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Preface

This workshop was conceived with the aim of bringing together the different computational linguistic sub-
communities which model language predominantly by way of theoretical syntax, either in the form of a
particular theory (e.g. CCG, HPSG, LFG, TAG or the Prague School) or a more general framework which
draws on theoretical and descriptive linguistics. We characterise this style of computational linguistic
research as deep linguistic processing, due to it aspiring to model the complexity of natural language in
rich linguistic representations. Aspects of this research have in the past had their own separate fora, such
as the ACL 2005 workshop on deep lexical acquisition, as well as TAG+, Alpino, ParGram and DELPH-
IN meetings. However, since the fundamental approach of building a linguistically-founded system, as
well as many of the techniques used to engineer efficient systems, are common across these projects and
independent of the specific grammar formalism chosen, we felt the need for a common meeting in which
experiences could be shared among a wider community.

Deep linguistic processing has traditionally been concerned with grammar development for parsing
and generation, with many deep processing systems using the same grammar for both directions. The
linguistic precision and complexity of the grammars meant that they had to be manually developed
and maintained, and were computationally expensive to run. With recent developments in computer
hardware, parsing and generation algorithms and statistical learning theory, the way has been opened for
deep linguistic processing to be successfully applied to an ever-growing range of languages, domains and
applications.

The same trends that have made broad-coverage deep linguistic processing feasible have occurred at the
same time as the rise of machine learning and statistical approaches to natural language processing. For
a time, these two approaches were pursued separately, often without reference to advances in the other
approach, even when the same problems were being addressed. In the past couple of years, this divide
has begun to close from both sides. As witnessed by many of the papers in this workshop, many deep
systems have statistical components to them (e.g., as pre- or post-processing to control ambiguity, as
means of acquiring and extending lexical resources) or even use machine learning techniques to acquire
deep grammars (semi-)automatically. From the other side of the divide, many of the largely statistical
approaches are using progressively richer linguistic based features and are taking advantage of these
deeper features to tackle problems traditionally reserved for deep systems, such as thematic role labelling.

The workshop has indeed brought together a range of theoretical perspectives, not just those originally
foreseen. The papers presented cover current approaches to grammar development and issues of
theoretical properties, as well as the application of deep linguistic techniques to large-scale applications
such as question answering and dialogue systems. Having industrial-scale, efficient parsers and
generators opens up new application domains for natural language processing, as well as interesting
new ways in which to approach existing applications, e.g., by combining statistical and deep processing
techniques in a triage process to process massive data quickly and accurately at a fine level of detail.
Notably, several of the papers addressed the relationship of deep linguistic processing to topical statistical
approaches, in particular in the area of parsing.

There were 45 submissions to the workshop, each of which was peer reviewed by three members of the
international programme committee; at the end of the process 10 were accepted as papers to be presented
orally and 10 as posters. We feel that such a large number of submissions for a one-day workshop reflects
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an increasing interest in deep linguistic processing, an interest which is buoyed by the realization that
new, often hybrid, techniques combined with highly engineered parsers and generators and state-of-the-
art machines open the way towards practical, real-world application of this research. We look forward
to further opportunities for the different computational linguistic sub-communities who took part in this
workshop, and others, to come together in the future.

We would like to thank all the authors who submitted papers, as well as the members of the programme
committee for the time and effort they contributed in reviewing the papers, in some cases at very short
notice. We should also like to thank Anette Frank for providing the perfect complement to the workshop
with her invited talk.

The workshop received sponsorship from the Large Scale Syntactic Annotation of written Dutch (Lassy)
project. The Lassy project is carried out within the STEVIN programme, which is funded by the Dutch
and Flemish governments (http://taalunieversum.org/taal/technologie/stevin/).
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Multi-Component Tree Adjoining Grammars,
Dependency Graph Models, and Linguistic Analyses

Joan Chen-Main* and Aravind K. Joshi*"
*Institute for Research in Cognitive Science, and
"Dept of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104-6228

{chenmain, joshi}@seas.upenn.edu

Abstract

Recent work identifies two properties that
appear particularly relevant to the charac-
terization of graph-based dependency mod-
els of syntactic structure': the absence of
interleaving substructures (well-nestedness)
and a bound on a type of discontinuity
(gap-degree < 1) successfully describe
more than 99% of the structures in two de-
pendency treebanks (Kuhlmann and Nivre
2006).2 Bodirsky et al. (2005) establish that
every dependency structure with these two
properties can be recast as a lexicalized
Tree Adjoining Grammar (LTAG) deriva-
tion and vice versa. However, multi-
component extensions of TAG (MC-TAG),
argued to be necessary on linguistic
grounds, induce dependency structures that
do not conform to these two properties
(Kuhlmann and Mohl 2006). In this paper,
we observe that several types of MC-TAG
as used for linguistic analysis are more re-
strictive than the formal system is in prin-
ciple. In particular, tree-local MC-TAG,
tree-local MC-TAG with flexible composi-

! Whereas weak equivalence of grammar classes is only con-
cerned with string sets and fails to shed light on equivalence at
the structural level, our work involves the equivalence of deri-
vations and graph based models of dependencies. Thus, our
work is relevant to certain aspects of grammar engineering
that weak equivalence does not speak to.

? These properties hold for many of the so-called non-
projective dependency structures and the corresponding non-
context free structures associated with TAG, further allowing
CKY type dynamic programming approaches to parsing to
these dependency graphs.

1

tion (Kallmeyer and Joshi 2003), and spe-
cial cases of set-local TAG as used to de-
scribe certain linguistic phenomena satisfy
the well-nested and gap degree < 1 criteria.
We also observe that gap degree can dis-
tinguish between prohibited and allowed
wh-extractions in English, and report some
preliminary work comparing the predic-
tions of the graph approach and the MC-
TAG approach to scrambling.

1 Introduction

Bodirsky et al. (2005) introduce a class of graphi-
cal dependency models, called graph drawings
(which differ from standard dependency struc-
tures), that are equivalent to lexicalized Tree Ad-
joining Grammar (LTAG) derivations (Joshi and
Schabes 1997). Whereas TAG is a generative
framework in which each well-formed expression
corresponds with a legitimate derivation in that
system, the graph drawing approach provides a set
of structures and a set of constraints on well-
formedness. Bodirsky et al. offer the class of
graph drawings that satisfy these constraints as a
model-based perspective on TAG. Section 2
summarizes this relationship between TAG deriva-
tions and these graph drawings.

In related work, Kuhlmann and Nivre (2006)
evaluate a number of constraints that have been
proposed to restrict the class of dependency struc-
tures characterizing natural language with respect
to two dependency treebanks: the Prague Depend-
ency Treebank (PDT) (Hajic et al., 2001) and the
Danish Dependency Treebank (DDT) (Kromann,
2003). The results indicate that two properties
provide good coverage of the structures in both

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 1-8,
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treebanks.> The first is a binary well-nestedness
constraint.* The other is a bound on gap degree, a
graded measure of discontinuity. These results are
given in Table 1. What is noteworthy is that the
graph drawings which correspond to LTAG deriva-
tions share these two properties: LTAG induced
graph drawings are both well-nested and have gap
degree < 1, and for every graph drawing that is
both well-nested and gap degree < 1, there exists a
corresponding LTAG derivation (Mohl 2006). In
section 3, these two properties are defined.

property Danish Dep.  Prague Dep.
Treebank Tree-bank
all structures n=4393 n= 73088
well-nested 99.89% 99.89%
gap degree 0 84.95% 76.85%
gap degree 1 14.89% 22.72%
gap degree < 1 99.84% 99.57%

Table 1. Relevant results from Kuhlmann and
Nivre (2006).

In section 4, we show that gap degree can be
used to distinguish between strong island viola-
tions and weak island violations in English. This
supports the notion that gap-degree is a linguisti-
cally relevant measure.

Although TAG is a linguistically expressive
formalism, a closer look at the linguistic data has
motivated extensions of TAG.> One of the most
widely used extensions for handling cases that are
difficult for classic TAG is Multi-Component TAG
(Weir 1988). Like basic TAG, MC-TAG is a for-
malism for rewriting nodes of a tree as other trees.
The set of underived trees are called elementary
trees. The rewriting is accomplished via two opera-
tions: substitution, which rewrites a leaf node la-
beled X with a tree rooted in a node labeled X, and
adjoining, which rewrites a node X with a tree that
labels both its root and a distinguished leaf node,
the foot, with X. The observation that linguistic
dependencies typically occur within some sort of
local domain is expressed in the TAG hypothesis
that all such dependencies occur within the basic

* A third property based on edge degree also characterizes the
structures, but has no clear relationship to TAG-derivations.
Thus, reference to it is omitted in the remaining text. See
Kuhlmann and Nivre (2006) for the definition of edge degree.
* Well-nestedness differs from projectivity. (See section 3.)

> For a readable introduction, see Chapter 1 of Frank (2002).

building blocks of the grammar. Recursive struc-
ture is “factored out,” which allows apparent non-
local dependencies to be recast as local ones.
Whereas basic TAG takes the basic unit to be a
single elementary tree, MC-TAG extends the do-
main of locality to encompass a set of elementary
trees. That is, these sets are the objects over which
the combinatory operations apply. The MC-
extension allows for linguistically satisfying ac-
counts for a number of attested phenomena, such
as: English extraposition (Kroch and Joshi 1986),
subj-aux inversion in combination with raising
verbs (Frank 1992), anaphoric binding (Ryant and
Scheffler 2006), quantifier scope ambiguity (Joshi
et al. 2003), clitic climbing in Romance (Bleam
1994), and Japanese causatives (Heycock 1986).

The primary concern of this paper is the recon-
ciliation of the observation noted above, that MC-
TAG appears to be on the right track for a good
generative characterization of natural language,
with a second observation: The graph drawings
that correspond to MC-TAG derivations, are not
guaranteed to retain the properties of basic-TAG
induced graph drawings. Kuhlmann and Mdhl
(2006) report that if an entire MC set is anchored
by a single lexical element (the natural extension
of “lexicalization” of TAGs to MC-TAGsS), then
the class of dependency structures is expanded
with respect to both conditions that characterized
the TAG-induced graph drawings: MC-TAG in-
duced graph drawings include structures that are
not well-nested, have gap degree > 1, or both. As
Kuhlmann and M&hl point out, the gap degree in-
creases with the number of components, which we
will elaborate in section 6. This is true even if we
require that all components of a set combine with a
single elementary tree (i.e. tree-local MC-TAG,
which is known to allow more derivation structures
(i.e. derivation trees) than TAG, although they gen-
erate the same set of derived trees). If we suppose
that the characterization of dependency structures
as reported by Kuhlmann and Nivre (2006) for
Czech and Danish extends cross-linguistically, i.e.
the dependency structures for natural language
falls within the class of well-nested and gap degree
<1 dependency structures, then MC-TAG appears
to correspond to the wrong class of model-
theoretic dependency structures. It is desirable to
account for the apparent mismatch.

One possibility is that the linguistic analyses that
depend on a multi-component approach are ex-



tremely infrequent, and that this is reflected in the
small proportion (< 1%) of data in the PDT and
DDT that are not both well-nested and gap degree
< 1. A second possibility is that the structures in
the PDT and DDT are actually not good represen-
tatives of the structures needed to characterize
natural languages in general. However, a look at
the cases in which MC-TAG is employed reveals
that these particular analyses yield derivations that
correspond to graph drawings that do satisfy well-
nestedness and have gap degree < 1. In practice,
MC-TAG seems to be used more restrictively than
what the formal system allows in principle. This
keeps the corresponding graph drawings within the
class of structures identified by Bodirsky et al.
(2005) as a model of TAG derivations, and by
Kuhlmann and Nivre (2006) as empirically rele-
vant. Lastly, we compare the scrambling patterns
that are possible in an MC-TAG extension with
those that conform to the well-nestedness and gap
degree < 1 properties of the graph approach.

2  TAG-induced Graph Dependencies

The next two sections are intended to provide an
intuition for the terms defined more formally in
Bodirsky et al. (2005) and Kuhlmann and Nivre
(2006). In the former, the authors define their de-
pendency structures of interest, called graph draw-
ings, as a three-tuple: a set of nodes, a dominance
relation, and a (total) precedence relation. These
dependency structures are based on information
from both a TAG-derivation and that derivation’s
final phrase structure. The anchor of each elemen-
tary tree of a strictly lexicalized TAG (LTAG) is
used as a node label in the induced dependency
structure. E.g. suppose tree A is anchored by lexi-
cal item a in the LTAG grammar. Then a will be a
node label in any dependency structure induced by
an LTAG derivation involving tree A.

To see how the dominance relation and prece-
dence relation mirror the derivation and the final
derived phrase structure, let us further suppose that
LTAG tree B is anchored by lexical item b. Node
a dominates node b in the dependency structure iff
Tree A dominates tree B in the derivation struc-
ture. (I.e. tree B must substitute or adjoin into tree
A during the TAG-derivation.®) Node a precedes

% Whereas in standard dependency graphs, adjunction of t2 to
t1 generally corresponds to a dependency directed from t2 to

node b in the dependency structure iff a linearly
precedes b in the derived phrase structure tree.

An example based on the cross-serial dependen-
cies seen in Dutch subordinate clauses is given in
Figure 1. In the graph drawing in (4), the four
nodes names, {Jan, de kinderen, zag, zwemmen},
are the same set as the anchors of the elementary
trees in (1), which is the same as the set of termi-
nals in (3), the derived phrase structure. The or-
dering of these nodes is exactly the ordering of the
terminals in (3). The directed edges between the
nodes mirrors the immediate dominance relation
represented in (2), the derivation structure showing
how the trees in (1) combine. E.g. Just as the
zwemmen node has the zag and de kinderen nodes
as its two children in (2), so does the zwemmen
node dominate zag and de kinderen in (4).

Mohl (2006) provides the formal details show-
ing that such LTAG-induced dependency struc-
tures have the properties of being 1) well-nested
and 2) gap degree < 1, and, conversely, that any
structures with these properties have a correspond-
ing LTAG derivation.” These properties are de-
fined in the next section.

A A )
Y zag X zZwemmen zwemmen
Np{\)(* (saw) N'p\l/ (owim) zag de kinderen
NIP NIP |
de kinderen Jan
Jan (the children)
S
(2) a “4)
X zwemmen
N (swim) o‘w
Y zag ] |
VAN (saw) I | |
NP X | 1 |
l

Jan NP |

) Jan de kinderen zag zwemmen
de kinderen

(the children)

Figure 1. Derivation for Jan de kinderen zag
zwemmen and corresponding graph drawing

3 Properties of Dependency Graphs

3.1 Gap-Degree

It will be useful to first define the term projection.
Definition: The projection of a node x is the set of
nodes dominated by x (including x). (E.g. in (4),
the projection of zag = {Jan, zag}.)

t1, in a TAG-induced dependency graph, adjoining t2 to t1
corresponds to the reverse dependency.

7 This result refers to single graph drawings and particular
LTAG derivation. See Kuhlmann and M6hl (2007) on the
relationship between sets of graph drawings and LTAGs.



Recall that the nodes of a graph drawing are in a
precedence relation, and that this precedence rela-
tion is total.

Definition: A gap is a discontinuity with respect to
precedence in the projection of a node in the draw-
ing. (E.g. in (4), de kinderen is the gap preventing
Jan and zag from forming a contiguous interval.)
Definition: The gap degree of a node is the num-
ber of gaps in its projection. (E.g. the gap degree of
node zag = 1.)

Definition: The gap degree of a drawing is the
maximum among the gap degrees of its nodes.
(E.g. in (4), only the projection of zag is inter-
rupted by a gap. Thus, the gap degree of the graph
drawing in (4) =1.)

In TAG drawings, a gap arises from an interrup-
tion of the dependencies in an auxiliary tree. If B
is adjoined into A, the gap is the material in A that
is below the foot node of B. E.g. in figure 1, De
kinderen is substituted into the zwemmen tree be-
low the node into which the zag tree adjoins into
the zwemmen tree. Thus, de kinderen interrupts the
pronounced material on the left of the zag tree’s
foot node, Jan, from the pronounced material on
the right of the foot node, zag.

3.2 Well-Nestedness

Definition: If the roots of two subtrees in the
drawing are not in a dominance relation, then the
trees are disjoint. (E.g. in (5), the subtrees rooted in
b and c are disjoint, while the subtrees rooted in a
and b are not.)

Definition: If nodes X;, X, belong to tree X, nodes
Y1, ¥» belong to tree Y, precedence orders these
nodes: X; >Y; > X; > V,, and X and Y are disjoint,
then trees X and Y interleave. (E.g. in (5), b and d
belong to the subtree rooted in b, while ¢ and e be-
long to the subtree rooted in ¢. These two subtrees
are disjoint. Since the nodes are ordered b > ¢ > d
> e, the two trees interleave.)

Definition: If there is no interleaving between dis-
joint subtrees, then a graph drawing is well-nested.
(e.g. (4) is well-nested, but (5) is not)

5) %
i ' ' O

a b ¢ d e
Non-well nested graph drawing

4 Island Effects and Gap-Degree

When standard TAG analyses of island effects are
adopted (see Frank 2002), we observe that differ-
ences in gap degree align with the division be-
tween Wh-extractions that are attested in natural
language (grammatical wh-movement and weak
island effects) and those claimed to be prohibited
(strong island effects). Specifically, four strong
island violations, extraction from an adverbial
modifier, relative clause, complex NP, or subject,
correspond to structures of gap degree 1, while
cyclic wh-movement and a weak island violation
(extraction from a wh-island) are gap degree 0 in
English. Interestingly, while it is clear that weak
islands vary in their island status from language to
language, strong islands have been claimed to
block extraction cross-linguistically. We tenta-
tively postulate that gap degree is useful for char-
acterizing strong islands cross-linguistically.

An example is given in (6), a standard TAG
derivation for adverbial modification: the after-tree
adjoins into the buy-tree (the matrix clause), the
got-tree substitutes into the after-tree, and the two
arguments Who and a-raise substitute into the got-
tree. In (7), the corresponding dependency struc-
ture, the projection of got includes who, which is
separated from got by the string comprising the
matrix clause and adverbial. Clearly, we do not
want to claim that any gap degree of 1 is a sure
source of ungrammaticality. However, it is possi-
ble that a gap degree of 1 in conjunction with a wh-
element yields ungrammaticality. For the particu-
lar set of islands we examined, we postulate that
the projection of the node immediately dominating
the wh-element is prohibited from containing gaps.

(6) e

did Jane a-house after

got

(7)* ,
i

Who did

! 1 1 ! !
Jane buy a-house after got a-raise

Figure 2. LTAG derivation and graph drawing
for *Who did Jane buy a house after got a raise?
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S MC-TAG-induced Dependency Graphs

5.1 Gap-Degree Beyond 1

As reviewed in section 3, the source of every gap
in a TAG drawing comes from an interruption of
the dependencies in an auxiliary tree. Since the
auxiliary tree only has one foot, it only has a slot
for a single gap. A MC-set, however, could be
comprised of two auxiliary trees. This means there
are slots for two gaps, one associated with each
foot. Furthermore, a gap may arise as a result of
any pronounced material between the two compo-
nents. Thus, when we already have at least one
foot, adding an additional foot increases the maxi-
mum gap degree by 2. The maximum gap degree
=1+ 2(n—1)=2n - 1, where n is the max # of
foot nodes in any elementary tree set.

As an example, consider the composition of the
trees in (8), Figure 3 (Kuhlmann, p.c.) The tree set
in (8w) is comprised of two auxiliary trees. One
tree, (8wa), adjoins into (8a), and a gap is created
by the material in (8a) that falls below the foot
node of (8wa), namely b. When (8wp) is adjoined
into (8a) at node V, a second gap is created below
(8wp) by d. A third gap is created by the material
between the two components. (9) shows the de-
rived phrase structure, and (10), the corresponding
graph drawing. The projection of node w, {w, X, V,
Z} has three discontinuities, nodes b, ¢, and d.

5.2 Non-Well-Nestedness

Kuhlmann and M6hl (2006) show that even a tree-
local MC-TAG that allows only substitution can
induce a non-well-nested graph drawing. Figure 4
replicates their example. This derivation involves
two MC-sets, (11b) and (11c¢). The tree anchored

(lla)/'\(lld)x (1107

d e

11b)(ag W 11c)ac By
( ){lﬁl}( C{lﬁl}

(12)/1*\
a B C w Y

[ T

b c X z

I

d e

Figure 4. Non-well-nested MC-
TAG induced graph drawing

by d, (11d), substitutes into the second component
of the set anchored by b, (11b). Similarly, the tree
anchored by e, (11e), substitutes into the second
component of the set anchored by c, (11c). Both
MC-sets compose into the tree anchored by a,
yielding the derived phrase structure in (12). The
corresponding graph drawing is exactly our earlier
example of non-well-nestedness in (5).

6 MC-TAG in Practice

We now turn to cases in which linguists have used
MC-TAGs to account for cases argued to have no
satisfying solution in basic TAG. Unlike the ex-
amples in 5.1 and 5.2, these particular MC-deriva-
tions correspond to dependency structures that are
well-nested and have gap degree < 1. Table 2
summarizes these cases. The last column indicates
the type of MC-extension assumed by the analysis:
tree-local MC-TAGs, tree-local MC-TAGs with
flexible composition, the mirror operation to ad-
joining; if tree o adjoins into tree B, the combina-
tion can be alternatively viewed as tree f “flexibly”
composing with tree a (Joshi et al. 2003, Kall-
meyer and Joshi 2003)*, and set-local MC-TAGs.
Set-local MC-TAGs are generally more powerful
than TAGs, but since these particular cases induce
well-nested graph drawings of gap degree < 1, we
can conclude that set-local MC-TAG as used in

8 L.e. When composing A and B, we can take A as the function
and B as the argument or vice versa. For CFGs, such flexibil-
ity has no added benefit. For categorical type grammars, this
kind of flexibility is accomplished via type raising, which
allows for some new types of constituents but does not give
rise to any new word orders. For tree local MC-TAGs, such
flexibility does allow more word orders (permutations) to be
generated than are possible without flexible composition.



analysis phenomenon first second MC-type
source component component
Kroch English extraposition Auxiliary Auxiliary Tree-
211r91(§6Joshi A man arrived who knew Mary. /NP\ S*/S\S' local
NP* s i
| —
& NPV knew NRV
Frank subj-aux inversion with raising verb constructions Non-auxiliary Auxiliary Tree-
1992 Does Gabriel seem to like gnocchi? c P local
doLs. || /V<
eV I*
I
Ryant anaphoric binding Auxiliary Non-auxiliary Tree-
and John; likes himself;. NP NP local +
Scheffler et flexible
2006 compo-
sition
Joshi, quantifier scope ambiguity Auxiliary Non-auxiliary Tree-
Kall- An FBI agent is spying on every professor. 5 Py local +
meyer, &  (Vy [prof(y) —3x [agent(X) A spy (X, ¥)] ]) OR DET NV flexible
Romero  (3x [agent(x) AVY [prof(y)—> spy (X, ¥)] ]) vty compo-
2003 sition
Bleam clitic climbing in Romance Auxiliary Non-auxiliary Set-
1994 Mari telo  quiere permitir ver. P s local
Mari you-it wants to permit to see I I* v e VAV
G‘M . s T 2 | | ;
ar1 wants to permit you to see 1t. te; permitir
Heycock Japanese causatives Auxiliary Auxiliary Set-
y N e . . S
1986 Watasi-wa Mitiko-ni Taroo-o ik —ase (—-sase) —ta. FW/\ PR local
I TOP DAT ACCgo -CS -CS -PST N R ViV
“I made Mitiko make Taroo go.” sy _alse

Table 2. Canonical tree sets used in MC-TAG analyses of several phenomena

these cases is weakly equivalent to TAG.

From Table 2, we can draw two generalizations.
First, in an MC-TAG analysis, a two-component
set is typically used. One of the trees is often a
very small piece of structure that corresponds to
the “base position,” surface position, or scope posi-
tion of a single element. Second, the auxiliary tree
components typically have elements with phono-
logical content only on one side of the foot.

At this point, we make explicit an assumption
that we believe aligns with Bodirsky et al. (2005).
Since silent elements, such as traces, do not anchor
an elementary tree, they do not correspond to a
node in the dependency structure.

6.1 Why the Gap-Degree Remains <1

Recall that in example (8), each of the two compo-
nents in the example MC-TAG has a foot with
phonological material on both sides, giving rise to

two gaps, and a third gap is created via the material
between the two components. In contrast, in the
MC-TAG sets shown in Table 2, the auxiliary trees
have pronounced material only on one side of the
foot node. This eliminates the gap that would have
arisen due to the interruption of material on the left
side of the foot from the right side of the foot as a
result of the pronounced material beneath the foot.
The only way to obtain pronounced material on
both sides of the foot node is to adjoin a compo-
nent into one of these auxiliary trees. Interestingly,
the set-local analyses (in which all components of
a set must combine with components of a single set
vs. tree-local MC-TAG) for clitic climbing and
Japanese causatives do posit recursive components
adjoining into other recursive components, but
only while maintaining all pronounced material on
one side of the foot. In the absence of a deriva-
tional step resulting in pronounced material on



both sides of a foot, the only remaining possible
gap is that which arises from pronounced material
that appears between the two components.

Note that the observation about the position of
pronounced material applies only to auxiliary trees
in sets with multiple components. That is, auxil-
iary trees that comprise a singleton set may still
have pronounced material on both sides of the foot.

6.2 Why the Structures Remain Well-Nested

Since Kuhlmann and Mohl (2006) show that even
a MC-TAG that allows only non-auxiliary trees in
MC-sets will expand the drawings to include non-
well-nested drawings, there is no way to pare back
the MC-TAG via restrictions on the types of trees
allowed in MC-sets so as to avoid interleaving.
Recall that to satisfy the definition of interleav-
ing, it is necessary that the two MC-sets are not in
any dominance relation in the derivation structure.
In Kuhlmann and M&hl’s example, this is satisfied
because the two MC-sets are sisters in the deriva-
tion; they combine into the same tree. In the lin-
guistic analyses considered here, no more than one
MC-set combines into the same tree. For tree-local
MC-TAG, it appears to be sufficient to bar more
than one MC-set from combining into a single tree.

7  MC-TAG and Scrambling

In subordinate clauses in Standard German, the
canonical order of verbs and their subject argu-
ments is a nested dependency order. However,
other orderings are also possible. For example, in
the case of a clause-final cluster of three verbs, the
canonical order is as given in (13), NP;NP,NP;
V3V,Vy, but all the other permutations of the NP
arguments are also possible orderings. All six per-
mutations of the NPs can be derived via tree-local
MC-TAG. From the graph-model perspective
adopted here, this is unsurprising: All the se-
quences are well-nested and have gap degree < 1.
(13) NP; NP, NP; V; vV, Vi

... Hans Peter Marie schwimmen lassen sah

.. . Hans Peter Marie swim make saw
“ ... Hans saw Peter make Marie swim.”

However, with an additional level of embed-
ding, i.e. four NPs and four verbs, the situation is
different, both linguistically and formally. Our
focus is on making the formal predictions of a lin-

guistically informed system precise. We start with
a tree-local MC-TAG that is restricted to linguisti-
cally motivated tree-sets and to semantically co-
herent derivations. The former linguistic restric-
tion is illustrated in (14), the possible tree-sets an-
chored by a verb that takes a VP argument. The
latter linguistic restriction is that there is no seman-
tic feature clash at any stages of the derivation: the
VP argument of V; must be associated with V.

VP

VP /\
(14) N « NPi VP
NPi VP
T~ VP
!\iP VPgay* VIP B

NP VPuy* VP
()i Vi |

(e) Vi

Single and two-component sets for V;

As MC-TAG is enriched in various ways (by al-
lowing flexible composition, multiple adjoining at
the same node, and/or components from the same
MC-set to target the same node), all 24 orderings
where the nouns permute while the verbs remain
fixed can be derived. (We are aware that German
also allows verbs to scramble.) Taking the depend-
ency structures of these sequences to consist of an
edge from each verb V; to its subject NP and to the
head of its argument VP, V;;;, we can compare the
predictions of the graph drawing approach and the
MC-TAG approach. It turns out that the permuta-
tions of gap degree < 1 and those of gap-degree 2
do not align in an obvious way with particular en-
richments. For example, NP,NP,NP;NP;V,V3;V,V;
(gap degree 2) is derivable via basic tree-local MC-
TAG, but NP3NP 1NP4NP2V4V3V2V1 and
NP;NP,NP,NP{V,V3V,V; (also gap degree 2) ap-
pear to require both flexible composition and al-
lowing components from the same MC-set to tar-
get the same node.

8 Conclusion and Future Work

This paper reviews the connection established in
previous work between TAG derivations and
model-theoretic graph drawings, i.e. well-nested
dependency structures of gap degree < 1, and re-
ports several observations that build on this work.
First, additional evidence of the linguistic rele-
vance of the gap degree measure is given. The gap
degree measure can distinguish wh-movement that
is assumed to be generally disallowed from wh-
movement that is permitted in natural language.
Second, we observe that the graph drawings in-



duced by MC-TAGs used in linguistic analyses
continue to fall within the class of well-nested, gap
degree < 1 dependency structures. While
Kuhlmann and Mohl (2006) show that MC-TAGs
in which each set has a single lexical anchor in-
duce graph drawings that are outside this class, this
extra complexity in the dependency structures does
not appear to be utilized. Even for the crucial cases
used to argue for MC-extensions, MC-TAG is used
in a manner requiring less complexity than the
formal system allows. Examining these particular
grammars lays the groundwork for identifying a
natural class of MC-TAG grammars whose deriva-
tions correspond to well-nested graph drawings of
gap degree < 1. Specifically, the observations sug-
gest the class to be MC-TAGs in which 1) compo-
nent sets have up to two members, 2) auxiliary
trees that are members of non-singleton MC-sets
have pronounced material on only one side of the
foot, whether the auxiliary member is derived or
not, and 3) up to one MC-set may combine into
each tree. Though these constraints appears stipu-
lative from a formal perspective, a preliminary
look suggests that natural language will not require
their violation. That is, we may find linguistic jus-
tification for these constraints. Lastly, in ongoing
work, we explore how allowing flexible composi-
tion and multiple adjoining enables MC-TAGs to
derive a range of scrambling patterns.
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A recent development in data-driven parsing is th
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Abstract

This paper investigates perceptron training
for a wide-coverageccc parser and com-
pares the perceptron with a log-linear model.
Theccaparser uses a phrase-structure pars-
ing model and dynamic programming in the
form of the Viterbi algorithm to find the
highest scoring derivation. The difficulty in
using the perceptron for a phrase-structure
parsing model is the need for an efficient de-
coder. We exploit the lexicalized nature of
CCG by using a finite-state supertagger to
do much of the parsing work, resulting in
a highly efficient decoder. The perceptron
performs as well as the log-linear model; it
trains in a few hours on a single machine;
and it requires only a few hundreds of
RAM for practical training compared to 20
GB for the log-linear model. We also inves-
tigate the order in which the training exam-
ples are presented to the online perceptron
learner, and find that order does not signifi-
cantly affect the results.

Introduction

University of Sydney
NSW 2006, Australia
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Tsujii, 2005). Maximising the likelihood involves
calculating feature expectations, which is computa-
tionally expensive. Dynamic programmingr) in
the form of the inside-outside algorithm can be used
to calculate the expectations, if the features are suf-
ficiently local (Miyao and Tsuijii, 2002); however,
the memory requirements can be prohibitive, es-
pecially for automatically extracted, wide-coverage
grammars. In Clark and Curran (2004b) we use clus-
ter computing resources to solve this problem.

Parsing research has also begun to adopt discrim-
inative methods from the Machine Learning litera-
ture, such as the perceptron (Freund and Schapire,
1999; Collins and Roark, 2004) and the large-
margin methods underlying Support Vector Ma-
chines (Taskar et al., 2004; McDonald, 2006).
Parser training involves decoding in an iterative pro-
cess, updating the model parameters so that the de-
coder performs better on the training data, accord-
ing to some training criterion. Hence, for efficient
training, these methods require an efficient decoder;
in fact, for methods like the perceptron, the update
procedure is so trivial that the training algorithm es-
sentially is decoding.

This paper describes a decoder for a lexicalized-
grammar parser which is efficient enough for prac-
gcal discriminative training. We use a lexicalized

use of discriminative training methods (Riezler ephrase—structure parser, thec parser of Clark and

al., 2002; Taskar et al., 2004; Collins and Roark
2004; Turian and Melamed, 2006). One popular ap-
proach is to use a log-linear parsing model and ma
imise theconditional likelihood function (Johnson

et al., 1999; Riezler et al., 2002; Clark and Curran

Curran (2004b), together with @mr-based decoder.
The key idea is to exploit the properties of lexi-
g-er prior to parsing (Bangalore and Joshi, 1999;
Clark and Curran, 2004a). The decoder still uses

)galized grammars by using a finite-state supertag-

2004b; Malouf and van Noord, 2004; Miyao andt’heCKY algorithm, so the worst case complexity of

9
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the parsing is unchanged; however, by allowing theve provide a practical framework for developing

supertagger to do much of the parsing work, the effdiscriminative models foccg, reducing the mem-

ciency of the decoder is greatly increased in practicery requirements from over 268 to a few hundred
We chose the perceptron for the training algoms. And third, given the significantly shorter train-

rithm because it has shown good performance dng time compared to other discriminative parsing

other NLP tasks; in particular, Collins (2002) re- models (Taskar et al., 2004), we provide a practical

ported good performance for a perceptron taggdramework for investigating discriminative training

compared to a Maximum Entropy tagger. Likemethods more generally.

Collins (2002), the decoder is the same for both the

perceptron and the log-linear parsing models; thg The CCG Parser

only change is the method for setting the weights.

The perceptron model performs as well as the log=lark and Curran (2004b) describes theG parser.
linear model, but is considerably easier to train.  The grammar used by the parser is extracted from
Another contribution of this paper is to advanceCCGbank, acccG version of the Penn Treebank
wide-coverageccaG parsing. Previous discrimina- (Hockenmaier, 2003). The grammar consists of 425
tive models forcca (Clark and Curran, 2004b) re- lexical categories, expressing subcategorisation in-
quired cluster computing resources to train. In thiformation, plus a small number of combinatory rules
paper we reduce the memory requirements from 20hich combine the categories (Steedman, 2000). A
GB of RAM to only a few hundredvs, but with- Maximum Entropy supertagger first assigns lexical
out greatly increasing the training time or reducingategories to the words in a sentence, which are
parsing accuracy. This provides state-of-thecarté  then combined by the parser using the combinatory

parsing with a practical development environment.rules and thecky algorithm. A log-linear model
More generally, this work provides a practicalscores the alternative parses. We use the normal-
environment for experimenting with discriminativeform model, which assigns probabilities to single
models for phrase-structure parsing; because tlerivations based on the normal-form derivations in
training time for thecca parser is relatively short CCGbank. The features in the model are defined
(a few hours), experiments such as comparing alteover local parts of the derivation and include word-
native feature sets can be performed. As an exampleord dependencies. A packed chart representation
we investigate the order in which the training examallows efficient decoding, with the Viterbi algorithm
ples are presented to the perceptron learner. Sinfirding the most probable derivation.
the perceptron training is an online algorithm — up- The supertagger is a key part of the system. It
dating the weights one training sentence at a timases a log-linear model to define a distribution over
— the order in which the data is processed affecthe lexical category set for each word and the previ-
the resulting model. We consider random orderingyus two categories (Ratnaparkhi, 1996) and the for-
presenting the shortest sentences first; and preseward backward algorithm efficiently sums over all
ing the longest sentences first; and find that the ordaistories to give a distibution for each word. These
does not significantly affect the final results. distributions are then used to assign a set of lexical
We also use the random orderings to investigateategories to each word (Curran et al., 2006).
model averaging. We produced 10 different models, Supertagging was first defined forac (Banga-
by randomly permuting the data, and averaged tHere and Joshi, 1999), and was designed to increase
weights. Again the averaging was found to have nparsing speed for lexicalized grammars by allow-
impact on the results, showing that the perceptroing a finite-state tagger to do some of the parsing
learner — at least for this parsing task — is robusivork. Since the elementary syntactic units in a lexi-
to the order of the training examples. calized grammar — inTAG’s case elementary trees
The contributions of this paper are as followsand inccG's case lexical categories — contain a sig-
First, we compare perceptron and log-linear parsingificant amount of grammatical information, com-
models for a wide-coverage phrase-structure parséining them together is easier than the parsing typi-
the first work we are aware of to do so. Second;ally performed by phrase-structure parsers. Hence
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Bangalore and Joshi (1999) refer to supertagging afficient decoder (since perceptron training essen-

almost parsing tially is decoding). Here we exploit the lexicalized
Supertagging has been especially successful faature ofccGby using the supertagger to restrict the

ccaG. Clark and Curran (2004a) demonstrates thsize of the charts over which Viterbi decoding is per-

considerable increases in speed that can be obtairfedmed, resulting in an extremely effcient decoder.

through use of a supertagger. The supertagger im fact, the decoding is so fast that we can estimate a

teracts with the parser in an adaptive fashion. Inistate-of-the-art discriminative parsing model in only

tially the supertagger assigns a small number of ca#few hours on a single machine.

egories, on average, to each word in the sentence, L

and the parser attempts to create a spanning analysts. Perceptron Training

If this is not possible, the supertagger assigns Mofghe parsing problem is to find a mapping from a set
categories, and this process continues until a spagf sentences: € X to a set of parseg € Y. We
n_ing analysis is founo_l. The number of categories agxssyme that the mappitgis represented through a
signed to each word is determined by a paraméterfeature vector(z, y) € R? and a parameter vector

in the supertagger: all categories are assigned whoge: R in the following way (Collins, 2002):
forward-backward probabilities are withji of the

highest probability category (Curran et al., 2006). F(z) = argmax ®(z,y) - @ 1)
Clark and Curran (2004a) also shows how the su- yeGEN()
pertagger can reduce the size of the packed chartswhereGEN(z) denotes the set of possible parses for
allow discriminative log-linear training. However, sentencer and®(z,y) - @ = Y, a;®;(x,y) is the
even with the use of a supertagger, the packed chaitser product. The learning task is to set the parame-
for the complete CCGbank require over 2@ of ter values (the feature weights) using the training set
RAM. Reading the training instances into memonas evidence, where the training set consists of ex-
one at a time and keeping a record of the relevaimples(z;,y;) for 1 < i < N. The decoder is an
feature counts would be too slow for practical dealgorithm which finds thergmax in (1).
velopment, since the log-linear model requires hun- In this paperY is the set of possiblecG deriva-
dreds of iterations to converge. Hence the packetbns andGEN(xz) enumerates the set of derivations
charts need to be stored in memory. In Clark anfbr sentence:. We use the same feature representa-
Curran (2004b) we use a cluster of 45 machines, tdion ®(z, y) as in Clark and Curran (2004b), to allow
gether with a parallel implementation of tleeGs comparison with the log-linear model. The features
training algorithm, to solve this problem. are defined in terms of local subtrees in the deriva-
The need for cluster computing resources presenisn, consisting of a parent category plus one or
a barrier to the development of furthecG pars- two children. Some features are lexicalized, encod-
ing models. Hockenmaier and Steedman (2002) darg word-word dependencies. Features are integer-
scribe a generative model farcG, which only re- valued, counting the number of times some configu-
quires a non-iterative counting process for training;ation occurs in a derivation.
but it is generally acknowledged that discrimina- GEN(x) is defined by theccG grammar, plus the
tive models provide greater flexibility and typically supertagger, since the supertagger determines how
higher performance. In this paper we propose themany lexical categories are assigned to each word
perceptron algorithm as a solution. The perceptroim z (through theg parameter). Rather than try to
is an online learning algorithm, and so the paranrecreate the adaptive supertagging described in Sec-
eters are updated one training instance at a timgon 2 for training, we simply fix the the value Gfso
However, the key difference compared with the logthatGEN(z) is the set of derivations licenced by the
linear training is that the perceptron converges igrammar for sentence, given that valueg is now
many fewer iterations, and so it is practical to read parameter of the training process which we deter-
the training instances into memory one at a time. mine experimentally using development data. Bhe
The difficulty in using the perceptron for training parameter can be thought of as determining the set
phrase-structure parsing models is the need for afiincorrect derivations which the training algorithm
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uses to “discriminate against’, with a smaller valudnputs: training examplesz;, y;)

of 3 resulting in more derivations. Initialisation : seta = 0
Algorithm :
3.1 Feature Forests fort=1..T,i=1..N

The same decoder is used for both training and test- _calculatezi = arg maX,cGEN(@;) ®(zi,y) - @

ing: the Viterbi algorithm. However, the packed if zi # yi

representation oBEN(z) in each case is different. @ =@+ (i, i) — (24, 2:)

When running the parser, a lot of grammatical in©Outputs: @

formation is stored in order to produce linguistically

meaningful output. For training, all that is required

'S & pgcke_d representation of the feat_ures on € a%]ct, the parameter vector is updated by adding the

derivation inGEN(z) for each sentence in the train- L

. . o feature vector of the correct derivation and subtract-

ing data. Thdeature forestslescribed in Miyao and . )
. : ing the feature vector of the decoder output. Train-

Tsuijii (2002) provide such a representation.

Clark and Curran (2004b) describe how a set ing typically involves multiple passes over the data.

