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Abstract

The demand for deep linguistic analysis
for huge volumes of data means that it is
increasingly important that the time taken
to parse such data is minimized. In the
XLE parsing model which is a hand-crafted,
unification-based parsing system, most of
the time is spent on unification, searching
for valid f-structures (dependency attribute-
value matrices) within the space of the many
valid c-structures (phrase structure trees).
We carried out an experiment to determine
whether pruning the search space at an ear-
lier stage of the parsing process results in
an improvement in the overall time taken to
parse, while maintaining the quality of the
f-structures produced. We retrained a state-
of-the-art probabilistic parser and used it to
pre-bracket input to the XLE, constraining
the valid c-structure space for each sentence.
We evaluated against the PARC 700 Depen-
dency Bank and show that it is possible to
decrease the time taken to parse b¥8%
while maintaining accuracy.
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attribute-value matrices). A typical breakdown of
parsing time of XLE components is Morphology
(1.6%), Chart (5.8%) and Unifier (92.6%).

The unification process is the bottleneck in the
XLE parsing system. The grammar generates many
valid c-structure trees for a particular sentence: the
Unifier then processes all of these trees (as packed
structures), and a log-linear disambiguation module
can choose the most probable f-structure from the
resulting valid f-structures. For example, the sen-
tence “Growth is slower.” has 84 valid c-structure
trees according to the current English gramrhar;
however once the Unifier has processed all of these
trees (in a packed form), only one c-structure and
f-structure pair is valid (see Figure 1). In this in-
stance, the log-linear disambiguation does not need
to choose the most probable result.

The research question we pose is whether the
search space can be pruned earlier before unifi-
cation takes place. Bangalore and Joshi (1999),
Clark and Curran (2004) and Matsuzaki et al. (2007)
show that by using a super tagger before (CCG and
HPSG) parsing, the space required for discrimini-
tive training is drastically reduced. Supertagging
is not widely used within the LFG framework, al-
though there has been some work on using hypertags
(Kinyon, 2000). Ninomiya et al. (2006) propose a

When deep linguistic analysis of massive data is rénethod for faster HPSG parsing while maintaining
quired (e.g. processing Wikipedia), it is crucial tha®ccuracy by only using the probabilities of lexical
the parsing time be minimized. The XLE Englishentry selections (i.e. the supertags) in their discrim-
parsing system is a large-scale, hand-crafted, dedpitive model. In the work presented here, we con-

unification-based system that processes raw t
and produces both constituent-structures (phrasa%

1For examplejs can be a copula, a progressive auxiliary or
assive auxiliary, whilslowercan either be an adjective or an

structure trees) and feature-structures (dependenayverb.
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centrate on reducing the number of c-structure trees cs 1 ROOT
that the Unifier has to process, ideally to one tree.
The hope was that this would speed up the parsing Sadffin] - PERIOD
process, but how would it affect the quality of the f- S[ﬁr!] .|
structures? This is similar to the approach taken by
Cahill et al. (2005) who do not use a hand-crafted NP VPallffin]
complete unification system (rather an automatically | _ | _
acquired probabilistic approximation). They parse NPad) VPooplin
raw text into LFG f-structures by first parsing with a NPzero Veoplin]  AP[pred]
probabilistic CFG parser to choose the most proba- | | |
ble c-structure. This is then passed to an automatic N is A
f-structure annotation algorithm which deterministi- | |
~ growth slower
cally generates one f-structure for that tree.
The most compact way of doing this would be to
integrate a statistical component to the parser that PRED  'be<[68:slowp[23:growth]
SUBJ 23[PRED'growth’ ]
could rank the c-structure trees and only pass the
. - . PRED 'slow<[23:growth}p"'
most likely forward to the unification process. How- wcomp |SUBJ  [23:growth]
ever, this would require a large rewrite of the sys- a7 68 [ADIUNCT{1 PRED'more’ J}
tem. So, we first wanted to investigate a “cheaper”
alternative t_o (_:letermlne the viability of th(_a pru_n'ngFigure 1: C- and E-Structure for
strategy; this is the experiment reported in this pa-
per. This is implemented by stipulating constituent
bourydgnes n th_e mpu_t stiing, so that any c-'st.ructu'zfeet (Section 6). Finally, Section 7 concludes.
that is incompatible with these constraints is invali
and will not be processed by the Unifier. This wa? Back q
done to some extent in Riezler et al. (2002) to au- ackgroun

