fixes. Figure 2 contains examples of schemes se-
lected by ParaMor’s initial search. 

To evaluate ParaMor at paradigm identification, 
we hand compiled an answer key of the inflection 
classes of Spanish. This answer key contains nine 
productive inflection classes. Three contain the 
suffixes of the ar, er, and ir  verbal inflection 
classes. There are two orthographically differenti-
ated inflection classes for nouns in the answer key: 
one for nouns that form the plural by adding s, and 
one for nouns that take es. Adjectives in Spanish 
inflect for gender and number. Arguably, gender 
and number each constitute separate paradigms, 
each with two cells. But here we conflated these 
into a single inflection class with four cells. Fi-
nally, there are three inflection classes in our an-
swer key covering Spanish clitics. Spanish verbal 
clitics behave orthographically as agglutinative 
sequences of suffixes.  
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In a corpus of Spanish newswire text of 50,000 
types and 1.26 million tokens, the initial search 
identifies schemes containing 92% of all ideal in-
flectional suffixes of Spanish, or 98% of the ideal 
suffixes that occurred at least twice in the corpus. 
There are selected schemes which contain portions 
of each of the nine inflection classes in the answer 
key. The high recall of the initial search comes, of 
course, at the expense of precision. While there are 
nine inflection-classes and 87 unique suffixes in 
the hand-built answer key for Spanish, 8339 
schemes are selected containing 9889 unique can-
didate suffixes.  

2.2 Clustering Partial Inflection Classes 

While the third step of inflection class identifica-
tion, discussed in Section 2.3, directly improves 
the initial search’s low precision by filtering out 
bogus schemes, the second step, described here, 
conflates selected schemes which model portions 
of the same inflection class. Consider the fifth and 
twelfth schemes selected by ParaMor from our 
Spanish corpus, as shown in Figure 2. Both of 
these schemes contain a large number of suffixes 
from the Spanish ar verbal inflection class. And 
while each contains many overlapping suffixes, 
each possesses correct suffixes which the other 
does not. Meanwhile, the 1591st selected scheme 

contains four suffixes of the ir  verbal inflection 
class, including the only instance of iré that occurs 
in any selected scheme. Containing only six stems, 
the 1591st scheme could accidentally be filtered out 
during the third phase of inflection class identifica-
tion. Hence, the rationale for clustering initial se-
lected schemes is two fold. First, by consolidating 
schemes which cover portions of the same inflec-
tion class we produce sets of suffixes which more 
closely model the paradigm structure of natural 
language morphology. And, second, corralling cor-
rect schemes safeguards against losing unique suf-
fixes. 

The clustering of schemes presents two unique 
challenges. First, we must avoid over-clustering 
schemes which model distinct inflection classes. 
As noted in Section 2.1, it is common, cross-
linguistically, for the suffixes of inflection classes 
to overlap. Looking at Figure 2, we must be careful 
not to merge the 209th selected scheme, which 
models a portion of the er verbal inflection class, 
with the 1591st selected scheme, which models the 
ir  class—despite these schemes sharing two suf-
fixes, ido and idos. As the second challenge, the 
many small schemes which the search strategy 
produces act as distractive noise during clustering. 
While small schemes containing correct suffixes 
do exist, e.g. the 1591st scheme, the vast majority 
of schemes containing few stems and suffixes are 
incorrect collections of word final strings that hap-
pen to occur in corpus word forms attached to a 
small number of shared initial strings. ParaMor’s 
clustering algorithm should, for example, avoid 
placing Ø.s and Ø.ipo, respectively the 1st and 
1590th selected schemes, in the same cluster. Al-
though Ø.ipo shares the null suffix with the valid 
nominal scheme Ø.s, the string ‘ipo’ is not a mor-
phological suffix of Spanish. 

To form clusters of related schemes while ad-
dressing both the challenge of observing a lan-
guage’s paradigm structure as well as the challenge 
of merging in the face of many small incorrectly 
selected schemes, ParaMor adapts greedy hierar-
chical agglomerative clustering. We modify vanilla 
bottom-up clustering by placing restrictions on 
which clusters are allowed to merge. The first re-
striction helps ensure that schemes modeling dis-
tinct but overlapping inflection classes remain 
separated. The restriction: do not place into the 
same cluster suffixes which share no stem in the 
corpus. This restriction retains separate clusters for 
separate inflection classes because a lexeme’s stem 

Figure 2: The suffixes of some schemes selected 
by the initial search over a Spanish corpus of 
50,000 types. While some selected schemes 
contain large numbers of correct suffixes, such 
as the 1st, 2nd, 5th, 12th, 209th, and 1591st selected 
schemes; many others are incorrect collections 
of word final strings. 

 1) Ø.s 5501 stems 
 2) a.as.o.os 892 stems 

... 
 5) a.aba.aban.ada.adas.ado.ados.an.ando.   

ar.aron.arse.ará.arán.ó 25 stems 
... 

 12) a.aba.ada.adas.ado.ados.an.ando.ar.   
aron.ará.arán.e.en.ó 21 stems 

... 
 209) e.er.ida.idas.ido.idos.imiento.ió 9 stems 

... 
1590) Ø.ipo 4 stems 
1591) ido.idos.ir.iré 6 stems 
1592) Ø.e.iu 4 stems 
1593) iza.izado.izan.izar.izaron.izarán.izó 

... 8 stems 
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occurring with suffixes unique to that lexeme’s 
inflection class will not occur with suffixes unique 
to some other inflection class.  

Alone, requiring all pairs of suffixes in a cluster 
to occur in the corpus with some common stem 
will not prevent small bogus schemes, such as 
Ø.ipo from attaching to correct schemes, such as 
Ø.s—the ipo.s scheme contains two ‘stems,’ the 
word form initial strings ‘ma’ and ‘t’. And so a 
second restriction is required. This second restric-
tion employs a heuristic specifically adapted to 
ParaMor’s initial search strategy. As discussed in 
Section 2.1, in addition to many schemes which 
contain only few suffixes, ParaMor’s initial net-
work search also identifies multiple overlapping 
schemes containing significant subsets of the suf-
fixes in an inflection class. The 5th, 12th, and 209th 
selected schemes of Figure 2 are three such larger 
schemes. ParaMor restricts cluster merges heuristi-
cally by requiring at least one large scheme for 
each small scheme the cluster contains, where we 
measure the size of a scheme as the number of 
unique word forms it covers. The threshold size 
above which schemes are considered large is the 
second of ParaMor‘s two free parameters. The 
scheme size threshold is reused during ParaMor’s 
filtering stage. We discuss the unsupervised proce-
dure we use to set the size threshold when we pre-
sent the details of cluster filtering in Section 2.3. 

We have found that with these two cluster re-
strictions in place, the particular metric we use to 
measure the similarity of scheme-clusters does not 
significantly affect clustering. For the experiments 
we report here, we measure the similarity of 
scheme-clusters as the cosine between the sets of 

all possible stem-suffix pairs the clusters contain. 
A stem-suffix pair occurs in a cluster if some 
scheme belonging to that cluster contains both that 
stem and that suffix. With these adaptations, we 
allow agglomerative clustering to proceed until 
there are no more clusters that can legally be 
merged.  