L igure 1 gives the algorithm, whefé is the number
ccGderivations can be represented as a feature for—g g g

) .. Of training sentences arif is the number of itera-
est. The feature forests are created by first bqum&;onS ove? the data

packed charts for the training sentences, and thenFor all the experiments in this paper, we used the

extracting the feature information. Packed Chartgveraged version of the perceptron. Collins (2002)

group together equivalent chart entries. Entries are: oduced the averaged perceptron, as a way of re-

equivalent when they interact in the same mann%(ucing overfitting, and it has been shown to perform

with both the generation of subsequent parse Struﬁétter than the non-averaged version on a number of

ture and the numerical parse selection. In prag; .
. . . ) asks. The averaged parameters are defined as fol-
tice, this means that equivalent entries have the saTe

Figure 1: The perceptron training algorithm

WS: Vs = Sy 1.1 bt /NT whereal! is
span, and form the same structures and generate the - ° L= Ti=1..N 05"/ s

: . € value of thesth feature weight after thih sen-
same features in any further parsing of the sentenct%.nce has been processed in4fieiteration

Back pointers to the daughters indicate how an indi- L .
A naive implementation of the averaged percep-

vidual entry was created, so that any derivation “4fon updates the accumulated weight for each fea-
be recovered from the chart.

ture after each example. However, the humber of

A feature forest is essentially a packed chart Witlfl atures whose values change for each example is a

only the feature information retained (see Miyao angemall proportion of the total. Hence we use the al-

Tsuijii (2002) and Clark and Curran (2004b) for the

. . . ) gorithm described in Daume 111 (2006) which avoids
details). Dynamic programming algorithms can b . :
unnecessary calculations by only updating the accu-

used with the feature forests for efficient estimationmula,[ecI weight for a featurg, whena, changes
For the log-linear parsing model in Clark and Cur- ? '
ran (2004b), the inside-oujtside algprithm is used tq Experiments

calculate feature expectations, which are then used

by the BFGs algorithm to optimise the likelihood The feature forests were created as follows. First,
function. For the perceptron, the Viterbi algorithmthe value of the? parameter for the supertagger was
finds the features corresponding to the highest scdixed (for the first set of experiments at 0.004). The

ing derivation, which are then used in a simple addisupertagger was then run over the sentences in Sec-

tive update process. tions 2-21 of CCGbank. We made sure that ev-
_ ery word was assigned the correct lexical category
3.2 The Perceptron Algorithm among its set (we did not do this for testing). Then

The training algorithm initializes the parameter vecthe parser was run on the supertagged sentences, us-
tor as all zeros, and updates the vector by decodirigg the cky algorithm and theccGc combinatory

the examples. Each feature forest is decoded witliles. We applied the same normal-form restrictions
the current parameter vector. If the output is incorused in Clark and Curran (2004b): categories can
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only combine if they have been seen to combine in model RAM iterations time (mins)
Sections 2-21 of CCGbank, and only if they do not perceptron 2018 10 312
violate the Eisner (1996a) normal-form constraints. |og-linear 19GB 475 91
This part of the process requires a few hundved
of RAM to run the parser, and takes a few hours fofable 1: Training requirements for the perceptron
Sections 2-21 of CCGbank. Any further training@nd log-linear models
times or memory requirements reported do not in-
clude the resources needed to create the forests.  Table 1 compares the training for the perceptron
The feature forests are extracted from the packeghd log-linear models. The perceptron was run for
chart representation used in the parser. We only uge iterations and the log-linear training was run to
a feature forest for training if it contains the correctonvergence. The training time for 10 iterations of
derivation (according to CCGbank). Some forestghe perceptron is longer than the log-linear training,
do not have the correct derivation, even though welthough the results in Section 4.1 show that the per-
ensure the correct lexical categories are present, igeptron typically converges in around 4 iterations.
cause the grammar used by the parser is missimie striking result in the table is the significantly
some low-frequency rules in CCGbank. The tosmaller memory requirement for the perceptron.
tal number of forests used for the experiments was
35,370 (89% of Sections 2-21) . Only features whic#.1 Results

occur at least twice in the training data were usedap|e 2 gives the first set of results for the averaged
of which there are 477,848. The complete set Qferceptron model. These were obtained using Sec-
forests used to obtain the final perceptron results ljon 00 of CCGbank as development data. Gold-
Section 4.1 require 268 of disk space. standarcPostags from CCGbank were used for all
The perceptron is an online algorithm, updatinghe experiments. The parser provides an analysis for
the weights after each forest is processed. Each fa§g 3794 of the sentences in Section 00. The F-scores
est is read into memory one at a time, decoding igre pased only on the sentences for which there is
performed, and the weight values are updated. Eaglp, analysis. Following Clark and Curran (2004b),
forest is discarded from memory after it has beeﬁccuracy is measured using F-score over the gold-
used. Constantly reading forests off disk is expenstandard predicate-argument dependencies in CCG-
sive, but since the perceptron converges in so fegank. The table shows that the accuracy increases
iterations the training times are reasonable. initially with the number of iterations, but converges
In contrast, log-linear training takes hundreds ofyickly after only 4 iterations. The accuracy after
iterations to converge, and so it would be impracticegmy one iteration is also surprisingly high.
to keep reading the forests off disk. Also, since log- Taple 3 compares the accuracy of the perceptron
linear training uses a batch algorithm, it is more conyng log-linear models on the development data. LP
venient to keep the forests in memory at all timess |apelled precision, LR is labelled recall, aodT
In Clark and Curran (2004b) we use a cluster of 4% the |exical category accuracy. The same feature
machines, together with a parallel implementatiofyrests were used for training the perceptron and
of BFGS to solve this problem, butneed upto@8  |og-linear models, and the same parser and decoding
of RAM. algorithm were used for testing, so the results for the
The feature forest representation, and our implgyo models are directly comparable. The only dif-
mentation of it, is so compact that the perceptrofsrence in each case was the weights file Used.
training requires only 28 of RAM. Since the sU-  The taple also gives the accuracy for the percep-
pertagger has already removed much of the practicghn model (after 6 iterations) when a smaller value

parsing complexity, decoding one of the forests igf the supertagges parameter is used during the
extremely quick, and much of the training time is

taken with continually reading the forests off disk. 'Both of these models have parameters which have been
H the trainina i for th t is stil ptimised on the development data, in the log-linear case the

owever, the training ime for the perceptron 1S Sliflg,ssjan smoothing parameter and in the perceptron case the
only around 5 hours for 10 iterations. number of training iterations.
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iteration 1 2 3 4 5 6 7 8 9 10
F-score 85.87 86.28 86.33 86.49 86.46 86.51 86.47 86.52 86.53 86.54

Table 2: Accuracy on the development data for the averaged perceptre (004)

model LP LR F caAT model LP LR F caAT

log-linea—p.004 87.02 86.07 86.54 93.99 log-lineap—p00s 87.39 86.51 86.95 94.07
perceptrop—p.o04« 87.11 85.98 86.54 94.03 perceptrop—p.o02 87.50 86.62 87.06 94.08
perceptrop_p.o02 87.25 86.20 86.72 94.08

Table 4: Comparison of the perceptron and log-
Table 3. Comparison of the perceptron and loglinear models on the test data
linear models on the development data

5 Order of Training Examples

As an example of the flexibility of our discrimina-
forest creation (with the number of training itera-tive training framework, we investigated the order in
tions again optimised on the development data). #vhich the training examples are presented to the on-
smaller value results in larger forests, giving moreline perceptron learner. These experiments were par-
incorrect derivations for the training algorithm toticularly easy to carry out in our framework, since
“discriminate against”. Increasing the size of thehe 21GB8 file containing the complete set of training
forests is no problem for the perceptron, since thiorests can be sampled from directly. We stored the
memory requirements are so modest, but this woulabsition on disk of each of the forests, and selected
cause problems for the log-linear training which ighe forests one by one, according to some order.
already highly memory intensive. The table shows The first set of experiments investigated ordering
that increasing the number of incorrect derivationtghe training examples by sentence length. Buttery
gives a small improvement in performance for th€2006) found that a psychologically motivated Cate-
perceptron. gorial Grammar learning system learned faster when

Table 4 gives the accuracies for the two modelthe simplest linguistic examples were presented first.
on the test data, Section 23 of CCGbank. Here thEable 5 shows the results both when the shortest sen-
coverage of the parser is 99.63%, and again the aences are presented first and when the longest sen-
curacies are computed only for the sentences witences are presented first. Training on the longest
an analysis. The figures for the averaged perceptr@entences first provides the best performance, but is
were obtained using 6 iterations, with= 0.002. no better than the standard ordering.

The perceptron slightly outperforms the log-linear For the random ordering experiments, forests
model (although we have not carried out signifiwere randomly sampled from the complete @i
cance tests). We justify the use of differghvalues training file on disk, without replacement. The
for the two models by arguing that the perceptron inew forests file was then used for the averaged-
much more flexible in terms of the size of the trainperceptron training, and this process was repeated
ing forests it can handle. 9 times.

Note that the important result here is that the per- The number of iterations for each training run was
ceptron model performat least as well ashe log- optimised in terms of the accuracy of the resulting
linear model. Since the perceptron is considerabiynodel on the development data. There was little
easier to train, this is a useful finding. Also, sincevariation among the models, with the best model
the log-linear parsing model is a Conditional Ranscoring 86.84% F-score on the development data
dom Field €RF), the results suggest that the percepand the worst scoring 86.63%. Table 6 shows that
tron should be compared witharF for other tasks the performance of this best model on the test data
for which thecrFis considered to give state-of-the-is only slightly better than the model trained using
art results. the CCGbank ordering.
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iteration 1 2 3 4 5 6
Standard order 86.14 86.30 86.53 86.61 86.69 86.72
Shortest first 85.98 86.41 86.57 86.56 86.54 86.53
Longest first 86.25 86.48 86.66 86.72 86.74 86.75

Table 5: F-score of the averaged perceptron on the development data for different data orde#frigdiR)

perceptron model LP LR F CAT parse may get lost in the first phase.
standard order 87.50 86.62 87.06 94.08 The existing work most similar to ours is Collins
best random order 87.52 86.72 87.12 94.12and Roark (2004). They use a beam-search decoder
averaged 87.53 86.67 87.10 94.09 as part of a phrase-structure parser to allow practical
estimation. The main difference is that we are able
Table 6: Comparison of various perceptron modelg, store the complete forests for training, and can
on the test data guarantee that the forest contains the correct deriva-
tion (assuming the grammar is able to generate it
Finally, we used the 10 models (including thegiven the correct lexical categories). The downside
model from the original training set) to investigateof our approach is the restriction on the locality of
model averaging. Corston-Oliver et al. (2006) mothe features, to allow dynamic programming. One
tivate model averaging for the perceptron in termgossible direction for future work is to compare the
of Bayes Point Machines. The averaged percegearch-based approach of Collins and Roark with
tron weights resulting from each permutation of theur pr-based approach.
training data were simply averaged to produce a new |n the tagging domain, Collins (2002) compared
model. Table 6 shows that the averaged model agaisy-linear and perceptron training foamm-style
performs only marginally better than the originakagging based on dynamic programming. Our work
model, and not as well as the best-performing “rancould be seen as extending that of Collins since we
dom” model, which is perhaps not surprising givercompare log-linear and perceptron training farm
the small variation among the performances of theased wide-coverage parser.
component models.
In summary, the perceptron learner appears highi Conclusion
robust to the order of the training examples, at lea
for this parsing task.

?rtwestigation of discriminative training methods is
one of the most promising avenues for breaking
the current bottleneck in parsing performance. The
drawback of these methods is the need for an effi-
Taskar et al. (2004) investigate discriminative traineient decoder. In this paper we have demonstrated
ing methods for a phrase-structure parser, and albow the lexicalized nature afcG can be used to
use dynamic programming for the decoder. The keglevelop a very efficient decoder, which leads to a
difference between our work and theirs is that thepractical development environment for discrimina-
are only able to train on sentences of 15 words dive training.
less, because of the expense of the decoding. We have also provided the first comparison of a
There is work on discriminative models for de-perceptron and log-linear model for a wide-coverage
pendency parsing (McDonald, 2006); since therphrase-structure parser. An advantage of the percep-
are efficient decoding algorithms available (Eisnetron over the log-linear model is that it is consider-
1996h), complete resources such as the Penn Tredsly easier to train, requiring 1/1000th of the mem-
bank can used for estimation, leading to accuratery requirements and converging in only 4 iterations.
parsers. There is also work on discriminative mod- Given that the global log-linear model used here
els for parse reranking (Collins and Koo, 2005). ThécRrF) is thought to provide state-of-the-art perfor-
main drawback with this approach is that the correanhance for manywLP tasks, it is perhaps surprising

6 Comparison with Other Work
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that the perceptron performs as well. The evaluaason Eisner. 1996a. Efficient normal-form parsing for Com-
tion in this paper was based solely on CCGbank, but Pnatory Categorial Srammar. [Rroceedings of the 34th

. eeting of the ages 79-86, Santa Cruz, .
we have shown in Clark and Curran (2007) that the g Hag

CCG parser gives state-of-the-art performance, ou#ason Eisner. 1996b. Three new probabilistic models for de-
pendency parsing: An exploration. Proceedings of the

performing therASP parser (Briscoe et al., 2006) 16th COLING Conferencepages 340-345, Copenhagen,
by over 5% on DepBank. This suggests the need for Denmark.

more comparisons afRFs and discriminative meth- Yoav Freund and Robert E. Schapire. 1999. Large margin clas-

ods such as the perceptron for other tasks. sification using the perceptron algorithnMachine Learn-
ing, 37(3):277-296.
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Abstract

We present a log-linear model for the disam-
biguation of the analyses produced by a Ger-
man broad-coverage LFG, focussing on the
properties (or features) this model is based
on. We compare this model to an initial
model based only on a part of the proper-
ties provided to the final model and observe
that the performance of a log-linear model
for parse selection depends heavily on the
types of properties that it is based on. In
our case, the error reduction achieved with
the log-linear model based on the extended
set of properties is 51.0% and thus com-
pares very favorably to the error reduction
of 34.5% achieved with the initial model.

1 Introduction

In the development of stochastic disambiguation
modules for ‘deep’ grammars, relatively much work
has gone into the definition of suitable probability
models and the corresponding learning algorithms.
Property design, on the contrary, has rather been un-
deremphasized, and the properties used in stochas-
tic disambiguation modules are most often presented
only superficially. This paper’s aim is to draw more
attention to property design by presenting linguisti-
cally motivated properties that are used for the dis-
ambiguation of the analyses produced by a German
broad-coverage LFG and by showing that property
design is of crucial importance for the quality of
stochastic models for parse selection.

We present, in Section 2, the system that the dis-
ambiguation module was developed for as well as
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the initially used properties. In Section 3, we then
present a selection of the properties that were ex-
pressly designed for the resolution of frequent ambi-
guities in German LFG parses. Section 4 describes
experiments that we carried out with log-linear mod-
els based on the initial set of properties and on an
extended one. Section 5 concludes.

2 Background

2.1 The German ParGram LFG

The grammar for which the log-linear model for
parse selection described in this paper was devel-
oped is the German ParGram LFG (Dipper, 2003;
Rohrer and Forst, 2006). It has been developed with
and for the grammar development and processing
platform XLE (Crouch et al., 2006) and consists of
a symbolic LFG, which can be employed both for
parsing and generation, and a two-stage disambigua-
tion module, the log-linear model being the compo-
nent that carries out the final selection among the
parses that have been retained by an Optimality-
Theoretically inspired prefilter (Frank et al., 2001;
Forst et al., 2005).

The grammar has a coverage in terms of full
parses that exceeds 80% on newspaper corpora. For
sentences out of coverage, it employs the robust-
ness techniques (fragment parsing, ‘skimming’) im-
plemented in XLE and described in Riezler et al.
(2002), so that 100% of our corpus sentences receive
at least some sort of analysis. A dependency-based
evaluation of the analyses produced by the grammar
on the TiGer Dependency Bank (Forst et al., 2004)
results in an F-score between 80.42% on all gram-

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 17-24,
Prague, Czech Republic, June, 2007. (©2007 Association for Computational Linguistics



matical relations and morphosyntactic features (or
72.59% on grammatical relations only) and 85.50%
(or 79.36%). The lower bound is based on an ar-
bitrary selection among the parses built up by the
symbolic grammar; the upper bound is determined
by the best possible selection.

2.2 Log-linear models for disambiguation

Since Johnson et al. (1999), log-linear models of
the following form have become standard as disam-
biguation devices for precision grammars:

Py(zly) = :

z'eX(y)

m

PRFERETRACE)
oDt A L@y

They are used for parse selection in the English Re-
source Grammar (Toutanova et al., 2002), the En-
glish ParGram LFG (Riezler et al., 2002), the En-
glish Enju HPSG (Miyao and Tsujii, 2002), the
HPSG-inspired Alpino parser for Dutch (Malouf
and van Noord, 2004; van Noord, 2006) and the
English CCG from Edinburgh (Clark and Curran,
2004).

While relatively much work has gone into the
question of how to estimate the property weights
A1L... A\ efficiently and accurately on the basis
of (annotated) corpus data, the question of how
to define suitable and informative property func-
tions f ... fp, has received relatively little attention.
However, we are convinced that property design is
the possibility of improving log-linear models for
parse selection now that the machine learning ma-
chinery is relatively well established.

2.3 Initially used properties for disambiguation

The first set of properties with which we conducted
experiments was built on the model of the property
set used for the disambiguation of English ParGram
LFG parses (Riezler et al., 2002; Riezler and Vasser-
man, 2004). These properties are defined with the
help of thirteen property templates, which are pa-
rameterized for c-structure categories, f-structure at-
tributes and/or their possible values. The templates
are hardwired in XLE, which allows for a very ef-
ficient extraction of properties based on them from
packed c-/f-structure representations. The downside
of the templates being hardwired, however, is that, at
least at first sight, the property developer is confined
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to what the developers of the property templates an-
ticipated as potentially relevant for disambiguation
or, more precisely, for the disambiguation of English
LFG analyses.

The thirteen property templates can be subdi-
vided into c-structure-based property templates and
f-structure-based ones. The c-structure-based prop-
erty templates are:

e cs_label <XP>: countsthe number of X P
nodes in the c-structure of an analysis.

e cs_num_children <XP>: countsthe num-
ber of children of all X P nodes in a c-structure.

e cs_adjacent_label <XP> <YP>:
counts the number of X P nodes that immedi-
ately dominate a Y P node.

e cs_sub_label <XP> <YP>: counts the
number of X P nodes that dominate a Y P node
(at arbitrary depth).

e cs_embedded <XP> <n>: counts the
number of X P nodes that dominate n other
distinct X P nodes (at arbitrary depth).

e cs_conj_nonpar <n>: counts the number
of coordinated constituents that are not parallel
at the nth level of embedding.

e cs_right_branch: counts the number of
right children in the c-structure of an analysis.

The f-structure-based property templates are:

e fs attrs <Attr; Attr,>:
counts the number of times that attributes
Attry ... Attr, occur in the f-structure of an
analysis.

e fs attrval <Attr> <Val>: counts
the number of times that the atomic attribute
Attr has the value Val.

e fs adj attrs <Attri> <Attre>:
counts the number of times that the com-
plex attribute Attr; immediately embeds the
attribute Attrs.

e fs_subattr <Attri> <Attrgo> counts
the number of times that the complex attribute
Attr, embeds the attribute Attry (at arbitrary
depth).

e lex_subcat <Lemma> <SCF;

SCF,>: counts the number of times that
the subcategorizing element Lemma occurs
with one of the subcategorization frames
SCF,... SCF,.



e verb_arg <Lemma> <GF>: counts the
number of times that the element Lemma sub-
categorizes for the argument G F'.

Automatically instantiating these templates for all
c-structure categories, f-structure attributes and val-
ues used in the German ParGram LFG as well as for
all lexical elements present in its lexicon results in
460,424 properties.

3 Property design for the disambiguation
of German LFG parses

Despite the very large number of properties that can
be directly constructed on the basis of the thirteen
property templates provided by XLE, many com-
mon ambiguities in German LFG parses cannot be
captured by any of these.

3.1 Properties that record the relative linear
order of functions

Consider, e.g., the SUBJ-OBJ ambiguity in (1).

(1) [...] peilt [s/0 das Management] [p/s ein
[...] aims the management a
“sichtbar verbessertes” Ergebnis] an.

“visibly improved”  result at.

‘[...] the management aims at a “visibly im-
proved” result.” (TIGER Corpus s20834)

The c-structure is shared by the two readings
of the sentence, so that c-structure-based proper-
ties cannot contribute to the selection of the cor-
rect reading; the only f-structure-based proper-
ties that differ between the two analyses are of
the kinds fs_adj_attrs SUBJ ADJUNCT and
fs_subattr OBJ ADJUNCT, which are only re-
motely, if at all, related to the observed SUBJ-OBJ
ambiguity. The crucial information from the in-
tended reading, namely that the SUBJ precedes the
OBJ, is not captured directly by any of the ini-
tial properties. We therefore introduce a new prop-
erty template that records the linear order of two
grammatical functions and instantiate it for all rel-
evant combinations. The new properties created
this way make it possible to capture the default
order of nominal arguments, which according to
Lenerz (1977) and Uszkoreit (1987) (among others),
is SuBJ, OBJ-TH, OBIJ.
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Similarly to the SUBJ-OBJ ambiguity just con-
sidered, the ADJUNCT-OBL ambiguity in (2) can-
not at all be resolved on the basis of c-structure-
based properties, and the f-structure-based proper-
ties whose values differ among the two readings
seem only remotely related to the observed ambi-

guity.
sich
himself

sprach
spoke

(2) [a/0 Dagegen]
Against that/In contrast
[...] Micha Guttmann [p/4 fiir getrennte
[...] Micha Guttmann for separate
Gedenkstitten] aus.
memorials out.

‘In contrast, [...] Michael Guttmann argued
for separate memorials.” (s2090)

However, the literature on constituent order in Ger-
man, e.g. Helbig and Buscha (2001), documents
the tendency of ADJUNCT PPs to precede OBL PPs,
which also holds in (2). We therefore introduced
properties that record the relative linear order of AD-
JUNCT PPs and OBL PPs.

3.2 Properties that consider the nature of a
constituent wrt. its function

Although linear order plays a major role in the func-
tional interpretation of case-ambiguous DPs in Ger-
man, it is only one among several ‘soft’ constraints
involved. The nature of such a DP may actually also
give hints to its grammatical function.

The tendency of SUBJs to be high on the defi-
niteness scale and the animacy scale as well as the
tendency of OBJs to be low on these scales has
mainly been observed in studies on differential ob-
ject/subject marking (see, e.g., Aissen (2003)). Nev-
ertheless, these tendencies also seem to hold in lan-
guages like German, which does not exhibit differ-
ential object/subject marking. In (3), the indefinite
inanimate DP is to be interpreted as the OBJ of the
sentence and the definite human DP, as its SUBJ al-
though the former precedes the latter.

(3) [o/s Nahezu stabile Preise] prognostizieren
Nearly stable prices forecast
[s/0 die bayerischen Experten] [...]
the Bavarian  experts [...].

‘The Bavarian experts forecast nearly stable
prices [...]." (s7357)



In order to allow these regularities to be
learned from corpus data, we defined addi-
tional property templates like isDef <GF> and
i sHuman_<GF>,! which are instantiated for all rel-
evant grammatical functions.

3.3 Properties for the resolution of attachment
ambiguities concerning extraposed
constituents

A further common ambiguity in German con-
cerns the functional attachment of extraposed con-
stituents, such as relative clauses, dass clauses and
infinitival VPs. In (4), e.g., there is no hard con-
straint that would allow us to determine whether the
relative clause modifies Rolle or Autoversicherung.

(4) Eine zentrale Rolle [...] kommt der
A central  role [...] comes the
Autoversicherung zu, die ein Fiinftel
car insurance to, which a fifth

[...] vereinnahmt.
[...] receives.

‘There i1s a central role for the car insurance,
which receives a fifth [...].” (s27539)

In order to allow for an improved resolution of
this kind of attachment ambiguity, we introduced
properties that extract the surface distance of an ex-
traposed constituent to its functional head as well as
properties that record how the functional uncertainty
paths involved in these attachments were instanti-
ated. This way, we hope to extract the information
necessary to model the tendencies observed, e.g., in
Uszkoreit et al. (1998).

3.4 Lexicalized properties capturing
dependencies

Inspired by Malouf and van Noord (2004),
we finally also introduced lexicalized proper-
ties capturing dependencies.  These are built
on the following property templates: DEP12_
<P0oS1> _<Dep>_<PoS2> <Lemmaz>, DEP21._
<PoS1>_<Lemmal>_<Dep>_<PoS2>and DEP22_
<PoS1l> <Lemmal> <Dep>_<PoS2>_<LemmaZz>.
These are intended to capture information on the
subcategorization behavior of lexical elements and
on typical collocations.

"Humanness information is imported from GermaNet.

20

"Eine zentrale Rolle kommt der Autoversicherung zu, die ein Funftel vereinnahmt.”

PRED ‘zu#kommen<[21:Rolle} [243:Versicherung}'

PRED Rolle
PRED ‘zentrak[21:Rolle}'
(ADJUNCT {107 {SUBJ [2LRolle] H
PRED ‘vereinnahmen<[434:pro}, [528:funftelp’
SuBJ 434[PRED'pro’ ]
SUBJ IADIREL PRED ‘fuinftel
- oBJ eine:
528 [SPEC [DET [PRED eine’ ]|
PRON-REL  [434:pro]
633[TOPIC-REL  [434:pro]
,1[SPEC [DET PREDeine ]|
[PRED 'Versicherund
oByTH  [MOD {12 PRED'AuG T
243 |SPEC [PET PREDdie’ ]|

191 [TOPIC [21:Rolle]

(a) evaluated as relatively improbable due to negative weight of

DISTANCE-TO-ANTECEDENT %X

"Eine zentrale Rolle kommt der Autoversicherung zu, die ein Fiinftel vereinnahmt."

PRED ‘zu#tkommen<[21:Rolle} [243:Versicherung}'

PRED ‘Rolle!

PRED 'zentrak[21:Rollep'
ADJUNCT{im {SUBJ [21Rolle] B

suBJ
21[SPEC  [PET PRED'eine’ ]|

[PRED
MOD

"Versicherund
{12 PRED AU ]}
PRED
suBJ

‘vereinnahmen<[434:pro}, [528:fiinftelp'
434[PRED'pro’ ]

PRED 'fiinfte!
SPEC [DET [PRED eine’ ]ﬂ

PRON-REL  [434:pro]
633 |TOPIC-REL [434:pro]

[pET PRED i ]]

OBI-TH IADJ-REL oBJ

528

ISPEC
[21:Rolle]

243

191[TOPIC

(b) evaluated as more probable

Figure 1: Competing f-structures for (4)

In the case of (5), the property DEP21_common_
Anwalt_APP _proper, which counts the num-
ber of occurrences of the common noun Anwalt
(‘lawyer’) that govern a proper name via the depen-
dency APP (close apposition), contributes to the cor-
rect selection among the analyses illustrated in Fig-
ure 2 by capturing the fact that Anwalt is a prototyp-
ical head of a close apposition.?

(5) [...], das  den Anwalt Klaus Bollig zum
[...] which the lawyer Klaus Bollig to the
vorldufigen Verwalter  bestellte.
interim administrator appointed.

‘[...] which appointed lawyer Klaus Bollig as
interim administrator.” (s37596)

2Since we have a list of title nouns available, we might also
introduce a more general property that would count the number
of occurrences of title nouns in general that govern a proper
name via the dependency APP. Note, however, that the nouns
that be heads of APPs comprise not only title nouns, but also
nouns like Abteilung ‘department’, Buch ‘book’, etc.




"das den Anwalt Klaus Bollig zum vorlaufigen Verwalter bestellte"
PRED ‘bestellen<[1:pro], [82:Anwalt] [228:Bolligh
ISUBJ 1[PREDpro’ ]
PRED 'Anwalt

]

oBJ dier
g2 |SPEC DET [PRED ‘die

RED  'Bollig
0BJ-TH Klaus
225 [NAME-MOG{188 [PRED Klaus )

RED 'zu<[246:Verwalterp'
PRED  'Verwalter

PRED ‘vorlaufig<[246:Verwalterp'
(ADIUNCT ADJUNCT{334 [SUBJ [246:Verwalter]

[DET PRED'die’ ]|

OBJ

bas 246 ISPEC

PRON-REL  [1:pro]
429[TOPIC-REL  [1:pro]

(a) evaluated as less probable

“das den Anwalt Klaus Bollig zum vorlaufigen Verwalter bestellte”

PRED ‘bestellen<[1:pro], [82:Anwaltp'
SUBJ 1[PREDpro’ ]
[PREDAnwalt
PRED ‘Bollig
IAPP y .
oBJ 26 [NAME-MOG{188 [PRED Klaus ]}

SPEC DET [PRED die’ ]|

RED ‘'zu<[246:Verwalterp'

PRED  'Verwalter
RED ‘vorlaufig<[246:Verwalterp'
(ADIUNCT o3 ADJUNCT{334 SUBJ  [246:Verwalter]
s 246/SPEC  [DET PREDdie ]|

PRON-REL  [1:pro]
429 |TOPIC-REL  [1:pro]

(b) evaluated as relatively probable due to highly positive weight
of DEP21_common_Anwalt _APP_proper

Figure 2: Competing f-structures for (5)

4 Experiments

4.1 Data

All the data we use are from the TIGER Corpus
(Brants et al., 2002), a treebank of German news-
paper texts comprising about 50,000 sentences. The
1,868 dependency annotations of the TiGer Depen-
dency Bank, which have been semi-automatically
derived from the corresponding treebank graphs, are
used for evaluation purposes; we split these into a
held-out set of 371 sentences (and corresponding de-
pendency annotations) and a test set of 1,497 sen-
tences. For training, we use packed, i.e. ambiguous,
c/f-structure representations where a proper subset
of the f-structures can be determined as compatible
with the TIGER graph annotations. Currently, these
are 8,881 pairs of labelled and unlabelled packed
c/f-structure reprentations.

From these 8,881 pairs of c/f-structure reprenta-
tions, we extract two sets of property forests, one
containing only the initially used properties, which
are based on the hardwired templates, and one con-
taining all properties, i.e. both the initially used and
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the newly introduced ones.

4.2 Training

For training, we use the cometc software by Ste-
fan Riezler, which is part of XLE. Prior to train-
ing, however, we apply a frequency-based cutoff ¢
to the data that ensures that a property is discrimi-
native between the intended reading(s) and the un-
intended reading(s) in at least ¢ sentences; c is set
to 4 on the basis of the evaluation results achieved
on our held-out set and following a policy of a ‘con-
servative’ cutoff whose only purpose is to prevent
that weights be learned for sparse properties. (For
a longer discussion of frequency-based cutoffs, see
Forst (2007).) For the actual estimation of prop-
erty weights, we then apply the combined method of
incremental property selection and [; regularization
proposed in Riezler and Vasserman (2004), adjust-
ing the hyperparameters on our held-out set for each
of the two sets of properties. In order to compara-
tively evaluate the importance of property selection
and regularization, we also train models based on
each of the two sets of properties without applying
any kind of these techniques.

4.3 Evaluation

The overall results in terms of F-score and error re-
duction, defined as F, = %, that the
four resulting systems achieve on our test set of
1,497 TiGer DB structures are shown in Table 1. In
order to give the reader an idea of the size of the dif-
ferent models, we also indicate the number of prop-
erties that they are based on. All of the F-scores
were calculated by means of the evaluation software
by Crouch et al. (2002).

We observe that the models obtained using prop-
erty selection and regularization, in addition to be-
ing much more compact than their unregularized
counterparts, perform significantly better than these.
More importantly though, we can see that the most
important improvement, namely from an error re-
duction of 32.5% to one of 42.0% or from 34.8%
to 51.0% respectively, is achieved by adding more
informative properties to the model.

Table 2 then shows results broken down according
to individual dependencies that are achieved with,
on the one hand, the best-performing model based
on both the XLE template-based and the newly in-



#prop. F-sc. err. red.

XLE template-based properties,
unregularized MLE

XLE templ.-based pr. that survive
a freq.-b. cutoff of 4, n-best
grafting with {; regularization

all properties,
unregularized MLE

all properties that survive a
freq.-b. cutoff of 4, n-best
grafting with {; regularization

14,263 82.07 32.5%

3,400 82.19 34.8%

57,934 8255 42.0%

4,340 83.01 51.0%

Table 1: Overall F-score and corresponding error re-
duction achieved by the four different systems on the
1,497 TiGer DB structures of our test set

troduced properties and, on the other hand, the best-
performing model based on XLE template-based
properties only. Furthermore, we indicate the re-
spective upper and lower bound F-scores, deter-
mined by the best possible parse selection and by
an arbitrary selection respectively.

We observe that the overall F-score is signifi-
cantly better with a selection based on the model that
includes the newly introduced properties than with a
selection based on the model that relies on the XLE
template-based properties only; overall error reduc-
tion increases from 34.5% to 51.0%. What is partic-
ularly interesting is the considerably better error re-
duction for the core grammatical functions sb (sub-
ject) and oa (accusative object). But also for rcs
(relative clauses) and mos (modifiers or adjuncts),
which are notoriously difficult for disambiguation
due to PP and ADVP attachment ambiguities, we
observe an improvement in F-score.

Our error reduction of 51.0% also compares fa-
vorably to the 36% error reduction on English LFG
parses reported in Riezler et al. (2002). However,
it is considerably lower than the error reduction of
78% reported for the Dutch Alpino parser (Malouf
and van Noord, 2004), but this may be due to the
fact that our lower bound is calculated on the basis
of analyses that have already passed a prefilter and
is thus relatively high.

5 Conclusions

Our results show that property design is of crucial
importance in the development of a disambiguation
module for a ‘deep’ parser. They also indicate that it
is a good idea to carry out property design in a lin-
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guistically inspired fashion, i.e. by referring to the
theoretical literature that deals with soft constraints
that are active in the language for which the system
is developed. Property design thus requires a pro-
found knowledge of the language under considera-
tion (and the theoretical literature that deals with its
syntax), and since the disambiguation module oper-
ates on the output of the symbolic grammar, a good
knowledge of the grammar is necessary as well.

Weighting against each other the contributions of
different measures taken for improving log-linear
models for parse selection, we can conclude that
property design is at least as important as prop-
erty selection and/or regularization, since even a
completely unregularized model based on all prop-
erties performs significantly better than the best-
adjusted model among the ones that are based on
the template-based properties only. Moreover, prop-
erty design can be carried out in a targeted way,
i.e. properties can be designed in order to improve
the disambiguation of grammatical relations that, so
far, are disambiguated particularly poorly or that
are of special interest for the task that the system’s
output is used for. By demonstrating that prop-
erty design is the key to good log-linear models for
‘deep’ syntactic disambiguation, our work confirms
that “specifying the features of a SUBG [stochastic
unification-based grammar] is as much an empirical
matter as specifying the grammar itself” (Johnson et
al., 1999).
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Abstract syntactic and semantic information. In this paper,
we use a treebank with both syntactic information
In this paper we present a framework for (HPSG parses) and semantic information (sense tags
experimentation on parse selection using  from a lexicon) (Bond et al., 2007). We use this to
syntactic and semantic features. Results train parse selection models using both syntactic and
are given for syntactic features, depen-  semantic features. A model trained using syntactic
dency relations and the use of semantic  features combined with semantic information out-
classes. performs a model using purely syntactic information
by a wide margin (69.4% sentence parse accuracy
1 Introduction vs. 63.8% on definition sentences).
In this paper we investigate the use of semantic ir12— The Hinoki Corpus
formation in parse selection. There are now some corpora being built with the
Recently, significant improvements have beeByntactic and semantic information necessary to in-
made in combining symbolic and statistical apvestigate the use of semantic information in parse
proaches to various natural language processirglection. In English, the OntoNotes project (Hovy
tasks. In parsing, for example, symbolic grammarst al., 2006) is combining sense tags with the Penn
are combined with stochastic models (Oepen et atreebank. We are using Japanese data from the Hi-
2004; Malouf and van Noord, 2004). Much of thenoki Corpus consisting of around 95,000 dictionary
gain in statistical parsing using lexicalized modelgiefinition and example sentences (Bond et al., 2007)
comes from the use of a small set of function wordannotated with both syntactic parses and senses from
(Klein and Manning, 2003). Features based on gefhe same dictionary.
eral relations provide little improvement, presum- _ _
ably because the data is too sparse: in the Pednt Syntactic Annotation
treebank standardly used to train and test statistbyntactic annotation in Hinoki igrammar based
cal parsersstocksand skyrocketnever appear to- corpus annotatiordone by selecting the best parse
gether. However, the superordinate concegatgi- (or parses) from the full analyses derived by a broad-
tal (O stock$ andmove upward D sky rocke) fre- coverage precision grammar. The grammar is an
quently appear together, which suggests that usitdPSG implementation (JACY: Siegel and Bender,
word senses and their hypernyms as features may p@02), which provides a high level of detail, mark-
useful ing not only dependency and constituent structure
However, to date, there have been few combindsut also detailed semantic relations. As the gram-
tions of sense information together with symboliomar is based on a monostratal theory of grammar
grammars and statistical models. We hypothesizg¢lPSG: Pollard and Sag, 1994), annotation by man-
that one of the reasons for the lack of success isal disambiguation determines syntactic and seman-
that there has been no resource annotated with bdth structure at the same time. Using a grammar

25

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 25-32,
Prague, Czech Republic, June, 2007. (©2007 Association for Computational Linguistics



helps treebank consistency — all sentences anno- UTTERANCE

tated are guaranteed to have well-formed parses. /NP\

The flip side to this is that any sentences which the P — !

parser cannot parse remain unannotated, at least un- PP

less we were to fall back on full manual mark-up of e

their analyses. The actual annotation process uses PP \

the same tools as the Redwoods treebank of English ¥ conJ N CASE-P V v

(Oepen et al., 2004). EE A= % i $5 0 A
A (simplified) example of an entry is given in Fig- dénsha  ya jidousha = o unten suru hito

train or car ACC drive do person

ure 1. Each entry contains the word itself, its part
of speech, and its lexical type(s) in the grammar.
Each sense then contains defln_ltlon and_ examp'ﬁgure 2: Syntactic View of the Definition gff iz
sentences, links to other senses in the lexicon (su ) "
. 1 untenshu‘'chauffeur
as hypernym), and links to other resources, suc
as the Goi-Taikei Japanese Lexicon (Ikehara et ak2:unknown<0:13>[ARG x5:_hito_n]
1997) and WordNet (Fellbaum, 1998). Each conter’ : densha_n_1<0:3>[]
o . x12:_jidousha_n<4:7>[]
word of the definition and example sentences is 8Q43. ya_p_conj<0:4>[LIDX x7:_densha_n_1,
notated with sense tags from the same lexicon. RIDX x12:_jidousha_n]
F 23:_unten_s_2<8:10>[ARG1 x5:_hito_n]

There were 4 parses for the definition sentencg.gsz_unten_s_%&10) [ARG2 X131y, p.conj]
The correct parse, shown as a phrase structure tree,
is shown in Figure 2. The two sources of ambigu-_. e , ,
. gure . . g Figure 4: Simplified Dependency View of the Defi-
ity are the conjunction and the relative clause. Thﬁition of il .1 untenshuchauffeur”
parser also allows the conjunction to combies AT
denshaand A hito. In Japanese, relative clauses

can have gapped and non-gapped readings. In tB2 Semantic Annotation
gapped reading (selected herg)hito is the subject The lexical semantic annotation uses the sense in-

of EE unten*drive”. In t_h_e non-ga_lpped reading ventory from Lexeed (Kasahara et al., 2004). All
there is some underspecified relation between tqﬁords in the fundamental vocabulary are tagged
modifee and the verb phrase. This is similar to thﬁ/ith their sense. For example, the wokds \» 0okii

difference in the two readings ahe day he knew “big” (of example sentence in Figure 1) is tagged as

in English: “the da_y that he knew abou'F” (gapped)sense 5 in the example sentence, with the meaning
vs “the day on which he knew (something)” (non"‘elder older”

gapped). Such semantic ambiguity is resolved by The word senses are further linked to semantic

selecting the correct derivation tree that includes the . ..c i, a Japanese ontology. The ontology, Goi-

applied rules n building the tr_ee (.F'g 3) Taikei, consists of a hierarchy of 2,710 semantic
The semantic representation is Minimal RecurE:Iasses, defined for over 264,312 nouns, with a max-

sipn S(_am_antics (Copestake et al, 2005.)' we Sirrﬂ:num depth of 12 (lkehara et al., 1997). We show
plify this into a dependency representation, furth?{he top 3 levels of the Goi-Taikei common noun on-

abstracting away from quantification, as shown ."?ology in Figure 5. The semantic classes are prin-

Figure 4. One of the advantages of the HPSG Slgapally defined for nouns (including verbal nouns),

IS that it contains all this !nforma-non, making it IOOS'although there is some information for verbs and ad-
sible to extract the particular view needed. In or: ..
chtlves.

der to make linking to other resources, such as t
sense annotation, easier predicates are labeled w'gh Parse Sdlection

pointers back to their position in the original sur-

face string. For example, the predicakenshan.1  Combining the broad-coverage JACY grammar and
links to the surface characters between positionst@e Hinoki corpus, we build a parse selection model
and 3E . on top of the symbolic grammar. Given a set of can-

&4z F41 “chauffeur”; “a person who drives a train or car”

N
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[INDEX  &#EF untenshu
POS noun
DEFINITION [@éﬁl L H#hE, ¥ &, 5 hg  aperson who drives trains and c}a
EXAMPLE KELsZ%» 726 EH) D EBRFLICKI6 DD B3 TT .
SENSEL | dream of growing up and becoming a train driver

HYPERNYM A4 hito “person”

SEM. CLASS (292:driver) (C (4:person))

| WORDNET  motorman |

Figure 1: Dictionary Entry foi&#z ¥4 untenshu'chauffeur”

frag-np
rel—cl—ébj—gap
hd—complemeht noun-le
hd—complemeﬂ% ---~§—“‘v—1ight

hd—complemént

hd—complément\\\\\

case-p-acc-le

/ N\

noun-le conj-le noun-le | vn-trans-le v-light-le
o L H#HE % pLLIN T5 A
densha ya jidousha o] unten suru hito
train or car ACC drive do person

&4z F1 “chauffeur”; “a person who drives a train or car”

Figure 3: Derivation Tree of the Definition ¢z F, untenshu'chauffeur”
Phrasal nodes are labeled with identifiers of grammar rated (pre-terminal) lexical nodes with class names for tygdsxical

entries.
Lvi0  Lvll Lvi2 h'—"' 3 to JACY, the goal is to rank parse trees by their prob-
¢ agent =<, organization ability: tralplng a stochastic parse selectlon. model
n facility on the available treebank, we estimate statistics of
z place < T place various features of candidate analyses from the tree-
N object < animate bank. The definition and selection of features, thus,
¢ inanimate is a central parameter in the design of an effective
abstract mental state H
noun thing action parse selection model.
a human activity
b event < phenomenon 3.1 Syntactic Features
i natural phen.
r existence The first model that we trained uses syntactic fea-
a . . .
c iZiZi?onship tures defined over HPSG derivation trees as summa-
K property rized in Table 1. For the closely related purpose of
relation S;ate parse selection over the English Redwoods treebank,
S ape Toutanova et al. (2005) train a discriminative log-
location linear model, using features defined oderivation
time

Figure 5: Top 3 levels of the GoiTaikei Ontology

treeswith non-terminals representing tleenstruc-

tion typesand lexical typesof the HPSG grammar.
The basic feature set of our parse selection model
for Japanese is defined in the same way (correspond-
ing to thePCFG-s model of Toutanova et al. (2005)):

didate analyses (for some Japanese string) accordiegch feature capturing a sub-tree from the deriva-
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exicalization. Feature type in Table efines
[#] __ samplefeatures | lexicalization. Feature type #3 in Table 1 def
110 rel-cl-sbj-gap hd-complement noun-le) n-grams of variable size, where (in a loose anal-
1| (1 frag-np rel-cl-sbj-gap hd-complement noun-le) . .
1|(2 A frag-np rel-cl-sbj-gap hd-complement noun-le) ogy to part-of-speech tagging) sequences of lexical
g ég re:—c:—sgj—gap hd-corﬁplement) types capture syntactic category assignments. Fea-
rel-cl-sbj-gap noun-le . .
2| (1 frag-np rel-cl-sbi-gap hd-complement) tur_e te_mpl_ates #3 and #4 0r_1|y differ with regard to
2| (1 frag-np rel-cl-sbj-gap noun-le) lexicalization, as the former includes the surface to-
3| (1 conj-le ya) ken associated with the rightmost element of each
3| (2 noun-le conj-le ya) | | ding to th - b
3| (3 < noun-le conj-le ya) n-gram (_oosey corresponding to the emission prob-
4| (1 conj-le) abilities in an HMM tagger). We used a maximum
i 22 noun-le conj-le) n-gram size of two in the experiments reported here,

3 < noun-le conj-le)

again due to its empirically determined best overall
Table 1: Example structural features extracted frorperformance.

the derivation tree in Figure 3. The first column _

numbers the feature template corresponding to eagtf Semantic Features

example; in the examples, the first integer valuén order to define semantic parse selection features,
is a parameter to feature templates, i.e. the depthe use a reduction of the full semantic representa-
of grandparenting (types #1 and#2) egram size tion (MRS) into ‘variable-free’elementary depen-
(types #3 and #4). The special symbalsand < dencies The conversion centrally rests on a notion
denote the root of the tree and left periphery of thef onedistinguishedvariable in each semantic rela-
yield, respectively. tion. For most types of relations, the distinguished
variable corresponds to the main inder¢o in the

examples above), e.g. an event variable for verbal re-

tion limited to depth one. Table 1 shows exampl? i q ‘ tial index f inals. A
features extracted from our running example (Fig.-a 'ons and a referential Indexfor nominais. Assum-

ure 3 ahove) in our MaxEnt models, where the fesld CEC TP b SC B [l B 8 RS o

ture template #1 corresponds to local derivation sub- T .

. . as the main index (thus assuming, for example, that

trees. We will refer to the parse selection model usaid'ectives and adverbs have event variables of their
ing only local structural features agN-1. ) . . . o

own, which can be motivated in predicative usages

3.1.1 Dominance Features at least), an MRS can be broken down into a set of

To reduce the effects of data sparseness, featUtasic dependency tuples of the form shown in Fig-
type #2 in Table 1 provides a back-off to deriva-Ure 4 (Oepen and Lgnning, 2006).
tion sub-trees, where the sequence of daughters isAll predicates are indexed to the position of the
reduced to just the head daughter. Conversely, #ord or words that introduced them in the input sen-
facilitate sampling of larger contexts than just subtence €start:end>). This allows us to link them
trees of depth one, feature template #1 allows op© the sense annotations in the corpus.
tional grandparenting, including the upwards chai%
of dominating nodes in some features. In our ex- _ _ )
periments, we found that grandparenting of up to 1h€ basic semantic modedgm-Dep, consists of
three dominating nodes gave the best balance of disatures based on a predicate and_ its arguments taken
larged contexvs.data sparseness. Enriching our bal/om the elementary dependencies. For example,
sic modelsyN-1 with these features we will hence- consider the dependencies fiensha ya jidousha-

2.1 Basic Semantic Dependencies

forth call SYN-GP. wo unten suru hitda person who drives a train or
car” given in Figure 4. The predicatenten“drive”
312 N-Gram Features has two argumentsaRG1 hito “person” andaRG2

In addition to these dominance-oriented featurejgdousha‘“car”.
taken from the derivation trees of each parse tree, From these, we produce several features (See Ta-
our models also include more surface-oriented fedole 2). One has all arguments and their labels (#20).
tures, viz.n-grams of lexical types with or without We also produce various back offs: #21 introduces
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[ #] sample features | [ #] sample features |

20 [ (0 _unten_s ARG1 _hito_-n_1 ARG2 _ya_p_conj) 40 [ (0 _unten_s ARG1 C4 ARG2 (C988)

20 | (0 _ya_p_conj LIDX _densha_n_1 RIDX _jidousha_n_1) 40 | (1 C2003 ARG1 C4 ARG2 C988)

21 | (1 _unten_s ARG1 _hito_n_1) 40 | (1 C2003 ARG1 C4 ARG2 C988)

21 | (1 _unten_s ARG2 _jidousha_n_1) 40 | (0 _ya_p_conj LIDX C988 RIDX C988)

21 | (1 _ya_p_conj LIDX _densha_n_1) 41 | (2 _untens ARG1 C4)

21 | (1 _ya_p_conj RIDX _jidousha_n_1) 41 | (2 _unten_s ARG2 C988)

22 | (2 _unten_s _hito_n_1 _jidousha_n_1)

23 | (3 _unten_s _hito_n_1)

23 | (3 _unten_s _jidousha_n_1) Table 3: Example semantic class featuresM:
— Class).