tomatically generate training data for the Iog-IlnearIn this section we introduce Lexical Functional

disambiguation component of XLE. Previous Worgrammar, the grammar formalism underlying the

obtained the constituent constraints (i.e. bracket . . )
. LE, and briefly describe the XLE parsing system.
from the gold-standard trees in the Penn-Il Tree- ey ! parsing sy

bank. However_, to parse novel text, gold—standargl1 L exical Functional Grammar
trees are unavailable.

We used a state-of-the-art probabilistic parser thexical Functional Grammar (LFG) (Kaplan and
provide the bracketing constraints to XLE. Thesdresnan, 1982) is a constraint-based theory of gram-
parsers are accurate (achieving accuracy of ovemar. It (minimally) posits two levels of repre-
90% on Section 23 WSJ text), fast, and robussentation, c(onstituent)-structure and f(unctional)-
The idea is that pre-parsing of the input text by atructure. C-structure is represented by context-
fast and accurate parser can prune the c-structuiee phrase-structure trees, and captures surface
search space, reducing the amount of work done lgrammatical configurations such as word order.
the Unifier, speed up parsing and maintain the higiithe nodes in the trees are annotated with func-
quality of the f-structures produced. tional equations (attribute-value structure con-

The structure of this paper is as follows: Sectiorstraints) which are resolved to produce an f-
2 introduces the XLE parsing system. Section 3 destructure. F-structures are recursive attribute-value
scribes a baseline experiment and based on the reatrices, representing abstract syntactic functions.
sults suggests retraining the Bikel parser to improvE-structures approximate basic predicate-argument-
results (Section 4). Section 5 describes experimenésljunct structures or dependency relations. Fig-
on the development set, from which we evaluate there 1 shows the c- and f-structure for the sentence
most successful system against the PARC 700 teé$trowth is slower.”.

"Growth is slower."

“Growth is slower.”
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Parser OutputfS1 (S (NP (NN Growth)) (VP (AUX is) (ADJP (JJR slower))) (. ) )
Labeled:\[S1 \[S Growth \[VP is \[ADJP slower \] \].\] \]
Unlabeledy[ \[ Growth \[ is \[ slower \] \].\] \]

Figure 2: Example of retained brackets from parser outpabtustrain the XLE parser

2.2 TheXLE Parsing System 3 Basdine experiments

We carried out a baseline experiment with two

The XLE parsing system is a deep-grammar-bas sjate-of-the-art parsers to establish what effect pre-

parsing system. The experiments reported in thi racketing the input to the XLE system has on the

paper use the English LFG grammar constructe uagt¥hang_£L:mber Ic:_fttge s(;)ltguor?s grgd_uced.hV\/te
as part of the ParGram project (Butt et al., 2002);>c € BIKe () multi-threaded, head-driven chart-
arsing engine developed at the University of Penn-

This system incorporates sophisticated ambiguity- - . . .
Y P P g >Pylvanla. The second parser is that described in

management technology so that all possible syr% ) .
tactic analyses of a sentence are computed | har_nla_lk gnd Johnson (2005). 'This parser uses a
gfscrlmmatlve reranker that selects the most proba-
I

an efficient, packed representation (Maxwell an
Kaplan, 1993). In accordance with LFG the->'c Pars€ from the 50-best parses returned by a gen-
ory, the output includes not only standard context?ratlve parser based on Charniak (2000).