2.3 Filtering of Inflection Classes 

With most valid schemes having found a safe ha-
ven in a cluster with other schemes modeling the 
same inflection class, we turn our attention to im-
proving scheme-cluster precision. ParaMor applies 
a series of filters, culling out unwanted scheme-
clusters. The first filter is closely related to the 
cluster restriction on scheme size discussed in Sec-
tion 2.2. ParaMor discards all unclustered schemes 
falling below the size threshold used during clus-
tering. Figure 3 graphs the number of Spanish clus-
ters which survive this size-based filtering step as 
the threshold size is varied. Figure 3 also contains 
a plot of the recall of unique Spanish suffixes as a 
function of this threshold. As the size threshold is 
increased the number of remaining clusters quickly 
drops. But suffix recall only slowly falls during the 
steep decline in cluster count, indicating ParaMor 
discards mostly bogus schemes containing illicit 
suffixes. Because recall is relatively stable, the ex-
act size threshold we use should have only a minor 
effect on ParaMor’s final morphological analyses. 
In fact, we have not fully explored the ramifica-
tions various threshold values have on the final 
morphological word segmentations, but have sim-
ply picked a reasonable setting, 37 covered word 
types. At this threshold, the number of scheme-
clusters is reduced by more than 98%, while the 
number of unique candidate suffixes in any cluster 
is reduced by more than 85%. Note that the initial 
number of selected schemes, 8339, falls outside the 
scale of Figure 3. 

Of the scheme-clusters which remain after size 
based filtering is complete, by far the largest cate-
gory of incorrect clusters contains schemes which, 
like the 1593rd selected scheme, shown in Figure 2, 
incorrectly hypothesize morpheme boundaries one 
or more characters to the left of the true boundary. 
To filter out these incorrectly segmented clusters 
we use a technique inspired by Harris (1955). For 
each initial string common to all suffixes in the 
cluster, for each scheme in the cluster, we examine 
the network scheme containing the suffixes formed 
by stripping the initial string from the scheme’s 

Figure 3: The # of clusters and their recall of 
unique Spanish suffixes as the scheme-cluster 
size cutoff is varied. The value of each function 
at the threshold we use in all experiments re-
ported in this paper is that of the larger symbol. 
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suffixes. We then measure the entropy of leftward 
trie characters of the stripped scheme. If the en-
tropy is large, then the character stripped scheme is 
likely at a morpheme boundary and the original 
scheme is likely modeling an incorrect morpheme 
boundary. This algorithm would throw out the 
1593rd selected scheme because the stems in the 
scheme a.ado.an.ar.aron.arán.ó end in a wide 
variety of characters, yielding high trie entropy, 
and signaling a likely morpheme boundary. 
Because we apply morpheme boundary filtering 
after we have clustered, the redundancy of the 
many schemes in the cluster makes this filter quite 
robust, letting us set the cutoff parameter as low as 
we like avoiding another free parameter. 

2.4 Segmentation and Evaluation 

Word segmentation is our final step of morpholo-
gical analysis. ParaMor’s current segmentation 
algorithm is perhaps the most simple paradigm 
inspired segmentation algorithm possible. Essen-
tially, ParaMor strips off suffixes which likely par-
ticipate in a paradigm. To segment any word, w , 
ParaMor identifies all scheme-clusters that contain 
a non-empty suffix that matches a word final string 
of w . For each such matching suffix, Cf ∈ , 
where C is the cluster containing f , we strip f  
from w  obtaining a stem t . If there is some sec-
ond suffix Cf ∈′  such that ft ′.  is a word form 
found in either of the training or the test corpora, 
then ParaMor proposes a segmentation of w  be-
tween t  and f . ParaMor, here, identifies f  and 
f ′  as mutually exclusive suffixes from the same 

paradigm. If ParaMor finds no complex analysis, 
then we propose w  itself as the sole analysis of the 
word. Note that for each word form, ParaMor may 
propose multiple separate segmentation analyses 
each containing a single proposed stem and suffix. 

To evaluate ParaMor’s morphological segmenta-
tions we follow the methodology of Morpho Chal-
lenge 2007 (Kurimo et al., 2007), a minimally su-
pervised morphology induction competition. Word 
segmentations are evaluated in Morpho Challenge 
2007 by comparing against hand annotated mor-
phological analyses. The correctness of proposed 
morphological analyses is computed in Morpho 
Challenge 2007 by comparing pairs of word forms 
which share portions of their analyses. Recall is 
measured by first sampling pairs of words from the 
answer analyses which share a stem or morphosyn-
tactic feature and then noting if that pair of word 
forms shares a morpheme in any of their proposed 

analyses. Precision is measured analogously, sam-
pling morpheme-sharing pairs of words from the 
proposed analyses and noting if that pair of words 
shares a feature in any correct analysis of those 
words.  

We evaluate ParaMor on two languages not 
examined during the development of ParaMor’s 
induction algorithms: English and German. And 
we evaluate with each of these two languages at 
two tasks:  

1. Analyzing inflectional morphology alone 
2. Jointly analyzing inflectional and derivational 

morphology.  

We constructed Morpho Challenge 2007 style 
answer keys for each language and each task using 
the Celex database (Burnage, 1990). The English 
and German corpora we test over are the corpora 
available through Morpho Challenge 2007. The 
English corpus contains nearly 385,000 types, 
while the German corpus contains more than 1.26 
million types. ParaMor induced paradigmatic 
scheme-clusters over these larger corpora by 
reading just the top 50,000 most frequent types. 
But with the scheme-clusters in hand, ParaMor 
segmented all the types in each corpus. 

We compare ParaMor to Morfessor v0.9.2 
(Creutz, 2006), a state-of-the-art minimally super-
vised morphology induction algorithm. Morfessor 
has a single free parameter. To make for stiff com-
petition, we report results for Morfessor at that pa-
rameter setting which maximized F1 on each sepa-
rate test scenario. We did not vary the two free pa-
rameters of ParaMor, but hold each of ParaMor’s 
parameters at a setting which produced reasonable 
Spanish suffix sets, see sections 2.1-2.2. Table 2 
contains the evaluation results. To estimate the 
variance of our experimental results we measured 
Morpho Challenge 2007 style precision, recall, and 
F1 on multiple non-overlapping pairs of 1000 fea-
ture-sharing words.  

Neither ParaMor nor Morfessor arise in Table 2 
as clearly superior. Each algorithm outperforms the 
other at F1 in some scenario. Examining precision 
and recall is more illuminating. ParaMor attains 
particularly high recall of inflectional affixes for 
both English and German. We conjecture that Pa-
raMor’s strong performance at identifying inflec-
tional morphemes comes from closely modeling 
the natural paradigm structure of language. Con-
versely, Morfessor places its focus on precision 
and does not rely on any property exclusive to in-
flectional (or derivational) morphology. Hence, 
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Morfessor attains high precision with reasonable 
recall when graded against an answer key contain-
ing both inflectional and derivational morphology. 

We are excited by ParaMor’s strong 
performance and are eager to extend our algorithm. 
We believe the precision of ParaMor’s simple 
segmentation algorithm can be improved by 
narrowing down the proposed analyses for each 
word to the most likely. Perhaps ParaMor and 
Morfessor’s vastly different strategies for 
morphology induction could be combined into a 
hybrid strategy more successful than either alone. 
And ambitiously, we hope to extend ParaMor to 
analyze languages with agglutinative sequences of 
affixes by generalizing the definition of a scheme.  
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CEP 66075-110

picanco.g@hotmail.com

Abstract

This paper reports the results of a re-
search project that experiments with cross-
tabulation in aiding phonemic reconstruc-
tion. Data from the Tupı́ stock was used,
and three tests were conducted in order to
determine the efficacy of this application:
the confirmation and challenging of a previ-
ously established reconstruction in the fam-
ily; testing a new reconstruction generated
by our model; and testing the upper limit
of simultaneous, multiple correspondences
across several languages. Our conclusion
is that the use of cross tabulations (imple-
mented within a database as pivot tables) of-
fers an innovative and effective tool in com-
parative study and sound reconstruction.

