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Abstract

In this paper, we propose a new syntax-
based machine translation (MT) approach
based on reducing the MT task to a tree-
labeling task, which is further decom-
posed into a sequence of simple decisions
for which discriminative classifiers can be
trained. The approach is very flexible and
we believe that it is particularly well-suited
for exploiting the linguistic knowledge en-
coded in deep grammars whenever possi-
ble, while at the same time taking advantage
of data-based techniques that have proven a
powerful basis for MT, as recent advances in
statistical MT show.

A full system using the Lexical-Functional
Grammar (LFG) parsing system XLE and
the grammars from the Parallel Grammar
development project (ParGram; (Butt et
al., 2002)) has been implemented, and we
present preliminary results on English-to-
German translation with a tree-labeling sys-
tem trained on a small subsection of the Eu-
roparl corpus.

1 Motivation

Machine translation (MT) is probably the oldest ap-
plication of what we call deep linguistic processing
techniques today. But from its inception, there have
been alternative considerations of approaching the
task with data-based statistical techniques (cf. War-
ren Weaver’s well-known memo from 1949). Only
with fairly recent advances in computer technology
have researchers been able to build effective statis-
tical MT prototypes, but in the last few years, the
statistical approach has received enormous research
interest and made significant progress.

The most successful statistical MT paradigm has
been, for a while now, the so-call phrase-based MT
approach (Och and Ney, 2003). In this paradigm,
sentences are translated from a source language to
a target language through the repeated substitution
of contiguous word sequences (“phrases”) from the
source language for word sequences in the target
language. Training of the phrase translation model
builds on top of a standard statistical word alignment
over the training corpus of parallel text (Brown et al.,
1993) for identifying corresponding word blocks,
assuming no further linguistic analysis of the source
or target language. In decoding, i.e. the application
of the acquired translation model to unseen source
sentences, these systems then typically rely on n-
gram language models and simple statistical reorder-
ing models to shuffle the phrases into an order that
is coherent in the target language.

An obvious advantage of statistical MT ap-
proaches is that they can adopt (often very id-
iomatic) translations of mid- to high-frequency con-
structions without requiring any language-pair spe-
cific engineering work. At the same time it is clear
that a linguistics-free approach is limited in what
it can ultimately achieve: only linguistically in-
formed systems can detect certain generalizations
from lower-frequency constructions in the data and
successfully apply them in a similar but different lin-
guistic context. Hence, the idea of “hybrid” MT, ex-
ploiting both linguistic and statistical information is
fairly old. Here we will not consider classical, rule-
based systems with some added data-based resource
acquisition (although they may be among the best
candidates for high-quality special-purpose transla-
tion – but adaption to new language pairs and sub-
languages is very costly for these systems). The
other form of hybridization – a statistical MT model
that is based on a deeper analysis of the syntactic
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structure of a sentence – has also long been iden-
tified as a desirable objective in principle (consider
(Wu, 1997; Yamada and Knight, 2001)). However,
attempts to retrofit syntactic information into the
phrase-based paradigm have not met with enormous
success (Koehn et al., 2003; Och et al., 2003)1, and
purely phrase-based MT systems continue to outper-
form these syntax/phrase-based hybrids.

In this work, we try to make a fresh start with
syntax-based statistical MT, discarding the phrase-
based paradigm and designing a MT system from
the ground up, using syntax as our central guid-
ing star – besides the word alignment over a par-
allel corpus. Our approach is compatible with and
can benefit substantially from rich linguistic rep-
resentations obtained from deep grammars like the
ParGram LFGs. Nevertheless, contrary to classi-
cal interlingual or deep transfer-based systems, the
generative stochastic model that drives our system
is grounded only in the cross-language word align-
ment and a surface-based phrase structure tree for
the source language and will thus degrade grace-
fully on input with parsing issues – which we sus-
pect is an important feature for making the overall
system competitive with the highly general phrase-
based MT approach.

Preliminary evaluation of our nascent system in-
dicates that this new approach might well have the
potential to finally realize some of the promises of
syntax in statistical MT.

2 General Task

We want to build a system that can learn to translate
sentences from a source language to a destination
language. The general set-up is simple.