free phrase-structure trees (c-structures) but also W€ evaluated against the PARC 700 Dependency
attribute-value matrices (f-structures) that explicBank (King et al., 2003) which provides gold-
itly encode predicate-argument relations and othéft@ndard analyses for 700 sentences chosen at ran-

meaningful properties. The f-structures can be d&lom from Section 23 of the Penn-I| Treebank.. The
terministically mapped to dependency triples withPependency Bank was bootstrapped by parsing the
out any loss of information, using the built-in or- 00 sentences with the XLE English grammar, and

dered rewrite system (Crouch et al., 2002). XLE selnén manually correcting the output. The data is di-
lects the most probable analysis from the potentiallyfided into two sets, a 140-sentence development set
large candidate set by means of a stochastic disa@?d & test set of 560 sentences (Kaplan et al., 2004).
biguation component based on a log-linear proba- We took the raw strings from the 140-sentence
bility model (Riezler et al., 2002) that works on thedevelopment set and parsed them with each of the
packed representations. The underlying parsing systate-of-the-art probabilistic parsers. As an upper
tem also has built-in robustness mechanisms that dlound for the baseline experiment, we use the brack-
low it to parse strings that are outside the scope @&ts in the original Penn-I1l treebank trees for the 140
the grammar as a list of fewest well-formed “frag-development set.

ments”. Furthermore, performance parameters that We then used the brackets from each parser out-
bound parsing and disambiguation can be tuned faut (or original treebank trees) to constrain the XLE
efficient but accurate operation. These parameteparser. If the input to the XLE parser is bracketed,
include at which point to timeout and return an errorthe parser will only generate c-structures that respect
the amount of stack memory to allocate, the numthese brackets (i.e., only c-structures with brackets
ber of new edges to add to the chart and at whicthat are compatible with the input brackets are con-
point to start skimming (a process that guaranteesdered during the unification stage). Figure 2 gives
XLE will finish processing a sentence in polynomialan example of retained brackets from the parser out-
time by only carrying out a bounded amount of workput. We do not retain brackets arouréN (paren-

on each remaining constituent after a time thresholthetical phrase) okp nodes as their structure often
has passed). For the experiments reported here, wi#fered too much from XLE analyses of the same
did not fine-tune these parameters due to time cophrases. We passed pre-bracketed strings to the XLE
straints; so default values were arbitrarily set and thand evaluated the output f-structures in terms of de-
same values used for all parsing experiments. pendency triples against the 140-sentence subset of
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Non-Fragment Fragment
Penn-XLE | Penn-XLE || Penn-XLE | Penn-XLE
(lab.) (unlab.) (lab.) (unlab.)
Total XLE parses (/140 0 89 140 140
F-Score of subset 0 84.11 53.92 74.87
Overall F-Score 0 58.91 53.92 74.87

Table 1: Upper-bound results for original Penn-Il trees

Non-Fragment Fragment

XLE | Bikel-XLE | Bikel-XLE XLE | Bikel-XLE | Bikel-XLE

(lab.) (unlab.) (lab.) (unlab.)
Total XLE Parses (/140] 119 0 84 135 140 140
F-Score of Subset 81.57 0 84.23 || 78.72 54.37 73.71
Overall F-Score 72.01 0 55.06 || 76.13 54.37 *73.71
XLE CJ-XLE CJ-XLE XLE CJ-XLE CJ-XLE

(lab.) (unlab.) (lab.) (unlab.)
Total XLE Parses (/140]) 119 0 86 135 139 139
F-Score of Subset 81.57 0 86.57 || 78.72 53.96 75.64
Overall F-Score 72.01 0 58.04 || 76.13 53.48 *74.98