1 Introduction

In the past decade databases have transitioned from a
useful resource as a searchable repository of linguis-
tic tokens of some type, to an actual tool capable of
not only organising vast amounts of data, but execut-
ing complex statistical functions and queries on the
data it stores. These advances in database technol-
ogy complement those made in computational lin-
guistics, and both have recently begun to converge
on the domain of comparative and historical linguis-
tic research.

This paper contributes to this line of research
through describing the database project Base de Da-
dos para Estudos Comparativos – Tupı́ (BDEC-T)
(Database for Comparative Studies – Tupı́), which

is part of a larger research program investigating
the phonemic reconstruction of the Tupı́ languages.
The database component of the BDEC-T is designed
to capitalise on the functionality of cross-tabulation
tables, commonly known as pivot tables, a recent
innovation in the implementation SQL queries in
many database and spreadsheet applications. Pivot
tables can be described as an ‘object-oriented’ rep-
resentation of SQL statements in the sense that
columns of data are treated as objects, which al-
low the user to create multidimensional views of the
data by ‘dragging and dropping’ columns into var-
ious sorting arrangements. We have found that this
dynamic, multidimensional manipulation of the data
can greatly aid the researcher in identifying relation-
ships and correspondences that are otherwise diffi-
cult to summarize by other query types.

In this paper we report on the results of an ex-
periment that tests the applicability of pivot tables
to language data, in particular, the comparative and
historical reconstruction of the proto-phonemes in a
language family. In doing this, three tests were con-
ducted:

1. The confirmation and challenging of a ‘man-
ual’ and/or previously established reconstruc-
tion of a proto-language, Proto-Tupı́;

2. The testing of a new reconstruction generated
by our model, and checking it against a manual
reconstruction;

3. The testing the upper limit of simultaneous,
multiple correspondences across several lan-
guages.
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It is argued that this type of object-oriented im-
plementation of SQL statements using pivot tables,
offers two unique features: the first is the abil-
ity to check several one-to-one and one-to-many
correspondences simultaneously across several lan-
guages; and secondly, the ability to dynamically sur-
vey the language-internal distribution of segments
and their features.

The former feature represents a notable advan-
tage over other ‘manual’ methods, as the recon-
structed forms may be entered in the database as
proto-languages, which can be continually revised
and tested against all other languages. The latter fea-
ture offers the ability to check the language-internal
distribution of the (proto-)segments which will aid
in preventing possible cases of skewed occurrences,
as is shown below. Basic statistical analyses, such
as numbers of occurrences, can also be reported,
graphed and plotted by the pivot tables, thus provid-
ing further details of individual languages and proto-
languages, and, ultimately, a more quantitatively re-
liable analysis.

The net outcome of this is the presentation of a
practical methodology that is easily and quickly im-
plementable, and that makes use of a function that
many people already have with their database or
spreadsheet.

1.1 The Data

The Tupı́ stock of language families is concentrated
in the Amazon river basin of Brazil (and areas
of neighbouring countries) and comprises 10 fam-
ilies of languages: Arikém, Awetı́, Juruna, Mawé,
Mondé, Mundurukú, Puruborá, Ramarama, Tuparı́,
and Tupı́-Guaranı́ (Rodrigues 1958; revised in Ro-
drigues 1985), totaling approximately 64 languages.
Tupı́-Guaranı́ is the largest family with more than 40
languages, while the other families range from one
language (e.g. Awetı́, Puruborá) to six languages
(e.g. Mondé). From these, the Tupı́-Guaranı́ family
is the only family that has been mostly analized from
a historical point of view (e.g. Lemle 1971, Jensen
1989, Schleicher 1998, Mello 2000, etc.); there is
also a proposal for Proto-Tuparı́ (Tuparı́ family), by
Moore and Galúcio (1993), and Proto-Mundurukú
(Mundurukú family), by Picanço (2005). A prelim-
inary reconstruction at level of the Tupı́ stock was
proposed by Rodrigues (1995), in which he recon-

structs a list of 67 items for Proto-Tupı́ (see further
details below). The BDEC-T also includes these
reconstructed languages, as they allow us to com-
pare the results obtained from the database with the
results of previous, manual historical-comparative
studies.

2 The Application: Design and Method

The BDEC-T was initially developed as repository
database for language data from various Tupı́ lan-
guages described above, with the purpose of allow-
ing the user to generate lists of word and phoneme
correspondences through standard boolean search
queries or SQL statements. These lists aided the
researcher in exploring different correspondences in
the course of a proto-phoneme or word reconstruc-
tion. The BDEC-T is implemented within MS Ac-
cess 2003, which provides the user an interface for
entering language data that is then externally linked
to tab-delimited text files in order to preserve its
declarative format.1 This also allowed flexibility in
accessing the data for whatever purpose in the plat-
form or program of the researcher’s choosing.

At present, the BDEC-T for the Tupı́ stock con-
tains a glossary of 813 words and up to 3,785 entries
distributed across 15 Tupı́an languages. Approxi-
mately 18% of this 813-word list appear to have cog-
nates in the majority of languages entered so far, and
which can be used as reference for a reliable set of
robust cognates across the entire Tupı́ stock.2 This
number is continually increasing as more languages
are entered in the database, and at least 50% of the
glossary is filled up for all languages. The average
number of entries for each language varies consid-
erably as it depends largely on available sources;
yet, in general, the average is of approximately 250
words per language (i.e. about 30%).

1The choice of using a proprietary database such as MS Ac-
cess is mostly a practical one: after considering various fac-
tors such as programming, maintenance, distribution and other
practical issues, we decided that a database of this type should
be useable by researchers with little or no programming expe-
rience, as it is fairly easy to learn and modify (see also Bre-
denkamp, Sadler and Spencer (1998: 149) for similar argu-
ments). It should also be noted that all the procedures outlined
here are implementable in open source database and spreadsheet
programs such as OpenOffice Calc and Base (vers. 2.3).

2There is a separate function in the BDEC-T for assessing
and tracking cognates and how they map to semantic sets (see
Peterson 2007a for details).
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2.1 Data entry and Segmentation
Each of the 65 languages and 4 proto-languages in
BDEC-T is associated with its own data entry form.
Each data entry form is divided into three main
parts:

1. The word entry fields where the word for that
language is entered (along with two other op-
tional features);

2. The comparison viewer that contains fields
which simultaneously display that same word
in the all the other languages in the database;

3. The segmentation section which contains an ar-
rangement fields for recording segment data.

The structure of the stored data is straightforward:
the data entered in these forms is stored in a master
table where all of the languages are represented as
columns. Glosses are the rows, where each gloss
is assigned a unique, autogenerated number in the
master record when it is entered into the database.
This serves as the primary key for all the translations
of that gloss across all of the languages.

The third component of the language data entry
form, the segmentation section (Fig. 1), contains a
linear arrangement of ten columns, S1 to S10, and
three rows, each cell of which corresponds to a field.
The first row of the ten columns are fields where the
user can enter in the segmentation of that particu-
lar word, which contains the segments themselves.
The second and third rows correspond to optional
features (F) that are associated with that segment.
In this particular version F1 is unused, while F2
encodes syllable structure (i.e. ‘O’ onset, ‘N’ nu-
cleus).3

For example, Figure 1 is a screenshot of a portion
of the segmentation section in the language data en-
try form for Mundurukú. The word being entered is
‘moon’, and the word in Mundurukú is káSi. Seg-
ment slots S3 to S6 are used to segment the word.