Table 2: Example semantic feature&&N-Dep) ex-

tracted from the dependency tree in Figure 4. icates are binned into only 9 classes at level 2, 30
classes at level 3, 136 classes at level 4, and 392

only one argument at a time, #22 provides unlabeleglasses at level 5.

relations, #23 provides one unlabeled relation at a For example, at level 3, the hypernym class

time and so on. for (988:1land vehicle) is (706:inanimate),
Each combination of a predicate and its relateg2003:motion) is  (1236:human activity)

argument(s) becomes a feature. These resemble #f (4:human) is unchanged. ~ So we used

basic semantic features used by Toutanova et 4f06:inanimate) and (1236:human activity)

(2005). We further simplify these by collapsingt® make features in the same way as Table 3.

some non-informative predicates, e.g. thénown An advantage of these underspecified semantic
predicate used in fragments. classes _is that_they.are more robu_st to errors in. wprd

sense disambiguation — fine grained sense distinc-
3.2.2 Word Senseand Semantic Class tions can be ignored_

Dependencies

We created two sets of features based only on tt?ez' _ s . _
word senses. F@®EM-Ws we used the sense anno- The last kind of semantic information we use is
tation to replace each underspecified MRS predicaté@lency information, taken from the Japanese side
by a predicate indicating the word sense. This use?f the Goi-Taikei Japanese-English valency dictio-
the gold standard sense tags. Bem-Class, we used Nary as extended by Fujita and Bond (2004).This va-
the sense annotation to replace each predicate by i&icy dictionary has detailed information about the
Goi-Taikei semantic class. argument properties of verbs and adjectives, includ-

In addition, to capture more useful relationshipsind subcategorization and selectional restrictions. A
conjunctions were followed down into the left andSimplified entry of the Japanese side f#z 9
right daughters, and added as separate features. Thénten-suru'drive” is shown in Figure 6.
semantic classes fag #,densha‘train” and & &) Each entry has a predicate and several case-slots.
#,jidousha‘“car” are both(988:1and vehicle), Each case-slot has information such as grammatical
while ;& #, unten“drive” is (2003:motion) and function, case-marker, case-role (N1, N2, ...) and
A4 hito “person”is (4 : human). The sample features semantic restrictions. The semantic restrictions are
of SEM-Class are shown in Table 3. defined by the Goi-Taikei’s semantic classes.

These features provide more specific information, On the Japanese side of Goi-Taikei's valency
in the case of the word sense, and semantic smooffictionary, there are 10,146 types of verbs giving
ing in the case of the semantic classes, as words k8912 entries and 1,723 types of adjectives giving

4 Valency Dictionary Compatability

binned into only 2,700 classes. 2,618 entries.
_ _ The valency based features were constructed by
32.3 Superordinate Semantic Classes first finding the most appropriate pattern, and then

We further smooth these features by replacing theecording how well it matched.
semantic classes with their hypernyms at a given To find the most appropriate pattern, we extracted
level (SEM-L). We investigated levels 2 to 5. Pred-candidate dictionary entries whose lemma is the
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PID:300513
- N1 <4:people> "#" ga
F N2 <986:vehicles> "%" o

number of parses has been reduced (Table 5). That
is, we excluded unambiguous sentences (with a sin-
gle parse), and those where the annotators judged

L -l _ . .
BT 5 unten-suru that no parse gave the correct semantics. This does
not necessarily mean that there is a single correct
Figure 6:3&#%4 2 unten-suru‘'N1 drive N2”. parse, we allow the annotator to claim that two or
PID is the verb’s Pattern ID more parses are equally appropriate.
[ # [ samplefeatures | Corpus #Sents Length Parses/Sent
31 | (0 High) (Ave) (Ave)
31 | (1 300513 High) Definitions Train 30,345 9.3 190.1
31((22) Test 2,790 10.1 177.0
31 | (3 R:High) Examples  Train 27,081 10.9 74.1
31 | (4 300513 R:High) Test 2,587 10.4 47.3
32 | (1 _unten_s High)
32 | (4 _unten.s R:High) Table 5: Data of Sets for Evaluation
33| (5 N1 C High)
331(7C) - _— .
Dictionary definition sentences are a different

genre to other commonly used test sets (e.g news-
paper text in the Penn Treebank or travel dialogues
in Redwoods). However, they are valid examples
same as the predicate in the sentence: for examfnaturally occurring texts and a native speaker can
ple we look up all entries for& &z 4~ 2 unten- read and understand them without special training.
suru “drive”. Then, for each candidate pattern, welhe main differences with newspaper text is that
mapped its arguments to the target predicate’s dhe definition sentences are shorter, contain more
guments via case-markers. If the target predicafeagments (especially NPs as single utterances) and
has no suitable argument, we mapped to comitatiiewer quoting and proper names. The main differ-
phrase. Finally, for each candidate patterns, we catnces with travel dialogues is the lack of questions.
culate a matching scorand select the pattern which
has the best score. 4.1 A Maximum Entropy Ranker

Once we have the most appropriate pattern,

we then construct features that record how goob®9-linear models provide a very flexible frame-
the match is (Table 4). These include: the towork that has been widely used for a range of tasks

tal score, with or without the verb's Pattern ipin NLP, including parse selection and reranking for
(High/Med/Low/Zero: #31 0,1), the number of filled Machine translation. We usermaximum entropy
arguments (#31 2), the fraction of filled argumenté Minimum divergencMEMD) modeler to train

vs all arguments (High/Med/Low/Zero: #31 3,4),the parse selection model. Specifically, we use the
the score for each argument of the pattern (#32 $Pen-sourcdoolkit for Advanced Discriminative

Table 4: Example semantic featureg)

and the types of matches (#32 5,7). Modeling (TADM:2 Malouf, 2002) for training, us-
These scores allow us to use information abodfd its limited-memory variable metries the opti-
word usage in an exisiting dictionary. mization method and determining best-performing
convergence thresholds and prior sizes experimen-
4 Evaluation and Results tally. A comparison of this learner with the use

_ ~ of support vector machines over similar data found
We trained and tested on a subset of the dictionagjat the SVMs gave comparable results but were far
definition and example sentences in the Hinoki corgjower (Baldridge and Osborne, 2007). Because we

pus. This consists of those sentences with ambigdre investigating the effects of various different fea-
ous parses which have been annotated so that t{@ﬁes, we chose the faster learner.

1The scoring method follows Bond and Shirai (1997), and—
depends on the goodness of the matches of the arguments. “http://tadm.sourceforge.net
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70

Method Definitions Examples NP

Accuracy Features Accuracy Features - 60 + /~»=% mE Ty o

(%) (x1000) (%)  (<1000) S gyl

SYN-T 52.8 7 67.6 8 s / SYN-SEM
SYN-GP 62.7 266 76.0 196 o 40+ — — SEM-ALL
SYN-ALL 63.8 316 76.2 245 < 304 -+ - SYN-ALL
SYN baseline  16.4  random 22.3 random o0 L . . . . |
SEM-Dep 57.3 1,189 58.7 675 S ' ' ' ' !
+SEM-WS 56.2 1,904 59.0 1,486 %) 0O 20 40 60 80 100
+SEM-Class ~ 57.5 2,018 59.7 1,669 0 i
+SEM-L2 e0.3 808 2.9 823 Y% of training data (30,345 sentences)
+SEM-L3 59.8 876 62.8 879
+SEM-L4 59.9 1,000 62.3 973 Figure 7: Learning Curves (Definitions)
+SEM-L5 60.4 1,240 61.3 1,202
+SP 59.1 1,218 68.2 819 _ )
+SEM-ALL 627 3,384 69.1 2.693 more detailed levels. The features using the valency
SYN-SEM 69.5 2,476 79.2 2,126 dictionary €P) also provide a considerable improve-
SEM baseline  20.3  random 228  random  ment over the basic dependencies.

Combining all the semantic featureSEf1-ALL)
provides a clear improvement, suggesting that the
information is heterogeneous. Finally, combing the
4.2 Results syntactic and semantic features gives the best results

The results for most of the models discussed in they far (SYN-SEM: SYN-ALL + SEM-Dep + SEM-Class +
previous section are shown in Table 6. The accuragfM-L2 + SP). The definitions sentences are harder
is exact match for the entire sentence: a model gesyntactically, and thus get more of a boost from the
a point only if its top ranked analysis is the same agemantics. The semantics still improve performance
an analysis selected as correct in Hinoki. This is fr the example sentences.
stricter metric than component based measures (e.g.,The semantic class based sense features used here
labelled precision) which award partial credit for in-are based on manual annotation, and thus show an
correct parses. For the syntactic models, the baséPper bound on the effects of these features. This
line (random choice) is 16.4% for the definitions andS not an absolute upper bound on the use of sense
22.3% for the examples. Definition sentences arf@formation —it may be possible to improve further
harder to parse than the example sentences. TH¥ough feature engineering. The learning curves
is mainly because they have fewer relative clausd§ig 7) have not yet flattened out. We can still im-
and coordinate NPs, both large sources of ambigirove by increasing the size of the training data.
ity. For the semantic and combined models, multipl
sentences can have different parses but the same
mantics. In this case all sentences with the corregikel (2000) combined sense information and parse
semantics are scored as good. This raises the bagfformation using a subset of SemCor (with Word-
lines to 20.3 and 22.8% respectively. Net senses and Penn-Il treebanks) to produce a com-
Even the simplest models¥N-1 and SEM-Dep)  bined model. This model did not use semantic de-
give a large improvement over the baseline. Addingendency relations, but only syntactic dependen-
grandparenting to the syntactic model has a largges augmented with heads, which suggests that the
improvement §YN-GP), but adding lexical n-grams deeper structural semantics provided by the HPSG
gave only a slight improvement over th&v{-ALL).  parser is important. Xiong et al. (2005) achieved
The effect of smoothing by superordinate semarsnly a very minor improvement over a plain syntac-
tic classes EM-Class), shows a modest improve- tic model, using features based on both the corre-
ment. The syntactic model already contains a backation between predicates and their arguments, and
off to lexical-types, we hypothesize that the semarbetween predicates and the hypernyms of their argu-
tic classes behave in the same way. Surprisingly, asents (using HowNet). However, they do not inves-
we add more data, the very top level of the semarigate generalizing to different levels than a word’s
tic class hierarchy performs almost as well as thenmediate hypernym.

Table 6: Parse Selection Results

%e- Discussion
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Pioneering work by Toutanova et al. (2005) andanae Fujita and Francis Bond. 2004. A method of creating

Baldridge and Osborne (2007) on parse selection for new bilingual valency entries using alternations. In Gille
. . . Seérasset, editoOLING 2004 Multilingual Linguistic Re-
an English HPSG treebank used simpler semantic sorcespages 41-48. Geneva.

features without sense information, and got a far lesyyard Hovy, Mitchell Marcus, Martha Palmer, Lance

dramatic improvement when they combined syntac- Ramshaw, and Ralph Weischedel. 2006. Ontonotes: The
tic and semantic information 90% solution. InProceedings of the Human Language

. Technology Conference of the NAACL, Companion Volume:
The use of hand-crafted lexical resources such asshort Paperspages 57-60. Association for Computational

the Goi-Taikei ontology is sometimes criticized on Linguistics, New York City, USA. URLhttp://wwu.
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: : n Klein and Christopher D. Manning. 2003. Accurate un-
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Abstract The most successful statistical MT paradigm has

been, for a while now, the so-call phrase-based MT
In this paper, we propose a new syntax-  approach (Och and Ney, 2003). In this paradigm,
based machine translation (MT) approach sentences are translated from a source language to
based on reducing the MT task to a tree- 3 target language through the repeated substitution
labeling task, which is further decom-  of contiguous word sequences (“phrases”) from the
posed into a sequence of simple decisions source language for word sequences in the target
for which discriminative classifiers can be  |anguage. Training of the phrase translation model
trained. The approach is very flexible and  pyilds on top of a standard statistical word alignment
we believe that it is particularly well-suited  gver the training corpus of parallel text (Brown et al.,
for exploiting the linguistic knowledge en-  1993) for identifying corresponding word blocks,
coded in deep grammars whenever possi- assuming no further linguistic analysis of the source
ble, while at the same time taking advantage o target language. In decoding, i.e. the application
of data-based techniques that have proven a of the acquired translation model to unseen source
powerful basis for MT, as recent advances in  sentences, these systems then typically rely on n-
statistical MT show. gram language models and simple statistical reorder-
A full system using the Lexical-Functional ing models to shuffle the phrases into an order that

Grammar (LFG) parsing system XLE and is coherent in the target language.
the grammars from the Parallel Grammar
development project (ParGram; (Butt et
al., 2002)) has been implemented, and we
present preliminary results on English-to-
German translation with a tree-labeling sys-
tem trained on a small subsection of the Eu-
roparl corpus.

An obvious advantage of statistical MT ap-
proaches is that they can adopt (often very id-
iomatic) translations of mid- to high-frequency con-
structions without requiring any language-pair spe-
cific engineering work. At the same time it is clear
that a linguistics-free approach is limited in what
it can ultimately achieve: only linguistically in-
formed systems can detect certain generalizations
from lower-frequency constructions in the data and
Machine translation (MT) is probably the oldest apsuccessfully apply them in a similar but different lin-
plication of what we call deep linguistic processingguistic context. Hence, the idea of “hybrid” MT, ex-
techniques today. But from its inception, there haveploiting both linguistic and statistical information is
been alternative considerations of approaching tHairly old. Here we will not consider classical, rule-
task with data-based statistical techniques (cf. Wabased systems with some added data-based resource
ren Weaver’'s well-known memo from 1949). Onlyacquisition (although they may be among the best
with fairly recent advances in computer technologygandidates for high-quality special-purpose transla-
have researchers been able to build effective statisen — but adaption to new language pairs and sub-
tical MT prototypes, but in the last few years, thdanguages is very costly for these systems). The
statistical approach has received enormous researatier form of hybridization — a statistical MT model
interest and made significant progress. that is based on a deeper analysis of the syntactic

1 Motivation
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structure of a sentence — has also long been iden-
tified as a desirable objective in principle (consider
(Wu, 1997; Yamada and Knight, 2001)). However,
attempts to retrofit syntactic information into the
phrase-based paradigm have not met with enormous
success (Koehn et al., 2003; Och et al., 2608hd
purely phrase-based MT systems continue to outper-
form these syntax/phrase-based hybrids.

In this work, we try to make a fresh start with I am ot

going  today
syntax-based statistical MT, discarding the phrase-
based paradigm and designing a MT system from
the ground up, using syntax as our central guid- Aujourdhui . je ne vais pas
ing star — besides the word alignment over a par-
allel corpus. Our approach is compatible with and Figure 1: Example translation object.

can benefit substantially from rich linguistic rep-

resentations obtained from deep grammars like the ]

ParGram LFGs. Nevertheless, contrary to classif@ining corpus. We refer to these partially annotated

cal interlingual or deep transfer-based systems, tRQUrce sentences partial translation objects

generative stochastic model that drives our system The task at hand: use the training corpus to learn

is grounded only in the cross-language word aligr® procedure, through which we can successfully in-

ment and a surface-based phrase structure tree f#C€ @ complete translation object from a partial

the source language and will thus degrade gracganslat_ion object. This is what we will define as

fully on input with parsing issues — which we sus-ranslation

pect is an important feature for making the overall

system competitive with the highly general phrase3 Specific Task Addressed by this Paper

based MT approach. . _ _
Preliminary evaluation of our nascent system inBefore going on to actually describe a translation

dicates that this new approach might well have thBrocedure (and how to induce it), we need to spec-
potential to finally realize some of the promises offy OUr Prior assumptions about how the translation
syntax in statistical MT. objects will be annotated. For this paper, we want to

exploit the syntax information that we can gain from
2 General Task an LFG-parser, hence we will assume the following

. annotations:
We want to build a system that can learn to translate . i
(1) In the training and evaluation corpora, the

sentences from a source language to a destination i )
language. The general set-up is simple. source sentences will be parsed with the XLE-

Firstly, we have a training corpus of paired senPa'Ser- The attribute-value information from LFG’s

tencesf and e, where target sentenceis a gold f-structure is restructured so it is indexed by (c-
standard tranélation of source senterfce These structure) tree nodes; thus a tree node can bear mul-

sentence pairs are annotated with auxiliary informatlple labels for various pieces of morphological, syn-

tion, which can include word alignments and syntact-acnc and semgnpc information.
(2) In the training corpus, the source and target

tic information. We refer to these annotated sentence ) ) ' ;

pairs ascomplete translation objects sentence of every translation object will be aligned
Secondly, we have an evaluation corpus of sourdésiNg GIZA++ (http:/www.fjoch.com/). _

sentences. These sentences are annotated with a sud other words, our complete translation objects

set of the auxiliary information used to annotate th&ill be aligned tree-string pairs (for instance, Fig-

Y o , ure 1), while our partial translation objects will be
(Chiang, 2005) also reports that with his hierarchical genf the t i fEi 1). No oth t
eralization of the phrase-based approach, the additioarsip rees (the tree portion of Figure 1). No other annota-

information doesn't lead to any improvements. tions will be assumed for this paper.
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today ——® aujourd'hui

(xiil)

not 1 —m ne 1 pas

| am not going today
(i)~ (vii) x) (xii) (xiv)

Figure 2: GHKM tree equivalent of example translation objdhe light gray nodes are rule nodes of the
GHKM tree.

4 Syntax MT as Tree Labeling the vaguely defined task of translation to the con-

) _ _ crete task of tree labeling.
It is not immediately clear how one would learn a

process to map a parsed source sentence into @8N The Generative Process
aligned tree-string pair. To facilitate matters, we
will map complete translation objects to an alternatét the most basic level, we could design a naive gen-
representation. In (Galley et al., 2003), the authorsrative process that takes a parse tree and then makes
give a semantics to aligned tree-string pairs by assa-series of decisions, one for each node, about what
ciating each with an annotated parse tree (hereafterle (if any) that node should be assigned. How-
called aGHKM treg representing a specific theoryever it is a bit unreasonable to expect to learn such
about how the source sentence was translated irdodecision without breaking it down somewhat, as
the destination sentence. there are an enormous number of rules that could po-
In Figure 1, we show an example translation obtentially be used to label any given parse tree node.
ject and in Figure 2, we show its associated GHKMO0 let’s break this task down into simpler decisions.
tree. The GHKM tree is simply the parse tréef Ideally, we would like to devise a generative process
the translation object, annotated with rules (hereaft@onsisting of decisions between a small number of
referred to as&GHKM ruleg. We will not describe in  possibilities (ideally binary decisions).
depth the mapping process from translation object to We will begin by deciding, for each node, whether
GHKM tree. Suffice it to say that the alignment in-or not it will be annotated with a rule. This is clearly
duces a set of intuitive translation rules. Essentiallya binary decision. Once a generative process has
arule like: “not 1— ne 1 pas” (see Figure 2) means:made this decision for each node, we get a conve-
if we see the word “not” in English, followed by a nient byproduct. As seen in Figure 3, the LHS of
phrase already translated into French, then translatach rule is already determined. Hence after this se-
the entire thing as the word “ne” + the translatedjuence of binary decisions, half of our task is al-
phrase + the word “pas.” A parse tree node gets laeady completed.
beled with one of these rules if, roughly speaking, The question remains: how do we determine the
its span is still contiguous when projected (via th&RHS of these rules? Again, we could create a gen-
alignment) into the target language. erative process that makes these decisions directly,
The advantage of using the GHKM interpretatiorbut choosing the RHS of a rule is still a rather wide-
of a complete translation object is that our translaspen decision, so we will break it down further. For
tion task becomes simpler. Now, to induce a comeach rule, we will begin by choosing themplateof
plete translation object from a partial translation obits RHS, which is a RHS in which all sequences of
ject (parse tree), all we need to do is label the nodesriables are replaced with an empty slot into which
of the tree with appropriate rules. We have reducedariables can later be placed. For instance, the tem-
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not 1 ——m 277

| am not going today

Figure 3: Partial GHKM tree, after rule nodes have been ifiedt(light gray). Notice that once we identify
the rule node, the rule left-hand sides are already detexnin

plate of(“ne", 1, “pas"> is <“ne", X, “pas"> and the Decision to make | Decision | RHS so far
late of wn is (X <" X here X RHS template? X, X X, X
template of(z3,"", z1,2z2) is (X,"", X), w default placement of var 1 1,X
represents the empty slots. push var Tright?]  yes X, 1
Once the template is chosen, it simply needs to be pdu‘zfﬁl\*/';f'zaﬁfﬂrf)‘ert Ofr‘"gr 2 § : i g
filled with the vanablgs from the LHS. To do so, we default placement of var 3 | X, 123
process the LHS variables, one by one. By default, push var 3 left? yes X,132
they are placed to the right of the previously placed pushvar 3left? | yes X,312
push var 3 left? yes 3,12

variable (the first variable is placed in the first slot).

We repeatedly offer the option to push the variable.. . : .
to the right until the option is declined or it is no%lgure 4: Trace of the generative story for the right-

longer possible to push it further right. If the vari-hand side of a GHKM rule.

able was not pushed right at all, we repeatedly offer
the option to push the variable to the left until theThese decisions can be annotated with whatever fea-
option is declined or it is no longer possible to pushure information we might deem helpful. Then we
it further left. Figure 4 shows this generative storysimply divide up these feature vectors by decision
in action for the rule RHSz3, ", , 21, x2). type (for instance, rule node decisions, template de-
These are all of the decisions we need to makgsions, etc.) and train a separate discriminative clas-
in order to label a parse tree with GHKM rules. Asifier for each decision type from the feature vectors.
trace of this generative process for the GHKM tred his method is quite flexible, in that it allows us to
of Figure 2 is shown in Figure 5. Notice that, asideise any generic off-the-shelf classification software
from the template decisions, all of the decisions art® train our system. We prefer learners that produce
binary (i.e. feasible to learn discriminatively). Evendistributions (rather than hard classifiers) as output,
the template decisions are not terribly large-domairut this is not required.
if we maintain a separate feature-conditional dis-
tribution for each LHS template. For instance, if5.2 Exploiting deep linguistic information
the LHS template ig'not”, X), then RHS template rp \ise of discriminative classifiers makes our ap-
("ne”, X, “pas”) and a few othe_r. select Cand'd""t‘:"sproach very flexible in terms of the information that
should bear most of the probability mass. can be exploited in the labeling (or translation) pro-
cess. Any information that can be encoded as fea-
tures relative to GHKM tree nodes can be used. For
Having established this generative story, training ithe experiments reported in this paper, we parsed
straightforward. As a first step, we can convert eacthe source language side of a parallel corpus (a
complete translation object of our training corpusmall subsection of the English-German Europarl
to the trace of its generative story (as in Figure 5)xorpus; (Koehn, 2002)) with the XLE system, using

5.1 Training
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the ParGram LFG grammar and applying probabilissearch spaces with this particular characteristic by
tic disambiguation (Riezler et al., 2002) to obtairfirst finding greedy good-quality solutions and using
a single analysis (i.e., a c-structure [phrase strutheir values to optimally prune a significant portion
ture tree] and an f-structure [an associated attributef the search space. Depth-first branch-and-bound
value matrix with morphosyntactic feature informa-search has the following advantage: it finds a good
tion and a shallow semantic interpretation]) for eacisuboptimal) solution in linear time and continually
sentence. A fall-back mechanism integrated in thienproves on this solution until it finds the optimal.
parser/grammar ensures that even for sentences tfi&ius it can be run either as an optimal decoder or as
do not receive a full parse, substrings are deeply heuristic decoder, since we can interrupt its execu-
parsed and can often be treated successfully. tion at any time to get the best solution found so far.
We convert the c-structure/f-structure represerAdditionally, it takes only linear space to run.
tation that is based on XLE's sophisticated word-
internal analysis into a plain phrase structure tre6 Preliminary results
representation based on the original tokens in the
source language string. The morphosyntactic fedD this section, we present some preliminary results
ture information from f-structure is copied as addifor an English-to-German translation system based
tional labeling information to the relevant GHKM On the ideas outlined in this paper.
tree nodes, and the f-structural dependency relationOur data was a subset of the Europarl corpus
among linguistic units is translated into a relatiorfonsisting of sentences of lengths ranging from 8
among corresponding GHKM tree nodes. The reld0 17 words. Our training corpus contained 50000
tional information is then used to systematically exsentences and our test corpus contained 300 sen-
tend the learning feature set for the tree-node basé@nces. We also had a small number of reserved
classifiers. sentences for development. The English sentences
In future experiments, we also plan to exploit lin-were parsed with XLE, using the English ParGram
guistic knowledge about the target language by fad-FG grammar, and the sentences were word-aligned
torizing the generation of target language words int®ith GIZA++. We used the WEKA machine learn-
separate generation of lemmas and the various mdRg package (Witten and Frank, 2005) to train the
phosyntactic features. In decoding, a morphologicdlistributions (specifically, we used model trees).
generator will be used to generate a string of surface For comparison, we also trained and evaluated

words. the phrase-based MT system Pharaoh (Koehn, 2005)
. on this limited corpus, using Pharaoh’s default pa-
5.3 Decoding rameters. In a different set of MT-as-Tree-Labeling

Because we have purposely refused to make amyperiments, we used a standard treebank parser
Markov assumptions in our model, decoding canndtained on the PennTreebank Wall Street Journal
be accomplished in polynomial time. Our hypothesection. Even with this parser, which produces less
sis is that it is better to find a suboptimal solution ofdetailed information than XLE, the results are com-
a high-quality model than the optimal solution of apetitive when assessed with quantitative measures:
poorer model. We decode through a simple seardPharaoh achieved a BLEU score of 11.17 on the test
through the space of assignments to our generatiget, whereas our system achieved a BLEU score of
process. 11.52. What is notable here is not the scores them-
This is, potentially, a very large and intractibleselves (low due to the size of the training corpus).
search space. However, if most assignment dediowever our system managed to perform compara-
sions can be made with relative confidence (i.e. thely with Pharaoh in a very early stage of its devel-
classifiers we have trained make fairly certain decepment, with rudimentary features and without the
sions), then the great majority of search nodes halenefit of an n-gram language model.
values which are inferior to those of the best so- For the XLE-based system we cannot include
lutions. The standard search techniquedepth- quantitative results for the same experimental setup
first branch-and-bound searctakes advantage of at the present time. As a preliminary qualitative
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Decision to make Decision Active features

rule node (i)? YES NT="S"; HEAD = “am”
rule node (ii)? YES NT="NP”; HEAD =“I"
rule node (iv)? NO NT="*VP"; HEAD = “am”
rule node (v)? YES NT="VP”"; HEAD = “am”
rule node (vi)? NO NT="MD”"; HEAD = "am”
rule node (viii)? YES NT="VP”"; HEAD = “going”
rule node (ix)? NO NT="RB”; HEAD = “not”
rule node (xi)? YES NT="VB”; HEAD = “going”
rule node (xiii)? YES NT="ADJP”; HEAD = “today”
RHS template? (i) X, X NT="S”
push var 1 right? (i) YES VARNT="NP”; PUSHPAST="
push var 2 left? (i) NO VARNT="VP”; PUSHPAST=“NP”

push var 3 left? (i) YES VARNT="ADJP"; PUSHPAST="VP”
push var 3 left? (i) YES VARNT="ADJP”; PUSHPAST="NP”

push var 3 left? (i) YES VARNT="ADJP”; PUSHPAST=""
RHS template? (ii) e NT="NP”; WD="1"

RHS template? (v) X NT="VP”

RHS template? (viii)] ne X pas NT="VP"; WD="not”

RHS template? (xi) vais NT="VB"; WD="going”

RHS template? (xiii)| aujourd’hui NT="ADJP”; WD="today”

Figure 5: Trace of a top-down generative story for the GHKé&&tin Figure 2.

evaluation, let's take a closer look at the sentencd2haraoh, with its embedded n-gram language model,

produced by our system, to gain some insight as woes not encounter).

its current strengths and weaknesses. In general, it seems that our system is superior to

Starting with the English sentence (1) (note thaPharaoh at figuring out the proper way to arrange the
all data is lowercase), our system produces (2).  words of the output sentence, and inferior to Pharaoh
at finding what the actual translation of those words
should be.

(2) ichstimmedie geist dieseranderungsantrage ~ Consider the English sentence (4). Here we have
I vote the.FEMspirit. MASCthese change-proposals an example of a modal verb with an embedded in-
tZ(;J: finitival VP. In German, infinite verbs should go at

the end of the sentence, and this is achieved by our

The GHKM tree is depicted in Figure 6. The keysystem (translating “shall” as “werden”, and “sub-
feature of this translation is how the English phras&it” as “vorlegen”), as is seen in (5).

“agree with” is translated as the German “Stimm%) ) we shall submit a proposal along these lines before the

. zu” construction. Such a feat is difficult to pro-  end of this year .

(1) iagree with the spirit of those amendments .

duce consistently with a purely phrase-based Sy, \ir werden eine  vorschlag in  dieser
tem, as phrases of arbitrary length can be placed be- we  will a.FEM proposal.MASC in these
tween the words “stimme” and “zu”, as we can see haushaltslinien vor  die ende dieser

happening in this particular example. By contrast, cudgetlines before the.FEM end NEUT this.FEM
jahres vorlegen.

Pharaoh opts for the following (somewhat less de- year.NEUTsubmit .

sirable) translation: . .
) Pharaoh does not manage this (translating “sub-

() ich stimme mit dem geist dieser mit” as “unterbreiten” and placing it mid-sentence).
I vote with  the.MASC spirit MASC these . . ) . .
anderungsantrage (6) werden wir unterbreiten eine vorschlag in dieser
change-proposals will we submit a proposal in these

haushaltslinievor  endedieser jahr
A weakness in our system is also evident here, Pudgetlines beforeend this.FEMyear.NEUT.
The German noun “Geist” is masculine, thus our It is worth noting that while our system gets the

system uses the wrong article (a problem thaword order of the output system right, it makes sev-
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spirit ‘amsndmsnts —— aenderungsantraege

of

those amendments
Figure 6: GHKM tree output for a test sentence.

eral agreement mistakes and (like Pharaoh) doesmbde, (2) the RHS template of a rule, (3) whether a
get the translation of “along these lines” right. rule variable should be pushed left, and (4) whether

In Figure 7, we show sample translations by the rule variable should be pushed right. For each
three systems under discussion for the first five senf these decisions, there are a number of possible
tences in our evaluation set. For the LFG-based afgatures that suggest themselves. For instance, re-
proach, we can at this point present only results fagall that in German, embedded infinitival verbs get
a version trained on 10% of the sentence pairs. Thglaced at the end of the sentence or clause. So
explains why more source words are left untransahen the system is considering whether to push a
lated. But note that despite the small training setule’s noun phrase to the left, past an existing verb,
the word ordering results are clearly superior for thig would be useful for it to consider (as a feature)
system: the syntax-driven rules place the untransvhether that verb is the first or second verb of its
lated English words in the correct position in termglause and what the morphological form of the verb
of German syntax. is.

The translations with Pharaoh contain relatively Even in these early stages of development, the
few agreement mistakes (note that it exploits a larMT-as-Tree-Labeling system shows promise in us-
guage model of German trained on a much largeng syntactic information flexibly and effectively for
corpus). The phrase-based approach does howeWF. Our preliminary comparison indicates that us-
skip words and make positioning mistakes some dfig deep syntactic analysis leads to improved trans-
which are so serious (like in the last sentence) théation behavior. We hope to develop the system
they make the result hard to understand. into a competitive alternative to phrase-based ap-

proaches.
7 Discussion

In describing this pilot project, we have attemptedReferences

to give a b|g picture” view of the essential IdeaSP.F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. LrMe

behind our system. To avoid obscuring the presen- cer. 1993. The mathematics of statistical machine trans-

tation, we have avoided many of the implementation lation: Parameter estimationComputational Linguistics
L : . 19(2):263-311.

details, in particular our choice of features. There

are_ exactly four types of decisions that we need Whiriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Ma-
train: (1) whether a parse tree node should be a rule suichi, and Christian Rohrer. 2002. The parallel gram-
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source we believe that this is a fundamental element .

professional translation wir denken , dass dies ein grundlegender aspekt ist .
PHARAOH (50K) wir halten dies fueinegrundlegende element .

TL-wsJ(50k) wir glauben , dasdieserist ein grundlegendes element .
TL-LFG (5K) wir meinen , dass diesinegrundlegende element ist .

source it is true that lisbon is a programme for ten years .
professional translation nun ist lissabon ein programm fir zehn jahre .

PHARAOH (50K) es istrichtig , dass lissabgst eine programm fur zehjahren .
TL-WwSJ(50k) es istrichtig , dass lissabgst eine programm fir zehjahren .
TL-LFG (5K) es isttrue,, dasdisboneine programm fur zehghren ist .
source i completely agree with each of these points .

professional translation ich bin mit jeder einzelnen dieser aussagen voll und ganzestanden .
PHARAOH (50Kk) ich ..... vollig einverstanden mit jedem dieser punkte .
TL-wsJ(50K) ich bin vollig mit jedesdiese fragen einer meinung .

TL-LFG (5k) ich agree completelynit jeder dieser punkte .

source however , i would like to add one point .

professional translation aber ich mdchte gern einen punkt hinzufigen .

PHARAOH (50Kk) allerdings mochte ich noch eines sagen .

TL-wsJ(50k) ich mochte jedockn noch einen punkt hinzufigen .

TL-LFG (Bk) allerdings mochte ich einen punkdd.

source this is undoubtedly a point which warrants attention .
professional translation ohne jeden zweifel ist dies ein punkt , der aufmerksamkedieet .
PHARAOH (50k) das ist sicherliceine punkt .... rechtfertiglas aufmerksamkeit .
TL-wsJ(50k) das ist ohne zweifedine punkt die warrantsbeachtung .
TL-LFG (5k) das istundoubtedly... sache , diattention warrants

Figure 7: Sample translations by (1) theARAOH system, (2) our system with a treebank parser\{sJ),

(3) our system with the XLE parseri(-LFG). (1) and (2) were trained on 50,000 sentence pairs, (3) just
on (3) sentence pairs. Error codingrong morphologicalform, incorrectly positionedword, untranslated
source worgdmissed word: ... extrawerd.
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Abstract Compared with WordNet (Miller et al., 1993)—

which has been used widely in QA—FrameNet, Prop-

This paper discusses how lexical resources Bank and VerbNet are still relatively new, and there-

based on semantic roles (i.e. FrameNet, fore their usefulness for QA has still to be proven.

PropBank, VerbNet) can be used for Ques-  They offer the following features which can be used

tion Answering, especially Web Question  to gain a better understanding of questions, sen-

Answering. Two algorithms have been im-  tences containing answer candidates, and the rela-

plemented to this end, with quite different  tions between them:

characteristics. We discuss both approaches )

when applied to each of the resources and a e They all provide ver'b-argument structures for a

combination of these and give an evaluation. large number of lexical entries.

We argue that employing semantic roles can e FrameNet and PropBank contain semantically

indeed be highly beneficial for a QA system. annotated sentences that exemplify the under-
lying frame.
1 Introduction e FrameNet contains not only verbs but also lex-

ical entries for other part-of-speeches.
FrameNet provides inter-frame relations that
can be used for more complex paraphrasing to
link the question and answer sentences.

A large part of the work done in NLP deals with
exploring how different tools and resources can be *
used to improve performance on a task. The quality
and usefulness of the resource certainly is a major
factor for the success of the research, but equally soIn this paper we describe two methods that use
is the creativity with which these tools or resourceshese resources to annotate both questions and sen-
are used. There usually is more than one way t@nces containing answer candidates with seman-
employ these, and the approach chosen largely dée roles. If these annotations can successfully be
termines the outcome of the work. matched, an answer candidate can be extracted. We
This paper illustrates the above claims with reare able, for example, to give a complete frame-
spect to three lexical resources — FrameNet (Bakeemantic analysis of the following sentences and to
et al.,, 1998), PropBank (Palmer et al., 2005) antecognize that they all contain an answer to the ques-
VerbNet (Schuler, 2005) — that convey informatiortion “When was Alaska purchased?”:
about lexical predicates and their arguments. We de- . .
scribe two new and complementary techniques for The United States purchased Alaska in 1867.
using these resources and show the improvements tg\laska was bought from Russia in 1867.
be gained when they are used individually and then In 1867, Russia sold Alaska to the United States.
together. We also point out problems that must be The acquisition of Alaska by the United States
overcome to achieve these results. in 1867 is known as “Seward’s Folly.
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The first algorithm we present uses the three Because of these reasons and especially because
lexical resources to generate potential answemany questions tend to be gramatically simple, we
containing templates. While the templates contaifound that a few simple rules can help the question
holes — in particular, for the answer — the parts thannotation process dramatically. We rely on Mini-
are known can be used to create exact quoted seareér (Lin, 1998) to find the question’s head verb, e.g.
queries. Sentences can then be extracted from thgurchase” for “Who purchased YouTube?” (In the
output of the search engine and annotated with résllowing we will often refer to this question to il-
spect to the resource being used. From this, an alustrate our approach.) We then look up all entries
swer candidate (if present) can be extracted. Thie one of the resources, and for FrameNet and Prop-
second algorithm analyzes the dependency structuBank we simplify the annotated sentences until we
of the annotated example sentences in FrameNet aachieve a set of abstract frame structures, similar to
PropBank. It then poses rather abstract queries to these in VerbNet. By doing this we intentionally re-
web, but can in its candidate sentence analysis stageve certain levels of information that were present
deal with a wider range of syntactic possibilities. Asn the original data, i.e. tense, voice, mood and nega-
we will see, the two algorithms are nicely comple+ion. (In a later step we will reintroduce some of it.)

mentary. Here is what we find in FrameNet for “purchase”:
. : - Buyer [ Subj , NP] VERB Goods[ Obj, NP]
2 Method 1. Question Answering by Buyer [ Subj . NF] VERB Goods[ Cbj . NF]
Natural Language Generation Sel | er [ Dep, PP-fronj
] ) _Buyer [ Subj, NP] VERB Goods[ Obj , NP]
The first method implemented uses the data avail- Money| Dep, PP-f or]

,NP] VERB Goods[ Obj , NP]

; ; uyer [ Subj
able in the resources to generate potential answe? Reci pi ent [ Dep, PP-f or ]

sentences to the question. While at least one com-

ponent of such a sentence (the answer) is yet un- ) ) . )
known, the remainder of the sentence can be used to SYNtactic analysis of the question (also obtained

query a web search engine. The results can then B8 MiniPar) shows that “Who is the (deep) sub-
“YouTube”, the (deep) object. The first of

analyzed, and if they match the originally-proposedfct and

answer sentence structure, an answer candidate ¢4f aPove frames fits this analysis best, because it

be extracted. lists only the two roles with the desired grammatical

The first step is to annotate the question with itfuinctions. By mapping the question analysis to this

semantic roles. For this task we use a classical sE@Me; we can assign the rol€®odsto “YouTube

mantic role labeler combined with a rule-based ag2"d Buyerto “Who". From this we can conclude
proach. Keep in mind that our task is to annotaté12t the question asks for tiuyerrole.

questions, not declarative sentences. This is impor-An additional point suitable to illustrate why a
tant for several reasons: few simple rules can achieve in many cases more

that a statistical classifier, aM/hen and Where
1. The role labeler we use is trained on FrameNgjfyestions. Here, the hint that leads to the correct de-
and PropBank data, i.e. mostly on declarativgaction of the answer role lies in the question word,
sentences, whose syntax often differs considegnich is of course not present in the answer sen-
ably from the sytax of questions. Aa a resultience. Furthermore, the answer role in an answer
the training and test set differ substantially insentence will usually be realized as a PP with a to-
nature. tally different dependency path than the one of ques-
2. Questions tend to be shorter and simpler synion’s question word. In contrast, a rule that states
tactically than declarative sentences—especialthat whenever a temporal or location question is de-
those occurring in news corpora. tected the answer role becomes, in FrameNet terms,
3. Questions contain one semantic role that has félaceor Time respectively, is very helpful here.
be annotated but which is not or is only implic- Once the role assignment is complete, we use
itly (through the question word) mentioned —all abstract frames which contain the roles found in
the answer. the question to generate potential answer templates.
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This is also the point where we reintroduce tense anthe following examples illustrate point 2:

voice information® If the question was asked in the YouTub hased by Goodl October 9
a past tense, we will now create from each abstract Oulube was purchased by 500gie on Dctober 5.

frame, all surface realizations in all past tenses, both On October 9, YouTube was purchased by Google.
in active and passive voice. If we had used the an- YouTube was purchased on October 9 by Google.
notated data directly without the detour over the ab- All variations are possible, although they may dif-

stract frames, we would have difficulty sorting outf . . ’
. . er.in frequency. PPs conveying other peripheral ad-
negated sentences, those in undesired moods and

those in unsuitable tenses. In contrast our a roa{:%nc'[s (e.g. "for $1.65 billion”) could replace all the
) PP sve temporals PPs, or they could be added at other

guarantees that all possible tenses in both voices are ...
. - . positions.
generated, and no meaning-altering information lik

. .~ The special behavior of these types of questions
mood and negation is present. For the example given .
: . . as not only to be accounted for when annotating
above we would creatmter alia the following an-

the question with semantic roles, but also and when
swer templates: creating and processing potential answer sentences
ANSVER[ NP] pur chased YouTube 9 P gp )

YouTube was purchased by ANSVER[ NP] We use an abstract frame structure like the following
ANSVER] NP] had purchased YouTube to create the queries:

T Buyer [ Subj , NP, unknown]

The part (or parts) of the templates that are VERB Goods[ Gbj , NP, " YouTube"]

known are quoted and sent to a search en-yhjle this lacks a role for the answer, we
gine. For the second example, this would b@an still use it to create, for example, the query
"YouTube was purchased by". From the snippets «pas purchased YouTube". When sentences re-
returned by the search engine, we extract candigmed from the search engine are then matched
date sentences and match them against the abstrgghinst the abstract structure, we can extract all PPs
frame structure from which the queries were origigjrectly before the Buyer role, between the Buyer
nally created. In this way, we annotate the candidaig|e and the verb and directly behind the Goods role.
sentences and are now able to identify the filler ofhen we can check all these PPs on their semantic

the answer role. For example, the above query regpes and keep only those that match the answer type
turns “On October 9, 2006, YouTube was purchasegk the question (if any).

by Google for an incredible US$1.65 billion”, from
which we can extract “Google”, because it is the N®B Making use of FrameNet Frames and
filling the buyer role. Inter-Frame Relations

So far, we have mostly discussed questions Whosf%e method presented so far can be used with all

answer role is an argument of the head verb. How:
g V\fhree resources. But FrameNet goes a step further

ever, for questions like “When was YouTube pur- . .
.o . than just listing verb-argument structures: It orga-
chased?” this assumption does not hold. Here, the ) ) .. :
. . . . nizes all of its lexical entries in fram&swith rela-
guestion asks for an adjunct. This is an |mportar[t .
) . lons between frames that can be used for a wider
difference for at least three reasons:

paraphrasing and inference. This section will ex-
1. FrameNet and VerbNet do not or only sparselwain how we make use of these relations.

annotate peripheral adjuncts. (PropBank how- The purchase.ventry is organized in a frame

ever does.) called Commercebuy which also contains the
2. In English, the position of adjuncts varies muctentries for buy.v and purchase((act)).n  Both
more than those of arguments. these entries are annotated with the same frame

3. In English, different kinds of adjuncts can oc-elements agpurchase.v This makes it possible to
cupy the same position in a sentence, althougfiermulate alternative answer templates, for exam-
naturally not at the same time. ple: YouTube was bought by ANSWER] NP] and

While we strip off mood and negation during the creation  2Note the different meaning éfamein FrameNet and Prop-
of the abstract frames, we have not yet reintroduced them.  Bank/VerbNet respectively.
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ANSVEER] NP- Geni ti ve] purchase of YouTube. viet Union” asARGQ “roughly eight million tons of
The latter example illustrates that we can alsgrain” asARGJ and “this month” as an adjunct of
generate target paraphrases with heads which agge TMP. The stored paths to each are as follows:
not verbs. Handling these is usually easier than
_sentenC(_es based on _verbs, because no tense/v0|crole = ARGQ paths ={ | 5, | subj}
information has to be introduced. _ _ g
_ role =ARG] paths ={] obj}

Furthermore, frames themselves can stand in e =TMP. paths ={ | mod}
different relations. The fram€ommercegoods-
transfer, for example, relates both to the alreadyrhis says that the head is at the root, ARGO is at both
mentioned Commercebuy frame and to Com- surface subjectf and deep subjecsb) positior?,
mercesell in an is_perspectivizedn relation. The ARGL1 is the deep objecbbj), and TMP is a direct
latter contains the lexical entrigstail.v, retailer.n, adjunct (nod of the head.
sale.n sell.y; vend.vand vendor.n Again, the Questions are annotated as described in Section 2.
frame elements used are the same as gar- Sentences that potentially contain answer candidates
chase.v Thus we can now create answer templategre then retrieved by posing a rather abstract query
like YouTube was sold to ANSWER[NP]. Other consisting of key words from the question. Once
templates created from this frame seem odd, e.g/e have obtained a set of candidate-containing sen-
YouTube has been retailed to ANSWER] NP] . tences, we ask the following questions of their de-
because the verb “to retail” usually takes masgpendency structures compared with those of the ex-
products as its object argument and not a compargmple sentences from PropB&nk

But FrameNet does not make such fine-grainedl D h didat taini ¢ h
distinctions. Interestingly, we did not come across a boes fhe candidate-containing sentence share

a single example in our experiments where such the same he'ad verb as the example sentence?
a phenomenon caused an overall wrong answerlP Do the candidate sentence and the example sen-
Sentences like the one above will most likely notbe  t€nce share the same path to the head?

found on the web (just because they are in a narron2@ In the candidate sentence, do we find one or
semantic sense not well-formed). Yet even if we  More of the example’s paths to the answer role?
would get a hit, it probably would be a legitimate to 2b In the candidate sentence, do we find all of the
count the odd sentence “YouTube had been retailed example’s paths to the answer role?

to Google” as evidence for the fact that Google 3a Can some of the paths for the other roles be

QeadPath 34

bought YouTube. found in the candidate sentence?
3b Can all of the paths for the other roles be found
4 Method 2: Combining Semantic Roles in the candidate sentence?
and Dependency Paths 4a Do the surface strings of the other roles par-

. tially match those of the question?
The second method we have implemented com- .
4b Do the surface strings of the other roles com-
pares the dependency structure of example sentences )
pletely match those of the question?

found in PropBank and FrameNet with the depen-

dency structure of candidate sentences. (VerbNetTests 1a and 2a of the above are required criteria:

does not list example sentences for lexical entrieg the candidate sentence does not share the same

so could not be used here.) head verb or if we can find no path to the answer
In a pre-processing step, all example sentencesiigle, we exclude it from further processing.