Table 2: Bikel (2002) and Charniak and Johnson (2005) odh@fbox baseline results

the PARC 700 Dependency Bank. duced by XLE. Interestingly, the f-scores for both
The results of the baseline experiments are giveihie CJ-XLE and Bikel-XLE systems are very sim-
in Tables 1 and 2. Table 1 gives the upper bountgr to the upper bounds. The gold standard upper
results if we use the gold standard Penn treebaround is not as high as expected because the Penn
to bracket the input to XLE. Table 2 compares thérees used to produce the gold bracketed input are
XLE (fragment and non-fragment) grammar to thehot always compatible with the XLE-style trees. As
system where the input is pre-parsed by each parsérsimple example, the tree in Figure 1 differs from
XLE fragment grammars provide a back-off whenthe parse tree for the same sentence in the Penn
parsing fails: the grammar is relaxed and the parsdireebank (Figure 3). The most obvious difference
builds a fragment parse of the well-formed chunksis the labels on the nodes. However, even in this
We compare the parsers in terms of total numbegmall example, there are structural differences, e.g.
of parses (out of 140) and the f-score of the sulthe position of the period. In general, the larger the
set of sentences successfully parsed. We also cotiee, the greater the difference in both labeling and
bine these scores to give an overall f-score, wheructure between the Penn trees and the XLE-style
the system scores 0 for each sentence it could nsees. Therefore, the next step was to retrain a parser
parse. When testing for statistical significance belo produce trees with structures the same as XLE-
tween systems, we compare the overall f-score vastyle trees and with XLE English grammar labels on
ues. Figures marked with an asterisk are not statisihe nodes. For this experiment we use the Bikel ()
cally significantly different at the 95% levél. parser, as it is more suited to being retrained on a
The results show that using unlabeled bracketdeWw treebank annotation scheme.
achieves reasonable f-scores with the non-fragment o )
grammar. Using the labeled bracketing from the out? ~ Retraining the Bikel parser

put of both parsers causes XLE to always fail Whe%Ie retrained the Bikel parser so that it produces

parsing. This is because the labels in the output . : ]
parsers trained on the Penn-Il treebank differ co ?_rees llke those outputted by the XLE parsing sys

. em (e.g. Figure 1). To do this, we first created a
siderably from the labels on c-structure trees pro-_. . "
training corpus, and then modified the parser to deal

2\We use the approximate randomization test (Noreen, 198&W'th_ this new de_lta'
to test for significance. Since there is no manually-created treebank of

68



S All Sentences

XLE | Bikel-XLE
Non-fragment grammar

Labeled brackets
NP VP : Total Parsing Time 964 336
N T | Total XLE Parses (/140) 119 77
| V||3Z ADJF;'PRD : F-Score of Subset 8157 86.11
Overall F-Score 72.01 52.84

th

Grow 1S JJR Non-fragment grammar

slower Unlabeled brackets
Total Parsing Time 964 380
; . “ . » | Total XLE Parses (/140] 119 89
Figure 3: Penn Treebank tree for “Growth is slower. F-Score of Subset 5157 5567
Overall F-Score 72.01 590.34

Fragment grammar
XLE-style trees, we created one automatically from |___ Sera T 11"1-33139'90' bracketssgo
sectlon_s 02-21 of the Penn—l_l Treebank. We took the —6iarxiE parses 7140] 135 120
raw strings from those sections and markedNm F-Score of Subset 78.72 71.86
and SBAR constituents using the brackets from the [ Overall F-Score 76.13 71.86

. Fragment grammar

gold standard Penn treebank. Tke constituents Unlabeled brackets
are labeled, and theBAR unlabeled (i.e. thesBAR Total Parsing Time 1143 423
constituents are forced to exist in the XLE parse, but loéal XLEfPSBWSbeS (/140 - 813;2 - 41‘;1

. . -Score of Subset . .
the label on them is not constrained to HBAR). Overall F-Score 7613 ¥4 51

We also tagged verbs, adjectives and nouns, base
on the gold standard POS tags. Table 3: Bikel-XLE Initial Experiments