Firstly, we have a training corpus of paired sen-
tencesf and e, where target sentencee is a gold
standard translation of source sentencef . These
sentence pairs are annotated with auxiliary informa-
tion, which can include word alignments and syntac-
tic information. We refer to these annotated sentence
pairs ascomplete translation objects.

Secondly, we have an evaluation corpus of source
sentences. These sentences are annotated with a sub-
set of the auxiliary information used to annotate the

1(Chiang, 2005) also reports that with his hierarchical gen-
eralization of the phrase-based approach, the addition of parser
information doesn’t lead to any improvements.

Figure 1: Example translation object.

training corpus. We refer to these partially annotated
source sentences aspartial translation objects.

The task at hand: use the training corpus to learn
a procedure, through which we can successfully in-
duce a complete translation object from a partial
translation object. This is what we will define as
translation.

3 Specific Task Addressed by this Paper

Before going on to actually describe a translation
procedure (and how to induce it), we need to spec-
ify our prior assumptions about how the translation
objects will be annotated. For this paper, we want to
exploit the syntax information that we can gain from
an LFG-parser, hence we will assume the following
annotations:

(1) In the training and evaluation corpora, the
source sentences will be parsed with the XLE-
parser. The attribute-value information from LFG’s
f-structure is restructured so it is indexed by (c-
structure) tree nodes; thus a tree node can bear mul-
tiple labels for various pieces of morphological, syn-
tactic and semantic information.

(2) In the training corpus, the source and target
sentence of every translation object will be aligned
using GIZA++ (http://www.fjoch.com/).

In other words, our complete translation objects
will be aligned tree-string pairs (for instance, Fig-
ure 1), while our partial translation objects will be
trees (the tree portion of Figure 1). No other annota-
tions will be assumed for this paper.
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Figure 2: GHKM tree equivalent of example translation object. The light gray nodes are rule nodes of the
GHKM tree.

4 Syntax MT as Tree Labeling

It is not immediately clear how one would learn a
process to map a parsed source sentence into an
aligned tree-string pair. To facilitate matters, we
will map complete translation objects to an alternate
representation. In (Galley et al., 2003), the authors
give a semantics to aligned tree-string pairs by asso-
ciating each with an annotated parse tree (hereafter
called aGHKM tree) representing a specific theory
about how the source sentence was translated into
the destination sentence.

In Figure 1, we show an example translation ob-
ject and in Figure 2, we show its associated GHKM
tree. The GHKM tree is simply the parse treef of
the translation object, annotated with rules (hereafter
referred to asGHKM rules). We will not describe in
depth the mapping process from translation object to
GHKM tree. Suffice it to say that the alignment in-
duces a set of intuitive translation rules. Essentially,
a rule like: “not 1→ ne 1 pas” (see Figure 2) means:
if we see the word “not” in English, followed by a
phrase already translated into French, then translate
the entire thing as the word “ne” + the translated
phrase + the word “pas.” A parse tree node gets la-
beled with one of these rules if, roughly speaking,
its span is still contiguous when projected (via the
alignment) into the target language.

The advantage of using the GHKM interpretation
of a complete translation object is that our transla-
tion task becomes simpler. Now, to induce a com-
plete translation object from a partial translation ob-
ject (parse tree), all we need to do is label the nodes
of the tree with appropriate rules. We have reduced

the vaguely defined task of translation to the con-
crete task of tree labeling.

5 The Generative Process

At the most basic level, we could design a naive gen-
erative process that takes a parse tree and then makes
a series of decisions, one for each node, about what
rule (if any) that node should be assigned. How-
ever it is a bit unreasonable to expect to learn such
a decision without breaking it down somewhat, as
there are an enormous number of rules that could po-
tentially be used to label any given parse tree node.
So let’s break this task down into simpler decisions.
Ideally, we would like to devise a generative process
consisting of decisions between a small number of
possibilities (ideally binary decisions).

We will begin by deciding, for each node, whether
or not it will be annotated with a rule. This is clearly
a binary decision. Once a generative process has
made this decision for each node, we get a conve-
nient byproduct. As seen in Figure 3, the LHS of
each rule is already determined. Hence after this se-
quence of binary decisions, half of our task is al-
ready completed.

