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Abstract

This paper is concerned with the standard-
isation of evaluation metrics for lexical ac-
quisition over precision grammars, which
are attuned to actual parser performance.
Specifically, we investigate the impact that
lexicons at varying levels of lexical item
precision and recall have on the perfor-
mance of pre-existing broad-coverage pre-
cision grammars in parsing, i.e., on their
coverage and accuracy. The grammars used
for the experiments reported here are the
LinGO English Resource Grammar (ERG;
Flickinger (2000)) and JACY (Siegel and
Bender, 2002), precision grammars of En-
glish and Japanese, respectively. Our re-
sults show convincingly that traditional F-
score-based evaluation of lexical acquisition
does not correlate with actual parsing per-
formance. What we argue for, therefore, is a
recall-heavy interpretation of F-score in de-
signing and optimising automated lexical ac-
quisition algorithms.

1 Introduction

Deep processing is the process of applying rich lin-
guistic resources within NLP tasks, to arrive at a
detailed (=deep) syntactic and semantic analysis of
the data. It is conventionally driven by deep gram-
mars, which encode linguistically-motivated predic-
tions of language behaviour, are usually capable of
both parsing and generation, and generate a high-
level semantic abstraction of the input data. While
enjoying a resurgence of interest due to advances
in parsing algorithms and stochastic parse prun-
ing/ranking, deep grammars remain an underutilised
resource predominantly because of their lack of cov-
erage/robustness in parsing tasks. As noted in previ-
ous work (Baldwin et al., 2004), a significant cause

of diminished coverage is the lack of lexical cover-
age.

Various attempts have been made to ameliorate
the deficiencies of hand-crafted lexicons. More
recently, there has been an explosion of interest
in deep lexical acquisition (DLA; (Baldwin, 2005;
Zhang and Kordoni, 2006; van de Cruys, 2006))
for broad-coverage deep grammars, either by ex-
ploiting the linguistic information encoded in the
grammar itself (in vivo), or by using secondary lan-
guage resources (in vitro). Such approaches provide
(semi-)automatic ways of extending the lexicon with
minimal (or no) human interference.

One stumbling block in DLA research has been
the lack of standardisation in evaluation, with
commonly-used evaluation metrics including:

• Type precision: the proportion of correctly hy-
pothesised lexical entries

• Type recall: the proportion of gold-standard
lexical entries that are correctly hypothesised

• Type F-measure: the harmonic mean of the
type precision and type recall

• Token Accuracy: the accuracy of the lexical en-
tries evaluated against their token occurrences
in gold-standard corpus data

It is often the case that the different measures lead
to significantly different assessments of the quality
of DLA, even for a given DLA approach. Addi-
tionally, it is far from clear how the numbers gen-
erated by these evaluation metrics correlate with ac-
tual parsing performance when the output of a given
DLA method is used. This makes standardised com-
parison among the various different approaches to
DLA very difficult, if not impossible. It is far from
clear which evaluation metrics are more indicative of
the true “goodness” of the lexicon. The aim of this
research, therefore, is to analyse how the different
evaluation metrics correlate with actual parsing per-
formance using a given lexicon, and to work towards
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a standardised evaluation framework for future DLA
research to ground itself in.

In this paper, we explore the utility of different
evaluation metrics at predicting parse performance
through a series of experiments over two broad cov-
erage grammars: the English Resource Grammar
(ERG; Flickinger (2000)) and JACY (Siegel and
Bender, 2002). We simulate the results of DLA
by generating lexicons at different levels of preci-
sion and recall, and test the impact of such lexicons
on grammar coverage and accuracy related to gold-
standard treebank data. The final outcome of this
analysis is a proposed evaluation framework for fu-
ture DLA research.

The remainder of the paper is organised as fol-
lows: Section 2 reviews previous work on DLA for
the robust parsing task; Section 3 describes the ex-
perimental setup; Section 4 presents the experiment
results; Section 5 analyses the experiment results;
Section 6 concludes the paper.