We parsed the 39,832 marked-up sentences in the
standard training corpus and used the XLE disam-
biguation module to choose the most probable dor the evaluation against the PARC 700 test set.
and f-structure pair for each sentence. Ideally we
would have had an expert choose these. We ab-1 Pre-bracketing

tomatically extracted the c-structure trees p'roduce\s{/e automatically pre-processed the raw strings from
by the XLE and performed some automatic pos

tt'he 140-sentence development set. This made sys-

p:ogetss_m_gi’. This resu]!tgg I8n7§ r;(i;tof[n?t'fa”y cher; tematic changes to the tokens so that the retrained
ated training corpus ot 27, -Style trees. ikel parser can parse them. The changes included

11,959 missing trees were mainly due to the XL emoving quotes, converting andan to _a, con-

pa:sis tnot belp g corgpatltblti_ with thde bracketed In\7erting n't to _not, etc. We parsed the pre-processed
put, but sometimes due to time and memary Cons'trings with the new Bikel parser.

straints. . L . .
Using the automatically-created training corpus We carried out four initial experiments, experi-
g y N P menting with both labeled and unlabeled brackets

of XLE-style trees, we retrained the Bikel parser on
. . . . nd XLE fragment and non-fragment grammars. Ta-
this data. This required adding a new language mod-

ule (“XLE-English”) to the Bikel parser, and regen—cloem3 a?rzet;(:hearrseesruslt; f;rrr:]hsez(: t?r;(ze:g?aelnr:imz\é?
erating head-finding rules for the XLE-style trees. P P '

of parses (out of 140), the f-score of the subset of
5 Experiments sentences successfully parsed and the overall f-score
if the system achieves a score of O for all sentences
Once we had a retrained version of the Bikel parsef does not parse. The time taken for the Bikel-XLE
that parses novel text into XLE-style trees, we carsystem includes the time taken for the Bikel parser

ried out a number of experiments on our developto parse the sentences, as well as the time taken for
ment set in order to establish the optimum settingXLE to process the bracketed input.

3The postprocessing included removing morphological in- 1aole 3 S_hOWS that using the non-fragment gram-
formation and the brackets from the original markup. mar, the Bikel-XLE system performs better on the
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subset of sentences parsed than XLE system alorgylts are given in Table 5 for the experiment with
though the results are not statistically significantlyabeled brackets and the non-fragment XLE gram-
better overall, since the coverage is much lower. Themar. More pruning generally results in fewer and
number of bracketed sentences that can be parslewer-quality parses. The biggest gain is with prun-
by XLE increases if the brackets are unlabeledng level 1, where the number and quality of brack-
The table also shows that the XLE system performeted sentences that can be parsed with XLE remains
much better than Bikel-XLE when using the frag-the same as with the default level. This is because
ment grammars. Although the Bikel-XLE system isBikel with pruning level 1 does not relax the con-
quite a bit faster, there is a drop in f-score; howevestraints when parsing fails and does not waste time
this is not statistically significant when the bracketparsing sentences that cannot be parsed in bracketed
are unlabeled. form by XLE.

5.2 Pretagging Default L1 L2 L3

; | ¢ Total Parsing Time 336 137 137 106
We pgrformed some error ana!y3|s on the output cf# XLE Parses (/140 =7 - 76 -5
the Bikel-XLE system and noticed that a considelrE-Score of Subset 86.11] 86.11| 86.04| 85.87
able number of errors were due to mis-tagging. S¢,Overall F-Score 52.84 | *52.84 | *52.43 | *52.36
we pre-tagged the input to the Bikel parser using th ) . . i i
MXPOST tagger (Ratnaparkhi, 1996). The resultgable 5: Pruning with Non-fragment grammar, L.a

: eled brackets, Levels default-3

for the non-fragment grammars are presented in Ta-
ble 4. Pre-tagging with MXPOST, however, does
not result in a statistically significantly higher re-
sult than parsing untagged input, although more se
tences can be parsed by both systems. Pre-taggiABhough pre-parsing with Bikel results in faster