The question remains: how do we determine the
RHS of these rules? Again, we could create a gen-
erative process that makes these decisions directly,
but choosing the RHS of a rule is still a rather wide-
open decision, so we will break it down further. For
each rule, we will begin by choosing thetemplateof
its RHS, which is a RHS in which all sequences of
variables are replaced with an empty slot into which
variables can later be placed. For instance, the tem-
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Figure 3: Partial GHKM tree, after rule nodes have been identified (light gray). Notice that once we identify
the rule node, the rule left-hand sides are already determined.

plate of〈“ne”, x1, “pas”〉 is 〈“ne”,X, “pas”〉 and the
template of〈x3, “,” , x1, x2〉 is 〈X, “,” ,X〉, where X
represents the empty slots.

Once the template is chosen, it simply needs to be
filled with the variables from the LHS. To do so, we
process the LHS variables, one by one. By default,
they are placed to the right of the previously placed
variable (the first variable is placed in the first slot).
We repeatedly offer the option to push the variable
to the right until the option is declined or it is no
longer possible to push it further right. If the vari-
able was not pushed right at all, we repeatedly offer
the option to push the variable to the left until the
option is declined or it is no longer possible to push
it further left. Figure 4 shows this generative story
in action for the rule RHS〈x3, “,” , x1, x2〉.

These are all of the decisions we need to make
in order to label a parse tree with GHKM rules. A
trace of this generative process for the GHKM tree
of Figure 2 is shown in Figure 5. Notice that, aside
from the template decisions, all of the decisions are
binary (i.e. feasible to learn discriminatively). Even
the template decisions are not terribly large-domain,
if we maintain a separate feature-conditional dis-
tribution for each LHS template. For instance, if
the LHS template is〈“not” ,X〉, then RHS template
〈“ne”,X, “pas”〉 and a few other select candidates
should bear most of the probability mass.

5.1 Training

Having established this generative story, training is
straightforward. As a first step, we can convert each
complete translation object of our training corpus
to the trace of its generative story (as in Figure 5).

Decision to make Decision RHS so far
RHS template? X , X X , X
default placement of var 1 1 , X

push var 1 right? yes X , 1
default placement of var 2 X , 1 2

push var 2 left? no X , 1 2
default placement of var 3 X , 1 2 3

push var 3 left? yes X , 1 3 2
push var 3 left? yes X , 3 1 2
push var 3 left? yes 3 , 1 2

Figure 4: Trace of the generative story for the right-
hand side of a GHKM rule.

These decisions can be annotated with whatever fea-
ture information we might deem helpful. Then we
simply divide up these feature vectors by decision
type (for instance, rule node decisions, template de-
cisions, etc.) and train a separate discriminative clas-
sifier for each decision type from the feature vectors.
This method is quite flexible, in that it allows us to
use any generic off-the-shelf classification software
to train our system. We prefer learners that produce
distributions (rather than hard classifiers) as output,
but this is not required.

5.2 Exploiting deep linguistic information

The use of discriminative classifiers makes our ap-
proach very flexible in terms of the information that
can be exploited in the labeling (or translation) pro-
cess. Any information that can be encoded as fea-
tures relative to GHKM tree nodes can be used. For
the experiments reported in this paper, we parsed
the source language side of a parallel corpus (a
small subsection of the English-German Europarl
corpus; (Koehn, 2002)) with the XLE system, using
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the ParGram LFG grammar and applying probabilis-
tic disambiguation (Riezler et al., 2002) to obtain
a single analysis (i.e., a c-structure [phrase struc-
ture tree] and an f-structure [an associated attribute-
value matrix with morphosyntactic feature informa-
tion and a shallow semantic interpretation]) for each
sentence. A fall-back mechanism integrated in the
parser/grammar ensures that even for sentences that
do not receive a full parse, substrings are deeply
parsed and can often be treated successfully.

We convert the c-structure/f-structure represen-
tation that is based on XLE’s sophisticated word-
internal analysis into a plain phrase structure tree
representation based on the original tokens in the
source language string. The morphosyntactic fea-
ture information from f-structure is copied as addi-
tional labeling information to the relevant GHKM
tree nodes, and the f-structural dependency relation
among linguistic units is translated into a relation
among corresponding GHKM tree nodes. The rela-
tional information is then used to systematically ex-
tend the learning feature set for the tree-node based
classifiers.