2 Lexical Acquisition in Deep Parsing

Hand-crafted large-scale grammars are error-prone.
An error can be roughly classified asundergenerat-
ing (if it prevents a grammatical sentence from be-
ing generated/parsed) orovergenerating(if it allows
an ungrammatical sentence to be generated/parsed).
Hence, errors in deep grammar lexicons can be clas-
sified into two categories: i) a lexical entry is miss-
ing for a specific lexeme; and ii) an erroneous lexical
entry enters the lexicon. The former error type will
cause the grammar to fail to parse/generate certain
sentences (i.e. undergenerate), leading to a loss in
coverage. The latter error type will allow the gram-
mar to parse/generate inappropriate sentences (i.e.
overgenerate), potentially leading to a loss in ac-
curacy. In the first instance, we will be unable to
parse sentences involving a given lexical item if it is
missing from our lexicon, i.e. coverage will be af-
fected assuming the lexical item of interest occurs
in a given corpus. In the second instance, the im-
pact is indeterminate, as certain lexical items may
violate constraints in the grammar and never be li-
cenced, whereas others may be licenced more lib-
erally, generating competing (incorrect) parses for a
given input and reducing parse accuracy. It is these
two competing concerns that we seek to quantify in
this research.

Traditionally, errors in the grammar are detected
manually by the grammar developers. This is usu-

ally done by running the grammar over a carefully
designed test suite and inspecting the outputs. This
procedure becomes less reliable as the grammar gets
larger. Also we can never expect to attain complete
lexical coverage, due to language evolution and the
effects of domain/genre. A static, manually com-
piled lexicon, therefore, becomes inevitably insuffi-
cient when faced with open domain text.

In recent years, some approaches have been de-
veloped to (semi-)automatically detect and/or repair
the lexical errors in linguistic grammars. Such ap-
proaches can be broadly categorised as either sym-
bolic or statistical.

Erbach (1990), Barg and Walther (1998) and
Fouvry (2003) followed a unification-based sym-
bolic approach to unknown word processing for
constraint-based grammars. The basic idea is to
use underspecified lexical entries, namely entries
with fewer constraints, to parse whole sentences,
and generate the “real” lexical entries afterwards by
collecting information from the full parses. How-
ever, lexical entries generated in this way may be ei-
ther too general or too specific. Underspecified lex-
ical entries with fewer constraints allow more gram-
mar rules to be applied while parsing, and fully-
underspecified lexical entries are computationally
intractable. The whole procedure gets even more
complicated when two unknown words occur next
to each other, potentially allowing almost any con-
stituent to be constructed. The evaluation of these
proposals has tended to be small-scale and some-
what brittle. No concrete results have been pre-
sented relating to the improvement in grammar per-
formance, either for parsing or for generation.

Baldwin (2005) took a statistical approach to au-
tomated lexical acquisition for deep grammars. Fo-
cused on generalising the method of deriving DLA
models on various secondary language resources,
Baldwin used a large set of binary classifiers to pre-
dict whether a given unknown word is of a particular
lexical type. This data-driven approach is grammar
independent and can be scaled up for large gram-
mars. Evaluation was via type precision, type recall,
type F-measure and token accuracy, resulting in dif-
ferent interpretations of the data depending on the
evaluation metric used.

Zhang and Kordoni (2006) tackled the robustness
problem of deep processing from two aspects. They
employed error mining techniques in order to semi-
automatically detect errors in deep grammars. They
then proposed a maximum entropy model based lex-
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ical type predictor, to generate new lexical entries
on the fly. Evaluation focused on the accuracy of
the lexical type predictor over unknown words, not
the overall goodness of the resulting lexicon. Simi-
larly to Baldwin (2005), the methods are applicable
to other constraint-based lexicalist grammars, but no
direct measurement of the impact on grammar per-
formance was attempted.

van de Cruys (2006) took a similar approach over
the Dutch Alpino grammar (cf. Bouma et al. (2001)).
Specifically, he proposed a method for lexical ac-
quisition as an extension to automatic parser error
detection, based on large amounts of raw text (cf.
van Noord (2004)). The method was evaluated us-
ing type precision, type recall and type F-measure.
Once again, however, these numbers fail to give us
any insight into the impact of lexical acquisition on
parser performance.