As a convention, a word will typically be seg-
mented starting with the S3 slot, and not with S1.
The reason for this is to allow for at least two seg-
ment fields (S1 and S2) to accommodate cognates in

3There is no restriction on the kind of information that can
be stored in the two Feature fields. However, in order for them
to be useful, they would need to contain a limited set of compa-
rable features across all the languages.

Figure 1: Screenshot of a portion of the Segmenta-
tion section in the Mundurukú Data entry form.

Segmentation slot S1 S2 S3 S4 S5
Avá-Canoeiro 1 t 1
Guajá w 1 t 1
Araweté i w i t 1

Table 1: Segmentation of ‘wind’

other languages that have segments that occur before
S3, but are entered into the database at a later time.
This is done in order to maintain a consistency be-
tween correspondences, regardless of what slot they
are in the data base. In other words, we need to be
prepared to handle cases that are shown in Tables 1
and 2 above. If the Avá Canoeiro word for ‘wind’ is
entered first in Table 1, it is prudent to have segment
slots available for languages that are entered later
that may have additional segments occurring before.
Guajá and Araweté were entered into the database
after Avá Canoeiro, and both have additional seg-
ments. Keeping S1 and S2 available as a general
rule can accommodate these cases.

Our purpose in designing the segmentation com-
ponent of the form this way was to give the re-
searcher complete control over how words are seg-
mented. This also allows the researcher to cross-
check their segmentations in real time with those in
the other languages already in the database, which
can be done in the comparison viewer (not shown
due to space limitations). This is essential for more
complicated cases, such as those in Table 2, where
there are not only word edge mismatches, but also
gaps and (grammaticalized) morphological bound-
aries that need to be properly corresponded. The
significance of this will be demonstrated below.4

4Cases where gaps result in languages already entered
would require the user to go back to the other languages entered
and re-segment them to include the corresponding gap. This
would be the case if 1ap was entered without the gap in S3 be-
fore the other languages in Table 2. This is facilitated within the
database: multiple language forms can be open simultaneously,
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Segmentation slot S1 S2 S3 S4 S5
Avá-Canoeiro 1 a p
Guajá u Ü 1
Mbyá h – u P 1
Kamayurá h 1 P 1 p

Table 2: Segmentation of ‘arrow’

The data entered in the segmentation section of
a language’s data entry form is stored in language-
specific tables, which has columns for each of the
ten segments, and columns recording the two op-
tional features associated with that segment. All
of the segment data in the language-specific tables
are coordinated by the primary key generated and
kept in the master table. The next subsection de-
scribes how this segmental data can be used in two
specific ways: 1) to track correspondences between
languages for a particular cognate or segment slot;
and 2), for monitoring the language-internal distri-
bution of segments. We propose that this is achieved
through using cross-tabulations of the segment data
recorded in each column, and outline a practical im-
plementation of this is using pivot tables.

2.2 Cross-tabulation: ‘Pivot tables’

Access 2003 includes a graphical implementation
of SQL statements in the form of cross tabulations,
or pivot tables, which provide the user an interface
with which they can manipulate multiple columns
of data to create dynamic, multi-dimensional orga-
nizations of the data. There are three basic reasons
for organizing data into a pivot table, all of which
are relevant to the task at hand: first, to summa-
rize data contained in lengthy lists into a compact
format; secondly, to find relationships within that
data that are otherwise hard to see because of the
amount of detail; and thirdly, to organize the data
into a format that is easy to chart. Pivot tables are dy-
namic because columns of data are treated as objects
that can be moved, or literally ‘swapped’ in, out our
around in relation to other columns. They are multi-
dimensional because column data can be organized
along either axis, yielding different ‘snapshots’ of
the data. It is this kind of functionality that will
be capitalised on in examining correspondences be-

or switched between by the master switchboard.

tween columns of segment data (S1-10) across any
number of languages in the database.

A cross tabulation displays the joint distribution
of two or more variables. They are usually presented
as a contingency table which describes the distribu-
tion of two or more variables simultaneously. Thus,
cross tabulation allows us to examine frequencies
of observations that belong to specific categories on
more than one variable. By examining these fre-
quencies, we can identify relations between cross-
tabulated variables. Typically, only variables with a
relatively small number of different meaningful val-
ues are cross tabulated. We suggest that phonemes
fit this criteria, as there is a finite and relatively low
number of total unique phonemes that can ever be
potentially cross tabulated.

For example, Figure 2 (below) is a screen shot of
a pivot table generated in the BDEC-T that shows
the distribution of word and morpheme-initial voice-
less stops in Mundurukú in relation to those in the
same position for three other languages: Karitiana,
Gavião and Karo. This was achieved in the follow-
ing way: as described above, we assume that the
word-initial segment for most words is S3. The S3
column for Mundurukú is then taken to the ‘drop
field’ (shaded grey), where all of the values in the
S3 of Mundurukú become dependent variables. The
S3 columns for Karitiana, Gavião and Karo become
independent variables, which allow us to monitor
the distribution of voiceless stops in these languages
in relation to the S3 segments in Mundurukú. In
essence, Mundurukú S3 becomes a sort function on
any other S3 columns to the right of it.5

Where this method becomes effective is when
we ‘swap’ out Mundurukú S3 and replace it with
Gavião S3, which is done by pulling the column
header and placing it into the grey ‘drop field’.
This is shown in Figure 3 below. What Figure 3
immediately demonstrates is the asymmetric cor-
respondence between Mundurukú and Gavião for
S3: broadly speaking, the correspondences between
Mundurukú and Karitiana, Gavião and Karo are
more general, whereas the same correspondences for

5Given space considerations, the data in these Tables are just
samples - the voiceless stop series was picked from a separate
list which acts as a filter on the segments in the Mundurukú S3.
Cells where there is a gap ‘-’ do not represent a gap or lack of
correspondence, but rather the word for that language possibly
hasn’t been segmented yet (gaps are represented by ‘∅’)
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Figure 2: Screenshot of a pivot table for voiceless
stops in Mundurukú (shaded) corresponding with
Karitiana, Gavião and Karo in BDEC-T.

Figure 3: Screenshot of a pivot table for voice-
less stops in Gavião (shaded) corresponding with
Mundurukú, Karitiana and Karo in BDEC-T.

Gavião are more restricted.
There is no restriction on the number of indepen-

dent or dependent variables, and this can be used to
investigate the language-internal distribution of seg-
ments. Figure 4 shows how the segment data in S3
and S4 from the same language can be used in a
pivot table, allowing the user to track the distribu-
tion of certain word or morpheme-initial segments
and the segments that follow them. This arrange-
ment gives us a snapshot of consonant-vowel pat-
terns in Karo, where S3 has been additionally fil-
tered to show the distribution of vowels that follow
the palatals [c] and [j].

One important advantage to this arrangement of
data and the use of pivot tables is the potential
for tracking multiple correspondences across several
languages simultaneously. So far, this is only lim-
ited by processor speed and viewing space. We have
tested up to five segment correspondences (i.e. S3-8)
across three languages, or one correspondence (i.e.

Figure 4: Screenshot of a pivot table for language-
internal distribution of [c] and [j] morpheme and
syllable-initially in Karo.

S3) for as many as ten languages simultaneously.
Given that most words in the Tupı́ language family
have on average three to five segments, the former
of these amounts to the ability of corresponding the
segments of entire words simultaneously. Consider-
ing that any segment column can be swapped in and
out dynamically, this adds a substantial amount of
power in tracking single correspondences simultane-
ously across a variety of languages, proto-languages,
and potentially even entire families.

Various statistics can be applied to these pivot ta-
bles, where the results can be graphed and exported.
The analyst may now take these results and proceed
with the appropriate detailed investigation, an exam-
ple of which is presented in the following sections.