PropBank and FrameNet are analyzed and the de-;—

d ths from the head t h of the fr MiniPar allows more than one path between nodes due, for
pendency patns 1ro € head (o eaf: or the an&ample, to traces. The given example is MiniPar’s way of in-
elements are stored. For example, in the sentendieating that this is a sentence in active voice.

“The Soviet Union has purchased roughly eight mil- “Note that our proceeding is not too different from what a
: o . lassical role label Id do: Both h imaril
lion tons of grain this month” (found in PrOpBank),CaSSICa role labeler would do: Both approaches are primarily

) k based on comparing dependency paths. However, a standard
“purchased” is recognized as the head, “The Saele labeler would not take tests 3a, 3b, 4a and 4b into account.
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Each sentence that passes steps la and 2a8is This rather low weight for a positive candi-
assigned a weight of 1. For each of the remainindate sentence is due to the fact that we compared
tests that succeeds, we multiply that weight byt against a dependency structure which it only par-
2. Hence a candidate sentence that passes all tiwly matched. However, it might very well be the
tests is assigned a weight 64 times higher than @ase that another of the annotated sentences shows a
candidate that only passes tests 1la and 2a. We tgserfect fit. In such a case this comparison would
this as reasonable, as the evidence for having foumdsult in a weight of 64. If these were the only
a correct answer is indeed very weak if only tests 1@avo sentences that produce a weight of 1 or greater,
and 2a succeeded and very high if all tests succedtie final weight for this answer candidate would be
Whenever condition 2a holds, we can extract aR + 64 = 72.
answer candidate from the sentence: It is the phrase ,
that the answer role-path points to. All extracted® EVvaluation

answers are stored together with their weights, e choose to evaluate our experiments with the
we retrieve the same answer more than once, WEREC 2002 QA test set because test sets from 2004
simple add the new weight to the old ones. Aftegng peyond contain question series that pose prob-
all candidate sentences have been compared Wins that are separate from the research described
all pre-extracted structures, the ones that do ng{ this paper. While we participated in TREC 2004,
show the correct semantic type are removed. Thisgos and 2006, with an anaphora-resolution com-
is especially important for answers that are realizegonem that performed quite well, we feel that if
as adjuncts, see Section 2. We choose the answf{e wants to evaluate a particular method, adding an
candidate with the highest score as the final answejdditional module, unrelated to the actual problem,
can distort the results. Additionally, because we are
We now illustrate this method with respect to oulsearching for answers on the web rather than in the
question “Who purchased YouTube?” The roles assQUAINT corpus, we do not distinguish between
signment process produces this result: “YouTubesypported and unsupported judgments.
is ARG1and the answer iARGQ From the web  Of the 500 questions in the TREC 2002 test set,
we retrieventer alia the following sentence: “Their 236 havebe as their head verb. As the work de-
aim is to compete with YouTube, which Google rescribed here essentially concemearb semantics,
cently purchased for more than $1 billion.” The desych questions fall outside its scope. Evaluation

pendency analysis of the relevant phrases is: has thus been carried out on only the remaining 264
. : : guestions.
headPath i]i|pred|i| mod|pcom-rirel]i . .
phrase = “(:%oloé?e",déalths %2 lsubrj%» ! For the first method (cf. Section 2), we evaluated
phrase = “which”, paths £ |obj} system accuracy separately for each of the three re-
phrase = “YouTube”, paths £ifrel} .. .
phrase = “for more than $1 billion”, paths{=mod} sources, and then together, obtaining the following
values:

If we annotate this sentence by using the analy- FrnglNet Pfgl;g?“k nggg';t Coénzbéfle‘i
sis from the above example sentence (“The Soviet : — : .
Union has purchased ..”) we get the following (par- FOr the combined run we looked up the verb
tially correct) role assignment: “Google” BRGQ N all three resources simultaneously and all en-
“which” is ARG1 “for more than $1 billion” isTMp. ~ tries from every resource were used. As can

The following table shows the results of the 8 test2€ S€en, PropBank and VerbNet perform equally
described above: well, while FrameNet’s performance is significantly

lower. These differences are due to coverage issues:
1a| OK 2a | OK 3a | OK da | — FrameNet is still in development, and further ver-
b| - 2b | OK | [3b]OK | [4b] - sions with a higher coverage will be released. How-
Test 1a and 2a succeeded, so this sentence is aser, a closer look shows that coverage is a problem
signed an initial weight of 1. However, only threefor all of the resources. The following table shows
other tests succeed as well, so its final weight ige percentage of the head verbs that were looked
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up during the above experiments based on the 20ame is related via thinheritance Perspectiveon
question set, that could not be fountb{ found. It and Using relations (by using only those frames
also lists the percentage of lexical entries that corwhich show the same frame elements).

tain no annotated sentences= 0), five or fewer @ T only question head verb | 0.181
(s <= 5), ten or fewer § <= 10), or more than (b) all entries in frame 0.204
50 (s > 50). Furthermore, the table lists the aver- all entries in related frames

( ) © (with same frame element;) 0.215

age number of lexical entries found per head verb _ _ _
(avg sensasand the average number of annotated Our second method described in Section 4, can

sentences found per lexical entgu( sen). 5 only be used with FrameNet and PropBank, because
| [FrameNet| PropBank] VerbNet does not give annotated example sentences.
Sotiound 1% 8% Here are the results:
s=10 41% 7% FrameNet| PropBank
s<=5 48% 35% 0.030 0.159
s <= 10 57% 45% _ _
5> 50 8% 23% Analysis shows that PropBank dramatically out-
avg sense§ 2.8 4.4 performs FrameNet for three reasons:
avg sent. 16.4 115.0

The problem with lexical entires only containing - PropBank’s lexicon contains more entries.
a small number of annotated sentences is that thes@. PropBank provides many more example sen-
sentences often do not exemplify common argument  tences for each entry.
structures, but rather seldom ones. As a solution to3. FrameNet does not annotate peripheral ad-
this coverage problem, we experimented with acau-  juncts, and so does not apply to When- or
tious technique for expanding coverage. Any head \Where-questions.
verb, we assumed displays the following three pat-
terns: The methods we have described above are com-
_ N plementary. When they are combined so that when
intransitive: [ARGO] VERB method 1 returns an answer it is always chosen
transitive:  [ARGO] VERB [ARG1] . . .
ditransitive: [ARGO] VERB [ARG1] [ARG2] as the final one, and only if method 1 did not
return an answer were the results from method
During processing, we then determined whethet used, we obtain a combined accuracy of 0.306
the question used the head verb in a standard inwhen only using PropBank. When using method 1
transitive, transitive or ditransitive way. If it did, with all three resources and our cautious coverage-
and that pattern for the head verb was not containgxtension strategy, with all additional reformulations
in the resources, we temporarily added this abstraétat FrameNet can produce and method 2, using
frame to the list of abstract frames the system useBropBank and FrameNet, we achieve an accuracy of
This method rarely adds erroneous data, because h867.
question shows that such a verb argument structureWe also evaluated how much increase the de-
exists for the verb in question. By applying this techscribed approaches based on semantic roles bring to
nique, the combined performance increased fro@ur existing QA system. This system is completly
0.261t0 0.284. web-based and employs two answer finding strate-
In Section 2 we reported on experiments thagies. The first is based on syntactic reformulation
make use of FrameNet's inter-frame relations. Theules, which are similar to what we described in sec-
next table lists the results we get when (a) using onfjon 2. However, in contrast to the work described
the question head verb for the reformulations, (b) ugn this paper, these rules are manually created. The
ing the other entries in the same frame as well, (econd strategy uses key words from the question as
using all entries in all frames to which the startinggueries, and looks for frequently occuring n-grams
— _ " __in the snippets returned by the search engine. The
As VerbNet contains no annotated sentences, it is not listed. . Sy
Note also, that these figures are not based on the resourcesSyStem received the fourth best result for factoids in
total, but on the head verbs we looked up for our evaluation. TREC 2004 (Kaisser and Becker, 2004) (where both
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just mentioned approaches are described in more de-Regarding our second method, two papers de-
tail) and TREC 2006 (Kaisser et al., 2006), so it irscribe related ideas: Firstly, in (Bouma et al., 2005)
itself is a state-of-the-art, high performing QA systhe authors describe a Dutch QA system which
tem. We observe an increase in performance by 21#takes extensive use of dependency relations. In a
over the mentioned baseline system. (Without thpre-processing step they parsed and stored the full
components based on semantic roles 130 out of 26&xt collection for the Dutch CLEF QA-task. When
guestions are answered correct, with these comptieir system is asked a question, they match the de-

nents 157.) pendency structure of the question against the de-
pendency structures of potential answer candidates.
6 Related Work Additionally, a set of 13 equivalence rules allows

So far, there has been little work at the intersectiotéansmrme,l,noq‘s O.f the kind “the coach of Norvxay,
gil Olsen”< “Egil Olsen, the coach of Norway”.

of QA and semantic roles. Fliedner (2004) describe
Q S ! S T ( ) describes Secondly, Shen and Klakow (2006) use depen-

the functionality of a planned system based on thg lati ths t K didat |
German version of FrameNet, SALSA, but no so fa e’?Cy refation pa_ S to rank answer candidates. in
eir work, a candidate sentence supports an answer

no paper describing the completed system has begh . . . )
pubFI)isﬁed g P y if relations between certain phrases in the candidate

Novischi and Moldovan (2006) use a techniquesigftirgcne are similar to the corresponding ones in the

that builds on a combination of lexical chains an o K | hat d ibed in both
verb argument structures extracted from VerbNet tg OUr WOrK complements that described in bot

re-rank answer candidates. The authors’ aim is ttgese papers, based as it is on a large collection of

recognize changing syntactic roles in cases Wheﬁgmantlcally annotated example sentences: We only

an answer sentence shows a head verb different frdfi-!€ & candidate sentence to match one of the an-

the question (similar to work described here in Sedj(_)tateol example sentences. Th|s_ allows_ l_J_S_tO deal
tion 2). However, since VerbNet is based the- with a much wider range of syntactic possibilities, as

maticrather tharsemantiaoles, there are problemsthe resources we U‘Ze doI notr:)nly document ;]/erb ar
in using it for this purpose, illustrated by the follow- 9UMent structures, but also the many ways they can

ing VerbNet pattern fobuyandsell. be syntactically realized.

[ Agent] buy [Thene] from [ Source]

[Agent] sell [Recipient] [Thene] 7 Discussion

Starting with the sentence “Peter bought a guitdBoth methods presented in this paper employ se-
from Johnny”, and mapping the above rolesltioly mantic roles but with different aims in mind: The
to those forsell, the resulting paraphrase in termdirst method focuses on creating obvious answer-
of sellwould be “Peter sold UNKNOWN a guitar”. containing sentences. Because in these sentences,
That is, there is nothing blocking the Agent role ofthe head and the semantic roles are usually adjacent,
buybeing mapped to the Agent role &¢ll, nor any- it is possible to create exact search queries that will
thing linking the Source role dbuy to any role in lead to answer candidates of a high quality. Our
sell. There is also a coverage problem: The authoecond method can deal with a wider range of syn-
report that their approach only applies to 15 of 23@actic variations but here the link to the answer sen-
TREC 2004 questions. They report a performanc@nces’ surface structure is not obvious, thus no ex-
gain of 2.4% (MMR for the top 50 answers), but itact queries can be posed.
does not become clear whether that is for these 15The overall accuracy we achieved suggests that
guestions or for the complete question set. employing semantic roles for question answering is

The way in which we use the web in our firstindeed useful. Our results compare nicely to re-
method is somewhat similar to (Dumais et al., 2002cent TREC evaluation results. This is an especially
However, our system allows control of verb argustrong point, because virtually all high performing
ment structures, tense and voice and thus we caiREC systems combine miscellaneous strategies,
create a much larger set of reformulations. which are already know to perform well. Because
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the research question driving this work was to deteRefer ences
mine how semantic roles can benefit QA, we dellbel'Colin F. Baker, Charles J. Fillmore, and John B. Lowe.

ately designed our system ¢mly build on semantic ~ 1998. The Berkeley FrameNet Project. Pmoceed-
roles. We did not chose to extend an already exist- ings of COLING-ACL

ing system, using_other methods with a few featureéosSe Bouma, Jori Mur, Gertjan van Noord, Lonneke

based on semantic roles. van der Plas, andddg Tiedemann. 2005. Question
Our results are convincing qualitatively as well as  Answering for Dutch using Dependency Relations. In

quantitavely: Detecting paraphrases and drawing in- Proceedings of the CLEF 2005 Workshop

ferences is a key challenge in question answeringy,san pumais, Michele Bankom, Eric Brill, Jimmy Lin,
which our methods achieve in various ways: and Andrew Ng. 2002. Web Question Answering: Is
More Always Better?Proceedings of UAI 2003
e They both recognize different verb-argument
structures of the same verb. Gerhard Fliedner. 2004. Towards Using FrameNet for
) Question Answering. IrProceedings of the LREC
e Method 1 controls for tense and voice: Our sys- 2004 Workshop on Building Lexical Resources from
tem will not take a future perfect sentence for Semantically Annotated Corpara

an answer to a present perfect .questlon. Michael Kaisser and Tilman Becker. 2004. Question An-
e For method 1, no answer candidates altered by swering by Searching Large Corpora with Linguistic

mood or negation are accepted. Methods. InThe Proceedings of the 2004 Edition of

« Method 1 can create and recognize answer sen- "¢ TextREtrieval Conference, TREC 2004

tences, whose head is synonymous or related Michael Kaisser, Silke Scheible, and Bonnie Webber.
meaning to the answers head. In such transfor- 2006. Experiments at the University of Edinburgh for
mations, we are also aware of potential changes te TREC 2006 QA track. IiThe Proceedings of the

. 2006 Edition of the Text REtrieval Conference, TREC
in the argument structure. 2006

e The annotated sentences in the resources en-

. . ekang Lin. 1998. Dependency-based Evaluation of
ables method 2 to deal with a wide range OP MINIPAR. In Workshop on the Evaluation of Parsing

syntactic phenomena. Systems

8 Conclusion George A. Miller, Richard Beckwith, Christiane Fell-
_ ) _ baum, Derek Gross, and Katherine Miller. 1993. In-
This paper explores whether lexical resources like troduction to WordNet: An On-Line Lexical Database.

FrameNet, Prquank anq VerbNet are bengﬂua! 1EOAdrian Novischi and Dan Moldovan. 2006. Question
QA and describes two different methods in which Answering with Lexical Chains Propagating Verb Ar-
they can be used. One method uses the data in thesguments. InProceedings of the 21st International
resources to generate potential answer-containingConference on Computational Linguistics and 44th
sentences that are searched for on the web by using®nnual Meeting of the ACL

exact, quoted search queries. The second meth@itha Palmer, Daniel Gildea, and Paul Kingsbury.
uses only a keyword-based search, but it can anno-2005. The Proposition Bank: An Annotated Cor-
tate a larger set of candidate sentences. Both meth-Pus of Semantic Roles.Computational Linguistics
ods perform well solemnly and they nicely comple- 31(1):71-106.

ment each other. Our methods based on semankgrin Kipper Schuler. 2005. VerbNet: A Broad-
roles alone achieves an accuracy of 0.39. Further- Coverage, Comprehensive Verb Lexicé.D. thesis,
more adding the described features to our already University of Pennsylvania.

existing system boosted accuracy by 21%. Dan Shen and Dietrich Klakow. 2006. Exploring Corre-
lation of Dependency Relation Paths for Answer Ex-
Acknowledgments traction. InProceedings of the 21st International Con-

) ) ference on Computational Linguistics and 44th Annual
This work was supported by Microsoft Research Meeting of the ACL

through the European PhD Scholarship Programme.

48



Deep Linguistic Processing for Spoken Dialogue Systems

James Allen
Department of Computer Science
University of Rochester

james@cs.rochester.edu

Mehdi Manshadi
Department of Computer Science
University of Rochester
mehdih@cs.rochester.edu

Abstract

We describe a framework for deep linguis-
tic processing for natural language under-
standing in task-oriented spoken dialogue
systems. The goal is to create domain-
general processing techniques that can be
shared across all domains and dialogue
tasks, combined with domain-specific op-
timization based on an ontology mapping
from the generic LF to the application on-
tology. This framework has been tested in
six domains that involve tasks such as in-
teractive planning, coordination operations,
tutoring, and learning.

1 Introduction

Deep linguistic processing is essential for spoken
dialogue systems designed to collaborate with us-
ers to perform collaborative tasks. We describe the
TRIPS natural language understanding system,
which is designed for this purpose. As we develop
the system, we are constantly balancing two com-
peting needs: (1) deep semantic accuracy: the need
to produce the semantically and pragmatically deep
interpretations for a specific application; and (2)
portability: the need to reuse our grammar, lexicon
and discourse interpretation processes across do-
mains.

We work to accomplish portability by using a
multi-level representation. The central components
are all based on domain general representations,
including a linguistically based detailed semantic
representation (the Logical Form, or LF), illocu-
tionary acts, and a collaborative problem-solving
model. Each application then involves using a do-
main-specific ontology and reasoning components.
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The generic LF is linked to the domain-specific
representations by a set of ontology mapping rules
that must be defined for each domain. Once the
ontology mapping is defined, we then can auto-
matically specialize the generic grammar to use the
stronger semantic restrictions that arise from the
specific domain. In this paper we mainly focus on
the generic components for deep processing. The
work on ontology mapping and rapid grammar ad-
aptation is described elsewhere (Dzikovska et al.
2003; forthcoming).

2 Parsing for deep linguistic processing

The parser uses a broad coverage, domain-
independent lexicon and grammar to produce the
LF. The LF is a flat, unscoped representation that
includes surface speech act analysis, dependency
information, word senses (semantic types) with
semantic roles derived from the domain-
independent language ontology, tense, aspect, mo-
dality, and implicit pronouns. The LF supports
fragment and ellipsis interpretation, discussed in
Section 5.2

2.1 Semantic Lexicon

The content of our semantic representation comes
from a domain-independent ontology linked to a
domain-independent lexicon. Our syntax relies on
a frame-based design in the LF ontology, a com-
mon representation in semantic lexicons (Baker et
al., 1998, Kipper et al., 2000). The LF type hierar-
chy is influenced by argument structure, but pro-
vides a more detailed level of semantic analysis
than found in most broad coverage parsers as it
distinguishes senses even if the senses take the
same argument structure, and may collapse lexical
entries with different argument structures to the
same sense. As a very simple example, the generic
lexicon includes the senses for the verb take shown
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in Figure 1. Our generic senses have been inspired
by FrameNet (Baker et al., 1998).

In addition, types are augmented with semantic
features derived from EuroWordNet (Vossen et al.,
1997) and extended. These are used to provide se-
lectional restrictions, similar to VerbNet (Kipper et
al., 2000). The constraints are intentionally weak,
excluding utterances unsuitable in most contexts
(the idea slept) but not attempting to eliminate
borderline combinations.

The generic selectional restrictions are effective
in improving overall parsing accuracy, while re-
maining valid across multiple domains. An
evaluation with an earlier version of the grammar
showed that if generic selectional restrictions were
removed, full sentence semantic accuracy de-
creased from 77.8% to 62.6% in an emergency
rescue domain, and from 67.9 to 52.5% in a medi-
cal domain (using the same versions of grammar
and lexicon) (Dzikovska, 2004).

The current version of our generic lexicon con-
tains approximately 6400 entries (excluding mor-
phological variants), and the current language on-
tology has 950 concepts. The lexicon can be sup-
plemented by searching large-scale lexical re-
sources such as WordNet (Fellbaum, 1998) and
Comlex (Grisham et al., 1994). If an unknown
word is encountered, an underspecified entry is
generated on the fly. The entry incorporates as
much information from the resource as possible,
such as part of speech and syntactic frame. It is
assigned an underspecified semantic classification
based on correspondences between our language
ontology and WordNet synsets.

2.2 Grammar

The grammar is context-free, augmented with fea-
ture structures and feature unification, motivated
from X-bar theory, drawing on principles from
GPSG (e.g., head and foot features) and HPSG. A
detailed description of an early non-lexicalized
version of the formalism is in (Allen, 1995). Like
HPSG, our grammar is strongly lexicalized, with
the lexical features defining arguments and com-
plement structures for head words. Unlike HPSG,
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CONSUME Take an aspirin

MOVE Take it to the store
ACQUIRE Take a picture

SELECT I’ll take that one
COMPATIBLE | The projector takes 100 volts
WITH

TAKE-TIME 1t took three hours

Figure 1: Some generic senses of take in lexicon

however, the features are not typed and rather than
multiple inheritance, the parser supports a set of
orthogonal single inheritance hierarchies to capture
different syntactic and semantic properties. Struc-
tural variants such as passives, dative shifts, ger-
unds, and so on are captured in the context-free
rule base. The grammar has broad coverage of
spoken English, supporting a wide range of con-
versational constructs. It also directly encodes
conventional conversational acts, including stan-
dard surface speech acts such as inform, request
and question, as well as acknowledgments, accep-
tances, rejections, apologies, greetings, corrections,
and other speech acts common in conversation.

To support having both a broad domain-general
grammar and the ability to produce deep domain-
specific semantic representations, the semantic
knowledge is captured in three distinct layers (Fig-
ure 2), which are compiled together before parsing
to create efficient domain-specific interpretation.
The first level is primarily encoded in the gram-
mar, and defines an interpretation of the utterance
in terms of generic grammatical relations. The sec-
ond is encoded in the lexicon and defines an inter-
pretation in terms of a generic language-based on-
tology and generic roles. The third is encoded by a
set of ontology-mapping rules that are defined for
each domain, and defines an interpretation in terms
of the target application ontology. While these lev-
els are defined separately, the parser can produce
all three levels simultaneously, and exploit do-
main-specific semantic restrictions to simultane-
ously improve semantic accuracy and parsing effi-
ciency. In this paper we focus on the middle level,
the generic LF.



He loaded the truck with oranges

i ' !

Load SUBJ DOBJ
(:* LF=FILL-CONTAINER Load) :Agent :Goal
KR:LOAD ACTOR VEHICLE

L grammar produces grammatical relations
COMP

Lexical knowledge produces meaning in a
generic ontology

:Theme

Ontology Transforms produce meaning in the
domain-specific ontology

CARGO

Figure 2: The Levels of Representation computed by the Parser

The rules in the grammar are weighted, and
weights are combined, similar to how probabilities
are computed in a PCFG. The weights, however,
are not strictly probabilities (e.g., it is possible to
have weights greater than 1); rather, they encode
structural preferences. The parser operates in a
best-first manner and as long as weights never ex-
ceed 1.0, is guaranteed to find the highest weighted
parse first. If weights are allowed to exceed 1.0,
then the parser becomes more “depth-first” and it
is possible to “garden-path” and find globally sub-
optimal solutions first, although eventually all in-
terpretations can still be found.

The grammar used in all our applications uses
these hand-tuned rule weights, which have proven
to work relatively well across domains. We do not
use a statistical parser based on a trained corpus
because in most dialogue-system projects, suffi-
cient amounts of training data are not available and
would be too time consuming to collect. In the one
domain in which we have a reasonable amount of
training data (about 9300 utterances), we experi-
mented with a PCFG using trained probabilities
with the Collins algorithm, but were not able to
improve on the hand-tuned preferences in overall
performance (Elsner et al., 2005).

Figure 3 summarizes some of the most impor-
tant preferences encoded in our rule weights. Be-
cause we are dealing with speech, which is often
ungrammatical and fragmented, the grammar in-
cludes “robust” rules (e.g., allowing dropped de-
terminers) that would not be found in a grammar of
written English.

3 The Logical Form Language

The logical form language captures a domain-
independent semantic representation of the utter-
ance. As shown later in this paper, it can be seen as
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a variant of MRS (Copestake et al., 2006) but is
expressed in a frame-like notation rather than
predicate calculus. In addition, it has a relatively
simple method of computing possible quantifier
scoping, drawing from the approaches by (Hobbs
& Shieber, 1987) and (Alshawi, 1990).

A logical form is set of terms that can be viewed
as a rooted graph with each term being a node
identified by a unique ID (the variable). There are
three types of terms. The first corresponds to gen-
eralized quantifiers, and is on the form (<quant>
<id> <type> <modifiers>*). As a simple example,
the NP Every dog would be captured by the term
(Every d1 DOG). The second type of term is the
propositional term, which is represented in a neo-
Davidsonian representation (e.g., Parsons, 1990)
using reified events and properties. It has the form
(F <id> <type> <arguments>*). The propositional
terms produced from Every dog hates a cat would
be (F h1 HATE :Experiencer d1 :Theme cl). The
third type of term is the speech act, which has the
same form as propositional terms except for the
initial indicator SA identifying it as a performed
speech act. The speech act for Every dog hates a
cat would be (SA sal INFORM :content hl). Put-
ting this all together, we get the following (con-
densed) LF representation from the parser for
Every large dog hates a cat (shown in graphical

Prefer

¢ Interpretations without gaps to those with gaps

* Subcategorized interpretations over adjuncts

* Right attachment of PPs and adverbials

* Fully specified constituents over those with
dropped or “implicit” arguments

* Adjectival modification over noun-noun modifi-
cation

¢ Standard rules over “robust” rules

Figure 3: Some Key Preferences used in Parsing




(SA x1ITELL)
:content

(F x2 HATES)

:experiencer

theme

A
(Every x({ DOG) (A x5 CAT)
:mods of

(F x4 LARGE)

Figure 4: The LF in graphical form

form in Figure 4).

(SA x1 TELL :content x2)

(F x2 HATE :experience x3 :theme x5)
(Every x3 DOG :mods (x4))

(F x4 LARGE :0f x3)

(A x5 CAT)

4 Comparison of LF and MRS

Minimal Recursion Semantics (MRS) (Copestake
et al. 2006) is a semantic formalism which has
been widely adopted in the last several years. This
has motivated some research on how this formal-
ism compares to some traditional semantic for-
malisms. For example, Fuchss et al. (2004) for-
mally show that the translation from MRS to
Dominance Constraints is feasible. We have also
found that MRS is very similar to LF in its de-
scriptive power. In fact, we can convert every LF
to an equivalent MRS structure with a simple algo-
rithm.

First, consider the sentence Every dog hates a
cat. Figure 5 shows the LF and MRS representa-
tions for this sentence.

hi:FE B2 h3
(54 cconfent vi) very(x, ki, hi)

_ he: Dogix)
(F vl Hate ‘Experiencer x h3: Afy, ko, h7)
Theme y) hé: Caify)
(Every x Dog) ha: hatefx, p)
{4 p Cat)

{hl) =g h9 h2 =g hd, h6 =g h&}
Figure 5: The LF (left) and MRS (right) representations
for the sentence “Every dog hates a cat.”

The first step toward converting LF to MRS is to
express LF terms as n-ary relationships. For exam-
ple we express the LF term (F vI Hate
:Experiencer x :Theme y) as Hate(x, y). For quanti-
fier terms, we break the LF term into two relations:
one for the quantifier itself and one for the restric-
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tion. For example (Every x Dog) is converted to
Every(x) and Dog(x).

There is a small change in the conversion proce-
dure when the sentence contains some modifiers.
Consider the modifier /arge in the sentence Every
large dog hates a cat. In the LF, we bring the
modifier in the term which defines the semantic
head, using a :MODS slot. In the MRS, however,
modifiers are separate EPs labeled with same han-
dle as the head’s. To cover this, for each LF term T
which has a (:MODS vy) slot, and the LF term T1
which defines the variable v;, we assign the same
handle to both T and T1. For example for the terms
(F x Dog :MODS v2) and (F v2 Large :OF x), we
assign the same handle to both Dog(x) and
Large(x). Similar approach applies when the modi-
fier itself is a scopal term, such as in the sentence
Every cat in a room sleeps. Figure 7 shows LF and
MRS representations for this sentence. Figure 8,
summarizes all these steps as an algorithm which
takes a LF representation as the input and gener-
ates its equivalent MRS.

There is a small change in the conversion proce-
dure when the sentence contains some modifiers.
Consider the modifier /arge in the sentence Every
large dog hates a cat. In the LF, we bring the
modifier in the term which defines the semantic
head, using a :MODS slot. In the MRS, however,
modifiers are separate EPs labeled with same han-
dle as the head’s. To cover this, for each LF term T
which has a (:MODS vy) slot, and the LF term T1
which defines the variable v, we assign the same
handle to both T and T1. For example for the terms
(F x Dog :MODS v2) and (F v2 Large :OF x), we
assign the same handle to both Dog(x) and
Large(x). Similar approach applies when the modi-
fier itself is a scopal term, such as in the sentence
Every cat in a room sleeps. Figure 7 shows LF and
MRS representations for this sentence. Figure 8,
summarizes all these steps as an algorithm which
takes a LF representation as the input and gener-
ates its equivalent MRS.

The next step is to bring handles into the repre-

.Eu?ﬂp I: ,E.'?gp 2

Hatefxp) hi: Hafafx, ») hi -

Ewryix), Dogfx)  B2: Beerp(x, hG h7)  hé:
hi:Dogfx)

Afp), Catlp) he:Afy, hE, h9) BE -
ha:Caffy)

Figure 6: The steps of converting the LF for
“Every cat hates a cat” to its MRS representation



sentation. First, we assign a different handle to
each term. Then, for each quantifier term such as
Every(x), we add two handles as the arguments of
the relation: one for the restriction and one for the
body as in h2: Every(x, h6, h7). Finally, we add the
handle constraints to the MRS. We have two types
of handle constraint. The first type comes from the
restriction of each quantifier. We add a qeq rela-
tionship between the restriction handle argument of
the quantifier term and the handle of the actual re-
striction term. The second type of constraint is the
geq relationship which defines the top handle of
the MRS. The speech act term in every LF refers to
a formula term as content (:content slot), which is
actually the heart of the LF. We build a qeq rela-
tionship between hO (the top handle) and the han-
dle of this formula term. Figure 6 shows the effect
of applying these steps to the above example.

(A confent wi) AI : Begry(x hd, h3)

{F vl Sleep :Theme x) b Caffx)

(Bvery x Caf MODSv2)  hd: Infxp)

fF v I OF x (WAL p) ha: Afy, ho, A7)

A p Foom) h&: Roomfp)
he: Sleepx)

Jhi) =g h9 h2 =g hd, 16 =g h&}

Figure 7: The LF and MRS representations for the sen-
tence “Every cat in a room sleeps.”

Another interesting issue about these two formal-
isms is that the effect of applying the simple scop-
ing algorithms referred in section 3 to generate all
possible interpretations of a LF is the same as ap-
plying MRS axioms and handle constraints to gen-
erate all scope-resolved MRSs. For instance, the
example in (Copestake et al. 20006), Every nephew
of some famous politician saw a pony has the same

5 interpretations using either approach.

As the last point here, we need to mention that
the algorithm in Figure 8 does not consider fixed-
scopal terms such as scopal adverbials or negation.
However, we believe that the framework itself is
able to support these types of scopal term and with
a small modification, the scoping algorithm will
work well in assigning different possible interpre-
tations. We leave the full discussion about these
details as well as the detailed proof of the other
claims we made here to another paper.

5 Generic Discourse Interpretation

With a generic semantic representation, we can
then define generic discourse processing capabili-
ties that can be used in any application. All of
these methods have a corresponding capability at
the domain-specific level for an application, but we
will not discuss this further here. We also do not
discuss the support for language generation which
uses the same discourse context.

There are three core discourse interpretation ca-
pabilities that the system provides: reference reso-
lution, ellipsis processing, and speech act interpre-
tation. All our different dialog systems use the
same discourse processing, whether the task in-
volves collaborative problem solving, learning
from instruction or automated tutoring.

5.1 Reference Resolution

Our domain-independent representation supports
reference resolution in two ways. First, the quanti-
fiers and dependency structure extracted from the
sentence allow for implementing reference resolu-
tion algorithms based on extracted syntactic fea-
tures. The system uses different strategies for re-

Ingmt: LF, list of all lngical form terns,
Cmtymt: MRS structure
1. Irdtialize MBS to <h0, EP={}, C={}=

2. Find the SPEECHACT tern T inthe form (S A .. ccontent V3 and the forraula term T1 which
defines variable ¥;. Define a nevw handle bhjand assignitto T1; thenadd hy=gh; to C

3. While LF is not empty, rermove a e T from LE

31, If T iz a formula terro in the form

(F Wy Relil. dRell ). Belf 0 :MODS(y) MODS(g .. MODS(ug) )

311,

If T has not alreadybeen assigred a handle by, define arew handle by and assign itto T

312, Add hyRelf...), hyBelsl.. ), .. o EF

315,

For eachvariable 1w , find the forauala term Ty which defines uy and assignbyto Ty

332 If T iz a guantifier term T in the form (O V Reli( 0 Bely ) MODE(0y) . MODS (ug )

321,

Define new handles by, by, lnand ha

322, Add by Qv by, b, hRelyl. ), hRelal ), o to EP and by=ghpto ©
323, For eachvariable wy, find the foroala term Ty which defires uy and assign by, to Ty

Figure 8: The LF-MRS conversion algorithm
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solving each type of referring expression along the
lines described in (Byron, 2002).

Second, domain-independent semantic informa-
tion helps greatly in resolving pronouns and defi-
nite descriptions. The general capability provided
for resolving referring expressions is to search
through the discourse history for the most recent
entity that matches the semantic requirements,
where recency within an utterance may be reor-
dered to reflect focusing heuristics (Tetreault,
2001). For definite descriptions, the semantic in-
formation required is explicit in the lexicon. For
pronouns, the parser can often compute semantic
features from verb argument restrictions. For in-
stance, the pronoun if carries little semantic infor-
mation by itself, but in the utterance Fat it we
know we are looking for an edible object. This
simple technique performs well in practice.

Because of the knowledge in the lexicon for role
nouns such as author, we can also handle simple
bridging reference. Consider the discourse frag-
ment That book came from the library. The author
.... The semantic representation of the author in-
cludes its implicit argument, e.g., (The xI
AUTHOR :of bl). Furthermore, the term bl has
the semantic feature INFO-CONTENT, which in-
cludes objects that “contain” information such as
books, articles, songs, etc.., which allows the pro-
noun to correctly resolve via bridging to the book
in the previous utterance.

5.2 Ellipsis

The parser produces a representation of fragmen-
tary utterances similar to (Schlangen and Las-
carides, 2003). The main difference is that instead
of using a single underspecified unknown rel
predicate to resolve in discourse context, we use a
speech act term as the underspecified relation, dif-
ferentiating between a number of common rela-
tions such as acknowledgments, politeness expres-
sions, noun phrases and underspecified predicates
(PP, ADJP and VP fragments). The representations
of the underspecified predicates also include an
IMPRO in place of the unspecified argument.

We currently handle only a few key cases of el-
lipsis. The first is question/answer pairs. By re-
taining the logical form of the question in the dis-
course history, it is relatively easy to reconstruct
the full content of short answers (e.g., in Who ate
the pizza? John? the answer maps to the represen-
tation that John ate the pizza). In addition, we
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handle common follow-up questions (e.g., Did
John buy a book? How about a magazine?) by per-
forming a semantic closeness matching of the
fragment into the previous utterance and substitut-
ing the most similar terms. The resulting term can
then be used to update the context. This process is
similar to the resolution process in (Schlangen and
Lascarides, 2003), though the syntactic parallelism
constraint is not checked. It could also be easily
extended to cover other fragment types, as the
grammar provides all the necessary information.

5.3 Speech Act Interpretation

The presence of domain-independent semantic
classes allows us to encode a large set of these
common conversational pattern independently of
the application task and domain. These include
rules to handle short answers to questions, ac-
knowledgements and common politeness expres-
sions, as well as common inferences such as inter-
preting [ need to do X as please do X.

Given our focus on problem solving domains,
we are generally interested in identifying more
than just the illocutionary force of an utterance.
For instance, in a domain for planning how to
evacuate people off an island, the utterance Can
we remove the people by helicopter? is not only
ambiguous between being a true Y-N question or a
suggestion of a course of action, but at the problem
solving level it might intended to (1) introduce a
new goal, (2) elaborate or extend the solution to
the current problem, or (3) suggest a modification
to an existing solution (e.g., moving them by
truck). One can only choose between these read-
ings using domain specific reasoning about the
current task. The point here is that the interpreta-
tion rules are still generic across all domains and
expressed using the generic LF, yet the interpreta-
tions produced are evaluated using domain-specific
reasoning. This interleaving of generic interpreta-
tion and domain-specific reasoning is enabled by
our ontology mappings.

Similarly, in tutoring domains students often
phrase their answers as check questions. In an an-
swer to the question Which components are in a
closed path, the student may say Is the bulb in 3 in
a closed path? The domain-independent represen-
tation is used to identify the surface form of this
utterance as a yes-no question. The dialogue man-
ager then formulates two hypotheses: that this is a
hedged answer, or a real question. If a domain-



specific tutoring component confirms the former
hypothesis, the dialogue manager will proceed
with verifying answer correctness and carrying on
remediation as necessary. Otherwise (such as for Is
the bulb in 5 connected to a battery in the same
context), the utterance is a question that can be
answered by querying the domain reasoner.

5.4 A Note on Generic Capabilities

A key point is that these generic discourse inter-
pretation capabilities are enabled because of the
detailed generic semantic interpretation produced
by the parser. If the parser produced a more shal-
low representation, then the discourse interpreta-
tion techniques would be significantly degraded.
On the other hand, if we developed a new repre-
sentation for each domain, then we would have to
rebuild all the discourse processing for the domain.

6 Evaluation

Our evaluation is aimed at assessing two main
features of the grammar and lexicon: portability
and accuracy. We use two main evaluation criteria:
full sentence accuracy, that takes into account both
syntactic and semantic accuracy of the system, and
sense tagging accuracy, to demonstrate that the
word senses included in the system can be distin-
guished with a combination of syntactic and do-
main-independent semantic information.

As a measure of the breadth of grammatical
coverage of our system, we have evaluated our
coverage on the CSLI LKB (Linguistic Knowledge
Building) test suite (Copestake, 1999). The test
suite contains approximately 1350 sentences, of
which about 400 are ungrammatical. We use a full-
sentence accuracy measure to evaluate our cover-
age, since this is the most meaningful measure in
terms of what we require as parser output in our
applications. For a sentence representation to be
counted as correct by this measure, both the syn-
tactic structure and the semantic representation
must be correct, which includes the correct as-
signment of word senses, dependency relations
among terms, and speech act type. Our current
coverage for the diverse grammatical phenomena
in the corpus is 64% full-sentence accuracy.

We also report the number of spanning parses
found, because in our system there are cases in
which the syntactic parse is correct, but an incor-
rect word sense may have been assigned, since we
disambiguate senses using not only syntactic
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structure but also semantic features as selectional
restrictions on arguments. For example, in The
manager interviewed Browne after working, the
parser assigns working the sense LF::FUNCTION,
used with non-agentive subjects, instead of the cor-
rect sense for agentive subjects, LF::WORKING.
For the grammatical utterances in the test suite, our
parser found spanning parses for 80%.

While the ungrammatical sentences in the set are
an important tool for constraining grammar output,
our grammar is designed to find a reasonable inter-
pretation for natural speech, which often is less
than perfect. For example, we have low preference
grammar rules that allow dropped subjects, miss-
ing determiners, and wrong subject verb agree-
ment. In addition, utterances are often fragmentary,
so even those without spanning parses may be con-
sidered correct. Our grammar allows all major con-
stituents (NP, VP, ADJP, ADVP) as valid utter-
ances. As a result, our system produces spanning
parses for 46% of the “ungrammatical” utterances.
We have not yet done a detailed error analysis.

As a measure of system portability to new do-
mains, we have evaluated our system coverage on
the ATIS (Airline Travel Information System)
speech corpus, which we have never used before.
For this evaluation, the proper names (cities, air-
ports, airline companies) in the ATIS corpus were
added to our lexicon, but no other development
work was performed. We parsed 116 randomly
selected test sentences and hand-checked the re-
sults using our full-sentence accuracy measure.
Our baseline coverage of these utterances is 53%
full-sentence semantic accuracy. Of the 55 utter-
ances that were not completely correct, we found
spanning parses for 36% (20). Reasons that span-
ning parses were marked as wrong include incor-
rect word senses (e.g., for stop in I would like it to
have a stop in Phoenix) or PP-attachment. Reasons
that no spanning parse was found include missing
senses for existing words (e.g., serve as in Does
that flight serve dinner).

7 Discussion

We presented a deep parser and semantic inter-
preter for use in dialogue systems. An important
question to ask is how it compares to other existing
formalisms. At present there is no easy way to
make such comparison. One possible criterion is
grammatical coverage. Looking at the grammar
coverage/accuracy on the TSNLP suite that was



used to evaluate the LINGO ERG grammar, our
grammar demonstrates 80% coverage (number of
spanning parses). The reported figure for LINGO
ERG coverage of CSLI is 77% (Oepen, 1999), but
this number has undoubtedly improved in the 9-
year development period. For example, the current
reported coverage figures on spoken dialogue cor-
pora are close to 90% (Oepen et al., 2002).

However, the grammar coverage alone is not a
satisfactory measure for a deep NLP system for use
in practical applications, because the logical forms
and therefore the capabilities of deep NLP systems
differ significantly. A major distinguishing feature
of our system is that the logical form it outputs
uses semantically motivated word senses. LINGO
ERG, in contrast, contains only syntactically moti-
vated word senses. For example, the words end and
finish are not related in any obvious way. This re-
flects a difference in underlying philosophy.
LINGO ERG aims for linguistic precision, and as
can be seen from our experiments, requiring the
parser to select correct domain-independent word
senses lowers accuracy.