Ideally, we hope the result of DLA to be both ac-
curate and complete. However, in reality, there will
always be a trade-off between coverage and parser
accuracy. Exactly how these two concerns should be
balanced up depends largely on what task the gram-
mar is applied to (i.e. parsing or generation). In this
paper, we focus exclusively on the parsing task.1

3 Experimental Setup

In this research, we wish to evaluate the impact
of different lexicons on grammar performance. By
grammar performance, we principally mean cov-
erage and accuracy. However, it should be noted
that the efficiency of the grammar—e.g. the aver-
age number of edges in the parse chart, the average
time to parse a sentence and/or the average number
of analyses per sentence—is also an important per-
formance measurement which we expect the quality
of the lexicon to impinge on. Here, however, we
expect to be able to call on external processing opti-
misations2 to dampen any loss in efficiency, in a way
which we cannot with coverage and accuracy.

3.1 Resources

In order to get as representative a set of results as
possible, we choose to run the experiment over two

1In generation, we tend to have a semantic representation
as input, which is linked to pre-existing lexical entries. Hence,
lexical acquisition has no direct impact on generation.

2For example, (van Noord, 2006) shows that a HMM POS
tagger trained on the parser outputs can greatly reduce the lexi-
cal ambiguity and enhance the parser efficiency, without an ob-
servable decrease in parsing accuracy.

large-scale HPSGs (Pollard and Sag, 1994), based
on two distinct languages.

The LinGO English Resource Grammar(ERG;
Flickinger (2000)) is a broad-coverage, linguis-
tically precise HPSG-based grammar of English,
which represents the culmination of more than 10
person years of (largely) manual effort. We use the
jan-06version of the grammar, which contains about
23K lexical entries and more than 800 leaf lexical
types.

JACY (Siegel and Bender, 2002) is a broad-
coverage linguistically precise HPSG-based gram-
mar of Japanese. In our experiment, we use the
November 2005 version of the grammar, which con-
tains about 48K lexical entries and more than 300
leaf lexical types.

It should be noted in HPSGs, the grammar is
made up of two basic components: the grammar
rules/type hierarchy, and the lexicon (which inter-
faces with the type hierarchy via leaf lexical types).
This is different to strictly lexicalised formalisms
like LTAG and CCG, where essentially all linguistic
description resides in individual lexical entries in the
lexicon. The manually compiled grammars in our
experiment are also intrinsically different to gram-
mars automatically induced from treebanks (e.g. that
used in the Charniak parser (Charniak, 2000) or the
various CCG parsers (Hockenmaier, 2006)). These
differences sharply differentiate our work from pre-
vious research on the interaction between lexical ac-
quisition and parse performance.

Furthermore, to test the grammar precision and
accuracy, we use two treebanks: Redwoods (Oepen
et al., 2002) for English and Hinoki (Bond et al.,
2004) for Japanese. These treebanks are so-called
dynamic treebanks, meaning that they can be (semi-
)automatically updated when the grammar is up-
dated. This feature is especially useful when we
want to evaluate the grammar performance with dif-
ferent lexicon configurations. With conventional
treebanks, our experiment is difficult (if not impos-
sible) to perform as the static trees in the treebank
cannot be easily synchronised to the evolution of the
grammar, meaning that we cannot regenerate gold-
standard parse trees relative to a given lexicon (es-
pecially when for reduced recall where there is no
guarantee we will be able to produce all of the parses
in the 100% recall gold-standard). As a result, it is
extremely difficult to faithfully update the statistical
models.

The Redwoods treebank we use is the6th growth,
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which is synchronised with thejan-06version of the
ERG. It contains about 41K test items in total.

The Hinoki treebank we use is updated for the
November 2005 version of the JACY grammar. The
“Rei” sections we use in our experiment contains
45K test items in total.