In future experiments, we also plan to exploit lin-
guistic knowledge about the target language by fac-
torizing the generation of target language words into
separate generation of lemmas and the various mor-
phosyntactic features. In decoding, a morphological
generator will be used to generate a string of surface
words.

5.3 Decoding

Because we have purposely refused to make any
Markov assumptions in our model, decoding cannot
be accomplished in polynomial time. Our hypothe-
sis is that it is better to find a suboptimal solution of
a high-quality model than the optimal solution of a
poorer model. We decode through a simple search
through the space of assignments to our generative
process.

This is, potentially, a very large and intractible
search space. However, if most assignment deci-
sions can be made with relative confidence (i.e. the
classifiers we have trained make fairly certain deci-
sions), then the great majority of search nodes have
values which are inferior to those of the best so-
lutions. The standard search technique ofdepth-
first branch-and-bound searchtakes advantage of

search spaces with this particular characteristic by
first finding greedy good-quality solutions and using
their values to optimally prune a significant portion
of the search space. Depth-first branch-and-bound
search has the following advantage: it finds a good
(suboptimal) solution in linear time and continually
improves on this solution until it finds the optimal.
Thus it can be run either as an optimal decoder or as
a heuristic decoder, since we can interrupt its execu-
tion at any time to get the best solution found so far.
Additionally, it takes only linear space to run.

6 Preliminary results

In this section, we present some preliminary results
for an English-to-German translation system based
on the ideas outlined in this paper.

Our data was a subset of the Europarl corpus
consisting of sentences of lengths ranging from 8
to 17 words. Our training corpus contained 50000
sentences and our test corpus contained 300 sen-
tences. We also had a small number of reserved
sentences for development. The English sentences
were parsed with XLE, using the English ParGram
LFG grammar, and the sentences were word-aligned
with GIZA++. We used the WEKA machine learn-
ing package (Witten and Frank, 2005) to train the
distributions (specifically, we used model trees).

For comparison, we also trained and evaluated
the phrase-based MT system Pharaoh (Koehn, 2005)
on this limited corpus, using Pharaoh’s default pa-
rameters. In a different set of MT-as-Tree-Labeling
experiments, we used a standard treebank parser
trained on the PennTreebank Wall Street Journal
section. Even with this parser, which produces less
detailed information than XLE, the results are com-
petitive when assessed with quantitative measures:
Pharaoh achieved a BLEU score of 11.17 on the test
set, whereas our system achieved a BLEU score of
11.52. What is notable here is not the scores them-
selves (low due to the size of the training corpus).
However our system managed to perform compara-
bly with Pharaoh in a very early stage of its devel-
opment, with rudimentary features and without the
benefit of an n-gram language model.

For the XLE-based system we cannot include
quantitative results for the same experimental setup
at the present time. As a preliminary qualitative
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Decision to make Decision Active features
rule node (i)? YES NT=“S”; HEAD = “am”
rule node (ii)? YES NT=“NP”; HEAD = “I”
rule node (iv)? NO NT=“VP”; HEAD = “am”
rule node (v)? YES NT=“VP”; HEAD = “am”
rule node (vi)? NO NT=“MD”; HEAD = “am”

rule node (viii)? YES NT=“VP”; HEAD = “going”
rule node (ix)? NO NT=“RB”; HEAD = “not”
rule node (xi)? YES NT=“VB”; HEAD = “going”

rule node (xiii)? YES NT=“ADJP”; HEAD = “today”
RHS template? (i) X , X NT=“S”

push var 1 right? (i) YES VARNT=“NP”; PUSHPAST= “,”
push var 2 left? (i) NO VARNT=“VP”; PUSHPAST= “NP”
push var 3 left? (i) YES VARNT=“ADJP”; PUSHPAST= “VP”
push var 3 left? (i) YES VARNT=“ADJP”; PUSHPAST= “NP”
push var 3 left? (i) YES VARNT=“ADJP”; PUSHPAST= “,”
RHS template? (ii) je NT=“NP”; WD=“I”
RHS template? (v) X NT=“VP”

RHS template? (viii) ne X pas NT=“VP”; WD=“not”
RHS template? (xi) vais NT=“VB”; WD=“going”

RHS template? (xiii) aujourd’hui NT=“ADJP”; WD=“today”

Figure 5: Trace of a top-down generative story for the GHKM tree in Figure 2.

evaluation, let’s take a closer look at the sentences
produced by our system, to gain some insight as to
its current strengths and weaknesses.