§;4 Hybrid systems

also adds an extra time overhead cost. XLE parsing time and high-quality f-structures
(when examining only the quality of the sentences
<[E gnigf;tfgs ngﬁg_&tfgs that can be parsed by the Bikel-XLE system), the
Unlabeled coverage of this system remains poor, therefore the
Total Parsing Time | 964 380 493 | overall f-score remains poor. One solution is to build
ﬁ-étgrgi?sezé/sled{o 81%3 85_%% . 4_%%5 a hybrid two-pass system. During the first pass all
Overall E-Score 72.01 59.34 *61.11 | sentences are pre-parsed by Bikel and the bracketed
_ Labeled output is parsed by the XLE non-fragment gram-
;O)Eal_'EPS;'S”SST('/Tfo (‘ifg 3?? 43; mar. In the second pass, the sentences that were
F-Score of Subset | 81.57 86.11 g5.g7| not parsed during the first pass are parsed with the
Overall F-Score 72.01 52.84 *54.91 | XLE fragment grammar. We carried out a number

) of experiments with hybrid systems and the results
Table 4: MXPOST pre-tagged, Non-fragment gram given in Table 6.

mar The results show that again labeled brackets re-
sult in a statistically significant increase in f-score,
53 Pruning although the time taken is almost the same as the

, _ _ XLE fragment grammar alone. Coverage increases
The Bikel parser can be customized to allow differy,y 1 gentence. Using unlabeled brackets results in
ent levels of pruning. The above experiments Werg ,qgitional sentences receiving parses, and parsing
carried out using the default level. We carried oufjme is improved by~12%; however the increase in
experiments with three levels of prunifigfhe re- f-score is not statistically significant.
“The default level of pruning starts at 3.5, has a maximum of Table 7 gives the results for hybrid systems with

4 and relaxes constraints when parsing fails. Level 1 pgiisin pruning using labeled brackets. The more pruning
the same as the default except the constraints are neveedela

Level 2 pruning has a start value of 3.5 and a maximum valu[ﬂ.hat the B'kel parser does, the faSte_r the SyStem*
of 3.5. Level 3 pruning has a start and maximum value of 3. but the quality of the f-structures begins to deteri-
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XLE || Bikel-XLE hybrid | Bikel-XLE hybrid

(frag) (labeled) (unlabeled)
Total Parsing Time 1143 1121 1001
Total XLE Parses (/140 135 136 138
F-Score of Subset 78.72 79.85 79.51
Overall F-Score 76.13 77.61 *78.28

Table 6: Hybrid systems compared to the XLE fragment gramaitare

XLE || Bikel-XLE hybrid | Bikel-XLE hybrid | Bikel-XLE hybrid

(frag) (level 1) (level 2) (level 3)
Total Parsing Time 1143 918 920 885
Total XLE Parses (/140] 135 136 136 136
F-Score of Subset 78.72 79.85 79.79 79.76
Overall F-Score 76.13 77.61 77.55 77.53

Table 7: Hybrid systems with pruning compared to the XLE fin@gt grammar alone

orate. The best system is the Bikel-XLE hybrid sysef two phases. During phase one, pre-processed, to-
tem with labeled brackets and pruning level 1. Thikenized text is parsed with a retrained Bikel parser.
system achieves a statistically significant increase We use the labeled brackets in the output to constrain
f-score over the XLE fragment grammar alone, dethe c-structures generated by the XLE parsing sys-
creases the time taken to parse by almost 20% ateim. In the second phase, we use the XLE fragment
increases coverage by 1 sentence. Therefore, \yeammar to parse any remaining sentences that have
chose this system to perform our final evaluatiomot received a parse in the first phase.