3.2 Lexicon Generation

To simulate the DLA results at various levels of pre-
cision and recall, a random lexicon generator is used.
In order to generate a new lexicon with specific pre-
cision and recall, the generator randomly retains a
portion of the gold-standard lexicon, and generates a
pre-determined number of erroneous lexical entries.

More specifically, for each grammar we first ex-
tract a subset of the lexical entries from the lexicon,
each of which has at least one occurrence in the tree-
bank. This subset of lexical entries is considered to
be the gold-standard lexicon (7,156 entries for the
ERG, 27,308 entries for JACY).

Given the gold-standard lexiconL, the target pre-
cision P and recallR, a new lexiconL′ is created,
which is composed of two disjoint subsets: the re-
tained part of the gold-standard lexiconG, and the
erroneous entriesE. According to the definitions of
precision and recall:

P =
|G|

|L′|
(1) R =

|G|

|L|
(2)

and the fact that:

|L′| = |G| + |E| (3)

we get:

|G| = |L| · R (4)

|E| = |L| · R · (
1

P
− 1) (5)

To retain a specific number of entries from the
gold-standard lexicon, we randomly select|G| en-
tries based on the combined probabilistic distribu-
tion of the corresponding lexeme and lexical types.3

We obtain the probabilistic distribution of lexemes
from large corpora (BNC for English and Mainichi
Shimbun [1991-2000] for Japanese), and the distri-
bution of lexical types from the corresponding tree-
banks. For each lexical entrye(l, t) in the gold-
standard lexicon with lexemel and lexical typet,

3For simplicity, we assume mutual independence of the lex-
emes and lexical types.

the combined probability is:

p(e(l, t)) =
CL(l) · CT (t)

∑
e′(l′,t′)∈L CL(l′) · CT (t′)

(6)

The erroneous entries are generated in the same
way among all possible combinations of lexemes
and lexical types. The difference is that only open
category types and less frequent lexemes are used
for generating new entries (e.g. we wouldn’t expect
to learn a new lexical item for the lexemetheor the
lexical typed - the le in English). In our ex-
periment, we consider lexical types with more than
a predefined number of lexical entries (20 for the
ERG, 50 for JACY) in the gold-standard lexicon to
be open-class lexical types; the upper-bound thresh-
old on token frequency is set to 1000 for English and
537 for Japanese, i.e. lexemes which occur more fre-
quently than this are excluded from lexical acquisi-
tion under the assumption that the grammar develop-
ers will have attained full coverage of lexical items
for them.

For each grammar, we then generate 9 differ-
ent lexicons at varying precision and recall levels,
namely 60%, 80%, and 100%.

3.3 Parser Coverage

Coverage is an important grammar performance
measurement, and indicates the proportion of inputs
for which a correct parse was obtained (adjudged
relative to the gold-standard parse data in the tree-
banks). In our experiment, we adopt a weak defini-
tion of coverage as “obtaining at least one spanning
tree”. The reason for this is that we want to obtain
an estimate for novel data (for which we do not have
gold-standard parse data) of the relative number of
strings for which we can expect to be able to produce
at least one spanning parse. This weak definition of
coverage actually provides an upper bound estimate
of coverage in the strict sense, and saves the effort to
manually evaluate the correctness of the parses. Past
evaluations (e.g. Baldwin et al. (2004)) have shown
that the grammars we are dealing with are relatively
precise. Based on this, we claim that our results for
parse coverage provide a reasonable estimate indica-
tion of parse coverage in the strict sense of the word.