3 Proto-Tupı́ and Mundurukú

To demonstrate the efficacy of this approach, we
show now the results obtained with the BDEC-T and
the use of pivot tables, and compare them with the
results of a previously established set of sound corre-
spondences and reconstructed proto-phonemes. For
this, we chose Proto-Tupı́, for which Rodrigues
(1995) reconstructed 67 lexical proto-forms and es-
tablished a consonant inventory composed of four
complex series of stops, divided into plain, labi-
alized (still uncertain), palatalized, and glottalized
(ejectives), shown Table 3.

Rodrigues based his analysis on various syn-
chronic reflexes found in several Tupı́an languages,
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Plain p t, ţ Ù k
Labialized (pw) w (kw)
Palatalized tj kj

Glottalized pP, (pPw) tP, ţP ÙP kP, (kPw)

Table 3: Proto-Tupı́ stop series (Rodrigues 1995)

Rodrigues BDEC-T Rodrigues BDEC-T
P-T Mund. P-T Mund. P-T Mund. P-T Mund.

*p p *p p *Ù S *Ù S

∅ Ù Ù

ps Ã Ã

p/b

*pP b *pP b *ÙP t *ÙP t

p d d

*t n *t n *ţ Ã *ţ Ã

s Ù, Ã

Ù S S

t/n

*tP d *tP d *P P *P P

Ã ∅ *VPV V
˜

t/d

*k k *k k *kP P *kP P

S

Table 4: The correspondence sets as proposed by
Rodrigues (1995) compared with those generated by
the BDEC-T.

including Mundurukú. Here we compare the cor-
respondence sets postulated by Rodrigues and com-
pare them to those generated by the BDEC-T. The
results of the pivot table analysis are shown in Table
4. Note that the BDEC-T predicts a larger set of
correspondences than those posited by Rodrigues.
However, there are a few cases where both lists
agree; for example, for Proto-Tupı́ *Ù which corre-
sponds to S, Ù and Ã in both cases.

Another important result obtained with the
BDEC-T is the possibility of relating other types of
segmental information. For example, Mundurukú
exhibits a feature that makes it distinct from any
other Tupı́an language: it is the only Tupı́an lan-
guage known to make a phonological contrast be-
tween modal and creaky (laryngealised) vowels
(Picanço 2005). Mundurukú phonation types are
crucial for any reconstruction at the stock level –

S1 S2 S3 S4 S5 S6
Proto-Tupı́: *upiPa ∅ u p i P a
Mundurukú: topsa

˜
t o ps ∅ ∅ a

˜Mekéns: upia ∅ u p i ∅ a

Table 5: *(C)VPV corresponding with (C)V
˜

especially in the case of the ejectives proposed by
Rodrigues – but this was completely ignored in his
proposal. As shown in Table 5 (on the following
page), some Proto-Tupı́ sequences *(C)VPV yielded
(C)V

˜
sequences (where the tilde underneath a vowel

marks creaky voice on the vowel).
A comparison that considers only a segment-

to-segment correspondence will mistakenly posit
the correspondence set *P/∅ for both Mundurukú
and Sakirabiá (Mekéns, Tuparı́ family), when the
correspondence is in fact *P/∅ for Sakirabiá but
*(C)VPV/(C)V

˜
for Mundurukú. This is true for

Rodrigues’ analysis, which mistakenly established
that “in Mundurukú [the glottal stop] has dropped”
(1995: 6). The BDEC-T, on the other hand, allows
us to compare features to segments, and to examine
various correspondences of segments in a sequence.
This is a particular advantage as there will be no
missing information. With this, this unique property
of Mundurukú, specifically creaky voice, can be ex-
plained historically in a principled way.

3.1 Language-internal distribution

A major feature offered by the BDEC-T is the pos-
sibility of examining the distribution of segments
within the same language, which allow us to bet-
ter capture the proper environment for correspon-
dences between languages. As Picanço (2005)
notes, phonotactic restrictions may, in many cases,
be gaps left behind by historical changes. Table 6
provides an example of the distribution of the pairs
plain-glottalized stops. At least in the case of *p
versus *pP, the only occurrences of the latter is pre-
ceding the high central vowel *1; in this environ-
ment, both consonants appear to contrast as *p also
occurs before *1. In the case of the coronal pairs
*t/*tP and *Ù/*ÙP, there is no occurrence of the first
pair before *1, whereas *Ù/*ÙP occur mostly in this
environment. As for *ţ versus *ţP, these also ap-
pear to be in complementary distribution. By using
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p e pP 1 t ã tP a
1 a i
i ı̃ u
o ũ

u
Ù 1 ÙP 1 ţ u ţP a

a 1

Table 6: Language-internal distribution of segments

pivot tables, the analyst is able to easily monitor and
track distributional gaps or contrasts and so provide
a more systematic diachronic analysis.

Another case which illustrates the applicabil-
ity of pivot tables in arranging segment data con-
cerns the vowels. Rodrigues’ comparison pro-
duced vowel correspondences between Proto-Tupı́
and Mundurukú. Again we compare his findings
with those detected by the database: Table 7 com-
pares the oral vowel correspondences as in Ro-
drigues (1995) with those obtained by the pivot ta-
bles in the BDEC-T, supplemented by the total of
words with the respective correspondence.

In Rodrigues’ analysis, the correspondences be-
tween proto-Tupı́ oral vowels and their reflexes in
Mundurukú are straightforward: it is a one-to-one
correspondence. BDEC-T, however, challenges this
analysis as there appear to be other correspondences
that have not been observed, with the exception of
the correspondence set *e/e, where both methods
achieved the same results. Rodrigues’ intuitions are,
nonetheless, relatively close to what the database
produced: the largest number of correspondences
match the ones posited by Rodrigues, indicating that
a ‘manual’ analysis, although valid, still has the po-
tential to miss details that the database captures.

In sum, we employed the function of cross tab-
ulations in the form of pivot tables to arrange seg-
mented data. The object oriented function of pivot
tables allowed us to dynamically arrange segment
data which aided in tracking phonemic and featural
correspondences. This was tested against a manual
analysis of the data and it was shown to confirm, re-
vise and produce new results.

Rodrigues BDEC-T
P-T Mundurukú P-T Mundurukú Total

∅ a 1

*a a *a ∅ 1

a 11

@̃ 1

õ 1

a
˜

2

*e e *e e 5

*i i *i i 2

∅ 2

*1 i *1 @ 1

i 19

i
˜

3

j 1

*o 1 *o ∅ 1

@́/@ 1

o 2

*u o *u o 7

õ 1

i 1

Table 7: Rodrigues’ (1995) oral vowel correspon-
dence sets compared with those generated by the
BDEC-T.

4 Conclusion

The use of spreadsheets and databases is well-
established in linguistic research. However, as far
as we know, the BDEC-T represents the first at-
tempt at harnessing the functionality of pivot ta-
bles and cross-tabulation in historical linguistics. On
this note, the application computational procedures
in the study of sound change and comparison have
made notable advances in the past decade. Rele-
vant to this study, systems such ALINE, a feature-
based algorithm for measuring phonetic similarity,
are capable of automating segmentation and quan-
titatively calculating cognate probabilities without
resorting to a table of systematic sound correspon-
dences (Kondrak 2002). These are valuable mod-
els which test many long-standing hypotheses on the
nature of sound change and methods for investigat-
ing this. While not offering an automated algorithm
of this type, we chose to keep segmentation manual
in order to maintain accuracy and to make adjust-
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ments where needed in the S1-S10 segmentations
made in the languages. This also offers a measure of
accuracy, as the pivot tables will only yield invalid
results if the segments aren’t aligned properly.6

Although not discussed in this paper, we have
promising results from using the optional feature
fields (F1 and F2) to generate syllable template to
accompany the phonemic correspondences gener-
ated by the pivot tables. Also, the application of
pivot tables in the BDEC-T has also had success in
tabulating mappings between cognate and semantic
sets in the Tupı́an languages (Peterson 2007a). Ul-
timately, we would like to explore innovative visu-
alizing techniques to display the interdependent re-
lationships between phonemes at various stages of
reconstruction (through the proto-languages in the
database), and the languages whose inventories they
belong to. Conceptually, this would give us a (scal-
able) two- or three-dimensional plots or ‘webs’ of
correspondences across the languages, perhaps im-
plemented by recent visualization techniques such
as treemaps or ConeTrees (Fekete & Plaisant 2002).