Our system, however, is built with the goal of
easy portability within the context of dialogue
systems. The availability of word senses simplifies
the design of domain-independent interpretation
components, such as reference resolution and
speech act interpretation components that use do-
main-independent syntactic and semantic informa-
tion to encode conventional interpretation rules.

If the LINGO ERG grammar were to be put in a
dialogue system that requires domain interpretation
and reasoning, an additional lexical interpretation
module would have to be developed to perform
word sense disambiguation as well as interpreta-
tion, something that has not yet been done.
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Abstract

This paper proposes a design strategy
for deep language processing grammars
to appropriately handle language vari-
ants. It allows a grammar to be re-
stricted as to what language variant it is
tuned to, but also to detect the variant
a given input pertains to. This is eval-
uated and compared to results obtained
with an alternative strategy by which the
relevant variant is detected with current
language identification methods in a pre-
processing step.

1 Introduction

This paper addresses the issue of handling dif-
ferent variants of a given language by a deep
language processing grammar for that language.

In the benefit of generalization and grammar
writing economy, it is desirable that a grammar
can handle language variants — that share most
grammatical structures and lexicon — in order to
avoid endless multiplication of individual gram-
mars, motivated by inessential differences.

From the viewpoint of analysis, however, in-
creased variant coverage typically opens the way
to increased spurious overgeneration. Conse-
quently, the ability for the grammar to be tuned
to the relevant dialect of the input is impor-
tant to control overgeneration arising from its
flexibility.

Control on what is generated is also desirable.
In general one wants to be able to parse as much
variants as possible, but at the same time be se-
lective in generation, by consistently generating
only in a given selected variant.
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Closely related to the setting issue (addressed
in the next Section 2) is the tuning issue: if a
system can be restricted to a particular variety,
what is the best way to detect the variety of the
input? We discuss two approaches to this issue.

One of them consists in using pre-processing
components that can detect the language variety
at stake. This pre-tuning approach explores the
hypothesis that methods developed for language
identification can be used also to detect language
variants (Section 5).

The other approach is to have the computa-
tional grammar prepared for self-tuning to the
language variant of the input in the course of
processing that input (Section 4).

We evaluate the two approaches and compare
them (last Section 6).

2 Variant-sensitive Grammar

In this Section, we discuss the design options for
a deep linguistic processing grammar allowing
for its appropriate tuning to different language
variants. For the sake of concreteness of the dis-
cussion, we assume the HPSG framework (Pol-
lard and Sag, 1994) and a grammar that handles
two close variants of the same language, Euro-
pean and Brazilian Portuguese. These assump-
tions are merely instrumental, and the results
obtained can be easily extended to other lan-
guages and variants, and to other grammatical
frameworks for deep linguistic processing.

A stretch of text from a language L can dis-
play grammatical features common to all vari-
ants of L, or contain a construction that per-
tains to some or only one of its variants. Hence,
undesirable overgeneration due to the grammar
readiness to cope with all language variants can
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Figure 1: Type hierarchy under variant.

be put in check by restricting the grammar
to produce variant-“consistent” analyses. More
precisely, if the input string contains an element
that can only be found in variety v; and that in-
put string yields ambiguity in a different stretch
but only in varieties v other than vy, this ambi-
guity will not give rise to multiple analyses if the
grammar can be designed so that it can be con-
strained to accept strings with marked elements
of at most one variety, v;.

The approach we propose seeks to implement
this mode of operation in analysis, with the im-
portant effect of permitting also to control the
variant under which generation should be per-
formed. It relies on the use of a feature VARIANT
to model variation. This feature is appropriate
for all signs and declared to be of type variant.
Given the working language variants assumed
here, its values are presented in Figure 1.

This attribute is constrained to take the ap-
propriate value in lexical items and construc-
tions specific to one of the two varieties. For
example, a hypothetical lexical entry for the lex-
ical item autocarro (bus, exclusive to European
Portuguese) would include the constraint that
the attribute VARIANT has the value ep-variant
and the corresponding Brazilian Portuguese en-
try for omibus would constrain the same feature
to bear the value bp-variant. The only two types
that are used to mark signs are ep-variant and
bp-variant. The remaining types presented in
Figure 1 are used to constrain grammar behav-
ior, as explained below.

Lexical items are not the only elements that
can have marked values in the VARIANT fea-
ture. Lexical and syntax rules can have them,
too. Such constraints model constructions that
markedly pertain to one of the dialects.

Feature VARIANT is structure-shared among
all signs comprised in a full parse tree. This
is achieved by having all lexical or syntactic
rules unifying their VARIANT feature with the
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VARIANT feature of their daughters.

If two signs (e.g. from lexical items and syn-
tax rules) in the same parse tree have different
values for feature VARIANT (one has ep-variant
and the other bp-variant), they will unify to por-
tuguese, as can be seen from Figure 1. This type
means that lexical items or constructions spe-
cific to two different varieties are used together.
Furthermore, since this feature is shared among
all signs, it will be visible everywhere, for in-
stance in the root node.

It is possible to constrain feature VARIANT in
the root condition of the grammar so that the
grammar works in a variant-”consistent” fash-
ion: this feature just has to be constrained to
be of type single-variant (in root nodes) and
the grammar will accept either European Por-
tuguese or Brazilian Portuguese. Furthermore,
in the non natural condition where the input
string bears marked properties of both vari-
ants, that string will receive no analysis: feature
VARIANT will have the value portuguese in this
case, and there is no unifier for portuguese and
single-variant.

If this feature is constrained to be of type
european-portuguese in the root node, the gram-
mar will not accept any sentence with fea-
tures of Brazilian Portuguese, since they will be
marked to have a VARIANT of type bp-variant,
which is incompatible with european-portuguese.
It is also possible to have the grammar re-
ject European Portuguese (using type brazilian-
portuguese) or to ignore variation completely by
not constraining this feature in the start symbol.

With this grammar design it is thus possi-
ble to control beforehand the mode of operation
for the grammar, either for it to handle only
one variant or several. But it is also possible
to use the grammar to detect to which variety
input happens to belong. This self-tuning of
the grammar to the relevant variant is done by
parsing that input and placing no constraint on
feature VARIANT of root nodes, and then read-
ing the value of attribute VARIANT from the re-
sulting feature structure: values ep-variant and
bp-variant result from parsing text with proper-
ties specific to European Portuguese or Brazilian
Portuguese respectively; value variant indicates
that no marked elements were detected and the
text can be from both variants. Also here where
the language variant of the input is detected by
the grammar, the desired variant-”consistent”



behavior of the grammar is enforced.

If the input can be known to be specifically
European or Brazilian Portuguese before it is
parsed, the constraints on feature VARIANT can
be set accordingly to improve efficiency: When
parsing text known to be European Portuguese,
there is no need to explore analyses that are
markedly Brazilian Portuguese, for instance.

It is thus important to discuss what meth-
ods for language variant detection can be put
in place that support a possible pre-processing
step aimed at pre-tuning the grammar for the
relevant variant of the input. It is also impor-
tant to gain insight on the quality of the per-
formance of this method and on how the perfor-
mance of this pre-tuning setup compares with
the self-tuning approach. This is addressed in
the next Sections.

3 Experimental setup

Before reporting on the results obtained with the
experiments on the performance of the two ap-
proaches (self- and pre-tuning), it is important
to introduce the experimental conditions under
which such exercises were conducted.

3.1 Data

To experiment with any of these two approaches
to variant-tuning, two corpora of newspaper text
were used, CETEMPublico (204M tokens) and
CETENFolha (32M tokens). The first contains
text from the European newspaper O Publico,
and the latter from the South American Folha
de Sdo Paulo. These corpora are only minimally
annotated (paragraph and sentence boundaries,
inter alia), but are very large.

Some preprocessing was carried out: XML-
like tags, like the <s> and </s> tags marking
sentence boundaries, were removed and each in-
dividual sentence was put in a single line.

Some heuristics were also employed to remove
loose lines (parts of lists, etc.) so that only lines
endingin ., ! and 7, and containing more than 5
tokens (whitespace delimited) were considered.
Other character sequences that were judged ir-
relevant and potential misguiders for the pur-
pose at hand were normalized: URLs were re-
placed by the sequence URL, e-mail addresses
by MAIL, hours and dates by HORA and DATA,
etc. Names at the beginning of lines indicating
speaker (in an interview, for instance) were re-
moved, since they are frequent and the grammar
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that will be used is not intended to parse name
plus sentence strings.

The remaining lines were ordered by length in
terms of words and the smallest 200K lines from
each of the two corpora were selected. Small
lines were preferred as they are more likely to
receive an analysis by the grammar.

Given the methods we will be employing for
pre-tuning reportedly perform well even with
small training sets (Section 5), only a modest
portion of text from these corpora was needed.

In the benefit of comparability of the two
approaches for grammar tuning, it is impor-
tant that all the lines in the working data are
parsable by the grammar. Otherwise, even if
in the pre-tuning approach the pre-processor
gets the classification right for non parsable sen-
tences, this will be of no use since the grammar
will not produce any result out of that. 90K lines
of text were thus randomly selected from each
corpus and checked as to whether they could be
parsed by the grammar. 25K of parsable lines of
the American corpus and 21K of parsable lines
of the European corpus were obtained (46K lines
out of 180K, representing 26% rate of parsabil-
ity for the grammar used — more details on this
grammar in the next Section).

It is worth noting that the use of two corpora,
one from an European newspaper and the other
from an American newspaper, without further
annotation, does not allow their appropriate use
in the present set of experiments. The reason
is that if a sentence is found in the European
corpus, one can have almost absolute certainty
that it is possible in European Portuguese, but
one does not know if it is Brazilian Portuguese,
too. The same is true of any sentences in the
American corpus — it can also be a sentence
of European Portuguese in case it only contains
words and structures common to both variants.

In order to prepare the data, a native speaker
of European Portuguese was asked to manually
decide from sentences found in the American
corpus whether they are markedly Brazilian Por-
tuguese. Conversely, a Brazilian informant de-
tected markedly European Portuguese sentences
from the European corpus.

From these parsed lines we drew around 1800
random lines of text from each corpus, and had
them annotated. The lines coming from the
American corpus were annotated for whether
they are markedly Brazilian Portuguese, and



vice-versa for the other corpus. Thus a three-
way classification is obtained: any sentence
was classified as being markedly Brazilian Por-
tuguese, European Portuguese or common to
both variants.

The large majority of the sentences were
judged to be possible in both European and
Brazilian Portuguese. 16% of the sentences in
the European corpus were considered not be-
longing to Brazilian Portuguese, and 21% of the
sentences in the American corpus were judged as
not being European Portuguese.! Overall, 81%
of the text was common to both varieties.

10KB of text from each one of the three classes
were obtained. 140 lines, approximately 5KB,
were reserved for training and another 140 for
test. In total, the 30 K corpus included 116, 170,
493 and 41 sentence tokens for, respectively, 8,
7, 6 and 5 word length sentence types.

3.2 Variation

These training corpora were submitted to man-
ual inspection in order to identify and quantify
the sources of variant specificity. This is impor-
tant to help interpret the experimental results
and to gain insight on the current coverage of
the grammar used in the experiment.

This analysis was performed over the 140 lines
selected as markedly Brazilian Portuguese, and
assumed that the sources of variant specificity
should have broadly the same distribution in
the other 140K lines markedly European Por-
tuguese.

1. Mere orthographic differences (24%) e.g.
agao vs. acgdo (action)

2. Phonetic variants reflected in orthography
(9.3%) e.g. irdnico vs. irdénico (ironic)

! A hypothetical explanation for this asymmetry (16%
vs. 21%) is that one of the most pervasive differences
between European and Brazilian Portuguese, clitic place-
ment, is attenuated in writing: Brazilian text often dis-
plays word order between clitic and verb similar to Euro-
pean Portuguese, and different from oral Brazilian Por-
tuguese. Therefore, European text displaying European
clitic order tends not be seen as markedly European. In
fact, we looked at the European sentences with clitic
placement characteristic of European Portuguese that
were judged possible in Brazilian Portuguese. If they
were included in the markedly European sentences, 23%
of the European text would be unacceptable Brazilian
Portuguese, a number closer to the 21% sentences judged
to be exclusively Brazilian Portuguese in the American
corpus.
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3. Lexical differences (26.9% of differences)

(a) Different form, same meaning (22.5%)
e.g. time vs. equipa (team)

(b) Same form, different meaning (4.4%)
e.g. policial (policeman/criminal novel

4. Syntactic differences (39.7%)

Possessives w/out articles (12.2%)

) In subcategorization frames (9.8%)

) Clitic placement (6.4%)

) Singular bare NPs (5.4%)

) In subcat and word sense (1.9%)

) Universal todo + article (0.9%)

) Contractions of Prep+article (0.9%)
) Questions w/out SV inversion (0.9%)
) Postverbal negation (0.5%)

) other (0.5%)

About 1/3 of the differences found would dis-
appear if a unified orthography was adopted.
Differences that are reflected in spelling can be
modeled via multiple lexical entries, with con-
straints on feature VARIANT reflecting the vari-
ety in which the item with that spelling is used.

Interestingly, 40% of the differences are syn-
tactic in nature. These cases are expected to
be more difficult to detect with stochastic ap-
proaches than with a grammar.

4 Self-tuning

4.1 Grammar and baseline

The experiments on the self-tuning approach
were carried out with a computational grammar
for Portuguese developed with the LKB plat-
form (Copestake, 2002) that uses MRS for se-
mantic representation (Copestake et al., 2001)
(Branco and Costa, 2005). At the time of the
experiments reported here, this grammar was
of modest size. In terms of linguistic phenom-
ena, it covered basic declarative sentential struc-
tures and basic phrase structure of all cate-
gories, with a fully detailed account of the struc-
ture of NPs. It contained 42 syntax rules, 37
lexical rules (mostly inflectional) and a total
of 2988 types, with 417 types for lexical en-
tries. There were 2630 hand-built lexical entries,
mostly nouns, with 1000 entries. It was coupled
with a POS tagger for Portuguese, with 97% ac-
curacy (Branco and Silva, 2004).



In terms of the sources of variant specificity
identified above, this grammar was specifically
designed to handle the co-occurrence of prenom-
inal possessives and determiners and most of the
syntactic constructions related to clitic-verb or-
der. As revealed by the study of the training
corpus, these constructions are responsible for
almost 20% of marked sentences.

The lexicon contained lexical items markedly
European Portuguese and markedly Brazilian
Portuguese. These were taken from the Por-
tuguese Wiktionary, where this information is
available. Leaving aside the very infrequent
items, around 740 marked lexical items were
coded. Items that are variant specific found in
the training corpora (80 more) were also entered
in the lexicon.

These items, markedly belonging to one vari-
ant, were declined into their inflected forms and
the resulting set Lex ;s was used in the following
baseline for dialect tuning: for a sentence s and
Ny, resp. Ny, the number of tokens of items
in Lex,s markedly European, resp. Brazilian
Portuguese, occurring in s, s is tagged as Euro-
pean Portuguese if N, > Ny,, or vice-versa, or
else, "common” Portuguese if N, = Ny, = 0.

Known Predicted class
class EP BP Common Recall
EP 45 0 95 0.32
BP 3 45 92 0.32
Common 4 4 132 0.94
Precision 0.87 0.98 0.41

Table 1: Baseline: Confusion matrix.

For this baseline, the figure of 0.53 of overall
accuracy was obtained, detailed in Table 1.2

4.2 Results with self-tuning

The results obtained for the self-tuning mode
of operation are presented in Table 2.2 When
the grammar produced multiple analyses for a

2Naturally, extending the operation of this baseline
method beyond the terms of comparability with gram-
mars that handle each sentence at a time, namely by
increasingly extending the number of sentences in the
stretch of text being classified, will virtually lead it to
reach optimal accuracy.

3These figures concern the test corpus, with the three
conditions represented by 1/3 of the sentences, which are
all parsable. Hence, actual recall over a naturally occur-
ring text is expected to be lower. Using the estimate that
only 26% of input receives a parse, that figure for recall
would lie somewhere around 0.15 (= 0.57 x 0.26).
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given sentence, that sentence was classified as
markedly European, resp. Brazilian, Portuguese
if all the parses produced VARIANT with type ep-
variant, resp. bp-variant. In all other cases, the
sentence would be classified as common to both
variants.

Known Predicted class
class EP BP Common Recall
EP 53 1 86 0.38
BP 6 61 73 0.44
Common 14 1 125 0.89
Precision 0.73 0.97 0.44

Table 2: Self-tuning: Confusion matrix.

Every sentence in the test data was classified,
and the figure of 0.57 was obtained for over-
all accuracy. The analysis of errors shows that
the sentence belonging to Brazilian Portuguese
or to "common” Portuguese wrongly classified
as European Portuguese contain clitics follow-
ing the European Portuguese syntax, and some
misspellings conforming to the European Por-
tuguese orthography.

5 Pre-tuning

5.1 Language Detection Methods

Methods have been developed to detect the lan-
guage a given text is written in. They have
also been used to discriminate varieties of the
same language, although less often. (Lins and
Gongalves, 2004) look up words in dictionaries
to discriminate among languages, and (Oakes,
2003) runs stochastic tests on token frequencies,
like the chi-square test, in order to differentiate
between European and American English.

Many methods are based on frequency of byte
n-grams in text because they can simultaneously
detect language and character encoding (Li and
Momoi, 2001), and can reliably classify short
portions of text. They have been applied in web
browsers (to identify character encodings) and
information retrieval systems.

We are going to focus on methods based on
character n-grams. Because all information used
for classification is taken from characters, and
they can be found in text in much larger quanti-
ties than words or phrases, problems of scarcity
of data are attenuated. Besides, training data
can also be easily found in large amounts be-
cause corpora do not need to be annotated (it is



only necessary to know the language they belong
to). More importantly, methods based on char-
acter n-grams can reliably classify small portions
of text. The literature on automatic language
identification mentions training corpora as small
as 2K producing classifiers that perform with al-
most perfect accuracy for test strings as little as
500 Bytes (Dunning, 1994) and considering sev-
eral languages. With more training data (20K-
50K of text), similar quality can be achieved for
smaller test strings (Prager, 1999).

Many n-gram based methods have been ex-
plored besides the one we opted for.* Many
can achieve perfect or nearly perfect classifica-
tion with small training corpora on small texts.
In previous work (Branco and Costa, 2007),
we did a comparative study on two classifiers
that use approaches very well understood in
language processing and information retrieval,
namely Vector Space and Bayesian models. We
retain here the latter as this one scored compar-
atively better for the current purposes.

In order to know which language L; € L gen-
erated string s, Bayesian methods can be used
to calculate the probabilities P(s|L;) of string s
appearing in language L; for all L; € L, the con-
sidered language set, and decide for the language
with the highest score (Dunning, 1994). That is,
in order to compute P(L;|s), we only compute
P(s|L;). The Bayes rule allows us to cast the
P(s|Li)P(Ls)

P(s)
dard practice, the denominator is dropped since
we are only interested here in getting the highest
probability, not its exact value. The prior P(L;)
is also ignored, corresponding to the simplify-
ing assumption that all languages are equally
probable for the operation of the classifier. The
way P(s|L;) is calculated is also the standard
way to do it, namely assuming independence
and just multiplying the probabilities of charac-
ter ¢; given the preceding n-1 characters (using
n-grams), for all characters in the input (esti-
mated from n-gram counts in the training set).

For our experiments, we implemented the al-
gorithm described in (Dunning, 1994). Other
common strategies were also used, like prepend-
ing n— 1 special characters to the input string to
harmonize calculations, summing logs of proba-
bilities instead of multiplying them to avoid un-

problem in terms of , but as is stan-

“See (Sibun and Reynar, 1996) and (Hughes et al.,
2006) for surveys.
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derflow errors, and using Laplace smoothing to
reserve probability mass to events not seen in
training.

5.2 Calibrating the implementation

5.2.1 Detection of languages

First of all, we want to check that the lan-
guage identification methods we are using, and
have implemented, are in fact reliable to identify
different languages. Hence, we run the classifier
on three languages showing strikingly different
characters and character sequences. This is a
deliberately easy test to get insight into the ap-
propriate setting of the two parameters at stake
here, size of of the n-gram in the training phase,
and size of the input in the running phase.

For this test, we used the Universal Declara-
tion of Human Rights texts.The languages used
were Finnish, Portuguese and Welsh.?

Several tests were conducted, splitting the
test data in chunks 1, 5, 10 and 20 lines long.
The classifier obtained perfect accuracy on all
test conditions (all chunk sizes), for all values of
n between 1 and 7 (inclusively). For n = 8 and
n = 9 there were errors only when classifying 1
line long items.

The average line length for the test corpora
was 138 characters for Finnish, 141 for Por-
tuguese and 121 for Welsh (133 overall). In the
corpora we will be using in the following experi-
ments, average line length is much lower (around
40 characters per line). To become closer to
our experimental conditions, we also evaluated
this classifiers with the same test corpora, but
truncated each line beyond the first 50 charac-
ters, yielding test corpora with an average line
length around 38 characters (since some were
smaller than that). The results are similar. The
Bayesian classifier performed with less than per-
fect accuracy also with n = 7 when classifying 1
line at a time.

Our classifier was thus performing well at dis-
criminating languages with short values of n,
and can classify short bits of text, even with
incomplete words.

®The Preamble and Articles 1-19 were used for train-
ing (8.1K of Finnish, 6.9K of Portuguese, and 6.1K of
Welsh), and Articles 20-30 for testing (4.6K of Finnish,
4.7K of Portuguese, and 4.0K of Welsh).



5.2.2 Detection of originating corpus

In order to study its suitability to discrimi-
nate also the two Portuguese variants, we ex-
perimented our implementation of the Bayesian
classifiers on 200K lines of text from each of the
two corpora. We randomly chose 20K lines for
testing and the remaining 180K for training. A
classification is considered correct if the classi-
fier can guess the newspaper the text was taken
from.

The average line length of the test sentences is
43 characters. Several input lengths were tried
out by dividing the test data into various sets
with varying size. Table 3 summarizes the re-
sults obtained.

Length of Test Item

1 line 5 lines 10 lines 20 lines
n=2 084 0.99 1 1
n=3 0.96 0.99 1 1
n=4 0.96 1 1 1
n=>5 094 1 1 1
n=6 0.92 0.99 1 1
n=7T7 0.89 0.98 0.99 1

Table 3: Originating corpora: Accuracy

The accuracy of the classifier is surprisingly
high given that the sentences that cannot be at-
tributed to a single variety are estimated to be
around 81%.

5.2.3 Scaling down the training data

A final check was made with the classifier
to gain further insight on the comparability of
the results obtained under the two tuning ap-
proaches. It was trained on the data prepared
for the actual experiment, made of the 10K
with lines that have the shortest length and are
parsable, but using only the markedly European
and Brazilian Portuguese data (leaving aside the
sentences judged to be common to both). This
way the two setups can be compared, since in
the test of the Subsection just above much more
data was available for training.

Results are in Table 4. As expected, with
a much smaller amount of training data there
is an overall drop in the accuracy, with a no-
ticed bias at classifying items as European Por-
tuguese. The performance of the classifier de-
grades with larger values of n. Nevertheless, the
classifier is still very good with bigrams, with an
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Length of Test Item

1 line 5 lines 10 lines 20 lines
n=2 0.86 0.98 0.96 1
n=3 0.82 0.73 0.64 0.5
n=4 0.68 0.55 0.5 0.5

Table 4: Two-way classification: Accuracy

almost optimal performance, only slightly worse
than the one observed in the previous Subsec-
tion, when it was trained with more data.
From these preliminary tests, we learned that
we could expect a quasi optimal performance of
the classifier we implemented to act as a prepro-
cessor in the pre-tuning approach, when n = 2
and it is run under conditions very close to the
ones it will encounter in the actual experiment
aimed at comparing the two tuning approaches.

5.3 Results with pre-tuning

In the final experiment, the classifier should
discriminate between three classes, deciding
whether the input is either specifically Euro-
pean or Brazilian Portuguese, or else whether
it belongs to both variants. It was trained over
the 15K tokens/420 lines of training data, and
tested over the held out test data of identical
size.

Length of Test Item

1 line 5 lines 10 lines 20 lines
n=2 0.59 0.67 0.76 0.76
n=3 0.55 0.52 0.45 0.33
n=4 048 0.39 0.33 0.33

Table 5: Three-way classification: Accuracy

The results are in Table 5. As expected, the
classifier based in bigrams has the best perfor-
mance for every size of the input, which im-
proves from 0.59 to 0.76 as the size of the input
gets from 1 line to 20 lines.

6 Discussion and conclusions

From the results above for pre-tuning, it is the
value 0.59, obtained for 1 line of input, that can
be put on a par with the value of 0.57 obtained
for self-tuning — both of them to be appreciated
against the baseline of 0.53.

Interestingly, the performance of both ap-
proaches are quite similar, and quite encour-
aging given the limitations under which the
present pilot exercise was executed. But this is



also the reason why they should be considered
with the appropriate grano salis.

Note that there is much room for improve-
ment in both approaches. From the several
sources of variant specificity, the grammar used
was prepared to cope only with grammatical
constructs that are responsible for at most 20%
of them. Also the lexicon, that included a little
more than 800 variant-distinctive items, can be
largely improved.

As to the classifier used for pre-tuning, it im-
plements methods that may achieve optimal ac-
curacy with training data sets of modest size but
that need to be nevertheless larger than the very
scarce 15K tokens used this time. Using backoff
and interpolation will help to improve as well.

Some features potentially distinguish, how-
ever, the pre-tuning based on Bayesian classifier
from the self-tuning by the grammar.

Language detection methods are easy to scale
up with respect to the number of variants used.
In contrast, the size of the type hierarchy under
variant is exponential on the number of language
variants if all combinations of variants are taken
into account, as it seems reasonable to do.

N-grams based methods are efficient and can
be very accurate. On the other hand, like any
stochastic method, they are sensitive to training
data and tend to be much more affected than the
grammar in self-tuning by a change of text do-
main. Also in dialogue settings with turns from
different language variants, hence with small
lengths of texts available to classify and suc-
cessive alternation between language variants,
n-grams are likely to show less advantage than
self-tuning by fully fledged grammars.

These are issues over which more acute insight
will be gained in future work, which will seek
to improve the contributions put forward in the
present paper.

Summing up, a major contribution of the
present paper is a design strategy for type-
feature grammars that allows them to be appro-
priately set to the specific language variant of a
given input. Concomitantly, this design allows
the grammars either to be pre-tuned or to self-
tune to that dialect — which, to the best of our
knowledge, consists in a new kind of approach to
handling language variation in deep processing.

In addition, we undertook a pilot experiment
which can be taken as setting the basis for a
methodology to comparatively assess the perfor-
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mance of these different tuning approaches and
their future improvements.
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Abstract

The demand for deep linguistic analysis
for huge volumes of data means that it is
increasingly important that the time taken
to parse such data is minimized. In the
XLE parsing model which is a hand-crafted,
unification-based parsing system, most of
the time is spent on unification, searching
for valid f-structures (dependency attribute-
value matrices) within the space of the many
valid c-structures (phrase structure trees).
We carried out an experiment to determine
whether pruning the search space at an ear-
lier stage of the parsing process results in
an improvement in the overall time taken to
parse, while maintaining the quality of the
f-structures produced. We retrained a state-
of-the-art probabilistic parser and used it to
pre-bracket input to the XLE, constraining
the valid c-structure space for each sentence.
We evaluated against the PARC 700 Depen-
dency Bank and show that it is possible to
decrease the time taken to parse b¥8%
while maintaining accuracy.
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attribute-value matrices). A typical breakdown of
parsing time of XLE components is Morphology
(1.6%), Chart (5.8%) and Unifier (92.6%).

The unification process is the bottleneck in the
XLE parsing system. The grammar generates many
valid c-structure trees for a particular sentence: the
Unifier then processes all of these trees (as packed
structures), and a log-linear disambiguation module
can choose the most probable f-structure from the
resulting valid f-structures. For example, the sen-
tence “Growth is slower.” has 84 valid c-structure
trees according to the current English gramrhar;
however once the Unifier has processed all of these
trees (in a packed form), only one c-structure and
f-structure pair is valid (see Figure 1). In this in-
stance, the log-linear disambiguation does not need
to choose the most probable result.

The research question we pose is whether the
search space can be pruned earlier before unifi-
cation takes place. Bangalore and Joshi (1999),
Clark and Curran (2004) and Matsuzaki et al. (2007)
show that by using a super tagger before (CCG and
HPSG) parsing, the space required for discrimini-
tive training is drastically reduced. Supertagging
is not widely used within the LFG framework, al-
though there has been some work on using hypertags
(Kinyon, 2000). Ninomiya et al. (2006) propose a

When deep linguistic analysis of massive data is rénethod for faster HPSG parsing while maintaining
quired (e.g. processing Wikipedia), it is crucial tha®ccuracy by only using the probabilities of lexical
the parsing time be minimized. The XLE Englishentry selections (i.e. the supertags) in their discrim-
parsing system is a large-scale, hand-crafted, dedpitive model. In the work presented here, we con-

unification-based system that processes raw t
and produces both constituent-structures (phrasa%

1For examplejs can be a copula, a progressive auxiliary or
assive auxiliary, whilslowercan either be an adjective or an

structure trees) and feature-structures (dependenayverb.
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centrate on reducing the number of c-structure trees cs 1 ROOT
that the Unifier has to process, ideally to one tree.
The hope was that this would speed up the parsing Sadffin] - PERIOD
process, but how would it affect the quality of the f- S[ﬁr!] .|
structures? This is similar to the approach taken by
Cahill et al. (2005) who do not use a hand-crafted NP VPallffin]
complete unification system (rather an automatically | _ | _
acquired probabilistic approximation). They parse NPad) VPooplin
raw text into LFG f-structures by first parsing with a NPzero Veoplin]  AP[pred]
probabilistic CFG parser to choose the most proba- | | |
ble c-structure. This is then passed to an automatic N is A
f-structure annotation algorithm which deterministi- | |
~ growth slower
cally generates one f-structure for that tree.
The most compact way of doing this would be to
integrate a statistical component to the parser that PRED  'be<[68:slowp[23:growth]
SUBJ 23[PRED'growth’ ]
could rank the c-structure trees and only pass the
. - . PRED 'slow<[23:growth}p"'
most likely forward to the unification process. How- wcomp |SUBJ  [23:growth]
ever, this would require a large rewrite of the sys- a7 68 [ADIUNCT{1 PRED'more’ J}
tem. So, we first wanted to investigate a “cheaper”
alternative t_o (_:letermlne the viability of th(_a pru_n'ngFigure 1: C- and E-Structure for
strategy; this is the experiment reported in this pa-
per. This is implemented by stipulating constituent
bourydgnes n th_e mpu_t stiing, so that any c-'st.ructu'zfeet (Section 6). Finally, Section 7 concludes.
that is incompatible with these constraints is invali
and will not be processed by the Unifier. This wa? Back q
done to some extent in Riezler et al. (2002) to au- ackgroun

tomatically generate training data for the Iog-IlnearIn this section we introduce Lexical Functional

disambiguation component of XLE. Previous Worgrammar, the grammar formalism underlying the

obtained the constituent constraints (i.e. bracket . . )
. LE, and briefly describe the XLE parsing system.
from the gold-standard trees in the Penn-Il Tree- ey ! parsing sy

bank. However_, to parse novel text, gold—standargl1 L exical Functional Grammar
trees are unavailable.

We used a state-of-the-art probabilistic parser thexical Functional Grammar (LFG) (Kaplan and
provide the bracketing constraints to XLE. Thesdresnan, 1982) is a constraint-based theory of gram-
parsers are accurate (achieving accuracy of ovemar. It (minimally) posits two levels of repre-
90% on Section 23 WSJ text), fast, and robussentation, c(onstituent)-structure and f(unctional)-
The idea is that pre-parsing of the input text by atructure. C-structure is represented by context-
fast and accurate parser can prune the c-structuiee phrase-structure trees, and captures surface
search space, reducing the amount of work done lgrammatical configurations such as word order.
the Unifier, speed up parsing and maintain the higiithe nodes in the trees are annotated with func-
quality of the f-structures produced. tional equations (attribute-value structure con-

The structure of this paper is as follows: Sectiorstraints) which are resolved to produce an f-
2 introduces the XLE parsing system. Section 3 destructure. F-structures are recursive attribute-value
scribes a baseline experiment and based on the reatrices, representing abstract syntactic functions.
sults suggests retraining the Bikel parser to improvE-structures approximate basic predicate-argument-
results (Section 4). Section 5 describes experimenésljunct structures or dependency relations. Fig-
on the development set, from which we evaluate there 1 shows the c- and f-structure for the sentence
most successful system against the PARC 700 teé$trowth is slower.”.

"Growth is slower."

“Growth is slower.”
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Parser OutputfS1 (S (NP (NN Growth)) (VP (AUX is) (ADJP (JJR slower))) (. ) )
Labeled:\[S1 \[S Growth \[VP is \[ADJP slower \] \].\] \]
Unlabeledy[ \[ Growth \[ is \[ slower \] \].\] \]

Figure 2: Example of retained brackets from parser outpabtustrain the XLE parser

2.2 TheXLE Parsing System 3 Basdine experiments

We carried out a baseline experiment with two

The XLE parsing system is a deep-grammar-bas sjate-of-the-art parsers to establish what effect pre-

parsing system. The experiments reported in thi racketing the input to the XLE system has on the

paper use the English LFG grammar constructe uagt¥hang_£L:mber Ic:_fttge s(;)ltguor?s grgd_uced.hV\/te
as part of the ParGram project (Butt et al., 2002);>c € BIKe () multi-threaded, head-driven chart-
arsing engine developed at the University of Penn-

This system incorporates sophisticated ambiguity- - . . .
Y P P g >Pylvanla. The second parser is that described in

management technology so that all possible syr% ) .
tactic analyses of a sentence are computed | har_nla_lk gnd Johnson (2005). 'This parser uses a
gfscrlmmatlve reranker that selects the most proba-
I

an efficient, packed representation (Maxwell an
Kaplan, 1993). In accordance with LFG the->'c Pars€ from the 50-best parses returned by a gen-
ory, the output includes not only standard context?ratlve parser based on Charniak (2000).

free phrase-structure trees (c-structures) but also W€ evaluated against the PARC 700 Dependency
attribute-value matrices (f-structures) that explicBank (King et al., 2003) which provides gold-
itly encode predicate-argument relations and othéft@ndard analyses for 700 sentences chosen at ran-

meaningful properties. The f-structures can be d&lom from Section 23 of the Penn-I| Treebank.. The
terministically mapped to dependency triples withPependency Bank was bootstrapped by parsing the
out any loss of information, using the built-in or- 00 sentences with the XLE English grammar, and

dered rewrite system (Crouch et al., 2002). XLE selnén manually correcting the output. The data is di-
lects the most probable analysis from the potentiallyfided into two sets, a 140-sentence development set
large candidate set by means of a stochastic disa@?d & test set of 560 sentences (Kaplan et al., 2004).
biguation component based on a log-linear proba- We took the raw strings from the 140-sentence
bility model (Riezler et al., 2002) that works on thedevelopment set and parsed them with each of the
packed representations. The underlying parsing systate-of-the-art probabilistic parsers. As an upper
tem also has built-in robustness mechanisms that dlound for the baseline experiment, we use the brack-
low it to parse strings that are outside the scope @&ts in the original Penn-I1l treebank trees for the 140
the grammar as a list of fewest well-formed “frag-development set.

ments”. Furthermore, performance parameters that We then used the brackets from each parser out-
bound parsing and disambiguation can be tuned faut (or original treebank trees) to constrain the XLE
efficient but accurate operation. These parameteparser. If the input to the XLE parser is bracketed,
include at which point to timeout and return an errorthe parser will only generate c-structures that respect
the amount of stack memory to allocate, the numthese brackets (i.e., only c-structures with brackets
ber of new edges to add to the chart and at whicthat are compatible with the input brackets are con-
point to start skimming (a process that guaranteesdered during the unification stage). Figure 2 gives
XLE will finish processing a sentence in polynomialan example of retained brackets from the parser out-
time by only carrying out a bounded amount of workput. We do not retain brackets arouréN (paren-

on each remaining constituent after a time thresholthetical phrase) okp nodes as their structure often
has passed). For the experiments reported here, wi#fered too much from XLE analyses of the same
did not fine-tune these parameters due to time cophrases. We passed pre-bracketed strings to the XLE
straints; so default values were arbitrarily set and thand evaluated the output f-structures in terms of de-
same values used for all parsing experiments. pendency triples against the 140-sentence subset of
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Non-Fragment Fragment
Penn-XLE | Penn-XLE || Penn-XLE | Penn-XLE
(lab.) (unlab.) (lab.) (unlab.)
Total XLE parses (/140 0 89 140 140
F-Score of subset 0 84.11 53.92 74.87
Overall F-Score 0 58.91 53.92 74.87

Table 1: Upper-bound results for original Penn-Il trees

Non-Fragment Fragment

XLE | Bikel-XLE | Bikel-XLE XLE | Bikel-XLE | Bikel-XLE

(lab.) (unlab.) (lab.) (unlab.)
Total XLE Parses (/140] 119 0 84 135 140 140
F-Score of Subset 81.57 0 84.23 || 78.72 54.37 73.71
Overall F-Score 72.01 0 55.06 || 76.13 54.37 *73.71
XLE CJ-XLE CJ-XLE XLE CJ-XLE CJ-XLE

(lab.) (unlab.) (lab.) (unlab.)
Total XLE Parses (/140]) 119 0 86 135 139 139
F-Score of Subset 81.57 0 86.57 || 78.72 53.96 75.64
Overall F-Score 72.01 0 58.04 || 76.13 53.48 *74.98

Table 2: Bikel (2002) and Charniak and Johnson (2005) odh@fbox baseline results

the PARC 700 Dependency Bank. duced by XLE. Interestingly, the f-scores for both
The results of the baseline experiments are giveihie CJ-XLE and Bikel-XLE systems are very sim-
in Tables 1 and 2. Table 1 gives the upper bountgr to the upper bounds. The gold standard upper
results if we use the gold standard Penn treebaround is not as high as expected because the Penn
to bracket the input to XLE. Table 2 compares thérees used to produce the gold bracketed input are
XLE (fragment and non-fragment) grammar to thehot always compatible with the XLE-style trees. As
system where the input is pre-parsed by each parsérsimple example, the tree in Figure 1 differs from
XLE fragment grammars provide a back-off whenthe parse tree for the same sentence in the Penn
parsing fails: the grammar is relaxed and the parsdireebank (Figure 3). The most obvious difference
builds a fragment parse of the well-formed chunksis the labels on the nodes. However, even in this
We compare the parsers in terms of total numbegmall example, there are structural differences, e.g.
of parses (out of 140) and the f-score of the sulthe position of the period. In general, the larger the
set of sentences successfully parsed. We also cotiee, the greater the difference in both labeling and
bine these scores to give an overall f-score, wheructure between the Penn trees and the XLE-style
the system scores 0 for each sentence it could nsees. Therefore, the next step was to retrain a parser
parse. When testing for statistical significance belo produce trees with structures the same as XLE-
tween systems, we compare the overall f-score vastyle trees and with XLE English grammar labels on
ues. Figures marked with an asterisk are not statisihe nodes. For this experiment we use the Bikel ()
cally significantly different at the 95% levél. parser, as it is more suited to being retrained on a
The results show that using unlabeled bracketdeWw treebank annotation scheme.
achieves reasonable f-scores with the non-fragment o )
grammar. Using the labeled bracketing from the out? ~ Retraining the Bikel parser

put of both parsers causes XLE to always fail Whe%Ie retrained the Bikel parser so that it produces

parsing. This is because the labels in the output . : ]
parsers trained on the Penn-Il treebank differ co ?_rees llke those outputted by the XLE parsing sys

. em (e.g. Figure 1). To do this, we first created a
siderably from the labels on c-structure trees pro-_. . "
training corpus, and then modified the parser to deal

2\We use the approximate randomization test (Noreen, 198&W'th_ this new de_lta'
to test for significance. Since there is no manually-created treebank of
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S All Sentences

XLE | Bikel-XLE
Non-fragment grammar

Labeled brackets
NP VP : Total Parsing Time 964 336
N T | Total XLE Parses (/140) 119 77
| V||3Z ADJF;'PRD : F-Score of Subset 8157 86.11
Overall F-Score 72.01 52.84

th

Grow 1S JJR Non-fragment grammar

slower Unlabeled brackets
Total Parsing Time 964 380
; . “ . » | Total XLE Parses (/140] 119 89
Figure 3: Penn Treebank tree for “Growth is slower. F-Score of Subset 5157 5567
Overall F-Score 72.01 590.34

Fragment grammar
XLE-style trees, we created one automatically from |___ Sera T 11"1-33139'90' bracketssgo
sectlon_s 02-21 of the Penn—l_l Treebank. We took the —6iarxiE parses 7140] 135 120
raw strings from those sections and markedNm F-Score of Subset 78.72 71.86
and SBAR constituents using the brackets from the [ Overall F-Score 76.13 71.86

. Fragment grammar

gold standard Penn treebank. Tke constituents Unlabeled brackets
are labeled, and theBAR unlabeled (i.e. thesBAR Total Parsing Time 1143 423
constituents are forced to exist in the XLE parse, but loéal XLEfPSBWSbeS (/140 - 813;2 - 41‘;1

. . -Score of Subset . .
the label on them is not constrained to HBAR). Overall F-Score 7613 ¥4 51

We also tagged verbs, adjectives and nouns, base
on the gold standard POS tags. Table 3: Bikel-XLE Initial Experiments

We parsed the 39,832 marked-up sentences in the
standard training corpus and used the XLE disam-
biguation module to choose the most probable dor the evaluation against the PARC 700 test set.
and f-structure pair for each sentence. Ideally we
would have had an expert choose these. We ab-1 Pre-bracketing

tomatically extracted the c-structure trees p'roduce\s{/e automatically pre-processed the raw strings from
by the XLE and performed some automatic pos

tt'he 140-sentence development set. This made sys-

p:ogetss_m_gi’. This resu]!tgg I8n7§ r;(i;tof[n?t'fa”y cher; tematic changes to the tokens so that the retrained
ated training corpus ot 27, -Style trees. ikel parser can parse them. The changes included

11,959 missing trees were mainly due to the XL emoving quotes, converting andan to _a, con-

pa:sis tnot belp g corgpatltblti_ with thde bracketed In\7erting n't to _not, etc. We parsed the pre-processed
put, but sometimes due to time and memary Cons'trings with the new Bikel parser.

straints. . L . .
Using the automatically-created training corpus We carried out four initial experiments, experi-
g y N P menting with both labeled and unlabeled brackets

of XLE-style trees, we retrained the Bikel parser on
. . . . nd XLE fragment and non-fragment grammars. Ta-
this data. This required adding a new language mod-

ule (“XLE-English”) to the Bikel parser, and regen—cloem3 a?rzet;(:hearrseesruslt; f;rrr:]hsez(: t?r;(ze:g?aelnr:imz\é?
erating head-finding rules for the XLE-style trees. P P '

of parses (out of 140), the f-score of the subset of
5 Experiments sentences successfully parsed and the overall f-score
if the system achieves a score of O for all sentences
Once we had a retrained version of the Bikel parsef does not parse. The time taken for the Bikel-XLE
that parses novel text into XLE-style trees, we carsystem includes the time taken for the Bikel parser

ried out a number of experiments on our developto parse the sentences, as well as the time taken for
ment set in order to establish the optimum settingXLE to process the bracketed input.

3The postprocessing included removing morphological in- 1aole 3 S_hOWS that using the non-fragment gram-
formation and the brackets from the original markup. mar, the Bikel-XLE system performs better on the
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subset of sentences parsed than XLE system alorgylts are given in Table 5 for the experiment with
though the results are not statistically significantlyabeled brackets and the non-fragment XLE gram-
better overall, since the coverage is much lower. Themar. More pruning generally results in fewer and
number of bracketed sentences that can be parslewer-quality parses. The biggest gain is with prun-
by XLE increases if the brackets are unlabeledng level 1, where the number and quality of brack-
The table also shows that the XLE system performeted sentences that can be parsed with XLE remains
much better than Bikel-XLE when using the frag-the same as with the default level. This is because
ment grammars. Although the Bikel-XLE system isBikel with pruning level 1 does not relax the con-
quite a bit faster, there is a drop in f-score; howevestraints when parsing fails and does not waste time
this is not statistically significant when the bracketparsing sentences that cannot be parsed in bracketed
are unlabeled. form by XLE.