In principle, coverage will only decrease when
the lexicon recall goes down, as adding erroneous
entries should not invalidate the existing analy-
ses. However, in practice, the introduction of er-
roneous entries increases lexical ambiguity dramati-
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0.6 0.8 1.0P\ R
C E A C E A C E A

0.6 4294 2862 7156 5725 3817 9542 7156 4771 11927
0.8 4294 1073 5367 5725 1431 7156 7156 1789 8945
1.0 4294 0 4294 5725 0 5725 7156 0 7156

Table 1: Different lexicon configurations for the ERG with the number of correct (C), erroneous (E) and
combined (A) entries at each level of precision (P) and recall (R)

0.6 0.8 1.0P\ R
C E A C E A C E A

0.6 16385 10923 27308 21846 14564 36410 27308 18205 45513
0.8 16385 4096 20481 21846 5462 27308 27308 6827 34135
1.0 16385 0 16385 21846 0 21846 27308 0 27308

Table 2: Different lexicon configurations for JACY with the number of correct (C), erroneous (E) and
combined (A) entries at each level of precision (P) and recall (R)

cally, readily causing the parser to run out of mem-
ory. Moreover, some grammars use recursive unary
rules which are triggered by specific lexical types.
Here again, erroneous lexical entries can lead to “fail
to parse” errors.

Given this, we run the coverage tests for the two
grammars over the corresponding treebanks: Red-
woods and Hinoki. The maximum number of pas-
sive edges is set to 10K for the parser. We used
[incr tsdb()] (Oepen, 2001) to handle the dif-
ferent lexicon configurations and data sets, andPET
(Callmeier, 2000) for parsing.

3.4 Parser Accuracy

Another important measurement of grammar perfor-
mance is accuracy. Deep grammars often generate
hundreds of analyses for an input, suggesting the
need for some means of selecting the most probable
analysis from among them. This is done with the
parse disambiguation model proposed in Toutanova
et al. (2002), with accuracy indicating the proportion
of inputs for which we are able to accurately select
the correct parse.

The disambiguation model is essentially a maxi-
mum entropy (ME) based ranking model. Given an
input sentences with possible analysest1 . . . tk, the
conditional probability for analysisti is given by:

P (ti|s) =
exp

∑m
j=1 fj(ti)λj

∑k
i′=1 exp

∑m
j=1 fj(ti′)λj

(7)

where f1 . . . fm are the features andλ1 . . . λm

are the corresponding parameters. When ranking
parses,

∑m
j=1 fj(ti)λj is the indicator of “good-

ness”. Drawing on the discriminative nature of the

ME models, various feature types can be incor-
porated into the model. In combination with the
dynamic treebanks where the analyses are (semi-
)automatically disambiguated, the models can be
easily re-trained when the grammar is modified.

For each lexicon configuration, after the cover-
age test, we do an automatic treebank update. Dur-
ing the automatic treebank update, only those new
parse trees which are comparable to the active trees
in the gold-standard treebank are marked as cor-
rect readings. All other trees are marked as in-
active and deemed as overgeneration of the gram-
mar. The ME-based parse disambiguation models
are trained/evaluated using these updated treebanks
with 5-fold cross validation. Since we are only in-
terested in the difference between different lexicon
configurations, we use the simplePCFG-Smodel
from (Toutanova et al., 2002), which incorporates
PCFG-style features from the derivation tree of the
parse. The accuracy of the disambiguation model
is calculated by top analysis exact matching (i.e. a
ranking is only considered correct if the top ranked
analysis matches the gold standard prefered reading
in the treebank).

All the Hinoki Rei noun sections (about 25K
items) were used in the accuracy evaluation for
JACY. However, due to technical limitations, only
the jh sections (about 6K items) of the Redwoods
Treebank were used for training/testing the disam-
biguation models for the ERG.

4 Experiment Results

The experiment consumes a considerable amount of
computational resources. For each lexicon config-
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P\ R 0.6 0.8 1.0
0.6 44.56% 66.88% 75.51%
0.8 42.18% 65.82% 75.86%
1.0 40.45% 66.19% 76.15%

Table 3: Parser coverage of JACY with different lex-
icons

P\ R 0.6 0.8 1.0
0.6 27.86% 39.17% 79.66%
0.8 27.06% 37.42% 79.57%
1.0 26.34% 37.18% 79.33%

Table 4: Parser coverage of the ERG with different
lexicons

uration of a given grammar, we need to i) process
(parse) all the items in the treebank, ii) compare the
resulting trees with the gold-standard trees and up-
date the treebank, and iii) retrain the disambiguation
models over 5 folds of cross validation. Given the
two grammars with 9 configurations each, the en-
tire experiment takes over 1 CPU month and about
120GB of disk space.