The purpose of the BDEC-T is ultimately to com-
plement other current computational approaches to
the domain of historical and comparative research
by offering a practical level of interactivity and pro-
ductivity in a research tool. Where automation is not
necessary, the BDEC-T offers a database model that
effectively enhances the functionality of the kinds of
databases that are already widely used.
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Abstract

We apply algorithms for the identification
of cognates and recurrent sound correspon-
dences proposed by Kondrak (2002) to the
Totonac-Tepehua family of indigenous lan-
guages in Mexico. We show that by combin-
ing expert linguistic knowledge with com-
putational analysis, it is possible to quickly
identify a large number of cognate sets
within the family. Our objective is to pro-
vide tools for rapid construction of com-
parative dictionaries for relatively unfamiliar
language families.

1 Introduction

Identification of cognates and recurrent sound cor-
respondences is a component of two principal tasks
of historical linguistics: demonstrating the related-
ness of languages, and reconstructing the histories
of language families. Manually compiling the list of
cognates is an error-prone and time-consuming task.
Several methods for constructing comparative dic-
tionaries have been proposed and applied to specific
language families: Algonquian (Hewson, 1974), Yu-
man (Johnson, 1985), Tamang (Lowe and Maza-
udon, 1994), and Malayo-Javanic (Oakes, 2000).
Most of those methods crucially depend on pre-
viously determined regular sound correspondences;
each of them was both developed and tested on a
single language family.

Kondrak (2002) proposes a number of algorithms
for automatically detecting and quantifying three
characteristics of cognates: recurrent sound corre-
spondences, phonetic similarity, and semantic affin-

ity. The algorithms were tested on two well-studied
language families: Indo-European and Algonquian.
In this paper, we apply them instead to a set of lan-
guages whose mutual relationship is still being in-
vestigated. This is consistent with the original re-
search goal of providing tools for the analysis of
relatively unfamiliar languages represented by word
lists. We show that by combining expert linguistic
knowledge with computational analysis, it is possi-
ble to quickly identify a large number of cognate sets
within a relatively little-studied language family.

The experiments reported in this paper were per-
formed in the context of the Upper Necaxa Totonac
Project (Beck, 2005), of which one of the authors is
the principal investigator. Upper Necaxa is a seri-
ously endangered language spoken by around 3,400
indigenous people in Puebla State, Mexico. The pri-
mary goal of the project is to document the language
through the compilation of an extensive dictionary
and other resources, which may aid revitalization
efforts. One aim of the project is the investigation
of the relationship between Upper Necaxa Totonac
and the other languages of the Totonac-Tepehua lan-
guage family, whose family tree is not yet well-
understood.

The paper is organized as follows. In Section 2,
we provide background on the Totonac-Tepehua
family. Section 3 describes our data sets. In Sec-
tion 4, we outline our algorithms. In Section 5,
we report on a pilot study involving only two lan-
guages. In Section 6, we present the details of our
system that generates a comparative dictionary in-
volving five languages. Section 7 discusses the prac-
tical significance of our project.
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2 Totonac-Tepehua Language Family

The Totonac-Tepehua language family is an isolate
group of languages spoken by around 200,000 peo-
ple in the northern part of Puebla State and the
adjacent areas of Veracruz and Hidalgo in East-
Central Mexico (Figure 1). Although individual lan-
guages have begun to receive some attention from
linguists, relatively little is known about the fam-
ily as whole: recent estimates put the number of
languages in the group between 14 and 20, but
the phylo-genetic relations between languages re-
mains a subject of some controversy. The family
has traditionally been divided into two coordinate
branches: Tepehua, consisting of three languages
(Pisa Flores, Tlachichilco, and Huehuetla), and To-
tonacan. The Totonacan branch has in turn been di-
vided into four sub-branches: Misantla, Lowlands or
Papantla, Sierra, and Northern (Ichon, 1973; Reid,
1991), largely on the impressions of missionaries
working in the area. Some dialectological work has
cast doubt on the division between Northern and
Sierra (Arana, 1953; Rojas, 1978), and groups them
together into a rather heterogeneous Highland To-
tonac, suggesting that this split may be more recent
than the others. However, the experience of linguists
working in Totonacan communities, including one
of the authors, indicates that – judged by the crite-
rion of mutual intelligibility – there are likely to be
more, rather than fewer, divisions needed within the
Totonacan branch of the family.

Although Totonac-Tepehua shows a good deal
of internal diversity, the languages that make it up
are easily recognizable as a family. Speakers of
Totonacan languages are aware of having a com-
mon historical and linguistic background, and there
are large numbers of easily recognizable cognates
and grammatical similarities. A typical Totonacan
consonantal inventory, that of the Papantla vari-
ant (Levy, 1987), is given in Table 1. Most lan-
guages of the family share this inventory, though one
of the languages used for this study, Upper Necaxa,
has undergone a number of phonological shifts that
have affected its consonantal system, most notably
the collapse of the voiceless lateral affricate with the
voiceless lateral fricative (both are now fricatives)
and the lenition of the uvular stop to a glottal stop,
a process that has also affected at least some of the

Figure 1: Totonac-Tepehua language area indicating
traditional taxonomic divisions.

Tepehua languages. In Upper Necaxa, this lenition
has also resulted in the creation of ejective frica-
tives from historical stop-uvular stop clusters (Beck,
2006). Languages also differ as to whether the
back-fricative consonant is /h/ or /x/, and some lan-
guages have evolved voiceless /w/ and/or voiceless
/y/ phonemes in word-final position. The phonemic
status of the glottal stop is an open question in sev-
eral of the languages.

Plosive p t k q
Affricate ţ tì Ù
Fricative s ì S h
Approximant w l j
Nasal m n ð

Table 1: Illustrative Totonac-Tepehua consonantal
inventory.

In terms of vocalic inventory, it was previously
thought that all Totonacan languages had three-
vowel systems (/a/, /i/, /u/), and that they also made
distinctions for each vowel quality in vowel length
and laryngealization. It has since come to light
that at least some languages in the Sierra group
do not make length distinctions (in at least one of
these, Olintla, it appears that short vowels have de-
veloped into a phonemic schwa), and that others
do not distinguish laryngealized vowels. A number
of languages, including Upper Necaxa and some of
the languages adjacent to it, have developed a five-
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vowel system; the sounds /e/ and /o/ are recognized
in the orthographies of several languages of the fam-
ily even where their phonemic status is in doubt.

3 Data

There are five languages included in this study:
Tlachichilco (abbreviated T), Upper Necaxa (U),
Papantla (P), Coyutla (C), and Zapotitlán (S).
Tlachichilco belongs to the Tepehua branch; the
other four are from the Totonacan branch. Zapotitlán
is traditionally considered to belong to the Sierra
group of Totonacan, whereas the status of Coyutla
is uncertain. The location of each language is indi-
cated by grey lozenges on Figure 1.