5.2 Pretagging Default L1 L2 L3

; | ¢ Total Parsing Time 336 137 137 106
We pgrformed some error ana!y3|s on the output cf# XLE Parses (/140 =7 - 76 -5
the Bikel-XLE system and noticed that a considelrE-Score of Subset 86.11] 86.11| 86.04| 85.87
able number of errors were due to mis-tagging. S¢,Overall F-Score 52.84 | *52.84 | *52.43 | *52.36
we pre-tagged the input to the Bikel parser using th ) . . i i
MXPOST tagger (Ratnaparkhi, 1996). The resultgable 5: Pruning with Non-fragment grammar, L.a

: eled brackets, Levels default-3

for the non-fragment grammars are presented in Ta-
ble 4. Pre-tagging with MXPOST, however, does
not result in a statistically significantly higher re-
sult than parsing untagged input, although more se
tences can be parsed by both systems. Pre-taggiABhough pre-parsing with Bikel results in faster

§;4 Hybrid systems

also adds an extra time overhead cost. XLE parsing time and high-quality f-structures
(when examining only the quality of the sentences
<[E gnigf;tfgs ngﬁg_&tfgs that can be parsed by the Bikel-XLE system), the
Unlabeled coverage of this system remains poor, therefore the
Total Parsing Time | 964 380 493 | overall f-score remains poor. One solution is to build
ﬁ-étgrgi?sezé/sled{o 81%3 85_%% . 4_%%5 a hybrid two-pass system. During the first pass all
Overall E-Score 72.01 59.34 *61.11 | sentences are pre-parsed by Bikel and the bracketed
_ Labeled output is parsed by the XLE non-fragment gram-
;O)Eal_'EPS;'S”SST('/Tfo (‘ifg 3?? 43; mar. In the second pass, the sentences that were
F-Score of Subset | 81.57 86.11 g5.g7| not parsed during the first pass are parsed with the
Overall F-Score 72.01 52.84 *54.91 | XLE fragment grammar. We carried out a number

) of experiments with hybrid systems and the results
Table 4: MXPOST pre-tagged, Non-fragment gram given in Table 6.

mar The results show that again labeled brackets re-
sult in a statistically significant increase in f-score,
53 Pruning although the time taken is almost the same as the

, _ _ XLE fragment grammar alone. Coverage increases
The Bikel parser can be customized to allow differy,y 1 gentence. Using unlabeled brackets results in
ent levels of pruning. The above experiments Werg ,qgitional sentences receiving parses, and parsing
carried out using the default level. We carried oufjme is improved by~12%; however the increase in
experiments with three levels of prunifigfhe re- f-score is not statistically significant.
“The default level of pruning starts at 3.5, has a maximum of Table 7 gives the results for hybrid systems with

4 and relaxes constraints when parsing fails. Level 1 pgiisin pruning using labeled brackets. The more pruning
the same as the default except the constraints are neveedela

Level 2 pruning has a start value of 3.5 and a maximum valu[ﬂ.hat the B'kel parser does, the faSte_r the SyStem*
of 3.5. Level 3 pruning has a start and maximum value of 3. but the quality of the f-structures begins to deteri-
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XLE || Bikel-XLE hybrid | Bikel-XLE hybrid

(frag) (labeled) (unlabeled)
Total Parsing Time 1143 1121 1001
Total XLE Parses (/140 135 136 138
F-Score of Subset 78.72 79.85 79.51
Overall F-Score 76.13 77.61 *78.28

Table 6: Hybrid systems compared to the XLE fragment gramaitare

XLE || Bikel-XLE hybrid | Bikel-XLE hybrid | Bikel-XLE hybrid

(frag) (level 1) (level 2) (level 3)
Total Parsing Time 1143 918 920 885
Total XLE Parses (/140] 135 136 136 136
F-Score of Subset 78.72 79.85 79.79 79.76
Overall F-Score 76.13 77.61 77.55 77.53

Table 7: Hybrid systems with pruning compared to the XLE fin@gt grammar alone

orate. The best system is the Bikel-XLE hybrid sysef two phases. During phase one, pre-processed, to-
tem with labeled brackets and pruning level 1. Thikenized text is parsed with a retrained Bikel parser.
system achieves a statistically significant increase We use the labeled brackets in the output to constrain
f-score over the XLE fragment grammar alone, dethe c-structures generated by the XLE parsing sys-
creases the time taken to parse by almost 20% ateim. In the second phase, we use the XLE fragment
increases coverage by 1 sentence. Therefore, \yeammar to parse any remaining sentences that have
chose this system to perform our final evaluatiomot received a parse in the first phase.

against the PARC 700 Dependency Bank. Given the slight increase in overall f-score per-
formance, the speed up in parsing timel8%) can
justify more complicated processing architecture for
We evaluated the system that performs best on tt§@me applications. The main disadvantage of the
development set against the 560-sentence test setcgfrent system is that the input to the Bikel parser
the PARC 700 Dependency Bank. The results afeeeds to be tokenized, whereas XLE processes raw
given in Table 8. The hybrid system achieves atext. One solution to this is to use a state-of-the-art
18% decrease in parsing time, a slight improvemerrobabilistic parser that accepts untokenized input
in coverage of 0.9%, and a 1.12% improvement ifsuch as Charniak and Johnson, 2005) and retrain it
overall f-structure quality. as described in Section 4.

Kaplan et al. (2004) compared time and accuracy

6 Evaluation against the PARC 700

02:;5 ﬁg‘ggéﬁ%ﬁg% of a version of the Collins parser tuned to maximize
Total Parsing Time 4967 4077 speed and accuracy to an earlier version of the XLE
Total XLE Parses (/560) 537 542 parser. Although the XLE parser was more accu-
giﬁgfgsig?;m g%i gg:ig rate, the parsing time was a factor of 1.49 slower

(time converting Collins trees to dependencies was
Table 8: PARC 700 evaluation of the Hybrid systemrmot counted in the parse time; time to produce f-

compared to the XLE fragment grammar alone  structures from c-structures was counted in the XLE
parse time). The hybrid system here narrows the
speed gap while maintaining greater accuracy.

The original hope behind using the brackets to
We successfully used a state-of-the-art probabilisticonstrain the XLE c-structure generation was that

parser in combination with a hand-crafted system t

. . fi hil intaini th lit SFor example, in massive data applications, if the parsing
Improve parsing time while main ?.Inlng € qua '_ Ytask takes 30 days, reducing this by 18% saves more than 5
of the output produced. Our hybrid system consistsays.

7 Conclusions
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the brackets would force the XLE to choose onlyStephen Clark and James R. Curran. 2004. The Impor-

one tree. However, the brackets were sometimes tance Olf Spupertag_gmg f%ré/:\gdj’-\%iveragezgg% ggrs-
- : - ing . In Proceedings o pages -288,

ambiguous, and so_metlmeS m_ore thap one valid treeGeneva, Switzerland, Aug 23—Aug 27. COLING.

was found. In the final evaluation against the PARC

700 test set, the average number of optimal solutiorf¥chard Crouch, Ron Kaplan, Tracy Holloway King, and

was 4.05; so the log-linear disambiguation mod- Stefan Riezler. 2002. A comparison of evaluation
' metrics for a broad coverage parser.Aroceedings of

ule still had _to _chose t_he most probable f-structure. .| Rec Workshop: Beyond PARSEYpages 67—
However, this is considerably less to choose from 74, |as Palmas, Canary Islands, Spain.
than the average of 341 optimal solutions produced

Ron Kaplan and Joan Bresnan. 1982. Lexical Functional
by the XLE fragment grammar for the same sen Grammar, a Formal System for Grammatical Repre-

tences when unbracketed. _ sentation. In Joan Bresnan, editShe Mental Repre-
Based on the results of this experiment we have sentation of Grammatical Relationpages 173—-281.

integrated a statistical component into the XLE MIT Press, Cambridge, MA.
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Semantic composition with (Robust) Minimal Recursion Semantics

Ann Copestake
Computer Laboratory, University of Cambridge
JJ Thomson Avenue, Cambridge, UK
aac@l! . cam ac. uk

Abstract An algebra formRs was defined by Copestake et
al. (2001) (henceforth CLF) and forms the starting
point for the work reported here.

The aim of CLF was to formalise the notion of se-
mantic composition within grammars expressed in a
typed feature structure (TFS) logic. Here, we ex-
tend that work to non-lexicalist approaches and also
describe how the formal principles of composition
used inMRS can be adapted to produce a formalism
for RMRS composition. Thus we demonstrate that
the algebra applies to grammar engineering across
a much wider range of frameworks than was origi-
nally envisaged. Besides its theoretical interest, this
result has practical benefits when combining multi-
1 Introduction ple processing systems in that it allows compatible
Minimal Recursion Semanticsigs: Copestake et semantic representations at a phrasal level as well as
al. (2005)) is a flat semantic representation whicRt & sentence level. , _
factors semantics into elementary predicatims] | "€ Next section§) describes the most impor-
and allows for underspecification of scope. It hal2nt features ofiRs, RMRs and the earlier work on

been widely used, especially for HPSG. Robudfe algebra_. We then_ outline how the algebra can
Minimal Recursion SemanticR{/rs. Copestake be used for implementing deep non-TFS approaches

(2003)) is a variant ofMRs which takes this fac- (33) and explain how it works witRMRS (§4). This
torisation further to allow underspecification of re-IS followed by discussion of the extension to gram-
lational information as well. Whilairs has gen- Mars withouta detailed lexicofig). To briefly illus-
erally been used with hand-built HPSG grammar§,rate the practical .appllcatlons, sectigy®) outlines
RMRS is also suitable for use with shallower ap-"0WRMRSsemantics is constructed froRasP (Ro-
proaches to analysis, including part-of-speech ta@-USt af:curate domain-independent statistical pars-
ging, noun phrase chunking and stochastic parsef¥g: Briscoe and Carroll (2002)).

which operate without detailed lexiconsirRss can
be converted intRMRSs: RMRS output from shal-
lower systems is less fully specified than the outPetails ofMRS, RMRS and the algebra are given in
put from deeper systems, but in principle fully com-the cited papers, but we will briefly introduce them
patible. In our work, the semantics produced by &ere for convenience. Fig. 1 illustratesi@rs from
deep grammar is taken as normative when deved deep grammar (based on theG output, but sim-
oping semantic representations from shallower prglified for expository purposes), an equival@MRrs
cessing. For English, the target semantic represeand a very underspecifieAMRS, derived from a
tations are those produced by the English Resour@OS tagger.

Grammar ERG, Flickinger (2000)). TheiRS/RMRS MRS achieves a flat representation via the use of
approach has been adopted as a common framewdabels oneps, thus factoring out scopal relation-
for the DELPH-IN initiative (Deep Linguistic Pro- ships. Scope constraints (HCONS) are shown as geq
cessing with HPSGht t p: // wwv. del ph-in. net). relationships €, equality modulo quantifiers: the

We discuss semantic composition in Mini-
mal Recursion SemanticsiRs) and Robust
Minimal Recursion SemanticR{1rRs). We
demonstrate that a previously defined for-
mal algebra applies to grammar engineering
across a much greater range of frameworks
than was originally envisaged. We show
how this algebra can be adapted to compo-
sition in grammar frameworks where a lex-
icon is not assumed, and how this underlies
a practical implementation of semantic con-
struction for theRASP system.

2 MRS, RMRSand thealgebra

73

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 73—80,
Prague, Czech Republic, June, 2007. (©2007 Association for Computational Linguistics



MRS representation:
10: the.q(x0, h01, h02),11: fatj(z1),12: catn(z2),13: _sitv_1(e3,x3),14: onp(ed, edl, x4),
[5: _aq(xb, h51, h52),16: _matn_1(x6),
h01 =4 11,h51 =, 16
20=xl=22=1x3,e3 =e4dl, x4 =25 =2x6,l1 =12,l13 =14

RMRSequivalent to thears above:
10: a0: _theg(x0), 10: a0: RSTRh01), 0: a0: BODY (h02),1: al: fatj(z1),12: a2: _catn(z2),
[3:a3: _sitv_1(e3),13: a3: ARGL(x31),14: a4: onp(ed, edl, z4),14: a4d: ARGL(edl),[4: a4d: ARG2(x4),
[5:ab: _aq(xbh),15: a5: RSTRA51),15: ab: BODY(h52),16: a6: _-matn_1(x6),
h01 =, 11, h51 =, 16
20=zxl=22=2x3,e3=-edl, x4 =25 = 26,11 =12,13 =14

Highly underspecifie®kMRS output:
[0: a0: _the.q(x0), {1: al: fatj(z1),12: a2: _catn(x2),13: a3: _sit.v(e3), [4: a4: on_p(e4),
[5:ab: _aq(xh),16: a6: _matn(z6)

Figure 1:MRs andrMRS for the fat cat sat on a mat

details are not important to understand this paper). The naming convention adopted for the relations
In MRS, implicit conjunction is indicated by equality (e.g.,_sit.v) allows them to be constructed without
between labels. For instance, the labelsbffiat(z) access to a lexicon._v’ etc are indications of the
and(2: catl(x) are equated. In this figure, we showcoarse-grained sense distinctions which can be in-
MRS using explicit equalities (eqs=) rather than ferred from part-of-speech information. Deep gram-
coindexation of variables since this corresponds tmars can produce finer-grained sense distinctions,
the formalism used in the algebra. indicated by ‘1’ etc, and there is an implicit hier-
atrchy such thatsit v_1 is taken as being more spe-
RMRS uses the same approach to scope but,. . : .
. . . cific than_sit.v. However, in what follows, we will
adopts a variant of a neo-Davidsonian representa-

tion, where arguments (ARGSs) are represented 38¢€ simple relation names for readabilityrs and

o o RMRS both assume an inventory of features on vari-
distinct elements. In the very underspecifiedrs )
. . h . ._ables which are used to represent tense etc, but these
at the bottom of Fig.1, no relational information is

known so there are no ARGs. Separating out ARGVSVIII not be discussed in this paper.

from the EPs and allowing them to be omitted per-2.1 The MRrs algebra
mits a straightforward notion of a specificity hierar—In the algebra introduced by CLF, semantic struc-

chy interms Of_ |_nformat|on conter_\t. ARGS may als‘Otures EEMENTS for phrases consist of five parts:
be underspecified: e.g., ARGn indicates that there

is some argument relationship, but it is unknown 1. Hooks: can be thought of as pointers into the

whether it is an ARG1, ARG2 or ARG3. In the relations list. In a full grammar, hooks consist
version ofRMRs described in this paper, the ARGs ~ Of three parts: a label);, an index {) and an
are related to the maiers via an ‘anchor’ element. external argument (omitted here for simplicity).

An EP and its associated ARGs share a unique an-2. Slots: structures corresponding to syntac-
chor. This version oRMRS uses exactly the same tic/semantic unsaturation — they specify how

mechanism for conjunction as doegs:. the anchor the semantics is combined. A slot in one sign is
elements are required so that ARGs can still be asso- instantiated by being equated with the hook of
ciated with a singl&pr even if the label of thep has another sign. (CLF use the term ‘hole’ instead
been equated with anothep. This is a change from of ‘slot’.) For the TFS grammars considered
Copestake (2003): the reasons for this proposal are in CLF, the slot corresponds to the part of the
discussed irg4, below. The conjunction informa- TFS accessed via a valence feature. The inven-
tion is not available from a POS tagger alone and so  tory of slot labels given by CLF isuBJ, SPR

is not present in the secomiMrsin Fig.1. SPEG COMP1, COMP2, COMP3 andMOD.
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3. rels: The bag oEps. The MRS algebra was designed to abstract away
from the details of the syntax and of the syntax-
] ) ] semantics interface, so that it can be applied to
5. egs: the varla_ble equivalences which are the r%’rammars with differing feature geometry. The as-

sults of equating slots and hooks. sumption in CLF is simply that the syntax selects

SEMENTS are:|/, i|{slots}[eps] [hcons|{ egs}. the appropriateop and its arguments for each ap-
Some rules contribute their own semantics (Corplication. i.e., semantic operations are associated
struction semantics: e.g., compound nouns). Howvith HPSG constructions so that there is a mapping
ever, theMRs approach requires that this can alfrom the daughters of the construction to the argu-
ways be treated as equivalent to having an additiong1€nts of the operation. The algebra does not attempt
daughter in the rule. Thus construction semantic® completely replicate all aspects of semantic con-
need not be considered separately in the formal aftruction: e.g., the way that the features (represent-
gebra, although it does result in some syntacticallj?d tense and so on) are instantiated on variables is

binary rules being semantically ternary (and so on)not modelled. However, it does constrain semantic
The principles of composition are: construction compared with the possibilities for TFS

semantic compositional in general. For instance, as

1. A (syntactically specified) slot in one structurediscussed by CLF, it enforces a strong monotonic-
(the daughter which corresponds to 8#enan-  jty constraint. The algebra also contributes to limit-
tichead) is filled by the hook of the other struc- ing the possibilities for specification of scope. These

ture (by adding equalities). properties can be exploited by algorithms that oper-

2. The hook of the phrase is the semantic head&€ ONMRS: e.g., generation, scope resolution.

hook. :
0 2.2 TheMRsalgebra and the syntax-semantics
3. The eps of the phrase is equal to appending the  jnterface

eps of the daughters.

4. hcons: geq constraints-{).

. ~ CLF did not discuss the syntax-semantics interface
4. The egs of the phrase is equal to appending th# detail, but we do so here for two reasons. Firstly,
egs of the daughters plus any eqgs contributegljs 3 preliminary for discussing the use of the al-

by the filling of the slot. gebra in frameworks other than HPSG in the fol-
5. The slots of the phrase are the unfilled slots dpwing sections. Secondly, as CLF discuss, the con-
the daughters (although see below). straints that the algebra imposes cannot be fully im-

emented in a TFS. Thus, for grammar engineering
In TFS frameworks, an additional automatic checker
is needed to determine whether a grammar meets the
Formally, the algebra is defined in terms of a sealgebra’s constraints. This requires specification of
ries of binary operations, such agspeg which the syntax-semantics interface so that the checker
each correspond to the instantiation of a particularan extract the slots from the TFSs and determine
labelled slot. the slot operation(s) corresponding to a rule.

Fig. 2 illustrates this. The hook afat instanti- Unfortunately, CLF are imprecise about the alge-
ates thespecsilot of a, which is the semantic head bra in several respects. One problem is that they
(though not the syntactic head in tlE®G). This gloss over the issue of slot propagation in real gram-
leads to the equalities between the variables in thears. CLF state that for an operatiop,, the slot
result. Since thesPEcslot has been filled, it is not corresponding tep,. on the semantic head is instan-
carried up to the phrase. Thus, abstractly at leadtated and all other slots appear on the result. For
the semantics of the HPSG specifier-head rule comstance, the definition afpspecstates that for all
responds t@)pspecl labelsl # spec: slot;(opspedai, az)) = sloty(a1) U
T ——— _ _dot;(a2). However, this is inadequate for real gram-

As usual inMRS, in order to allow scope underspecifica- . .
tion, the label 14 of the quantifier's hook is not coindexed withmars, if a simple correspondence between the slot
anyEer. names and the valence paths in the feature structure

6. The hcons of the phrase is equal to appendi
the hcons of the daughters.
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hook  slots rels eqgs hcons

cat:  [11,z1] {} (11 : cat(z1)] {} I
a: [14,22] {[13,22]spec} [I12: @22, h2, h3)] {} [h2 =4 13]
acat: [l4,22] {} (12 : &(x2, h2,h3),11 : catfxl)] {I3=11,22 =21} [h2=,13]

Figure 2: Example of theirRs algebra

is assumed. For instance, the passive rule involveéiast to a verb likekick. CLF do not discuss op-

coindexing acoMp in the original lexical sign with tionality but it can be formalised in the algebra in

thesusJof the passive (informally, the complementterms of a construction-specified sement which has

‘becomes’ the subject). a hook containing the discourse referent and is oth-
There are two ways round this problem. The firserwise empty. For instance, an optional complement

is to keep the algebra unchanged, but to assume thednstruction corresponds ‘b@compl(ah as) where

for instance, the subject-head grammar rule correr, is the head (and the only daughter appearing in

sponds tooPsubj in the algebra for non-passivizedthe TFS for the construction) anrd is stipulated by

cases and tep.,mp1 for passives of simple tran- the rule to b/, d|{ }[|[]{}, whered is the discourse-

sitives and so on. J?hough possible formally, this idound referent.

not in accord with the spirit of the approach since

selection of the appropriate algebra operation inthd Thealgebrain non-lexicalist grammars

syntax-semantics interface would require non-I_ocaéLF motivate thewrs algebra in terms of formalisa-

information. Practically, it also preciudes the "Mion of the semantics of constraint-based grammars,

plementation of an algebra checker, since keepin ch as HPSG, but, as we outline here, it is equally

track of the slot uses would be both complex an . - i )
e o applicable to non-lexicalist frameworks. With a suit-
grammar-specific. The alternative is to extend the - o
) . able definition of the syntax-semantics interface, the
algebra to allow for slot renaming. For instance

. I ith -TFS- :
OPeompl-subfan be defined so that tasMPl. slot algebra can be used with non-TFS-based grammars

on the dauahter is ausJslot on the mother Fig. 3 sketches an example mRs semantics for a
9 ' CFG. A syntax-semantic interface component of the

1. For all labeld # compl, | # subj: r;:le (showr(; ir;\thedsecor:]d Iineh(;thelfigufreg specli)fies
ot (op —enrfa)) = soty(a the ops and their daughters: tlasJ slot of the ver
( compl Squ ) (@) is instantiated with the first NP's hook and tbeJ

2, S|°tsubj(0pcompl—subﬁa)) = SIc"[compl(a) slot of the result is instantiated with the hook of the

. . . . second NP. The idea is extremely similar to the use
This means extending the inventory of operations . .

. N of the algebra with TFS but note that with the ad-
but the choice of operation is then locally deter-

minable from the rule (e.g., the passive rule wouléjmon of this syntax-semantic interface, the algebra

. be | . can be used directly to implement semantic compo-
speC|fyopcomp1_Sutho e its operation). sition for a CEG.

Another issue arises in grammars which allow for

. . This still relies on the assumption that all slots
optional complements. For instance, one approach S .
. ) o . . are known for every lexical item: semantically the
to a verb likeeat is to give it a single lexical en-

try which corresponds to both transitive and intrandrammar 1S IeX|_ca_I|st even though itis not_ syntact

2. . ._cally. In fact this is analogous to semantic compo-
sitive uses. The complement is marked as optional .~ . .

: : ) . __sltion in GPSG (Gazdar et al., 1985) in that conven-

and the corresponding variable in the semantics s

. . : jonal lambda calculus also assumes that the seman-

assumed to be discourse bound if there is no syn- . .

. . . tic properties are known at the lexical level.

tactic complement in the phrase. Optional comple-

ments can be discharged by a construction. This ap- RMRS composition with deep grammars
proach is (arguably) appropriate feat because the

intransitive use involves an implicit patient (e.§)., The use of the CLF algebra iRMRS composition
already ate meand already ate something), in con-  with deep lexicalist grammars is reasonably straight-
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VP - > Vditrans NP1 NP2
Opobj(opiobj (Vditrans NP1), NP2
MRss for application of the rule tgive a cat arat.

hook  slots rels egs
give: [I1,el] {[I1,212]4u,, [11: give(el, z12, 213, 214)] {}
[ll, .’,1?13]01)]', [ll, $14]iobj}
acat: [l4,22] {} (12 :a(x2,h2,h3),l1 : cafzl)] {I13=11,22=2x1}
arat: [I7,25] {} [15: a(xb, h5, h6),14 : rat(z4)] {16 = 14,25 = 24}

iobj - [I1,el] {1, 212]gup;, (11, 213]0p;} [I11 : Qive(el, 212,213, z14), {I3=11,22 = x1,
12 a(x2, h2, h3), 11 : cal(zl)] 1 = 4,214 = 22}

obj: [i1,el] {[I1,212]5up;} [11: give(el, z12, 213, x14), {I13=11,22 = x1,
12 :a(x2,h2,h3),11: cafxl), [1=14,214 = z2,
15 : a(x5, h5, h6), 14 : rat(x4)] 11 = 7,213 = 25}

Figure 3:MRs algebra with a CFG (hcons omitted for clarity)

forward? The differences betweemrs andRMRS  representation, though it has no effect on denotation.
are thatRMRS uses anchors and factors out thelhe binary in-g suffers from this problem.
ARGs. Thus forMRS, we need to redefine the no- One alternative would be to use an n-ary conjunc-
tion of a semantic entity from th®Rs algebra to tion symbol. However such representations cannot
add anchors. ARMRS EPthus contains: be constructed compositionally if modification is bi-
L nary branching as there is no way of incrementally
1. ahandle, which is the label of tiee adding the conjuncts. Another option we considered
2. an anchord) was the use of, possibly redundant, conjunction re-
3. arelation lations associated with each element which could be
combined to produce a flat conjunction. This leads
to a spurious in-g in the case where there is no mod-
Hooks also include anchorsf[l,a,:]} is a hook. ifier. This looks ugly, but more importantly, does
Instead of the rels list only containingps, such not allow for incremental specialisation, although
as ll:.chase(e,x,y), it contains a mixture efs the demonstration of this would take us too far from
and ARGs, with associated anchors, such dbke main point of this paper.
[1:al:chase(e)l:al:ARG1(x)11:al:ARG2(y). But We therefore assume a modified versiorRefRS
formally ARGs areeps according to the definition which drops in-g symbols but uses anchors instead.
above, so this requires no amendment of the algdhis means thakMrRsandMRs TFS grammars can
bra. Fig. 4 shows themRsversion of Fig. 2. be essentially identical apart from lexical types. Fur-
As mentioned above, earlier forms MRS used thermore, it turns out that, for composition without
an explicit representation for conjunction: the in-alexicon, an anchor is needed in the hook regardless
group, or in-g. Reasons to avoid explicit binaryof the treatment of conjunction (see below).
conjunction were discussed with respecmrs by
Copestake et al. (2005) and readers are referred g’o

that paper for an explanation: essentially the probs/e now discuss the algebra for grammars which
lem is that the syntactic assumptions influence thgo not have access to subcategorization information
semantic representation. e.g., the order of combind thus are neither syntactically nor semantically
nation of intersective modifiers affects the semantigexicalist. We concentrate in particular on composi-
2Current DELPH-IN grammars generally construstrss  tion for the grammar used in tlrASPSystem.RASP

which may be converted intevrss. However,RMRs has  consists of a tokenizer, POS tagger, lemmatizer, tag
potential advantages, for instance in allowing more extensive d statistical di bi tor. Of
lexical underspecification than is possible witlrs: e.g., >SqUENCE grammar and statistical disambiguator.

(Haugereid, 2004). the robust analysers we have looked RSP pro-

4. up to one argument of the relation

RMRS composition without a lexicon
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hook slots rels egs hcons

cat: [I1,al,21] {} [I1:al:cafxl)] {} I

a: [14,a2,22] {[I3,a2,22]spec} [12:0a2:a(x2), {} [h2 =4 (3]
12 : a2 :rstr(h2),12 : a2 : body(h2)]

acat: [l4,a4,22] {} [1:al:cafxl),(2:a2:a(x2), {i13=11, [h2=,13]

12 :a2:rstr(h2),(2: a2 :body(h2) 22 =xl]

Figure 4: Example of themRrsalgebra.

vides the biggest challenge for tiRe1RS approach cat chased the rat, it should be possible to derive
because it provides quite detailed syntactic analthe ARG1 and ARG2 fochase by associating the
ses which are somewhat dissimilar to theG, it ARG1 with the application of th&/ np_vp RASP
is an intermediate rather than a shallow processaule (i.e.,S- >NP VP) and the ARG2 with the appli-
The RMRS approach can only be fully successful tocation of theV1l/ v_np rule. But since there can be
the extent that it abstracts away from the differenceso slot information in the lexical structures (at least
in syntactic analyses assumed by different systemsot for open-class words), it is necessary to modify
so intermediate processors are more difficult to dedhe lexicalist approach to semantics taken so far.
with than shallow ones. We assume that both the ARGs and the slots are
Instead of normal lexical entrieRASP uses the specified at a phrasal level rather than lexically. As
POS tags for the words in the input. For the exammentioned ir2.1, themrs algebra allows for rules
ple in Fig. 1, the output of the POS tagging phase i$0 contribute semantics as though they were normal
the AT fat_JJ catNNL1 sit+edVVD on_ll a_AT1 phrases. The central idea in the application of the
matNN1 algebra torASPis to make use of construction se-
The semantics associated with the individual wordsantics in all rules. Fig. 5 illustrates this with the
in the sentence can be derived from a ‘lexicon’ ol/1/ v_np rule (the NP has been simplified for clar-

POS tags, which defines tle®@s. Schematically: ity) assuming the same sort of syntax-semantics in-
AT  lexrel.q(x) NN1 lexreln(x) terface specification as shown earlier for the CFG.
AT1 lexrelq(x) VVD lexrel-v(e,st) This is semantically ternary because of the rule se-
JJ lexrelj(x) 1l lexrel_p(e) mantics. The rule has anrRG2 slot plus a sloR

Here, ‘lexrel’ is a special symbol, which is towhich is instantiated by the verb’s hook. In effect,
be replaced by the individual lemma (with athe rule adds a slot to the verb.
leading underscore) — e.g., lexrefe,qst) Yields |t is necessary for the anchor of the argument-
I1:al:sitv(e). Producing the semantics from theraking structure to be visible at all points where ar-
tagger output and this lexicon is a simple matter ojuments may be attached. For instance, in the ex-
substitution. AllEps are labelled with unique labels gmple above, the anchor of the vethase has to
and all variables are different unless repeated in thge accessible when the ARGL relation is introduced.
same lexical entry. Although generally the anchor will correspond to the
If the analysis were to stop at POS tagging, thanchor of the semantic head daughter, this is not the
semantic composition rules would apply trivially.case if there is a scopal modifier (considerat did
There are no slots, the hooks are irrelevant and thepet chase arat: the ARG1 must be attacheddbase
are no equalities. The composition principle of acrather than taot). This is illustrated bynot sleep
cumulation of elementary predications holds, so thiy Fig. 6. Becausaot is associated with a unique
semantics of the result involves an accumulation ahg inRASP, it can be assigned a slot and an ARG1
the rels (see the example at the bottom of Fig. 1). directly. The anchor of the result is equated with
When using the fullRAsP parser, although we the label ofsleep and thus the subject ARG1 can be
cannot expect to obtain all the details available frorappropriately attached. So the hook would have to
deep grammars, we can derive some relational struiriclude an anchor even if explicit conjunction were
ture. For instance, given a sentence suchthes used instead of equating labels.
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VP->V NP
opargz(opr(rule,V), NP)

chase [1,al,el] {} [I1: al : chasgel)] {}
rule: [12,a2,e2] {[I2,a2,¢€2],, [12: a2 : ARG2(22)] {}
14, a4, x2]4rg2}
(rule V)Ir: [12,a2,e2] {[l4,22]4rg2} [[2:al:ARG2(22),I1: al : chasgel)] {i1=12,e2=el}
it : [13,a3,23] {} [13 : a3 : pron(z3)] {}
chaseit  [12,a2,e2] {} [[2:a2:ARG2(x2),l1: al : chasé¢el), {l1 =12,e2=cl,
I3 : a3 : pron(z3)] 14 =13,22 =23}

Figure 5:RASP-RMRS algebra (hcons omitted)

not: [11,a2,e2] {[I2,a3,€2]moa} [I1:al:not(e2),i1:al:ARGL(R4)] {} [hd=,12]
sleep: [12,a2,e2] {} (12 : a2 : sleefde2)] {3 1
notsleep [i1,a2,e2] {} [11:al:not(e2),l1:al: ARGL(h4), {} [hd =413]

12 : a2 : sleeffe2)]

Figure 6:RASP-RMRSillustrating the use of the anchor

6 Experimentswith RASP-RMRS rule V1/v_np

] ) ) o daughters V NP
In this section, we outline the practical implementag o \head v

tion of the algebra foRASP-RMRS. TheRASPtag 0k [1,a €] rels {I:a:ARR(x)}
sequence grammar is formally equivalent to a CFC%qS {xz;\le i ndex. | =V. | abel
it uses phrase structure rules augmented with fea- \ ’
tures. As discussed, the algebra requires that ops
are specified for each rule application, and the eas- . . . .
. . . . . If no semantic rule is specified corresponding to
iest way of achieving this is to associate semantic : .

- b a rule used in a tree, the rels are simply appended.
composition rules with each rule name. Composi: ) o o .
: , Semantic composition is thus robust to omissions in
tion operates on the tree output fraxasep, e.g.,:

the semantic component of the grammar. In fact, se-

a=V. anchor}

(| T/txt-scl/----| mantic rules can be constructed semi-automatically,
(| S/ np_vp| rather than fully manually, although we do not have
(| NP/ det _nl1| |Every:1_AT1| space to discuss this in detail here.

( |(|V[1\|/1</|n| | LZ?LéaNgll\/{/?Dl ) There are cases of incompatibility betweensp-

" RMRSandERG-RMRS. For example, th&RG treats

Composition operates bottom-up: the semantiit as expletive irit rains: the lexical entry forain
structures derived from the tags are combined agpecifies an expletive subject (i.e., a semantically
cording to the semantics associated with the rulemptyit). RASP makes no such distinction, since
The implementation corresponds very directly to thét lacks the lexical information and thus the sentence
algebra, although the transitive closure of the equalkas extraneous relations for the pronoun and an in-
ties is computed on the final structure, since nothingorrect ARG1 forrain. This is an inevitable conse-
requires that it be available earlier. quence of the lack of lexical information RASP.

The notation used to specify semantics associatétbwever, from the perspective of the evaluation of
with the rules incorporates some simplifications tdhe revised algebra, the issue is whether there are any
avoid having to explicitly specify the slot and ops.cases where compositional constructionrRasp-

The specification of equalities between variables arRIMRSs which matcrERG-RMRSs is impossible due
components of the individual daughters’ hooks is & the restrictions imposed by the algebra. No such
convenient shorthand for the full algebra. cases have been found.
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Abstract al., 2000; Stevenson and Greenwood, 2005; Sudo et
al., 2001; Sudo et al., 2003; Yangarber, 2003). In
Several recent approaches to Information these approaches extraction patterns are essentially
Extraction (IE) have used dependency trees parts of the dependency tree. To perform extraction
as the basis for an extraction pattern repre- they are compared against the dependency analysis
sentation. These approaches have used a va- of a sentence to determine whether it contains the
riety of pattern models (schemes which de-  pattern.

fine the parts of the dependency tree which Each of these approaches relies orpattern
can be used to form extraction patterns). modelto define which parts of the dependency tree
Previous comparisons of these pattern mod-  can he used to form the extraction patterns. A vari-
els are limited by the fact that they have used ety of pattern models have been proposed. For ex-
indirect tasks to evaluate each model. This ample the patterns used by Yangarber et al. (2000)
limitation is addressed here in an experiment  gre the subject-verb-object tuples from the depen-
which compares four pattern models using  gency tree (the remainder of the dependency parse is
an unsupervised learning algorithm and a gjiscarded) while Sudo et al. (2003) allow any sub-
standard |IE scenario. It is found that there  {ee within the dependency parse to act as an ex-
is a wide variation between the models’ per-  {raction pattern. Stevenson and Greenwood (2006)
formance and suggests that one model is the - showed that the choice of pattern model has impor-
most useful for IE. tant implications for IE algorithms including signifi-
cant differences between the various models in terms

1 Introduction of their ability to identify information of interest in

A common approach to Information Extraction (IE)teXt-

is to (manually or automatically) create a set of pat- However, there has been little comparison be-
terns which match against text to identify informaiween the various pattern models. Those which have

tion of interest. Muslea (1999) reviewed the apbeen carried out have been limited by the fact that
proaches which were used at the time and fouri#ey used indirect tasks to evaluate the various mod-
that the most common techniques relied on lexiccels and did not compare them in an IE scenario.

syntactic patterns being applied to text which ha¥v/e address this limitation here by presenting a di-

undergone relatively shallow linguistic processingrect comparison of four previously described pattern

For example, the extraction rules used by Soderlarfiodels using an unsupervised learning method ap-
(1999) and Riloff (1996) match text in which syn-plied to a commonly used IE scenario.

tactic chunks have been identified. More recently The remainder of the paper is organised as fol-
researchers have begun to employ deeper syntachkiovs. The next section presents four pattern models
analysis, such as dependency parsing (Yangarbervetich have been previously introduced in the litera-

81

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 81-88,
Prague, Czech Republic, June, 2007. (©2007 Association for Computational Linguistics



ture. Section 3 describes two previous studies whidh the dependency tree shown in Figure 1. How-
compared these models and their limitations. Seever, the SVO model cannot represent information
tion 4 describes an experiment which compares ttaescribed using other linguistic constructions such
four models on an IE task, the results of which aras nominalisations or prepositional phrases. For ex-
described in Section 5. Finally, Section 6 discussemmple the SVO model would not be able to recog-
the conclusions which may be drawn from this worknise that Smith’s new job title is CEO since these

patterns ignore the part of the dependency tree con-
2 |E Pattern Models taining that information.

In dependency analysis (Mel'€uk, 1987) the syntax Chains. A pattern is defined_ as a path between a

of a sentence is represented by a set of directed BErP Node and any other node in the dependency tree
nary links between a word (the head) and one of iigassing through zero or more intermediate nodes
modifiers. These links may be labelled to indicatéSudo et al., 2001). Figure 2 shows examples of the
the relation between the head and modifier (e.g. sufhains which can be extracted from the tree in Figure

ject, object). An example dependency analysis fot-

the sentencéAcme hired Smith as their new CEO, Chains provide a mechanism for encoding infor-
replacing Bloggsis shown Figure 1. mation beyond the direct arguments of predicates

and includes areas of the dependency tree ignored by

hire/v the SVO model. For example, they can represent in-
subj 53 vpsc_mod formation expressed as a nominalisation or within a
Acme/N Smith/N replace/V prepositional phrase, e.gThe resignation of Smith
. o5 from the board of Acme "..However, a potential
shortcoming of this model is that it cannot represent
CEO/N Bloggs/N the link between arguments of a verb. Patterns in the
gen rod chain model format are unable to represent even the

simplest of sentences containing a transitive verb,

) e.g.“Smith left Acme”.
Figure 1: An example dependency tree. Linked Chains The

their/N new/A

linked chains model
(Greenwood et al., 2005) represents extraction pat-

The remainder of this section outlines four mOOI'terns as a pair of chains which share the same verb

els for representing extraction patterns which can br?ut no direct descendants. Example linked chains

derived from dependency trees. o .
. . _ are shown in Figure 2. This pattern representa-
Predicate-Argument Model (SVO): A simple tion encodes most of the information in the sen-

approach, used by Yangarber et al. (2000), Yangatrénce with the advantage of being able to link to-

ber (2003) and Stevenson and Greenwood (ZOOE%ether event participants which neither of the SVO

iS to use subject-verb-object tuples from the depe v chain model can, for example the relation be-

dency parse as extraction patterns. These consist 0f . «c it and“Bloggs” in Figure 1.

a verb and its subject and/or direct object. "Figure Subtrees: The final model to be considered is the
2 shows the two SVO patterhsvmch are produced subtree model (Sudo et al., 2003). In this model any

fothE_e dep;nldency dtreﬁ sho]\c/vn n :_:lgureh_l.h . subtree of a dependency tree can be used as an ex-
'S modet can iden ity information WhICh 1S €X* 4 ction pattern, where a subtree is any set of nodes

pressed using simple predicate-argument ConStruﬁ;{the tree which are connected to one another. Sin-

tions such as the relation betweAomeand Smith gle nodes are not considered to be subtrees. The
_ 1_Th|e fOfmﬁlism used fgr rerérisegtirég depﬁ“?;gg%’)pager@btree model is a richer representation than those

IS similar to the one introduce y Sudo et al. . achy:

node in the tree is represented in the forragib/ c] (e.g. Ialscussed so far and can represgnt any part of a de-
subj [ N Acne] ) wherec is the lexical item Acne), b its ~ pendency tree. Each of the previous models form a

grammatic_al tagN) anda_l the dependency relation between th.iSproper subset of the subtrees. By Choosing an appro-
node and its parens(ibj ). The relationship between nodes is__ . t bt it i ible to link t th .
represented a¥( A+B+C) which indicates that nodes, Band ~ Pr1até SUbree It 1S possible o link together any pair

Care direct descendents of node of nodes in a tree and consequently this model can
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SvVO
[V/ hire] (subj [N Acne] +obj [ N Smi t h])
[VIrepl ace] (obj [ N Bl oggs])

Chains

[ V/ hire] (subj [N Acne])

[V hire](obj[NSnith])

[V/hire] (obj[N/Snith](as[N CEQ))

[V/hire] (obj[N/Snmith](as[N CEQ (gen[N'their])))

Linked Chains

[V/ hire] (subj [N Acne] +obj [ N Smi th])

[ VI hire] (subj [N Acne] +obj [ N/ Smit h] (as[ N CEQ] ) )

[V/Ihire] (obj [N/ Smith]+vpscarod[ V/ repl ace] (obj [ N Bl oggs]))
Subtrees

[VIhire] (subj [ N Acre] +obj [ N Smi t h] +vpsc.nod[ V/ repl ace])
[V hire] (subj[ N Acne] +vpscod[ V/ r epl ace] (obj [ N Bl oggs]))
[N Smith](as[ N CEQ (gen[ Nt hei r] +nod[ A/ new] ))

Figure 2: Example patterns for four models

represent the relation between any set of items in thié&ely to cope with very large sets of candidate pat-

sentence. terns. The number of patterns generated therefore
has an effect on how practical computations using
3 Previous Comparisons that model may be. It was found that the number

of patterns generated for the SVO model is a lin-

There have been few direct comparisons of the vagar function of the size of the dependency tree. The
ious pattern models. Sudo et al. (2003) comparatumber of chains and linked chains is a polynomial
three models (SVO, chains and subtrees) on twlanction while the number of subtrees is exponen-
IE scenarios using a entity extraction task. Modtial.
els were evaluated in terms of their ability to iden- Stevenson and Greenwood (2006) also analysed
tify entities taking part in events and distinguishthe representational power of each model by measur-
them from those which did not. They found theing how many of the relations found in a standard IE
SVO model performed poorly in comparison withcorpus they are expressive enough to represent. (The
the other two models and that the performance afocuments used were taken from newswire texts and
the subtree model was generally the same as, biomedical journal articles.) They found that the
better than, the chain model. However, they digVvO and chain model could only represent a small
not attempt to determine whether the models coul@roportion of the relations in the corpora. The sub-
identify the relations between these entities, simplytee model could represent more of the relations than
whether they could identify the entities participatingany other model but that there was no statistical dif-
in relevant events. ference between those relations and the ones cov-

Stevenson and Greenwood (2006) compared tleged by the linked chain model. They concluded
four pattern models described in Section 2 in termthat the linked chain model was optional since it is
of their complexity and ability to represent rela-expressive enough to represent the information of
tions found in text. The complexity of each modelinterest without introducing a potentially unwieldy
was analysed in terms of the number of patternsumber of patterns.
which would be generated from a given depen- There is some agreement between these two stud-
dency parse. This is important since several dés, for example that the SVO model performs
the algorithms which have been proposed to makgoorly in comparison with other models. However,
use of dependency-based IE patterns use iterati&evenson and Greenwood (2006) also found that
learning (e.g. (Yangarber et al., 2000; Yangarbethe coverage of the chain model was significantly
2003; Stevenson and Greenwood, 2005)) and are urnerse than the subtree model, although Sudo et al.
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(2003) found that in some cases their performancg2 Extraction Scenario

could not be dlstlngwsh.ed. n addltlgn'to these dIS1"he ranking process was applied to the IE scenario
agreements, these studies are also limited by the fact

that they are indirect; they do not evaluate the varil-JS‘eOI for the sixth Megsage U.nderstandmg qonfer—
' ence (MUC-6). The aim of this task was to iden-
ous pattern models on an |E task. tify management succession events from a corpus
of newswire texts. Relevant information describes
an executive entering or leaving a position within a
We compared each of the patterns models describé@mpany, for exampléLast month Smith resigned
in Section 2 using an unsupervised IE experimerﬂs CEO of Rooter Ltd.” This sentence described as
similar to one described by Sudo et al. (2003).  event involving three items: a perso8n(itt), po-

Let D be a corpus of documents arftia set of Sition (CEQ) and companyRooter LtJ. We made
documents which are relevant to a particular extra¢ise of a version of the MUC-6 corpus described by
tion task. In this context “relevant” means that theSoderland (1999) which consists of 598 documents.
document contains the information we are interested For these experiments relevant documents were
in identifying. D and R are such thaD = R U R identified using annotations in the corpus. However,
andRN R = (. As assumption behind this approactthis is not necessary since Sudo et al. (2003) showed
is that useful patterns will be far more likely to occurthat adequate knowledge about document relevance
in R thanD overall. could be obtained automatically using an IR system.