The coverage results are shown in Table 3 and
Table 4 for JACY and the ERG, respectively.4 As
expected, we see a significant increase in grammar
coverage when the lexicon recall goes up. This in-
crease is more significant for the ERG than JACY,
mainly because the JACY lexicon is about twice as
large as the ERG lexicon; thus, the most frequent
entries are still in the lexicons even with low recall.

When the lexicon recall is fixed, the grammar cov-
erage does not change significantly at different lev-
els of lexicon precision. Recall that we are not eval-
uating the correctness of such parses at this stage.

It is clear that the increase in lexicon recall boosts
the grammar coverage, as we would expect. The
precision of the lexicon does not have a large in-
fluence on coverage. This result confirms that with
DLA (where we hope to enhance lexical coverage
relative to a given corpus/domain), the coverage of
the grammar can be enhanced significantly.

The accuracy results are obtained with 5-fold
cross validation, as shown in Table 5 and Table 6

4Note that even with the lexicons at 100% precision and re-
call level, there is no guarantee of 100% coverage. As the con-
tents of the Redwoods and Hinoki treebanks were determined
independently of the respective grammars, rather than the gram-
mars being induced from the treebanks e.g., they both still con-
tain significant numbers of strings for which the grammar can-
not produce a correct analysis.

P-R #ptree Avg. σ

060-060 13269 62.65% 0.89%
060-080 19800 60.57% 0.83%
060-100 22361 59.61% 0.63%
080-060 14701 63.27% 0.62%
080-080 23184 60.97% 0.48%
080-100 27111 60.04% 0.56%
100-060 15696 63.91% 0.64%
100-080 26859 61.47% 0.68%
100-100 31870 60.48% 0.71%

Table 5: Accuracy of disambiguation models for
JACY with different lexicons

P-R #ptree Avg. σ

060-060 737 71.11% 3.55%
060-080 1093 63.94% 2.75%
060-100 3416 60.92% 1.23%
080-060 742 70.07% 1.50%
080-080 1282 61.81% 3.60%
080-100 3842 59.05% 1.30%
100-060 778 69.76% 4.62%
100-080 1440 60.59% 2.64%
100-100 4689 57.03% 1.36%

Table 6: Accuracy of disambiguation models for the
ERG with different lexicons

for JACY and the ERG, respectively. When the lex-
icon recall goes up, we observe a small but steady
decrease in the accuracy of the disambiguation mod-
els, for both JACY and ERG. This is generally a side
effect of change in coverage: as the grammar cover-
age goes up, the parse trees become more diverse,
and are hence harder to discriminate.

When the recall is fixed and the precision of the
lexicon goes up, we observe a very small accuracy
gain for JACY (around 0.5% for each 20% increase
in precision). This shows that the grammar accu-
racy gain is limited as the precision of the lexicon
increases, i.e. that the disambiguation model is re-
markably robust to the effects of noise.

It should be noted that for the ERG we failed to
observe any accuracy gain at all with a more pre-
cise lexicon. This is partly due to the limited size
of the updated treebanks. For the lexicon config-
uration060 − 060, we obtained only 737 preferred
readings/trees to train/test the disambiguation model
over. The 5-fold cross validation results vary within
a margin of 10%, which means that the models are
still not converging. However, the result does con-
firm that there is no significant gain in grammar ac-
curacy with a higher precision lexicon.