The data comes from several diverse sources. The
Tlachichilco Tepehua data are drawn from an elec-
tronic lexical database provided to the authors by
James Watters of the Summer Institute of Linguis-
tics. The data on Upper Necaxa was collected by
Beck in the communities of Patla and Chicontla –
located in the so-called Northern Totonac area –
and data from the Papantla area was provided by
Paulette Levy of the National Autonomous Univer-
sity of Mexico based on her field work in the vicin-
ity of the city of Papantla. Data on the remain-
ing two languages were provided by Herman As-
chmann. The material from Coyutla was drawn from
a word list compiled for Bible translation and the
Zapotitlán material has been published in dictionary
form (Aschmann, 1983). The glosses of Totonac
forms for all the languages are in Spanish.

The dictionaries differ significantly in format and
character encoding. The Tepehua and Coyutla dic-
tionaries are in a file format and character encoding
used by the Shoebox program. The Upper Necaxa
and the Zapotitlán dictionaries are in their own for-
mats and character encodings. The Papantla dictio-
nary is in the RTF format. The dictionaries also dif-
fer in orthographies used. For example, while most
dictionaries use k to represent a voiceless velar stop,
the Coyutla dictionary uses c.

4 Methods

In this section, we briefly outline the algorithms em-
ployed for computing three similarity scores: pho-
netic, semantic and correspondence-based. Our cog-
nate identification program integrates the three types

of evidence using a linear combination of scores.
The algorithms are described in detail in (Kondrak,
2002).

The phonetic similarity of lexemes is computed
using the ALINE algorithm, which assigns a similar-
ity score to pairs of phonetically-transcribed words
on the basis of the decomposition of phonemes into
elementary phonetic features. The principal compo-
nent of ALINE is a function that calculates the sim-
ilarity of two phonemes that are expressed in terms
of about a dozen multi-valued phonetic features. For
example, the phoneme n, which is usually described
as a voiced alveolar nasal stop, has the following
feature values: Place = 0.85, Manner = 0.6, Voice =
1, and Nasal = 1, with the remaining features set to
0. The numerical feature values reflect the distances
between vocal organs during speech production, and
are based on experimental measurements. The pho-
netic features are assigned salience weights that ex-
press their relative importance. The default salience
values were tuned manually on a development set
of phoneme-aligned cognate pairs from various re-
lated languages. The overall similarity score is the
sum of individual similarity scores between pairs of
phonemes in an optimal alignment of two words.
The similarity value is normalized by the length of
the longer word.1

For the determination of recurrent sound corre-
spondences we employ the method of inducing a
translation model between phonemes in two word
lists. The idea is to relate recurrent sound correspon-
dences in word lists to translational equivalences in
bitexts. The translation model is induced by com-
bining the maximum similarity alignment with the
competitive linking algorithm of Melamed (2000).
Melamed’s approach is based on the one-to-one as-
sumption, which implies that every word in the bi-
text is aligned with at most one word on the other
side of the bitext. In the context of the bilingual
word lists, the correspondences determined under
the one-to-one assumption are restricted to link sin-
gle phonemes to single phonemes. Nevertheless, the
method is powerful enough to determine valid cor-
respondences in word lists in which the fraction of
cognate pairs is well below 50%.

1Another possibility is normalization by the length of the
longest alignment (Heeringa et al., 2006).
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Because of the lack of a Totonac gold standard,
the approach to computing semantic similarity of
glosses was much simpler than in (Kondrak, 2002).
The keyword selection heuristic was simply to pick
the first word of the gloss, which in Spanish glosses
is often a noun followed by modifiers. A complete
gloss match was given double the weight of a key-
word match. More complex semantic relations were
not considered. In the future, we plan to utilize a
Spanish part-of-speech tagger, and the Spanish por-
tion of the EuroWordNet in order to improve the ac-
curacy of the semantic module.

5 Pairwise Comparison

The first experiment was designed to test the effec-
tiveness of our approach in identifying recurrent cor-
respondences and cognates across a single pair of
related languages. The data for the experiment was
limited to two noun lists representing Upper Necaxa
(2110 lexemes) and Zapotitlán (763 lexemes), which
were extracted from the corresponding dictionaries.
Both correspondences and cognates were evaluated
by one of the authors (Beck), who is an expert on the
Totonac-Tepehua language family.

5.1 Identification of correspondences

In the first experiment, our correspondence identi-
fication program was applied to Upper Necaxa and
Zapotitlán. Simple correspondences were targeted,
as complex correspondences do not seem to be very
frequent among the Totonac languages. The input
for the program was created by extracting all pairs
of noun lexemes with identical glosses from the two
dictionaries. The resulting list of 865 word pairs was
likely to contain more unrelated word pairs than ac-
tual cognates.2

The results of the experiment were very encour-
aging. Of the 24 correspondences posited by the
program, 22 were judged as completely correct,
while the remaining two (Ù:ţ and tì:ţ). were
judged as “plausible but surprising”. Since the pro-
gram explicitly list the word pairs from which it
extracts correspondences, they were available for
a more detailed analysis. Of the five pairs con-
taining Ù:ţ, one was judged as possibly cognate:

2Some lexemes have multiple glosses, and therefore may
participate in several word pairs.
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Figure 2: Cognate identification precision on the To-
tonac test set.

Upper Necaxa [Ùastun] and Zapotitlán [aPaţastun]
‘rincón, esquina’. Both word pairs containing tì:ţ
were judged as possibly cognate: [litìan]/[liţeX]
‘favor’, and [tìaqtìa]/[ţaţa] ‘elote’. Both unex-
pected correspondences were deemed to merit fur-
ther linguistic investigation.

5.2 Identification of cognates

In the second experiment, our cognate identification
program was run on the vocabulary lists containing
the Upper Necaxa and Zapotitlán nouns. A large list
of the candidate word pairs with their glosses was
sorted by the total similarity score and evaluated by
Beck. The cognation judgments were performed in
order, starting from the top of the list, until the pro-
portion of false positives became too high to justify
further effort. At any point of the list, we can com-
pute precision, which is the ratio of true positives (in
this case, cognates) to the sum of true positives and
false positives (all word pairs up to that point).

The cognate decisions were based on the follow-
ing principles. The pairs could be judged as true
positives only if the word roots were cognate; shar-
ing an affix was not deemed sufficient. Compound
words were counted as cognates if any of the mul-
tiple roots were related; for example, both snow-
storm/storm and snowstorm/snow would be accept-
able. The rationale is that a person compiling an
etymological dictionary would still want to know
about such pairs whether or not they are eventually
included as entries in the dictionary.

In total, 711 pairs were evaluated, of which 350
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were classified as cognate, 351 as unrelated, and
10 as doubtful. 18 of the positive judgments were
marked as loans from Spanish. In Figure 2, the
boxes correspond to the precision values for the
seven sets of 100 candidate pairs each, sorted by
score; the curve represents the cumulative precision.
For example, the percentage of actual cognates was
86.9% among the first 300 word pairs, and 72.4%
among the word pairs numbered 201–300. As can
be seen, almost all the pairs in the beginning of the
file were cognates, but then the number of false pos-
itives increases steadily. In terms of semantic sim-
ilarity, 30% of the evaluated pairs had at least one
gloss in common, and further 7% shared a keyword.
Among the pairs judged as cognate, the respective
percentages were 49% and 11%.

6 Multiwise comparison

When data from several related languages is avail-
able, the challenge is to identify cognate sets across
all languages. Our goal was to take a set of diversely
formatted dictionaries as input, and generate from
them, as automatically as possible, a basic compara-
tive dictionary.