4 Experiments

4.1 Ranking Patterns 4.3 Pattern Generation

Patterns for each model are ranked using a techniglie texts used for these experiments were parsed
inspired by the tf-idf scoring commonly used in In-using the Stanford dependency parser (Klein and
formation Retrieval (Manning and Schutze, 1999)Manning, 2002). The dependency trees were pro-
The score for each patterp, is given by: cessed to replace the names of entities belonging
to specific semantic classes with a general token.
A Three of these classes were used for the manage-
score(p) = tfp x <J> (1) ment succession domaiPERSON, ORGANI SA-
P Tl ON and POST). For example, in the dependency
wheretf, is the number of times patteqm ap- analysis of“Smith will became CEO next year”
pears in relevant documentd] is the total number “Smith” is replaced byPERSON and “CEQ” by
of documents in the corpus anff, the number of POST. This process allows more general patterns to
documents in the collection containing the patterbe extracted from the dependency trees. For exam-
P. ple, [ V/ become] (subj [ N PERSON] +obj [ N/ POST] ) .
Equation 1 combines two factors: therm fre- Inthe MUC-6 corpus items belonging to the relevant
guency(in relevant documents) anidverse docu- semantic classes are already identified.
ment frequencyacross the corpus). Patterns which Patterns for each of the four models were ex-
occur frequently in relevant documents without betracted from the processed dependency trees. For
ing too prevalent in the corpus are preferred. Sudde SVO, chain and linked chain models this was
et al. (2003) found that it was important to find theachieved using depth-first search. However, the
appropriate balance between these two factors. Thepumeration of all subtrees is less straightforward
introduced the3 parameter as a way of controllingand has been shown to be#aP-complete prob-
the relative contribution of thverse document fre- lem (Goldberg and Jerrum, 2000). We made use of
quency f is tuned for each extraction task and patthe rightmost extensioalgorithm (Abe et al., 2002;
tern model combination. Zaki, 2002) which is an efficient way of enumerating
Although simple, this approach has the advantagal subtrees. This approach constructs subtrees iter-
that it can be applied to each of the four pattern modatively by combining together subtrees which have
els to provide a direct comparison. already been observed. The algorithm starts with a
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set of trees, each of which consists of a single node. It can be seen that the various pattern models gen-
At each stage the known trees are extended by tleeate vastly different numbers of patterns and that
addition of a single node. In order to avoid dupli-the number of subtrees is significantly greater than
cation the extension is restricted to allowing nodethe other three models. Previous analysis (see Sec-
only to be added to the nodes on the rightmost pation 3) suggested that the number of subtrees which
of the tree. Applying the process recursively createsould be generated from a corpus could be difficult
a search space in which all subtrees are enumeratdprocess computationally and this is supported by
with minimal duplication. our findings here.

T'he.rightmost exten§ion algorithm. is m_ost suiteq,h4 Parameter Tuning
to finding subtrees which occur multiple times and, _ _ .
even using this efficient approach, we were unabl&N€ value off in equation 1 was set using a sep-
to generate subtrees which occurred fewer than fo@f@t€ corpus from which the patterns were gener-
times in the MUC-6 texts in a reasonable time. Sim@t€d, @ methodology suggested by Sudo etal. (2003).
ilar restrictions have been encountered within othe}© 9enerate this additional text we used the Reuters
approaches which have relied on the generation §forPus (Rose etal., 2002) which consists of a year's
a comprehensive set of subtrees from a parse foforth of newswire output. Each document in the
est. For example, Kudo et al. (2005) used subtredkUters corpus has been manually annotated with
for parse ranking but could only generate subtred§PIC codes indicating its general subject area(s).
which appear at least ten times in a 40,000 sentenf¥1€ Of these topic code<411) refers to man-
corpus. They comment that the size of their data s@gement succession events and was used to identify
meant that it would have been difficult to completélocuments which are relevant to the MUCE IE sce-
the experiments with less restrictive parameters. IRari0. A corpus consisting of 348 documents anno-
addition, Sudo et al. (2003) only generated subtreddted with codeC411 and 250 documents without
which appeared in at least three documents. Kudbat code, representing irrelevant documents, were
et al. (2005) and Sudo et al. (2003) both used in@ken from the Reuters corpus to create a corpus

rightmost extension algorithm to generate subtreedith the same distribution of relevant and irrelevant
documents as found in the MUC-6 corpus. Unlike

Tg Iprowdel a d'rSCt cotlampa_rlson ]?tfhthe tpattferr}he MUC-6 corpus, items belonging to the required
MOCEIS We alSo produced Versions of the Sets 0 IoaS'Iémantic classes are not annotated in the Reuters

terns ex_tract(-?'d for the SVO,_cham and linked Cha“@)orpus. They were identified automatically using
models in which patterns which occurred fewer tha named entity identifier

four times were removed. Table 1 shows the num- patterns generated from the MUC-6 texts

ber of patterns generated for each of the four mocé/(/ere ranked using formula 1 with a variety of val-

els when the patterns are both filtered and unf”l]es of 3. These sets of ranked patterns were then

tered. (Although the set of unfiltered subtree patflsed to carry out a document filtering task on the

:Erns wekr)e no;[c ge?terated E.'ShpOSS'IZIeth determt"geuters corpus - the aim of which is to differentiate
€ number of patterns which would be generateg, ., nonts pased on whether or not they contain a

using a process described by Stevenson and Gre?gl'ation of interest. The various values férwere

wood (2006).) compared by computing the area under the curve. It
was found that the optimal value fgrwas 2 for all

Model | Filtered  Unfiltered pattern models and this setting was used for the ex-
SVO | 9,189 23,128 periments.
Chains| 16,563 142,019
Linked chains| 23,452 493,463 4.5 Evaluation
Subtrees 369,453 1.69<10'2 Evaluation was carried out by comparing the ranked

lists of patterns against the dependency trees for the
Table 1: Number of patterns generated by eac{OIUC—6 texts. When a pattern is found to match
model against a tree the items which match any seman-

85



tic classes in the pattern are extracted. These iterissvery low in this evaluation and part of the reason
are considered to be related and compared agaitfiet this is the fact that the patterns have been filtered
the gold standard data in the corpus to determine allow direct comparison with the subtree model.
whether they are in fact related. Figure 4 shows the results when the unfiltered SVO,
The precision of a set of patterns is computed aghain and linked chain patterns are used. (Perfor-
the proportion of the relations which were identifiednance of the filtered subtrees are also included in
that are listed in the gold standard data. The recall this graph for comparison.)
the proportion of relations in the gold standard data This result shows that the addition of extra pat-
which are identified by the set of patterns. terns for each model improves recall without effect-
The ranked set of patterns are evaluated incremeimg the maximum precision achieved. The chain
tally with the precision and recall of the first (highestmodel also performs badly in this experiment. Pre-
ranked) pattern computed. The next pattern is thetision of the SVO model is still high (again this is
added to the relations extracted by both are evalalue to the same three highly accurate patterns) how-
ated. This process continues until all patterns amver the maximum recall achieved by this model is

exhausted. not particularly increased by the addition of the un-
filtered patterns. The linked chain model benefits
5 Results most from the unfiltered patterns. The extra patterns

_ . lead to a maximum recall which is more than dou-
Figure 3 shows the results when the four filtered pagyje any of the other models without overly degrad-

tern models, ranked using equation 1, are comparefly precision. The fact that the linked chain model
A first observation is that the chain modelis aple to achieve such a high recall shows that it is
performs poorly in comparison to the othergple to represent the relations found in the MUC-6
three models. The highest precision achieved byt unlike the SVO and chain models. It is likely
this model is 19.9% and recall never increasefat the subtrees model would also produce a set of
beyond 9%. In comparison the SVO model inpatterns with high recall but the number of poten-

cludes patterns with extremely high precision bufia| patterns which are allowable within this model
the maximum recall achieved by this model isnakes this impractical.

low. Analysis showed that the first three SVO
patterns had very high precision. These werg piscussion and Conclusions
[ V/ succeed] (subj [ N PERSON] +obj [ N/ PERSON] ) ,
[ V/ be] (subj [ N PERSON] +obj [ N PCST] ) and Some of the results reported for each model in these
[ V/ becone] (subj [ N PERSON] +obj [ N PCST] ), experiments are low. Precision levels are generally
which have precision of 90.1%, 80.8% and 78.9%elow 40% (with the exception of the SVO model
respectively. If these high precision patterns areshich achieves high precision using a small number
removed the maximum precision of the SVO modebf patterns). One reason for this that the the patterns
is around 32%, which is comparable with the linkedvere ranked using a simple unsupervised learning
chain and subtree models. This suggests that, whigdgorithm which allowed direct comparison of four
the SVO model includes very useful extractiondifferent pattern models. This approach only made
patterns, the format is restrictive and is unable tase of information about the distribution of patterns
represent much of the information in this corpus. in the corpus and it is likely that results could be im-
The remaining two pattern models, linked chainproved for a particular pattern model by employing
and subtrees, have very similar performance arore sophisticated approaches which make use of
each achieves higher recall than the SVO model, akdditional information, for example the structure of
beit with lower precision. The maximum recall ob-the patterns.
tained by the linked chain model is slightly lower The results presented here provide insight into the
than the subtree model but it does maintain higharsefulness of the various pattern models by evaluat-
precision at higher recall levels. ing them on an actual IE task. It is found that SVO
The maximum recall achieved by all four modelgatterns are capable of high precision but that the
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Figure 4: Comparison of unfiltered models.
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restricted set of possible patterns leads to low re- workshop on Machine Learning for Information Ex-
call. The chain model was found to perform badly traction, Orlando, FL.

with low recall and precision regardless of whetheg)ien Riloff. 1996. Automatically Generating Extraction
the patterns were filtered. Performance of the linked Patterns from Untagged Text. Thirteenth National

chain and subtree models were similar when the pat- Conference on Artificial Intelligence (AAAI-9§ages
terns were filtered but unfiltered linked chains were 1044-1049, Portland, OR.

capable of achieving far higher recall than the filTony Rose, Mark Stevenson, and Miles Whitehead.
tered subtrees. 2002. The Reuters Corpus Volume 1 - from Yes-

; ; . terday’'s News to Tomorrow’s Language Resources.
These experiments suggest that the linked chain In Proceedings of the Third International Conference

model is a useful one for IE since itis simple enough | anguage Resources and Evaluation (LREG-02)
for an unfiltered set of patterns to be extracted and pages 827-832, La Palmas de Gran Canaria.

able to represent a wider range of information thagtephen Soderland. 1999. Learning Information Extrac-

the SVO and chain models. tion Rules for Semi-structured and Free TeMachine
Learning 31(1-3):233-272.
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Abstract

The lack of a large annotated systemic func-
tional grammar $FG) corpus has posed a
significant challenge for the development of
the theory. AutomatingsFG annotation is
challenging because the theory uses a mini-
mal constituency model, allocating as much
of the work as possible to a set of hierarchi-
cally organised features.

In this paper we show that despite the un-
orthodox organisation odFG, adapting ex-
isting resources remains the most practical
way to create an annotated corpus. We
present and analyse SFGBank, an automated
conversion of the Penn Treebank into sys-
temic functional grammar. The corpus is
comparable to those available for other lin-
guistic theories, offering many opportunities
for new research.

Introduction

when interrogative mood is selected, the order of
the subject and first auxiliary are reversed.

Systemic grammars are very different from gram-
mars influenced by the formalist tradition. Systemic
analysis locates a constituent within a typology, and
yields a set of features that describe its salient prop-
erties. These features have proven useful for re-
search in applied linguistics, on topics such as stylis-
tics, discourse analysis and translation. As a gener-
ative theory, systemic grammars are less effective.
There have been a few attempts, such as those dis-
cussed by O’'Donnell and Bateman (2005), but as yet
a wide coverage systemic grammar that can be used
for tractable parsing has not been developed.

The lack of a corpus and parser has limited re-
search on systemic grammars, as corpus studies have
been restricted to small samples of manually coded
examples, or imprecise queries of unannotated data.
The corpus we present, obtained by converting the
Penn Treebank, addresses this issue. It also suggests
a way to automatically code novel text, by convert-
ing the output of a parser for a different formalism.

Systemic functional grammar (Halliday andThis would also allow the use &frG features for
Matthiessen, 2004) aims to describe the set ofLP applications to be explored, and support current
meaningful choices a speaker makes when puttingrasearch usingrafor applied linguistics.

thought into words. Each of these choices is seen asThe conversion process relies on a set of manually
a resource for shaping the meaning in a particularoded rules. The first step of the process is to col-
way, and the selection will have a distinct grammatlect srGclauses and their constituents from parsesin
ical outcome as well as a semantic implication. Théhe Penn Treebank. Each clause constituent is then
choices are presented hierarchically, so that earssigned up to three function labels, for the three si-
selections restrict other choices. For instance, if multaneous semantic and pragmatic structures Hal-
speaker chooses imperative mood for a clause, théglay (1970) describes. Finally, the system features
cannot choose a tense. Each selection is linked taaae calculated, using rules referring to the function
syntactic expression rule. When imperative moothbels assigned in the previous step. This paper ex-
is selected, the subject of the clause is suppresseadnds the work described in Honnibal (2004).

&9
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2 Related Work Interpersonalfunction labels are assigned to clause

constituents in determining the clause’s communica-

Converting the_ Penn Treebank is the stande_lrd 2fiVe status. The most important interpersonal func-
proach to creating a corpus annotated according tq

ific linquistic th This has b h h Fi%ns areSubjectandFinite, since the relative posi-
specific linguistic theory. This has been the metho on of the constituents bearing these labels largely
used to creataTAG (Frank, 2001),LFG (Frank

tal. 2003 & Hock \ d Steed determines whether the clause will be a question,
etal., ) anetcG (Hockenmaier and Stee man, i -+ement or command.

2005) corpora, among others. We employ a similar The textual structure of the clause includes the

methodology, converting the corpus using m"’mua”?/unctionsThemeand Rheme following Halliday’s

Spg?r:fclzeedtr:zslise-annotat'on is semanticallv oriented (1970) theory of information structure.
! lonis s icafly orl ' Finally, theexperientialfunction of a constituent

the work also bears some resemblance to ProPs' its semantic role, described in terms of a small
bank (Palmer et al., 2005). However, Propbank is '

. o ) Set of labels that are only minimally sensitive to the

concerned with manually adding information to the . :
. . Semantics of the predicate.

Penn Treebank, rather than automatically reinter-

preting the same information through the lens of &  aApnnotation Implemented

different linguistic theory.

We chose not to base our conversion on the PropVe base our annotation on the clause network in
bank annotation, as it does not currently cover ththe Nigel grammar (Mann and Matthiessen, 1983),
Brown or Switchboard sections of the Treebankas it is freely available and discussed at length in
The wider variety of genres provided by these sedVatthiessen (1995). It is difficult to include annota-
tions makes the corpus much more usefulg$e, tion from the group and phrase networks, because of

since the theory devotes significant attention to praghe flat bracketing of constituents in the Penn Tree-

matic phenomena and stylistic variation. bank. The converted corpus has full coverage over
. . all sections of the Penn Treebank 3 corpus.
3 Systemic Functional Grammar We implement features from 41 systems from the

Generating a constituent using a systemic funcc_lause network, out of a possible 62. The most

tional grammar involves traversing a decision-treel_?_rhommem m|tssmg feflturels reI.?te tol process type. ¢
like structure referred to assystem netwotkThe € process type system classilies clauses as one o

nodes of this tree are referred togstemsand the four Ibrsad Tem;}ntlcgypes: rr:aterl[al, mental, vef_rbal
options from the systems are referred tdestures or relational, with subsequent sysiems maxing finer

At each system, the feature selected may add CO5‘4[ained distinctions. This is mostly determined by

straints on the type, number or order of the internépe argument structure of the verb, but also depends

structure of the constituent. When the entire netQn its lexical semantics. Process type assignment

work has been traversed, the constraints are unifie?,zre:;;:l:gegslgé?;novéotrﬁ sensttz an;bg]tl;ty, Soh\./\éi
and the required constituents generated. reu S ' IS system or rs wh

In order to annotate a sentence according to asy%(_apend on its result. Figure 1 gives an example of

. . . clause with interpersonal, textual and experiential
temic functional grammar, we must specify the se?

of features encountered as the system network is trallj-nCtIon labels applied to its constituents.

versed, and apply f.unc.tion Iab.els to each constituerg. Creating the Corpus

The function labeling is required because the con-

straints are always specified according to the childrG specifies the structure of a clause from ‘above’,

constituents’ function, rather than their form. by setting constraints that are imposed by the set of
Constituents may have more than one functiofeatures selected from the system network. These

label, assFG describes threenetafunctions fol-  constraints describe the structure in terms of inter-

lowing Halliday’s (1969) argument that a clause igpersonal, textual and experiential function labels.

structured simultaneously as a communicative act,hese functions then determine the boundaries of

piece of information, and a representation of realitythe clause, by specifying its constituents.

90



Constituent [[ Interpersonal [ Textual | Ideational

and - Txt. Theme -
last year Adjunct Top. Theme| Circumstance
prices Subject Rheme Participant
were Finite Rheme -
quickly Adjunct Rheme Circumstance
plummeting Predicator Rheme Process

Table 1:srGfunction labels assigned to clause constituents.

preprocess(parse) if verb.parent.label == VP
clauses = [] for sibling in verb.parent.children:
for word in parse.words(): if sibling.isWord():
if isPredicate(word): if sibling.offset > verb.offset:
constituents = getConstituents(word) return False
clauses.append(constituents) if sibling.label == "VP"
return False
Figure 2: Conversion algorithm. return True

The Penn Treebank provides rich syntactic treegigure 3: Determining whether aword is a predicate.

specifying the structure of the sentence. We ther@ode = predicate

fore proceed from ‘below’, using the Penn TreebanIlzohr}lstituegtsI =b [IloreoliC_ate]I Label
. . . . ile node.label not In clauseLabels:

to flnq clauses and their const_ltuents, then applym‘ﬁ for sibling in node.parent.children:

function labels to them, and using the function labels  if sibling != node:

as the basis for rules to traverse the system network. _ constituents.append(sibling)
for sibling in node.parent.children:

L. . if sibling !'= node
5.1 Finding Constituents and sibling.label in conjOrwHLabels:
In this stage, we search the Treebank parse for constituents.append(sibling)
SFGclauses, and collect their constituents. Clauses Figure 4: Finding constituents.
are identified by searching for predicates that head
them, and constituents are collecting by traversing.1.2 Getting Constituents

upwards from the predicate, collecting the nodes’ once we have a predicate, we can traverse the tree
siblings until we hit an S node. around it to collect the constituents in the clause it

There are a few common constructions whiclheads. We do this by collecting its siblings and mov-
present problems for one or both of these prong up the tree, collecting the ‘uncle’ nodes, until we
cedures. These exceptions are handled by prgt the top of the clause. Figure 4 describes the pro-
processing the Treebank tree, changing its structuggss more formally. The final loop collects conjunc-
to be compatible with the predicate and constituenfons and WH constituents that attach alongside the
extraction algorithms. Figure 2 describes the congjayse node, such as the ‘which’ in Figure 1.
version process more formally.

5.1.3 Pre-processing Ellipsis and Gapping

5.1.1 Finding predicates Ellipsis and gapping involve two or more pred-

A predicate is the main verb in the clause. In thécates sharing some constituents. When the shar-
Treebank annotation, the predicate will be the worghg can be denoted using the tree structure, by plac-
attached to the lowest node in a VP chain, becauseg the shared items above the point where the VPs
auxiliaries attach higher up. Figure 3 describes thirk, we refer to the construction as ellipsis. Figure
function to decide whether a word is a predicate. E% shows a sentence with a subject and an auxiliary
sentially, we want words that are the last word atshared between two predicates. 3.4% of predicates
tached to a VP, that do not have a VP sibling. share at least one constituent with another clause via

Figure 1 marks the predicates and constituents mllipsis. We pre-process ellipsis constructions by in-
a Treebank parse. The predicates are underlined, asgting an S node above each VP after the first, and
the constituents numbered to match the predicate.adding traces for the shared constituents.
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S

/\

NP1 VP
/\ /\
NP SBAR wasl VP
The plant WHNP 2 S employedl S-PRP1
| | |
which VP VP
/\ /\
is2 VP to3 VP

/\ /\
owned? PP2 make3 NP3

Ny |
by Vose Co them

Figure 1: A parse tree with predicates underlined and constituents numbered.

In gapping constructions, the shared constituent S
is the predicate itself, and what differs between the T
two clauses are the arguments. The Treebank uses NP VP
special trace rules to describe which arguments must | S
be copied across to the gapped clause. We create Prices continue S

traces to the shared constituents and add them to ‘

each gapped clause, so that the trace of the verb will VP

be picked up as a predicate later on. Gapping is a A

very rare phenomenon — only 0.02% clauses have torise

gapped predicates. Figure 6: Treebank representation of a sentence with

5.1.4 Pre-processing Semi-auxiliaries a semi-auxiliary.

In Figure 6 the verb ‘continue’ will match our
rules for predicate extraction, described in Sectiotions on the subject, and therefore should be treated
5.1. srGanalyses this and other ‘semi-auxiliaries’as full verbs with a clause complement. Other com-
(Quirk et al., 1991) as a serial verb constructionpromises are possible as well.
rgtherthan a matrix clause an_d'a complementclause.USing Matthiessen’s definition, we collect 5.3%
Since we wa_n_t to treat the finite verb as though fewer predicates than if we treated all semi-
were an auxiliary, we pre-process these cases byiliaries as main verbs. If the complement clause
simply deleting the S node, and attaching its chilp ¢ 5 gifferent subject from the parent clause, when
dren directly to the semi-auxiliary's VP. 0 o are merged the new verb will seem to have
Defining the semi-auxiliary constructions is NOlgyi4 arguments. 58% of these mergings introduce

so simple, however. Quirk et al. note that SOM&, extra argument in this way. For example,
of these verbs are more like auxiliaries than others,

and organise them into a rough gradient according
to their formal properties. The problem is that there will be analysed as thoughoomhas two argu-

is not clear agreement in therG literature about ments,investorsand market We prevent this from
where the line should be drawn. Matthiessen (199%)ccurring by adding an extra condition for merg-
describes all non-finite sentential complements dng clauses, stating that the subject of the embedded
serial-verb constructions. Martin et al. (1997) arguelause should be a trace co-indexed with the subject
that verbs such as ‘want’ impose selectional restrimf the parent clause.

Investors want the market to boom
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S

/\

NP VP
| T
Asbestos was VP
VP and VP
/\ /\
used PP replaced PP
in the early 1950s in 1956

Figure 5: Treebank representation of ellipsis. Predicates are underlined, shared items are in bold.

5.2 Constituent functions mantic role description, which relies pnocess type

As discussed above, we attach up to three functifatures. For instance, Participants ineabal pro-
labels to each clause constituent, one for eaeta- C€SS like ‘say’ have the role optiorgayer Target
function The rules to do this rely on the order of R€CeiverRndVerbiage

constituents and the function dash-tags in the PennDistinguishing process types requires a word
Treebank. Some experiential function rules also rgsense disambiguated corpus and a word sense sen-
fer to interpersonal labels, and some textual functiositive process type lexicon. While there is a signifi-
rules refer to experiential labels. cant intersection between the Penn Treebank and the
Semcor word sense disambiguated corpus, there is
currently no suitable process type lexicon. Conse-
The possible interpersonal function labels we a%juently, Participants have not been subtyped. The

sign areSubject ComplementAdjunct Finite, and  process is simply the verb phrase, while the Subject
Predicator The Finite and Predicator are the firsty, Complements are Participants.

tensed verb, and the predicate respectively. If there

are no auxiliary verbs, Halliday and Matthiessen

(2004) describes the predicate as functioning bo@_2_3 Textual Eunction labels
as Finite and Predicator. Since this is the only case

in which a constituent would receive multiple labels The textual metafunction describes the informa-

fr_oml al St')n?:I_e _T?;aﬂg_lcnfn' we instead assign thﬁon structure of the clause. Halliday’s textual func-

singie fabefrnite/redicatot . _tion labels ardextual Themdnterpersonal Theme
For. NPS' ,SUbJeCtS,’ Complements and AdjunCt"?opical ThemeaandRheme Theme and Rheme are

are distinguished using the Penn Treebank’s dasaften referred to as Topic and Comment in other the-

tag function labels. SFG always assigns preposi- yies of information structure (Vallduvi, 1993). The-

tional phrases the label Adjunct. All NP constituent%ries also disagree about exactly where to draw the
that are not marked with an adverbial function tag irﬂ)oundary between the two

the Treebank are label€&bmplementConjunctions

5.2.1 Interpersonal Function Labels

are not assigned interpersonal functions. In Halliday's theory, the Rheme begins after
o _ the first full constituent with an experiential func-
5.2.2 Experiential Function Labels tion label, and extends to the end of the clause.

The experiential function labels we assign ar@he first constituent with an experiential function
Participant, Processand Circumstance This is a is labeled Topical Theme. Constituents before it
simplification of the function labels described byare labeled either Interpersonal Theme or Textual
Halliday and Matthiessen (2004), as Participants afEheme. Auxiliaries and vocatives are labeled In-
usually subdivided into what other linguistic theo-terpersonal Theme, while conjunctions are labeled
ries refer to as semantic rolesraG has its own se- Textual Theme.
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System [ Null% | Feature 1 [ Feature 2

clause class 0% major (86%) minor (13%)
agency 13% effective (52%) middle (34%)
conjunction 13% non-conjuncted (64%)| conjuncted (21%)
finiteness 13% finite (67%) non-finite (19%)
polarity 13% positive (81%) negative (4%)
rank 13% ranking (66%) shifted (19%)
secondary/beta clause 13% false (58%) true (28%)
status 13% bound (45%) free (41%)
deicticity 32% temporal (60%) modal (7%)
person 32% non-interactant (54%)| interactant (13%)
theme selection 32% unmarked (58%) marked (9%)
voice 47% active (45%) passive (6%)
embed type 80% nominal qualifier (15%)| other qualifier (3%)
theme role 90% as adjunct (7%) as process (1%)
passive agency 93% non-agentive (5%) agentive (1%)

Table 2: Selected systems and how often their features are selected.

5.3 System Selections There are a few more granular systems for in-

As discussed above, the system features are Orgéﬂ[rogative clauses, recording whether the question

ised into hierarchies, with every feature assuming 5 polar or WH. If the clause is WH.mterroganve,
null value unless its system’s entry condition is melt_here are two further features recording whether the

We therefore approach the system network mucrl,?quested constituent functions as Subject, Adjunct
like a decision tree, using rules to control how th&' 'Complement. The vaIue; o.f these features are
network is traversed. quite simple to calculate, by finding the WH element

The rules used to traverse the network cannot &"°"9 the constituents and retrieving its interper-

explained here in full, as there are 41 such decisio%Onal function. ] ] ]

functions currently implemented. Table 2 lists a few T the clause is not imperative, there are systems
of the systems we implement, along with how Of_recc.)rdlng the person (first, 'second'(')r thl_rd) of the
ten their features are selected. Because the systShPiect: and whether the first auxiliary is modal,

network is organised hierarchically, a selection wilPf€S€nt tense, past tense, or future terses de-

not always be made from a given system, since tgribes three tenses in English, regarding ‘will" and

‘entry condition’ may not be met. For instance the‘shall’ auxiliaries as future tense markers, rather

feature agency=effective is an entry condition for théhan modals.

voice system, so if a clause is middle, no voice will f the clause is imperative, there is a further sys-
be selected. The Null % column describes how ofm recording whether the clause is the ‘jussive’ im-
ten the entry condition of the clause is not met. SygRerative with ‘let’s’, an ‘oblative’ imperative with
tems further down the heirarchy will obviously belét me’, or a second person imperative. If the im-
relevant less often, as will systems which describe Rrative is second person, a further feature records
finer grained distinction for an already rare feature Whether the ‘you’ is explicit or implied.

The following sections describe the system net- There are also features recording the “polarity’ of
work in terms of four general regions. The system#1e clause: whether it is positive or negative, and, if
within each region largely sub-categorise each othdtegative, whether the negative marker is full-formed
or relate to the same grammatical phenomenon. OF cliticised as -n't.

5.4 Mood systems 5.5 Voice systems

Assuming the clause is independent, the major modd the Nigel grammar, the first voice distinction
options are declarative, interrogative and imperativelrawn is not between active and passive, but be-
Deciding between these is quite simple: in interrogtween transitive and intransitive clauses. Intransitive
ative clauses, the Subject occurs after the first auxitlauses cannot be passivised, as there is no Comple-
iary. Imperative clauses have no Subiject. ment to shift to Subject. It therefore makes sense to
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carve these off first. If the clause is transitive, antive adjunct, like ‘particularly’.

other system records whether it is active or passive.

The rules to draw this distinction simply look atthe6  Accuracy

verb phrase, checking whether the last auxiliary is a

form of the verb ‘be’ and the lexical verb has a pastn order to evaluate the accuracy of the conversion
participle part-of-speech tag. Finally, a further sysprocess, we manually evaluated the constituency
tem records whether passive clauses have an agékticture of a randomly selected sample of 200

introduced by ‘by’. clauses. The conversion heuristics were developed
on section 00 of the Wall Street Journal and section 2
5.6 Theme systems of Switchboard, while the evaluation sentences were

Theme systems record what occurs at the start of tig@mpled from the rest of the Penn Treebank.

clause. Typically in English, the first major con- We limited evaluation to the constituency conver-
stituent will be the logical subject, and hence alssion process, in order to examine more clauses. The
the Topical Theme. A system records whether this isinction labels are calculated from the constituency
or is not the case. If the clause is finite and the logsonversion, while the system features are calculated
ical subject is not the Topical Theme, the clause isom the function labels and other system features.
said to have a ‘marked’ theme. Verb phrase Topicdbince the system network is like a decision tree,
Themes are considered unmarked if the clause is imhether a feature is null-valued depends on prior
perative. A further system records whether the Togeature decisions. These dependencies in the anno-
ical Theme is the logical object (as in passivisation}ation mean that evaluating all of it involves some re-
or whether it is a fronted Adjunct. Passive clausedundancy. We therefore evaluated the constituency
may have a fronted Adjunct, so does not necessastructure, since it did not depend on any of the other
ily have a logical object as Topical Theme. Ther@nnotation, and the conversion heuristics involved in
are two further systems recording whether the claus®lculating it were more complicated than those for
has a Textual Theme and/or an Interpersonal Themni@e function labels and system features.

In the 200 clause sample, we found three clauses
with faulty constituency structures. One of these
Taxis systems record dependency relationships b&as the result of a part-of-speech tag error in the
tween clauses. There are two types of informatiorfreebank. The other two errors were conjunctions
whether the attachment is made through coordinghat were incorrectly replicated in ellipsis clauses.
tion or subordination, and the semantic type of the
attachment. Broadly, semantic type is between ‘eX¢ Conclusion
pansion’ and ‘projection’, projection being reported
(or quoted) speech or thought. A further systenThe Penn Treebank was designed as a largely the-
records the subtype of expansion clauses, which @y neutral corpus. In deciding on an annotation
quite a subtle distinction. Unfortunately Hallidayscheme, it emphasised the need to have its annota-
chose thoroughly unhelpful terminology for this dis-tors work quickly and consistent, rather than fidelity
tinction: his subtypes of expansion are elaboratiorip any particular linguistic theory (Marcus et al.,
enhancement and extension. Enhancing clauses 494).
essentially adverbial, and are almost always subor- The fact that it has been successfully converted to
dinate. Extending clauses, by contrast, are approx$e many other annotation schemes suggests that its
mately the ‘and’ relationship, and are almost alwayannotation is indeed consistent and fine grained. It
coordinate. Elaborating clauses qualify or furtheis therefore unsurprising that it is possible to con-
define the information in the clause they are attachedbrt it to sSFG as well. Despite historically different
to. Elaborating clauses can be either subordinamncernssra still fundamentally agrees with other
or coordinate. Subordinate elaborating clauses atieeories about which constructions are syntactically
non-defining relative clauses, while coordinate elaldistinct — it simply has an unorthodox strategy for
orating clauses are usually introduced by a conjuncepresenting that variation, delegating more work to

5.7 Taxis systems
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feature structures and less work to the syntactic rep- - Automatic F-Structure Annotation of Treebank Trees and
resentation. CFGs extracted from Treebank<€luwer, Dordrecht.

Now that a sizablesFG corpus has been created Michael A. K. Halliday. 1969. Options and functions in the
" English clauseBrno Studies in Englist8:82—88. Reprinted

it_can_be_ put to use for ”ngUiSti_C and.p resgarch. in Halliday and Martin (eds.)(1981) Readings in Systemic
Linguistically, we suggest that it would be interest- Linguistics, Batsford, London.
ing to use the corpus to explore some of the asdichael A. K. Halliday. 1970. Language structure and language
sertions in the literature that have until now been function. In John Lyons, editoNew Horizons in Linguistics
. . . Penguin, Harmondsworth.
untestable. For instance, Halliday and Matthiessen, _ . )
2004 ts that th tivation f ivisati Michael A. K. Halliday and Christian M. I. M. Matthiessen.
_( ) suggests that the motiva lon Tor passivisatlon 3004, An Introduction to Functional Grammar Edward
is largely structural — what comes firstin a clause is Arnold, London, third edition.
an important choice in English. This implies that thelulia Hockenmaier and Mark Steedman. 2005. Ccgbank man-

. . sylvania.
should be unlikely. There should be many such sim- y ) _
Matthew Honnibal. 2004. Converting the Penn Treebank to

ple_que_”es th?‘t can shed interesting light on abstrac Systemic Sunctional Grammar. Rroceedings of the Aus-
claims in the literature. tralasian Language Technology Workshop (ALTWO04)

Large annotated corpora are currently very impomiliam C. Mann and Christian M. I. M. Matthiessen. 1983. An
tant for parsing research, making this work a vital Overview of the Nigel text generation grammar. Technical
. P 9 . 9 . Report RR-83-113, USC/Information Sciences Institute.
first step towards exploring whetherG annotation _ »

b d. The f h bank Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
can be aUtom_ate - The aCtt_ at Treeban _parses Carvarcinkiewicz. 1994. Building a large annotated corpus of
be converted int@FG annotation suggests it can be, English: The Penn TreebankComputational Linguistics
although most parsers do not replicate the dash-tags!9(2):313-330.
attached to Treebank labels, which are necessaryynes R. Martin, Christian M. |. M. Matthiessen, and Clare

.. . .. . Painter. 1997 Working with Functional GrammarArnold,
distinguishsrGcategories in our conversion system. | ondon.

Even without aUtpmatin_g ann_Otat_ion’ the COrPUEhristian Matthiessen. 199%exicogrammatical Cartography
offers some potential for investigating how useful International Language Sciences Publishers, Tokyo, Taipei
sFGfeatures are foNLP tasks. The Penn Treebank and Dallas.
includes texts from a variety of genres, inc|udind\/llchaeI_O’DonneII and John A. Bateman. 2005. SFL in com-

. . putational contexts: a contemporary history. In J. Webster,
newspaper text, literature and spoken dialogue. The g asan, and C. M. I. M. Matthiessen, edito@ontinu-
Switchboard section of the corpus also comes with ing Discourse on Language: A functional perspectp@ges
various demographic properties about the speakers,343-382. Equinox, London.
and is over a million words. We therefore Sugge§Ylartha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The

. roposition bank: An annotated corpus of semantic roles.
that gold standardsFG features could be used in pmr?qputational Linguisticggl(l)ﬂl_lge_

some Simple_ dgcument classification experimentﬁandolph Quirk, Sidney Greenbaum, Geoffrey Leech, and Jan
such as predicting the gender or education level of Svartvik. 1991. A Grammar of Contemporary English

speakers in the Switchboard corpus. Longman, London.
Enric Vallduvi. 1993. Information packing: A survey. Technical
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Abstract

In the paper, we describe methods for
exploitation of a new lexical database of
valency frames (Verbalex) in relation to
Transparent Intensional Logic (TIL). We
present a detailed description of the
Complex Valency Frames (CVF) as they
appear in VerbalLex including basic
ontology of the VerbaLex semantic roles.

TIL is a typed logical system developed for
natural language semantic representation
using TIL logical forms known as
constructions. TIL is well suited to handle
the difficult language phenomena such as
temporal relations, intensionality and
propositional attitudes. Here we make use
of the long-term development of the
Normal Translation Algorithm aimed at
automatic translation of natural language
sentences into TIL constructions.

We examine the relations between CVFs
and TIL constructions of predicate-
argument structures and discuss the
procedure of automatic acquisition of the
verbal object constructions. The
exploitation of CVFs in the syntactic
parsing is also briefly mentioned.

1 Introduction

In the paper we propose a method to integrate the
logical analysis of sentences with the linguistic
approach to semantics, exploiting the complex
valency frames (CVFs) in the Verbalex verb
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valency lexicon, see (Hlavackova, Horak, Kadlec
2006). To this end we first present a brief survey of
the logic we are going to use, namely Transparent
Intensional Logic (TIL), which was originated by
P. Tichy (Tichy 1988). Theoretical aspects of TIL
were further developed in particular by P. Materna
(Materna 1998) and also by co-authors of this
paper (see, Materna, Duzi 2005, Horak 2002). A
question may be asked why we do not exploit first
order predicate logic (PL1) where some of the
presented problems have already been explored
and PL1 has been used to represent logical forms.
It is a well established fact that PL1 is not able to
handle systematically the phenomena like
propositional verbs (which, of course, appear in
our valency frames), grammatical tenses and
modalities (modal verbs and modal particles in
natural language). On the other hand, since TIL
works with types these problems either do not arise
or they can be solved in an intuitive way (see Ti-
chy 1988).

In the second linguistic section we present CVFs
by means of which the semantics of verbs in
natural language such as Czech or English can be
described.

In Section 3 we show how CVFs describe the
surface valencies of verbs (i.e.their respective
morphological cases in Czech) as well as the
semantics of their predicate-argument structure.
Concerning the latter we make use of the deep
semantic roles expressed by two-level labels based
partly on the Top Ontology (EuroWordNet) and
partly on the selected literals from Princeton
WordNet.

Since so far these two ways of description, namely
the logical and linguistic one, have been treated
separately, the task we set is to propose a method

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 97-104,
Prague, Czech Republic, June, 2007. (©2007 Association for Computational Linguistics



of their interrelation and coordination. Needless to
say that both ways of description of verb semantics
are useful.

Hence we are going to show how to combine a
logical description using mostly terms like types,
individuals, classes, relations, propositions, or, in
general, constructions of these entities, with the
linguistic framework capturing the idiosyncratic
semantic features of the verbs such as
SUBS(liquid:1) or AG(person:1|animal:1).

In Section 4 we adduce an example of the analysis
of selected English and Czech verbs for which the
above mentioned integration has been proposed.

2 Basics of Transparent Intensional
Logic

In this Section we provide an introductory
explanation of the main notions of Transparent
Intensional Logic (TIL). For exact definitions and
details see, e.g., Tichy (1988), Tichy (2004),
Materna (1998), Materna (2004) and Materna,
Duzi (2005). TIL  approach to knowledge
representation can be characterised as the ‘top-
down approach’. TIL ‘generalises to the hardest
case’ and obtains the ‘less hard cases’ by lifting
various restrictions that apply only higher up. This
way of proceeding is opposite to how semantic
theories tend to be built up. The standard approach
(e.g. predicate logic) consists in beginning with
atomic sentences, then proceeding to molecular
sentences formed by means of truth-functional
connectives or by quantifiers, and from there to
sentences containing modal operators and, finally,
attitudinal operators.

Thus, to use a simple case for illustration, once a
vocabulary and rules of formation have been laid
down, semantics gets off the ground by analysing
an atomic sentence as follows:

(1)“Charles is happy”: Fa

And further upwards:
(2)“Charles is happy, and Thelma is
grumpy’”: FanGb

(3)“Somebody is happy”: 3x (Fx)
(4)“Possibly, Charles is happy”: < (Fa)
(5)“Thelma believes that Charles is happy”:
Bb (Fa).
In  non-hyperintensional  (i.e., non-procedural)
theories of formal semantics, attitudinal operators
are swallowed by the modal ones. But when they
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are not, we have three levels of granularity: the
coarse level of truth-values, the fine-grained level
of truth-conditions (propositions, truth-values-in-
intension), and the very fine-grained level of
hyper-propositions, 1.e., constructions of
propositions. TIL operates with these three levels
of granularity. We start out by analysing sentences
from the uppermost end, furnishing them with a
hyperintensional' semantics, and working our way
downwards, furnishing even the lowest-end
sentences (and other empirical expressions) with a
hyperintensional semantics. That is, the sense of a
sentence such as “Charles is happy” is a hyper-
proposition, namely the construction of the
denoted proposition (i.e., the instruction how to
evaluate the truth-conditions of the sentence in any
state of affairs).

When assigning a construction to an expression as
its meaning, we specify a procedural know-how,
which must not be confused with the respective
performancy know-how. Distinguishing
performatory know-how from procedural know-
how, the latter could be characterised “that a
knower x knows how A is done in the sense that x
can spell out instructions for doing A.” For
instance, to know what Goldbach Conjecture
means is to understand the instruction to find
whether ‘all positive even integers > 4 can be
expressed as the sum of two primes’. It does not
include either actually finding out (whether it is
true or not by following a procedure or by luck) or
possessing the skill to do so.”

Furthermore, the sentence “Charles is happy” is an
‘intensional context’, in the sense that its logical
analysis must involve reference to empirical
parameters, in this case both possible worlds and
instants of time. Charles is only contingently
happy; i.e., he is only happy at some worlds and
only sometimes. The other reason is because the
analysans must be capable of figuring as an
argument for functions whose domain are
propositions rather than truth-values. Construing
‘Fa’ as a name of a truth-value works only in the
case of (1), (2) and (3). It won’t work in (5), since
truth-values are not the sort of thing that can be

' The term ‘hyperintensional’ has been introduced by

Max Cresswell in Cresswell (1975). See also
Cresswell (1985).

For details on TIL handling knowledge see Duzi,
Jespersen, Miiller (2005).



believed. Nor will it work in (4), since truth-values
are not the sort of thing that can be possible.
Constructions are procedures, or instructions,
specifying how to arrive at less-structured entities.
Being procedures, constructions are structured
from the algorithmic point of view, unlike set-
theoretical objects. The TIL ‘language of
constructions’ is a modified hyper-intensional
version of the typed A-calculus, where Montague-
like A-terms denote, not the functions constructed,
but the constructions themselves. Constructions
qua procedures operate on input objects (of any
type, even on constructions of any order) and yield
as output (or, in well defined cases fail to yield)
objects of any type; in this way constructions
construct partial functions, and functions, rather
than relations, are basic objects of our ontology.

By claiming that constructions are algorithmically
structured, we mean the following: a construction
C — being an instruction — consists of particular
steps, i.e., sub-instructions (or, constituents) that
have to be executed in order to execute C. The
concrete/abstract objects an instruction operates on
are not its constituents, they are just mentioned.
Hence objects have to be supplied by another
(albeit trivial) construction. The constructions
themselves may also be only mentioned: therefore
one should not conflate using constructions as
constituents of composed constructions and
mentioning constructions that enter as input into
composed constructions, so we have to strictly
distinguish  between wusing and mentioning
constructions. Just briefly: Mentioning is, in
principle, achieved by using atomic constructions.
A construction is atomic if it is a procedure that
does not contain any other construction as a used
subconstruction (a constituent). There are two
atomic constructions that supply objects (of any
type) on which complex constructions operate:
variables and trivializations.

Variables are constructions that construct an object
dependently on valuation: they v-construct, where
v is the parameter of valuations. When X is an
object (including constructions) of any type, the
Trivialization of X, denoted X, constructs X
without the mediation of any other construction. *X
is the atomic concept of X: it is the primitive, non-
perspectival mode of presentation of X.

There are three compound constructions, which
consist of other constructions: Composition,
Closure and Double Execution. Composition [X ¥;
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... Y,] is the procedure of applying a function f v-
constructed by X to an argument A v-constructed
by Y1,...,Y,, i.e., the instruction to apply f'to A to
obtain the value (if any) of f at A. Closure
[Ax;...x,, Y] is the procedure of constructing a
function by abstracting over variables, i.e., the
instruction to do so. Finally, higher-order
construction X can be used twice over as a
constituent of a composed construction. This is
achieved by the fifth construction called Double
Execution °X.