Finally, we combine the coverage and accuracy
scores into a single F-measure (β = 1) value. The
results are shown in Figure 1. Again we see that
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the difference in lexicon recall has a more signif-
icant impact on the overall grammar performance
than precision.
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Figure 1: Grammar performance (F-score) with dif-
ferent lexicons

5 Discussion

5.1 Is F-measure a good metric for DLA
evaluation?

As mentioned in Section 2, a number of relevant ear-
lier works have evaluated DLA results via the un-
weighted F-score (relative to type precision and re-
call). This implicitly assumes that the precision and
recall of the lexicon are equally important. How-
ever, this is clearly not the case as we can see in the
results of the grammar performance. For example,
the lexicon configurations060− 100 and100− 060
of JACY (i.e. 60% precision, 100% recall vs. 100%
precision, 60% recall, respectively) have the same
unweighted F-scores, but their corresponding over-
all grammar performance (parser F-score) differs by
up to 17%.

5.2 Does precision matter?

The most interesting finding in our experiment is
that the precision of the deep lexicon does not ap-
pear to have a significant impact on grammar accu-
racy. This is contrary to the earlier predominant be-
lief that deep lexicons should be as accurate as pos-
sible. This belief is derived mainly from observa-
tion of grammars with relatively small lexicons. In
such small lexicons, the closed-class lexical entries
and frequent entries (which comprise the “core” of

the lexicon) make up a large proportion of lexical
entries. Hence, any loss in precision means a signif-
icant degradation of the “core” lexicon, which leads
to performance loss of the grammar. For example,
we find that the inclusion of one or two erroneous
entries for frequent closed-class lexical type words
(such asthe, or of in English, for instance) may eas-
ily “break” the parser.

However, in state-of-the-art broad-coverage deep
grammars such as JACY and ERG, the lexicons are
much larger. They usually have more or less similar
“cores” to the smaller lexicons, but with many more
open-class lexical entries and less frequent entries,
which compose the “peripheral” parts of the lexi-
cons. In our experiment, we found that more than
95% of the lexical entries belong to the top 5% of
the open-class lexical types. The bigger the lexicon
is, the larger the proportion of lexical entries that be-
long to the “peripheral” lexicon.

In our experiment, we only change the “periph-
eral” lexicon by creating/removing lexical entries
for less frequent lexemes and open-class lexical
types, leaving the “core” lexicon intact. Therefore, a
more accurate interpretation of the experimental re-
sults is that the precision of theopen typeand less
frequentlexical entries does not have a large impact
on the grammar performance, but their recall has a
crucial effect on grammar coverage.

The consequence of this finding is that the bal-
ance between precision and recall in the deep lexi-
con should be decided by their impact on the task to
which the grammar is applied. In research on auto-
mated DLA, the motivation is to enhance the robust-
ness/coverage of the grammars. This work shows
that grammar performance is very robust over the
inevitable errors introduced by the DLA, and that
more emphasis should be placed on recall.

Again, caution should be exercised here. We
do not mean that by blindly adding lexical entries
without worrying about their correctness, the per-
formance of the grammar will be monotonically en-
hanced – there will almost certainly be a point at
which noise in the lexicon swamps the parse chart
and/or leads to unacceptable levels of spurious am-
biguity. Also, the balance between precision and re-
call of the lexicon will depend on various expecta-
tions of the grammarians/lexicographers, i.e. the lin-
guistic precision and generality, which is beyond the
scope of this paper.

As a final word of warning, the absolute gram-
mar performance change that a given level of lexi-
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con type precision and recall brings about will obvi-
ously depend on the grammar. In looking across two
grammars from two very different languages, we are
confident of the robustness of our results (at least for
grammars of the same ilk) and the conclusions that
we have drawn from them. For any novel grammar
and/or formalism, however, the performance change
should ideally be quantified through a set of exper-
iments with different lexicon configurations, based
on the procedure outlined here. Based on this, it
should be possible to find the optimal balance be-
tween the different lexicon evaluation metrics.

6 Conclusion

In this paper, we have investigated the relationship
between evaluation metrics for deep lexical acquisi-
tion and grammar performance in parsing tasks. The
results show that traditional DLA evaluation based
on F-measure is not reflective of grammar perfor-
mance. The precision of the lexicon appears to have
minimal impact on grammar accuracy, and therefore
recall should be emphasised more greatly in the de-
sign of deep lexical acquisition techniques.
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