Starting with the English sentence (1) (note that
all data is lowercase), our system produces (2).

(1) i agree with the spirit of those amendments .

(2) ich
I

stimme
vote

die
the.FEM

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

zu
to

.

.

The GHKM tree is depicted in Figure 6. The key
feature of this translation is how the English phrase
“agree with” is translated as the German “stimme
... zu” construction. Such a feat is difficult to pro-
duce consistently with a purely phrase-based sys-
tem, as phrases of arbitrary length can be placed be-
tween the words “stimme” and “zu”, as we can see
happening in this particular example. By contrast,
Pharaoh opts for the following (somewhat less de-
sirable) translation:

(3) ich
I

stimme
vote

mit
with

dem
the.MASC

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

.

.

A weakness in our system is also evident here.
The German noun “Geist” is masculine, thus our
system uses the wrong article (a problem that

Pharaoh, with its embedded n-gram language model,
does not encounter).

In general, it seems that our system is superior to
Pharaoh at figuring out the proper way to arrange the
words of the output sentence, and inferior to Pharaoh
at finding what the actual translation of those words
should be.

Consider the English sentence (4). Here we have
an example of a modal verb with an embedded in-
finitival VP. In German, infinite verbs should go at
the end of the sentence, and this is achieved by our
system (translating “shall” as “werden”, and “sub-
mit” as “vorlegen”), as is seen in (5).

(4) ) we shall submit a proposal along these lines before the
end of this year .

(5) wir
we

werden
will

eine
a.FEM

vorschlag
proposal.MASC

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

die
the.FEM

ende
end.NEUT

dieser
this.FEM

jahres
year.NEUT

vorlegen
submit

.

.

Pharaoh does not manage this (translating “sub-
mit” as “unterbreiten” and placing it mid-sentence).

(6) werden
will

wir
we

unterbreiten
submit

eine
a

vorschlag
proposal

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

ende
end

dieser
this.FEM

jahr
year.NEUT

.

.

It is worth noting that while our system gets the
word order of the output system right, it makes sev-

38



Figure 6: GHKM tree output for a test sentence.

eral agreement mistakes and (like Pharaoh) doesn’t
get the translation of “along these lines” right.

In Figure 7, we show sample translations by the
three systems under discussion for the first five sen-
tences in our evaluation set. For the LFG-based ap-
proach, we can at this point present only results for
a version trained on 10% of the sentence pairs. This
explains why more source words are left untrans-
lated. But note that despite the small training set,
the word ordering results are clearly superior for this
system: the syntax-driven rules place the untrans-
lated English words in the correct position in terms
of German syntax.

The translations with Pharaoh contain relatively
few agreement mistakes (note that it exploits a lan-
guage model of German trained on a much larger
corpus). The phrase-based approach does however
skip words and make positioning mistakes some of
which are so serious (like in the last sentence) that
they make the result hard to understand.

7 Discussion

In describing this pilot project, we have attempted
to give a “big picture” view of the essential ideas
behind our system. To avoid obscuring the presen-
tation, we have avoided many of the implementation
details, in particular our choice of features. There
are exactly four types of decisions that we need to
train: (1) whether a parse tree node should be a rule

node, (2) the RHS template of a rule, (3) whether a
rule variable should be pushed left, and (4) whether
a rule variable should be pushed right. For each
of these decisions, there are a number of possible
features that suggest themselves. For instance, re-
call that in German, embedded infinitival verbs get
placed at the end of the sentence or clause. So
when the system is considering whether to push a
rule’s noun phrase to the left, past an existing verb,
it would be useful for it to consider (as a feature)
whether that verb is the first or second verb of its
clause and what the morphological form of the verb
is.

Even in these early stages of development, the
MT-as-Tree-Labeling system shows promise in us-
ing syntactic information flexibly and effectively for
MT. Our preliminary comparison indicates that us-
ing deep syntactic analysis leads to improved trans-
lation behavior. We hope to develop the system
into a competitive alternative to phrase-based ap-
proaches.
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