Our system is presented graphically in Figure 3.
This system is a suite of Perl scripts and C++ pro-
grams. With the exception of the input dictionary
converters, the system is language-family indepen-
dent. With little change, it could be used to deter-
mine cognate sets from another language family. In
this section, we describe the four stages of the pro-
cess: preprocessing, identification of cognate pairs,
extraction of cognate sets, and postprocessing.

6.1 Preprocessing

The first step is to convert each input dictionary from
its original form into a word list in a standardized
format. Because of the differences between dictio-
naries, separate conversion scripts are required for
each language. The conversion scripts call on a
number of utilities that are maintained in a shared
library of functions, which allows for the relatively
easy development of new conversion scripts should
additional dictionaries become available.

Each line in the resulting language files contains
the phonetic form of the lexeme expressed in a uni-
form encoding, followed a gloss representing the

Figure 3: Flowchart illustrating conversion system
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meaning of the lexeme. Long glosses are truncated
to thirty characters, with sub-glosses separated by
semicolons. For the present study, the conversion
scripts also removed all dictionary entries that were
known not to be nouns.

For the purpose of uniform encoding of phonetic
symbols, we adopted the ALINE scheme (Kondrak,
2002), in which every phonetic symbol is repre-
sented by a single lowercase letter followed by zero
or more uppercase letters. The initial lowercase let-
ter is the base letter most similar to the sound rep-
resented by the phonetic symbol. The remaining
uppercase letters stand for the phonetic features in
which the represented sound differs from the sound
defined by the base letter. For example, the phoneme
[S], which occurs at the beginning of the word shy,
is represented by ‘sV’, where V stands for palato-
alveolar.

6.2 Identification of cognate pairs
The main C++ program computes the similarity of
each pair of words across the two languages using
the methods described in Section 4. A batch script
runs the comparison program on each pair of the dic-
tionary lists. With n input dictionaries, this entails(n
2

)
pairwise comparisons each resulting in a sepa-

rate list of possible cognate pairs. These lists are
then sorted and trimmed to include only those pairs
that exceeded a certain similarity threshold.

The batch script has an option of selecting a sub-
set of dictionary pairs to process, which was found
useful in several cases. For example, when we dis-
cover a newer version of a dictionary, or update
an individual dictionary conversion script, only 4,
rather than all 10 lists need to be re-generated.

6.3 Extraction of cognate sets
The output from processing individual pairs of word
lists must be combined in order to extract cognate
sets across all languages. The combination script
generates an undirected weighted graph in which
each vertex represents a single lexeme. The source
language of each lexeme is also stored in each ver-
tex. Links between vertices correspond to possi-
ble cognate relationships identified in the previous
stage, with the link weights set according to the sim-
ilarity scores computed by the comparison program.

The algorithm for extracting cognate sets from

Figure 4: A sample judgment screen.

the graph is the following. First, we find the con-
nected components within the graph by applying the
breadth-first search algorithm. The components are
added to a queue. For each component in the queue,
we exhaustively generate a list of connected sub-
graphs in which each vertex corresponds to a dif-
ferent source language. (In the present study, the
minimum size of a subgraph was set to three, and
the maximum size was five, the total number of lan-
guages.) If no such subgraphs exist, we discard the
component, and process the next component from
the queue. Otherwise, the subgraph with the max-
imum cumulative weight is selected as the most
likely cognate set. We remove from the component
the vertices corresponding to that cognate set, to-
gether with their incident edges, which may cause
the component to lose its connectivity. We identify
the resulting connected component(s) by breadth-
first search, and place them at the end of the queue.
We repeat the process until the queue is empty.

6.4 Postprocessing

The candidate cognate sets extracted in the previ-
ous stage are rendered into an HTML page designed
to allow an expert linguist to verify their correct-
ness (Figure 4). After the verification, a dictionary
composed of the confirmed cognate sets is automat-
ically generated in HTML format, with the glosses
restored to their original, untruncated form. Addi-
tional cognate sets can be incorporated seamlessly
into the existing list. A sample entry in the gener-
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C li:qama:n el juguete; hace burla
de el

T laaqamaan el juguete
317 S li:qama:n el juego; el juguete; lo

maltrata; le hace burla
U le:ha:ma:n juguete
P li:qama:n el juguete

Table 2: A sample entry in the generated dictionary.

ated dictionary is shown in Table 2.3

6.5 Results

In our initial attempt to extract cognate sets from the
graph, we extracted from the graph only those con-
nected components that were complete cliques (i.e.,
fully connected subgraphs). Of the resulting 120
candidate cognate sets, all but one were confirmed
by Beck. The only false positive involved two words
that were true cognates, and one word that was mor-
phologically related to the other two. However, al-
though this method was characterized by a very high
precision, the overly restrictive clique condition ex-
cluded a large number of interesting cognate sets.

In order to improve recall, the method described
in Section 6.3 was adopted. 430 possible cognate
sets of 3, 4, or 5 words were discovered in this man-
ner. 384 (89%) of these sets were judged to be true
cognate sets. Of the remaining 46 sets, 45 contained
partial cognate sets. The set that contained no cog-
nate words was composed of three words that share
a cognate root, but have different prefixes.

7 Discussion

From a practical standpoint, the procedures used
in these experiments provide a powerful tool for
the identification of cognate sets and sound cor-
respondences. The identification of these corre-
spondences by traditional means is cumbersome and
time-consuming, given the large amounts of data
that require processing. The Upper Necaxa dic-
tionary, for instance, contains nearly 9,000 entries,
from which a list of about 2,000 nouns would have to
be extracted by hand, and then compared pairwise to
lists drawn from dictionaries of potentially compa-

3The entire dictionary in its current state can be viewed at
http://www.cs.ualberta.ca/∼pdilts.

rable length of each of the other languages, each of
which would also have to be compared to the other.
Lists of potential correspondences from each pair-
wise comparison would then have to be compared,
and so on. The algorithms described here accom-
plish in mere minutes what would take man-hours
(perhaps years) of expert labour to accomplish man-
ually, outputting the results in a format that is eas-
ily accessed and shared with other researchers as
an HTML-format list of cognates that can be made
available on the World Wide Web.

The results obtained from a study of this type
have important implications for linguists, as well
as anthropologists and archeologists interested in
the history and migratory patterns of peoples speak-
ing Totonacan languages. Presented with extensive
and robust cognate sets and lists of sound changes,
linguists gain insight into the patterns of histori-
cal phonological change and can verify or discon-
firm models of phonological and typological devel-
opment. These data can also give rough indica-
tions of the time-depth of the linguistic family and,
potentially, suggest geographical origins of popula-
tions. At present, Totonac-Tepehua has not been
demonstrably linked to any other language family
in Mesoamerica. Careful reconstruction of a proto-
language might reveal such links and, possibly, shed
some light on the early movements and origins of
Mesoamerican peoples.

These experiments have also allowed us to create
the beginnings of an etymological dictionary which
will, in turn, allow us to reconstruct a more accu-
rate Totonac-Tepehua family tree. By comparing the
relative numbers of shared cognates amongst lan-
guages and the number of regular sound changes
shared by individual subsets of languages in each
cognate set, we hope to be able to determine relative
proximity of languages and the order in which the
family divided itself into branches, sub-branches,
and individual languages. This will shed light on the
problem of Totonac-Tepehua origins and migratory
patterns, and may help to answer questions about po-
tential links of Totonacan peoples to archeological
sites in East-Central Mexico, including the pyramids
of Teotihuacán. Accurate determination of distance
between variants of Totonacan will also help inform
social policy decisions about bilingual education and
government funding for language revitalization pro-
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grams, as well as debates about orthographies and
language standardization.
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