against the PARC 700 Dependency Bank. Given the slight increase in overall f-score per-
formance, the speed up in parsing timel8%) can
justify more complicated processing architecture for
We evaluated the system that performs best on tt§@me applications. The main disadvantage of the
development set against the 560-sentence test setcgfrent system is that the input to the Bikel parser
the PARC 700 Dependency Bank. The results afeeeds to be tokenized, whereas XLE processes raw
given in Table 8. The hybrid system achieves atext. One solution to this is to use a state-of-the-art
18% decrease in parsing time, a slight improvemerrobabilistic parser that accepts untokenized input
in coverage of 0.9%, and a 1.12% improvement ifsuch as Charniak and Johnson, 2005) and retrain it
overall f-structure quality. as described in Section 4.

Kaplan et al. (2004) compared time and accuracy

6 Evaluation against the PARC 700

02:;5 ﬁg‘ggéﬁ%ﬁg% of a version of the Collins parser tuned to maximize
Total Parsing Time 4967 4077 speed and accuracy to an earlier version of the XLE
Total XLE Parses (/560) 537 542 parser. Although the XLE parser was more accu-
giﬁgfgsig?;m g%i gg:ig rate, the parsing time was a factor of 1.49 slower

(time converting Collins trees to dependencies was
Table 8: PARC 700 evaluation of the Hybrid systemrmot counted in the parse time; time to produce f-

compared to the XLE fragment grammar alone  structures from c-structures was counted in the XLE
parse time). The hybrid system here narrows the
speed gap while maintaining greater accuracy.

The original hope behind using the brackets to
We successfully used a state-of-the-art probabilisticonstrain the XLE c-structure generation was that

parser in combination with a hand-crafted system t

. . fi hil intaini th lit SFor example, in massive data applications, if the parsing
Improve parsing time while main ?.Inlng € qua '_ Ytask takes 30 days, reducing this by 18% saves more than 5
of the output produced. Our hybrid system consistsays.

7 Conclusions
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the brackets would force the XLE to choose onlyStephen Clark and James R. Curran. 2004. The Impor-

one tree. However, the brackets were sometimes tance Olf Spupertag_gmg f%ré/:\gdj’-\%iveragezgg% ggrs-
- : - ing . In Proceedings o pages -288,

ambiguous, and so_metlmeS m_ore thap one valid treeGeneva, Switzerland, Aug 23—Aug 27. COLING.

was found. In the final evaluation against the PARC

700 test set, the average number of optimal solutiorf¥chard Crouch, Ron Kaplan, Tracy Holloway King, and

was 4.05; so the log-linear disambiguation mod- Stefan Riezler. 2002. A comparison of evaluation
' metrics for a broad coverage parser.Aroceedings of

ule still had _to _chose t_he most probable f-structure. .| Rec Workshop: Beyond PARSEYpages 67—
However, this is considerably less to choose from 74, |as Palmas, Canary Islands, Spain.
than the average of 341 optimal solutions produced

Ron Kaplan and Joan Bresnan. 1982. Lexical Functional
by the XLE fragment grammar for the same sen Grammar, a Formal System for Grammatical Repre-

tences when unbracketed. _ sentation. In Joan Bresnan, editShe Mental Repre-
Based on the results of this experiment we have sentation of Grammatical Relationpages 173—-281.

integrated a statistical component into the XLE MIT Press, Cambridge, MA.

parser itself. With this architecture the packed ¢, Kaplan, Stefan Riezler, Tracy Holloway King,
structure trees are pruned before unification with- John T. Maxwell, Alexander Vasserman, and Richard
out needing to preprocess the input text. The XLE Crouch. 2004. Speed and Accuracy in Shallow and

c-structure pruning results in @30% reduction in ~ Deep_Stochastic Parsing. Iroceedings of HLT-
. o L . . NAACL pages 97-104, Boston, MA.
parse time on the Wikipedia with little loss in preci-

sion. We hope to report on this in the near future. Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ron Kaplan. 2003. The PARC

Acknowledgments 700 dependency bank. Rroceedings of LINCpages
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