TIL constructions, as well as the entities they
construct, all receive a type. On the ground level of
the type-hierarchy, there are entities unstructured
from the algorithmic point of view belonging to a
type of order 1. Given a so-called epistemic (or
‘objectual’) base of atomic types (o-truth values,
t-individuals, t-time moments / real numbers, ®-
possible worlds), mereological complexity is
increased by the induction rule for forming partial
functions: where a, Bi,...,5, are types of order 1,
the set of partial mappings from f3; x...x B, to a,
denoted (af;...3,), is a type of order 1 as well.
Constructions that construct entities of order 1 are
constructions of order 1. They belong to a type of
order 2, denoted by *,. Inductively we define #ype
of order n, *,.

TIL is specific in a precise solution for intensions
as non-empirical objects of the real world.
Intensions are qualified as functions of a type
((at)w), i.e., functions from possible worlds to
chronologies of the type a (in symbols: o),
where a chronology is a function of type (at).
Some important kinds of intensions are:
Propositions, type 0., (shortened as ). They are
denoted by empirical (declarative) sentences.
Properties of members of a type a, or simply a-
properties, type (00).,. General terms (some
substantives, intransitive verbs) denote properties,
mostly of individuals.

Relations-in-intension, type (oBi...Bu)w. For
example transitive empirical verbs, also attitudinal
verbs denote these relations. Omitting ., we get the
type (oB...B.) of relations-in-extension (to be met
mainly in mathematics).

3 . .
Collections, sets, classes of ‘ca-objects’ are members

of type (oa); TIL handles classes (subsets of a type)
as characteristic functions. Similarly relations (-in-
extension) are of type(s) (0B;...Bn).



a-roles or offices, type o., where o # (of).
Frequently 1, (an individual office). Often denoted
by concatenation of a superlative and a noun (“the
highest mountain”). Individual roles correspond to
what Church calls an “individual concept”.

3 The Complex Valency Frames

Valency frames have been built in several projects
(VALLEX for Czech PDT (Zabokrtsky 2005) or
VerbNet (Kipper et al 2006)). Motivation for the
Verbalex project came from comparing Czech
WordNet verb frames with VALLEX. The main
goal of VerbalLex is an automatic processing of
verb phrases exploiting explicit links to Princeton
WordNet. The complex valency frames we are
working with can be characterized as data
structures (tree graphs) describing predicate-
argument structure of a verb which contains the
verb itself and the arguments determined by the
verb meaning (their number usually varies from 1-
5). The argument structure also displays the
semantic preferences on the arguments. On the
syntactic (surface) level the arguments are most
frequently expressed as noun or pronominal groups
in one of the seven cases (in Czech) and also as
prepositional cases or adverbials.
An example of a complex valency frame for the
verb zabit (kill) looks like:
usmrtit: 1/zabit:1/dostat: 11 (kill: 1)
-frame: AG<person:1[animal:1>yh, nom
VERB*
PAT<person:1|animal: 1>wnom ace
INS<instrument: 1>yit what ins*
-example: vrah zabil svou obét’ nozem (A murderer
has killed the victim with a knife).
-synonym:
-use: prim
More examples of CVFs for some selected verbs
can be found below in Section 4.
The semantics of the arguments is typically labeled
as belonging to a given semantic role (or deep
case), which represents a general role plus
subcategorization ~ features  (or  selectional
restrictions). Thus valency frames in Verbalex
include information about:

1. the syntactic (surface) information about
the syntactic valencies of a verb, i.e. what
morphological cases (direct and
prepositional ones in highly inflected

obl

obl
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languages such as Czech) are associated
with (required by) a particular verb, and
also adverbials,

2. semantic roles (deep cases) that represent
the integration of the general labels with
subcategorization features (or selectional
restrictions) required by the meaning of the
verb.

The inventory of the semantic roles is partly
inspired by the Top Ontology and Base Concepts
as they have been defined within EuroWordNet
project. Thus we work with the general or ‘large’
roles like AG, ART(IFACT), SUBS(TANCE),
PART, CAUSE, OBIJ(ECT) (natural object),
INFO(RMATION), FOOD, GARMENT,
VEHICLE and others. They are combined with the
literals from Princeton WordNet 2.0 where literals
represent subcategorization features allowing us to
climb down the hypero/hyponymical trees to the
individual lexical units. For example, we have
AG(person:1janimal:1) or SUBS(liquid:1) that can
be used within the individual CVFs.

The verb entries are linked to the Czech and
Princeton WordNet 2.0, i.e. they are organized
around the respective lemma in synsets with
numbered senses.

The Czech lexical resource being now developed is
then a list of Czech CVFs — this work is going on
within the Verbalex project at FI MU (Hlavackova,
Horak, 2005). Verbalex now contains approx.
11000 verb literals organized in synsets. The
current goal is to enlarge the lexicon to 15 000
verbs.

The inventory of the semantic roles we work with
clearly represents a sort of ontology which tries to
cover word stock of Czech verbs and can be used
as a base for a semantic classification and
subclassification of the verbs. The ontologies
represent theoretical constructs designed from the
,»top“ and as such they are not directly based on the
empirical evidence, i.e. corpus data. Thus there is a
need to confront the ontologies and the inventories
of the semantic roles that can be derived from them
with the corpus data and see how well they can
correspond to them. For this purpose we are
experimenting with the corpus data obtained from
the Word Sketch Engine (Kilgarriff, Rychly,
Smrz, Tugwell 2006).



4 Logical Analysis Using CVFs

In this section we describe the translation of
VerbalLex CVFs into a verb phrase, which is a core
of a sentence logical analysis.

TIL comes with a dissociation of significant verbs
into two groups according to the classification of
their meaning;:

1. by attributive verbs we ascribe qualities or
properties to objects. Attributive verbs are
typically expressed by the respective form
of the verb ‘to be’ combined with an
expression denoting a property; examples:
‘to be red’ or ‘to be mellow’ or with a
general substantive like ‘to be a traitor’, ‘to
be a tree’.

2. episodic verbs, on the other hand, specify
actions performed by a subject.

An episodic verb does not describe its subject's
state in any moment of time, it rather describes an
episode of doing something at the certain time
moment (and necessarily some time before that
moment plus the expectation that it will last also in
the next few moments, at least). TI£ provides a
complex handling of episodic verbs including the
verb tense, aspect (perfective/imperfective) or
active/passive state. All these features are
concentrated around the so called verbal object, the
construction of which (i.e., the meaning of a
particular verb phrase) is the application of (the
construction of) the verb to (the constructions of)
the verb's arguments.

Since the analysis of attributive verbs is usually
quite simple, we will concentrate in the following
text on the examples of selected episodic verbs
from VerbalLex and their logical analysis using the
complex valency frames.

The TIL type of episodic verbal objects is
(o(om)(om)),, where m is the type of propositions
(0w). See (Horak 2002, pp.64-73) and (Tichy
1980) for detailed explanation. Our analysis is
driven by a linguistic (syntactic) context that
signals the semantic fact that there is always a
function involved here, so that we have to ascribe
types to its arguments and value.

4.1 Examples of Logical Analysis

We have chosen cca 10 verbs with their verb
frames from Verbalex and we will use them as

101

examples of the algorithm for determining the verb
type in the TIL logical analysis procedure.

dat (give)

dat:2 / davat:2 / darovat:1 / vénovat:1 (give:8,
gift:2, present:7)

-frame: DON<organization:1>What7nom°bl VERB®
OBJ<object: 1>‘,,hat7‘m°bl
BEN<person: 1>y whom dat
-example: firma vénovala zaméstnanciim nova auta
(a company gave new cars to the employees)

-use: prim

The verb arguments in this frame are: who, to
whom, what (all obligatory) with (at least) two
options: a) fo whom is an individual, b) fo whom is
a class of individuals. The respective verb types
are ad a): ((o(om)(0m)),l1n),

ad b): ((o(om)(om)),L(oV)1).

For example fo whom = to the employees of a
given institution. To be an employee of the
institution XY is a property, say Z / (01),. So “The
company gave to the employees of XY...“, not
taking into account grammatical tenses and
omitting trivializations we get Awkt [Give,, XY
Z,.etc.] (XY has the type 1 here, being a collective
rather than a class.)

With this example, we can show that CVFs are
used not only for determining the verbal object
type, but also for stating additional prerequisities
(necessary  conditions) for the sentence
constituents. The full analysis using the verb frame
above thus contains, except the verb phrase part,
the conditions saying that “X gives Y to Z A
organization(X) A object(Y) N person(Z)”. The
predicates organization, object and person here
represent the properties denoted by the
corresponding terms in the wordnet hypero-

obl

hyponymical hierarchy.

dat:15 / davat:15 / nabidnout:3 / nabizet:3
(give:37)

-frame: AG<person: 1>‘,,h07mm°bl VERB®

ABS<abstraction: 1>What7accObl
REC<person: 1> whom _dat

-example: dal ji své slovo (he gave her his word)

-example: nabidl ji své srdce (he offered her his

heart)

-use: fig

obl

Here we have an idiom (“to give word”), which
corresponds to an (episodic) relation between two



individuals. Thus the type of the verb is
((o(om)(om))ett), the second 1 corresponds to fo
whom.

branit (prevent)

branit:1 / zabranit:2 / zabranovat:2 / zamezit:2 /
zamezovat:2 (prevent:2, keep:4)

frame:  AG<person:1>ymo nom’ VERB®
PAT<person: 1>t(th(mUiat°bl ACT<act: 1>,
-example: zabranila mu uhodit syna (she prevented
him from hitting the son)

-use: prim

branit:1 / zabranit:2 / zabranovat:2 / zamezit:2 /

zamezovat:2 (prevent:2, keep:4)

frame:  AG<institution:1>ypa nom”.  VERB®

PAT<person: 1>t(,JvhonU1at°bl B
ACT<aCt:2>iniwhat71000pt

-example: policie mu zabranila v cesté¢ do zahranici

(police prevented him from going abroad)

-use: prim

Here, arguments of the verb correspond to the
phrases who, to whom, in (from). The third
argument has the type of an activity given, of
course, by an episodic verb hit the son, travel
abroad (the substantive form travelling abroad can
be construed as that activity). The type of the verb

is ((o(om)(om))utu((0(01)(07))0))-

rict (say)

fict:1 / fikat:1 / fici:1 / fikat:1 / pravit:1 (say:6)
-frame: AG<pers0n:1>Whofmm°bl VERB®
COM<speech act:1>yhat ace thatdsp !

ADR<person: 1>, whom dat"

-example: Fict kolegovi dobry den (say hello to a
colleague)

-example: fekl, Ze to plati (he said that it holds)
-example: pravil: "Dobry den" (he said: “Good
day”)

-use: prim

The case questions for the corresponding
arguments of the verb 7ict are a) who, what,,
b) who, what,, c) who, to whom, what,, and d) who,
to whom, what,, Examples of instantiated
sentences can be a) Charles says ,, Hello",
b) Charles says that he is ill, ¢) Charles says to his
colleague “Hello”, or d) Charles says to his
colleague that he is ill.
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The quotation context (ad a), c¢)) is normally
impossible to type. Unless we want to go into some
deep analyses we can ascribe to any quoted
expression the type of individual. The relation to
and unquoted subordinate clause is analysed as a
general construction of type *,. The resulting
types of verbs are then

a) ((o(om)(om))wtn),

b) ((o(om)(0m))1*y),

¢) ((o(om)(om))ottr),

d) ((o(om)(0T))er*y).

brecet; (cry) because of for
something

brecet:1 / plakat:1 (cry:2, weep:1)

-frame: AG<person:1>Wh<u10mObl VERB®™
CAUSE<cause: 4>duc+to+Whatﬁdat,ovcﬁwhatﬁins, for+what7acc()b1

-example: bre¢ela kvuli zni¢enym Satim (she cried
for spoiled clothes)

-example: plakal nad svou chudobou (he cried over
his poverty)

-example: plakal pro své hiichy (he cried for his
sins)

-use: prim

something,

brecet, (cry) for somebody

brecet:1 / plakat:1 (cry:2, weep:1)

-frame: AG<person: 1>‘,,h07nom°bl VERB®
ENT<person:1 >fom,,horUcc"bl

-example: plakala pro milého (she cried for her

boy)
-use: prim

If I cry because of, for etc., then the role of causing
is played by this because of. Crying is an episodic
verb, whereas because of etc. is a relation between
propositions, often between events. We have
therefore because of / (onm),,, where the first
n(=0.,) belongs to the proposition denoted, e.g., by
clothes have been spoiled or that the respective
individual is poor, sinful etc., and the second 7 to
the proposition that the respective individual cries.

In case of to cry for somebody the respective type
is again a “relation” ((o(om)(om)),11), although this
for hides some cause, which is, however, not
mentioned.

With this verb, we will describe the analysis of
verb entailment handling in TIL. If we analyse a
general case of the above mentioned meanings of
cry (cry;-because of something, cry,-for



somebody) simply to cry, (He cries all the time).
This verb’s type is a verbal object without
arguments, (o(om)(omn)),. In addition to this the
following rule holds: If X cries because of... or X
cries for..., then X cries. In this way the semantic
dependence between the three cases of crying is
given; otherwise we would not be able to detect
this connection, e.g. between brecet; and brecet,.

absolvovat (undergo)

absolvovat:2 / prozit:1 / prozivat:1 (experience:1,
undergo:2, see:21, go through:1)

-frame: AG<person: 1>‘,,h07mm°bl VERB®
EVEN<experience:3>yhat ace

LOC<location: 1>, what toc ™"

-example: absolvoval vySetfeni na psychiatrické
klinice (he went through investigation in a
psychiatric clinic)

-use: prim

In general it is an episodic relation to an event
(type m)*, so the type is ((o(om)(om))etm). In some
cases we may also use a relation to an episode
(specific class of events, type (om)), then the type
is ((o(om)(om)),Uom)), and investigation in a clinic
has to be defined as a sequence of events.

akceptovat (accept)

akceptovat:3 / pfijmout:6 / pfijimat:6 (accept:4)
-frame:  AG<person:1[social  group:1>yny nom”
VERB™

STATE<state:4>EVEN<event: 1>|INFO<info: 1>,

obl
at_acc

-example: akceptujeme jeho povahu (we accept his
character)

-example: lidé¢ pfijali novy zdkon s nadSenim
(people accepted new law with enthusiasm)

-use: prim

bl

We can accept nearly anything. Here we meet the
problem of type-theoretical polymorphism, which
is handled here as a type scheme ((o(om)(0T)),10L),
for an arbitrary type a. A quintessence of such a
polymorphism: think on (about) — one can think
of an object of any kind.

ucit (teach)
naucit:1 / ucit:2 / vyucovat:1 (teach:1, learn:5,
instruct:1)

4 see (Horak 2002, p. 65) and (Tichy 1980).
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AG<person: 1>‘,,h07mm°bl VERB®

opt

-frame:
PAT<person: 1>ynom ace
KNOW<SUbj ect:3 >What7acc,tofwhatfdatOb
-example: naucil dit¢ abecedu (he educated a
children in the alphabet)

-example: uci studenty matematiku (he teaches
mathematics for students)

1

-example: vyuCuje d&jepisu (he/she teaches
history)
-use: prim

If understood as in “What does (s)he live off? (S)he
teaches.” it is the case of cry; (see above). To
teach understood as in “He fteaches history,
maths”, etc., the analysis depends on which type is
given to the school subjects, disciplines. One
possibility is to analyse them as properties of a set
of propositions, (o(om)).,. Then to teach receives
the type ((o(om)(om)),l(0(0n))). If “teaches
alphabet” is the case then we have to decide what
we mean by alphabet. Here the point is to feach
(learn) to associate symbols and sounds
(phonemes?), so the respective type of alphabet is
(ap), where a. is the type of symbols, B the type of
sounds. In the analysis of “to educate somebody in
something” the verb takes an individual as its
additional argument: ((o(om)(omn)),11a), where o is
the type of the discipline.

In all the examples, we have displayed the
relations between the two-level semantic roles used
in the VerbalLex verb frames and the resulting
logical analysis types of the verbal object as the
main part of the clause’s logical construction. The
algorithmisation of this procedure uses a list of all
roles used in the lexicon (there are about 200 roles
used) with the corresponding (ambiguous) logical
types of the constituents. In this way we can form a
basic skeleton of the automatic translation of text
to logical constructions.

5 Conclusions

The paper presented a first outline of comparison
and integration of the two approaches, namely
logical and linguistic, to the semantics of verbs in a
natural language (English and Czech). We are
aware that this work is still in a great progress and
the results so presented rather fragmentary. Still,
we are convinced that the research project we aim
at is a relevant contribution to the semantics of
natural language.



We have shown that pursuing such a research is
reasonable and comes up with a new viewpoint to
the meaning of verbs. In this way we extend our
knowledge in the important way. Actually, we are
dealing with two deep levels of the meaning
description and a question may be asked which one
is deeper and better. Our answer is, do not contrast
the two levels, and make use of both of them. In
this way we believe to integrate them into one
compact whole and perhaps obtain a unique data
structure. The results of the presented research can
be immediately applied in the area of knowledge
representation and in the long-term Normal
Translation System project that is being prepared.
We have not tackled the other deep descriptions,
such as the method that exploits the
tectogramatical level as it is presently applied in
PDT (Haji¢ 2004). This, obviously, is a topic of
another paper.
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Abstract

This paper describes work on the develop-
ment of an open-source HPSG grammar for
Spanish implemented within the LKB sys-
tem. Following a brief description of the
main features of the grammar, we present
our approach for pre-processing and on-
going research on automatic lexical acqui-
sition.!

1 Introduction

In this paper we describe the development of the
Spanish Resource Grammar (SRG), an open-
source® medium-coverage grammar for Spanish.
The grammar is grounded in the theoretical
framework of HPSG (Head-driven Phrase Struc-
ture Grammar;, Pollard and Sag, 1994) and uses
Minimal Recursion Semantics (MRS) for the se-
mantic representation (Copestake et al, 2006). The
SRG is implemented within the Linguistic Knowl-
edge Building (LKB) system (Copestake, 2002),
based on the basic components of the grammar
Matrix, an open-source starter-kit for the devel-
opment of HPSG grammars developed as part of
the LinGO consortium’s multilingual grammar
engineering (Bender et al., 2002).

The SRG is part of the DELPH-IN open-source
repository of linguistic resources and tools for
writing (the LKB system), testing (The [incr
tsbd()]; Oepen and Carroll, 2000) and efficiently

! This research was supported by the Spanish Ministerio de
Educacion y Ciencia: Project AAILE (HUM2004-05111-C02-
01), Ramon y Cajal, Juan de la Cierva programmes and PTA-
CTE/1370/2003 with Fondo Social Europeo.

2 The Spanish Resource Grammar may be downloaded from:
http://www.upf.edu/pdi/iula/montserrat.marimon/.
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processing HPSG grammars (the PET system;
Callmeier, 2000). Further linguistic resources that
are available in the DELPH-IN repository include
broad-coverage grammars for English, German and
Japanese as well as smaller grammars for French,
Korean, Modern  Greek, Norwegian and
Portuguese .2

The SRG has a full coverage of closed word
classes and it contains about 50,000 lexical entries
for open classes (roughtly: 6,600 verbs, 28,000
nouns, 11,200 adjectives and 4,000 adverbs).
These lexical entries are organized into a type
hierachy of about 400 leaf types (defined by a type
hierarchy of around 5,500 types). The grammar
also has 40 lexical rules to perform valence
changing operations on lexical items and 84
structure rules to combine words and phrases into
larger constituents and to compositionally build up
the semantic representation.

We have been developing the SRG since
January 2005. The range of linguistic phenomena
that the grammar handles includes almost all types
of  subcategorization structures, valence
alternations,  subordinate clauses, raising and
control, determination, null-subjects and
impersonal  constructions, compound  tenses,
modification, passive constructions, comparatives
and superlatives, cliticization, relative and
interrogative clauses and sentential adjuncts,
among others.

Together with the linguistic resources (grammar
and lexicon) we provide a set of controlled hand-
constructed test suites. The construction of the test
suites plays a major role in the development of the
SRG, since test suites provide a fine-grained diag-

% See http://www.delph-in.net/.

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 105-111,
Prague, Czech Republic, June, 2007. (©2007 Association for Computational Linguistics



nosis of grammar performance and they allow us to
compare the SRG with other DELPH-IN gram-
mars. In building the test suites we aimed at (a)
testing specific phenomena in isolation or in con-
trolled interaction, (b) providing test cases which
show systematic and exhaustive variations over
each phenomenon, including infrequent phenom-
ena and variations, (c) avoiding irrelevant variation

(i.e. different instances of the same lexical type), (d)

avoiding ambiguity, and (e) including negative or
ungrammatical data. We have about 500 test cases
which are distributed by linguistic phenomena (we
have 17 files). Each test case includes a short lin-
guistic annotation describing the phenomenon and
the number of expected results when more than
one analysis cannot be avoided (e.g. testing op-
tionality).

Test suites are not the only source of data we
have used for testing the SRG. Hand-constructed
sentences were complemented by real corpus cases
from: (a) the Spanish questions from the Question
Answering track at CLEF (CLEF-2003, CLEF-
2004, CLEF-2005 and CLEF-2006), and (b) the
general sub-corpus of the Corpus Técnic de
I'TULA (IULA’s Technical Corpus; Cabré and
Bach, 2004); this sub-corpus includes newspaper
articles and it has been set up for contrastive
studies. CLEF cases include short queries showing
little interaction of phenomena and an average of
9.2 words; newspaper articles show a high level of
syntactic complexity and interaction of phenomena,
sentences are a bit longer, ranging up to 35 words.
We are currently shifting to much more varied
corpus data of the Corpus Técnic de ['TULA, which
includes specialized corpus of written text in the
areas of computer science, environment, law,
medicine and economics, collected from several
sources, such as legal texts, textbooks, research
reports, user manuals, ... In these texts sentence
length may range up to 70 words.

The rest of the paper describes the pre-
processing strategy we have adopted and on our
on-going research on lexical acquisition.

2  Pre-processing in the SRG

Following previous experiments within the
Advanced Linguistic Engineering Platform (ALEP)
platform (Marimon, 2002), we have integrated a
shallow processing tool, the FreeLing tool, as a
pre-processing module of the grammar.
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The FreeLing tool is an open-source® language
analysis tool suite (Atserias et al., 2006) perfoming
the following functionalities (though
disambiguation, named entity classification and the
last three functionalities have not been integrated):

e Text tokenization (including MWU and
contraction splitting).

Sentence splitting.

e  Morpho-syntactic and

disambiguation.

analysis

Named entity detection and classification.

Date/number/currency/ratios/physical
magnitude (speed, weight, temperature,
density, etc.) recognition.

e  Chart-based shallow parsing.
e  WordNet-based sense annotation.
e  Dependency parsing.

FreeLing also includes a guesser to deal with
words which are not found in the lexicon by
computing the probability of each possible PoS tag
given the longest observed termination string for
that word. Smoothing using probabilities of shorter
termination strings is also performed. Details can
be found in Brants (2000) and Samuelson (1993).

Our system integrates the FreeLing tool by
means of the LKB Simple PreProcessor Protocol
(SPPP;  http://wiki.delph-in.net/moin/LkbSppp),
which assumes that a preprocessor runs as an
external process to the LKB system, and uses the
LKB inflectional rule component to convert the
PoS tags delivered by the FreeLing tool into partial
descriptions of feature structures.

2.1

The integration of the morpho-syntactic analysis in
the LKB system using the SPPP protocol means
defining inflectional rules that propagate the mor-
pho-syntactic information associated to full-forms,
in the form of PoS tags, to the morpho-syntactic
features of the lexical items. (1) shows the rule
propagating the tag AQMS (adjective qualitative
masculine singular) delivered by FreeLing. Note

The integration of PoS tags

* The FreeLing tool may be downloaded from
http://www.garraf.epsevg.upc.es/freeling/.



that we use the tag as the rule identifier (i.e. the
name of the inflectional rule in the LKB).
(1) aqgms :=
%Bsuffix O
[SYNSEM.LOCAL[CAT adj,
AGR.PNG[PN 3sg,
GEN masc]1]

In Spanish, when the verb is in non-finite form,
such as infinitive or gerund, or it is in the impera-
tive, clitics® take the form of enclitics. That is, they
are attached to the verb forming a unique word,
e.g. hacerlo (hacer+lo; t0 do it), gustarle (gus-
tar+le; to like to him). FreeLing does not split
verbs and pronouns, but uses complex tags that
append the tags of each word. Thus, the form ha-
cerlo gets the tag VMN+PP3MSA (verb main in-
finitive + personal pronoun 3™ masculine singular
accusative). In order to deal with these complex
tags, the SRG includes a series of rules that build
up the same type of linguistic structure as that one
built up with the structure rules attaching affixes to
the left of verbal heads. Since the application of
these rules is based on the tag delivered by Freel-
ing, they are included in the set of inflectional rules
and they are applied after the set of rules dealing
with complement cliticization.

Apart from avoiding the implementation of in-
flectional rules for such a highly inflected lan-
guage, the integration of the morpho-syntactic
analysis tags will allow us to implement default
lexical entries (i.e. lexical entry templates that are
activated when the system cannot find a particular
lexical entry to apply) on the basis of the category
encoded to the lexical tag delivered by FreeLing,
for virtually unlimited lexical coverage. ®

2.2 The integration of multiword expressions

All multiword expressions in FreeLing are stored
in a file. The format of the file is one multiword
per line, having three fields each: form, lemma and
PoS.” (2) shows two examples of multiword fixed

> Actually, Spanish weak pronouns are considered pronominal
affixes rather than pronominal clitics.

® The use of underspecified default lexical entries in a
highly lexicalized grammar, however, may increase
ambiguity and overgeneration (Marimon and Bel,
2004).

" FreeLing only handles continuous multiword expres-
sions.
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expressions; i.e. the ones that are fully lexicalized
and never show morpho-syntactic variation, «
través de (through) and a buenas horas (finally).

(2) a_través de a_través _de SPS00
a_buenas _horas a buenas horas RG

The multiword form field may admit lemmas in
angle brackets, meaning that any form with that
lemma will be a valid component for the multi-
word. Tags are specified directly or as a reference
to the tag of some of the multiword components.
(3) builds a multiword with both singular and plu-
ral forms (apartado(s) de correos (P.O Box)). The
tag of the multiform is that of its first form ($1)
which starts with NC and takes the values for
number depending on whether the form is singular
or plural.

(3) <apartado>_de_correos apar-
tado _de correos \$1:NC

Both fixed expressions and semi-fixed expres-
sions are integrated by means of the inflectional
rules that we have described in the previous sub-
section and they are treated in the grammar as
word complex with a single part of speech.

2.3 The integration of messy details and
named entities

FreeLing identifies, classifies and, when appropri-
ate, normalizes special text constructions that may
be considered peripheral to the lexicon, such as
dates, numbers, currencies, ratios, physical magni-
tudes, etc. FreelLing also identifies and classifies
named entities (i.e. proper names); however, we do
not activate the classification functionality, since
high performance of that functionality is only
achieved with PoS disambiguated contexts.

To integrate these messy details and named enti-
ties into the grammar, we require special inflec-
tional rules and lexical entry templates for each
text construction tag delivered by FreeLing. Some
of these tags are: W for dates, Z for numbers, Zm
for currencies, ... In order to define one single en-
try for each text construct, we identify the tag and
the STEM feature. (4) shows the lexical entry for
dates.®

8 Each lexical entry in the SRG consists of a unique identifier,
a lexical type, an orthography and a semantic relation.



€))

date := date le &

[STEM <”w’">,

SYNSEM.LKEY .KEYREL.PRED time_n_rel]

The integration of these messy details allows us
to release the analysis process from certain tasks
that may be reliably dealt with by shallow external
components.

3 Automatic Lexical Acquisition

We have investigated Machine Learning (ML)
methods applied to the acquisition of the informa-
tion contained in the lexicon of the SRG.

ML applied to lexical acquisition is a very active
area of work linked to deep linguistic analysis due
to the central role that lexical information has in
lexicalized grammars and the costs of hand-
crafting them. Korhonen (2002), Carroll and Fang
(2004), Baldwin (2005), Blunsom and Baldwin
(2006), and Zhang and Kordoni (2006) are just a
few examples of reported research work on deep
lexical acquisition.

The most successful systems of lexical acquisi-
tion are based on the linguistic idea that the con-
texts where words occur are associated to particu-
lar lexical types. Although the methods are differ-
ent, most of the systems work upon the syntactic
information on words as collected from a corpus,
and they develop different techniques to decide
whether this information is relevant for type as-
signment or it is noise, especially when there are
just a few examples. In the LKB grammatical
framework, lexical types are defined as a combina-
tion of grammatical features. For our research, we
have looked at these morpho-syntactically moti-
vated features that can help in discriminating the
different types that we will ultimately use to clas-
sify words. Thus, words are assigned a number of
grammatical features, the ones that define the lexi-
cal types.

Table 1 and Table 2 show the syntactic features
that we use to characterize 6 types of adjectives
and 7 types of nouns in Spanish, respectively.® As
can be observed, adjectives are cross-classified
according to their syntactic position within the NP,
i.e. (preN(ominal)) vs postN(ominal), the possibil-
ity of co-occurring in predicative constructions

° The SRG has 35 types for nouns and 44 types for adjectives.
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(pred) and being modified by degree adverbs (G),
and their subcategorization frame (pcomp);
whereas lexical types for nouns are basically de-
fined on the basis of the mass/countable distinction
and valence information. Thus, an adjective like
bonito (nice), belonging to the type a qual intr,
may be found both in pre-nominal and post-
nominal position or in predicative constructions, it
may also be modified by degree adverbs, this type
of adjectives, however, does not take comple-
ments. Nouns belonging to the type n_intr count,
like muchacha (girl), are countable intransitive
nouns.

TYPE/SF preN | postN | pred | G | pcomp
a_adv_int yes no no no no
a_adv_event yes yes no no no
a_rel_nonpred no yes no no no
a_rel_pred no yes yes no no
a_qual_intr yes yes yes | yes no
a_qual_trans yes yes yes | yes yes

Table 1. Some adjectival types of the SRG

TYPE/SF mass count | intr | trans | pcomp
n_intr_mass yes no yes | no no
n_intr_count | no yes yes | no no
n_intr_cnt- yes yes yes | no no
mss

n_trans_mass | yes no no yes no
n_trans_count | no yes no yes no
n_ppde_pcom | no yes no yes yes
p_count

n_ppde_pcom | yes no no yes yes
p_mss

Table 2. Some nominal types of the SRG

We have investigated two methods to automati-
cally acquire such linguistic information for Span-
ish nouns and adjectives: a Bayesian model and a
decision tree. The aim of working with these two
methods was to compare their performance taking
into account that while the decision tree gets the
information from previously annotated data, the
Bayesian method learns it from the linguistic ty-
pology as defined by the grammar. These methods
are described in the following subsections.

3.1 A Bayesian model for lexical acquisition

We have used a Bayesian model of inductive learn-
ing for assigning grammatical features to words
occurring in a corpus. Given a hypothesis space
(the linguistic features of words according to its
lexical type) and one or more occurrences of the



word to classify, the learner evaluates all hypothe-
ses for word features and values by computing
their posterior probabilities, proportional to the
product of prior probabilities and likelihood.

In order to obtain the likelihood, grammatical
features are related to the expected contexts where
their instances might appear. The linguistic typol-
ogy provides likelihood information that is the
learner’s expectation about which contexts are
likely to be observed given a particular hypothesis
of a word type. This likelihood is used as a substi-
tute of the computations made by observing di-
rectly the data, which is what a supervised machine
learning method does. As said, our aim was to
compare these two strategies.

The decision on a particular word is determined
by averaging the predictions of all hypothesis
weighted by their posterior probabilities. More
technically, for each syntactic feature {sfi, sf5, ...,
sf,4 of the set SF (Syntactic Features) represented
in the lexical typology, we define the goal of our
system to be the assignment of a value, {no, yes},
that maximizes the result of a function f: o— SF,
where ¢ is the collection of its occurrences (o =
{vi, vy, ..., v.}), each being a n-dimensional vector.
The decision on value assignment is achieved by
considering every occurrence as a cumulative evi-
dence in favour or against of having each syntactic
feature. Thus, our function Z’(SF, o), shown in (5),
will assess how much relevant information is got
from all the vectors. A further function, shown in
(8), will decide on the maximal value in order to
assign sf; ,.

W4 (5f; 1 0) = %P(Sfllyx 1v;)

To assess P(sf;.|v;), we use (6), which is the ap-
plication of Bayes Rule for solving the estimation
of the probability of a vector conditioned to a par-
ticular feature and value.

P, |5 P )
(6) pof |v )t i
’ %P(Vj |Sf;’k)P(5ﬂyk)

For solving (6), the prior P(sf;.) is computed on
the basis of a lexical typology too, assuming that
what is more frequent in the typology will corre-
spondingly be more frequent in the data. For com-
puting the likelihood P(v|sf;.), as each vector is
made of m components, that is, the linguistic cues
v, = {lc;, lcy, ..., Iy}, We proceed as in (7) on the
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basis of P(lc/|sf;,), i.e. the likelihood of finding the
word in a particular context given a particular syn-
tactic feature.

m
@ P 1.0 = TP 1 ,)

Finally Z, as in (8), is the function that assigns
the syntactic features to o.*°

Z'(sf,

i,x = yes

| o) > Z'(sf,
0 i,x

lo)>Z'(sf
i,x=

| o) > yes
o

(3B) z-

| ) = no
= yes

Z'(sf
i,x

= n

For computing the likelihood, we count on the
conditional probabilities of the correlations be-
tween features as defined in the typology. We use
these correlations to infer the expectation of ob-
serving the linguistic cues associated to particular
syntactic features, and to make it to be conditional
to a particular feature and value. However, linguis-
tic cues and syntactic features are in two different
dimensions; syntactic features are properties of
lexical items, while linguistic cues show the char-
acteristics of actual occurrences. As we assume
that each syntactic feature must have at least one
corresponding linguistic cue, we must tune the
probability to acknowledge the factors that affect
linguistic cues. For such a tuning, we have consid-
ered the following two issues: (i) to include in the
assessments the known uncertainty of the linguistic
cues that can be present in the occurrence or not;
and (ii) to create a dummy variable to deal with the
fact that, while syntactic features in the typology
are independent from one another, evidences in
text are not so.

We have also observed that the information that
can be gathered by looking at all word occurrences
as a complex unit have a conclusive value. Take
for instance the case of prepositions. The observa-
tion of a given prepositions in different occur-
rences of the same word is a conclusive evidence
for considering it a bound preposition. In order to
take this into account, we have devised a function
that acts as a dynamic weighting module. The
function app_lc(sfi, o) returns the number of con-
texts where the cue is found. In the case that in a

1% In the theoretical case of having the same probability
for yes and for no, Z is undefined.



particular signature there is no context with such a
le, it returns ‘1’. Thus, app_Ic is used to reinforce
this conclusive evidence in (5), which is now (9).

®

z
A (Sfi,x:yes’o-) = (? P(Sfi,xzyes | vj)) *app _lc(sf;, o)

z
Z'(s; x=no+0) = %P(Sfi,xzno Iv;)

3.2 A Decision tree

Linguistic motivated features have also been
evaluated using a C4.5 Decision Tree (DT) classi-
fier (Quinlan, 1993) in the Weka implementation
(Witten and Frank, 2005). These features corre-
spond to the expected contexts for the different
nominal and adjectival lexical types.

We have trained the DT with all the vectors of
the word occurrences that we had in the different
gold-standards, using their encoding for the super-
vised experiment in a 10-fold cross-validation test-
ing (Bel et al. 2007).

3.3 Evaluation and Results

For the evaluation, we have applied both methods
to the lexical acquisition of nouns and adjectives.

We have worked with a PoS tagged corpus of
1,091,314 words. Datasets of 496 adjectives and
289 nouns were selected among the ones that had
occurrences in the corpus. Some manual selection
had to be done in order to have all possible types
represented but still it roughly corresponds to the
distribution of features in the existing lexicon.

We evaluated by comparing with Gold-
standard files; i.e. the manually encoded lexicon of
the SRG. The usual accuracy measures as type
precision (percentage of feature values correctly
assigned to all values assigned) and #ype recall
(percentage of correct feature values found in the
dictionary) have been used. F1 is the usual score
combining precision and recall.

Table 3 shows the results in terms of F1 score
for the different methods and PoS for feature as-
signment. From these data, we concluded that the
probabilistic information inferred from the lexical
typology defined in our grammar is a good source
of knowledge for lexical acquisition.
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PoS noun adj
z 0.88 0.87
DT 0.89 0.9

Table 3. F1 for different methods and PoS.

Table 4 shows more details of the results compar-
ing between DT and Z for Spanish adjectives.

SF=no SF =yes

Z DT Zz DT
prep_a 0.98 0.97 0.72 |0.44
prep_en 0.98 0.99 027 |0
prep_con 0.99 0.99 060 |0
prep_para 0.98 0.99 0.51 |[0.53
prep_de 0.88 0.97 0.34 |0.42
postN 0 0 0.99 ]0.99
preN 0.75 0.83 0.44 |0.80
Pred 0.50 0.41 059 [0.82
G 0.85 0.80 0.75 |0.72
Sent 0.97 0.97 055 |0.44

Table 4. F1 for Spanish adjectival features.

Finally, Table 5 shows the results for 50 Spanish
nouns with only one occurrence in the corpus.
These results show that grammatical features can
be used for lexical acquisition of low frequency
lexical items, providing a good hypothesis for en-
suring grammar robustness and adding no over-
generation to parsing results.

DT z
prec.| rec. F | prec. | rec. F
MASS 0.50| 0.16 | 0.25 | 0.66 | 0.25 | 0.36
COUNT |0.97| 1.00 | 0.98 | 1.00 | 0.96 | 0.98
TRANS |0.75] 0.46 | 0.57 | 068 | 0.73 | 0.71
INTRANS| 0.85| 0.95 | 0.89 | 0.89 | 0.76 | 0.82
PCOMP 0 0 0 0.14 | 0.20 | 0.16

Table 5. Results of 50 unseen nouns with a sin-
gle occurrence.

4  Future Work

We have presented work on the development of an
HPSG grammar for Spanish; in particular, we have
described our approach for pre-processing and on-
going research on automatic lexical acquisition.
Besides extending the coverage of the SRG and
continuing research on lexical acquisition, the spe-
cific aims of our future work on the SRG are:

e  Treebank development.



e To extend the shallow/deep architecture
and integrate the structures generated by
partial parsing, to provide robust techniques
for infrequent structural constructions. The
coverage of these linguistic structures by
means of structure rules would increase both
processing time and ambiguity.

e To use ML methods for disambiguation;
i.e. for ranking possible parsings according
to relevant linguistic features, thus enabling
the setting of a threshold to select the n-best
analyses.

e The development of error mining tech-
niques (van Noord, 2004) to identify errone-
ous and incomplete information in the lin-
guistic resources which cause the grammar
to fail.
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Extracting a verb lexicon for deep parsing from FrameNet

Mark McConville and Myroslava O. Dzikovska
School of Informatics
University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, Scotland
{Mar k. McConvil | e, M Dzi kovska}@d. ac. uk

Abstract or end.v_causer el , corresponding tahe cel-
ebrations endedand the storm ended the celebra-

We examine the feasibility of harvesting  tionsrespectively. Yet a very similar veristop has
a wide-coverage lexicon of English verbs  a single sensest op_v_1_r el , for both the cele-
from the FrameNet semantically annotated prations stoppecndthe storm stopped the celebra-
corpus, intended for use in a practical natural  tions There is no direct connection between these
language understanding (NLU) system. We different verbs in the ERG lexicon, even though
identify a range of constructions for which  they are intuitively related and are listed as belong-
current annotation practice leads to prob- ing to the same or related word classes in semantic
lems in deriving appropriate lexical entries,  |exicons/ontologies such as VerbNet (Kipper et al.,
for example imperatives, passives and con-  2000) and FrameNet (Baker et al., 1998).

trol, and discuss potential solutions. If the output of a deep parser is to be used with
a knowledge representation and reasoning compo-
nent, for example in a dialogue system, then we need

Although the lexicon is the primary source of infor-a more consistent set of word senses, linked by spec-
mation in lexicalised formalisms such as HPSG oified semantic relations. In this paper, we investi-
CCG, constructing one manually is a highly labourgate how straightforward it is to harvest a compu-
intensive task. Syntactic lexicomsvebeen derived tational lexicon containing this kind of information
from other resources — the LinGO ERG lexiconffom FrameNet, a semantically annotated corpus of
(Copestake and Flickinger, 2000) contains entriegng”Sh. In addition, we consider how the FrameNet
extracted from ComLex (Grishman et al., 1994)annotation system could be made more transparent
and Hockenmaier and Steedman (2002) acquirefar lexical harvesting.
CCG lexicon from the Penn Treebank. However, Section 2 introduces the FrameNet corpus, and
one thing these resources lack is information on hosection 3 discusses the lexical information required
the syntactic subcategorisation frames correspond by frame-based NLU systems, with particular em-
meaning. phasis on linking syntactic and semantic structure.
The output representation of many “deep” wideSection 4 presents the algorithm which converts the
coverage parsers is therefore limited with respect tBrameNet corpus into a frame-based lexicon, and
argument structure — sense distinctions are strictlgvaluates the kinds of entries harvested in this way.
determined by syntactic generalisations, and aMe then discuss a number of sets of entries which
not always consistent. For example, in the logiare inappropriate for inclusion in a frame-based lex-
cal form produced by the LInGO ERG grammarjcon: (a) ‘subjectless’ entries; (b) entries derived
the verbend can have one of two senses dependrom passive verbs; (c) entries subcategorising for
ing on its subcategorisation framend_v_1_rel  maodifiers; and (d) entries involving ‘control’ verbs.

1 Introduction
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2 FrameNet resentations like the following, for the sentedodn

: _ billed the champagne to my account
FrameNet is a corpus of English sentences an-

notated with both syntactic and semantic informa- commerce-pay

tion. Underlying the corpus is an ontology of AGENT John

795 ‘frames’ (or semantitdypes, each of which THEME champagne
is associated with a set of ‘frame elements’ (or SOURCE [g‘xgggtme]

semanticroles). To take a simple example, the

Appl y_heat frame describes a situation involving Deep parsers/grammars such as the ERG, OpenCCG

frame elements such asGCK, someFQCD, and  \yhite 2006) and TRIPS (Dzikovska, 2004) pro-
aHEATI NG.I NSTRUMENT. Each frame is, in addi- 4,00 more sophisticated representations with scop-

tion, associated with a set of ‘lexical units” whichj,, 2y referential information, but still contain a
are understood asvokingit.

: For example, the fame hased representation as their core. The lex-
Appl y-heat frame is evoked by such Vverbs asg, entries necessary for constructing such repre-
bake blanch boil, broil, brown, simmer steamelC.  optations specify information about orthography,
The Ffame'\'?t corpus proper Cons',St_S of 13_9’43 art-of-speech, semantic type and subcategorisation
sentences (mainly dra_lwn from the British Nationa roperties, including a mapping between a syntactic
Cf“pus)' each of Wh!Ch has been han_d'annOtat%%bcategorisation frame and the semantic frame.
with respect to a particular target word in the sen- An example of a TRIPS lexical entry is presented
tence. Take the following examplévatilde fried in Figure 2, representing the entry for the vesit
the Cz_itﬁSh 'in a heavy iron skilleThe process of an- as used in the sentence discussed above. Note that
notating this sentence runs as follows: (a) |dent|fy_@or each subcategorised argument the syntactic role,

target W ord fof”‘e (_';mnotation, for_example th? mf"‘"%yntactic category, and semantic role are specified.
verbiried; (b) identify the semantic frame which is Much the same kind of information is included in
evoked by the target word in this particular sentenc%RG and OpenCCG lexical entries

B 'r?dth":_ catie the trelt—:_valmt fra:_r:empipl yh__hﬁat ; i When constructing a computational lexicon, there
(c) identify the sentential constituents which rea 'S&re a number of issues to take into account, sev-

each frame element associated with the frame, .€.5ra1 of which are pertinent to the following discus-

[COOK Matilde] [Appl y_heat fried] [FOOD the sion. Firstly, computational lexicons typically list
catfisi [HEATI NG.I NSTRin a heavy iron skillgt ~ only the ‘canonical’ subcategorisation frames, cor-
. . _ . responding to a declarative sentence whose main
Finally, some basic syntactic information about the

. . verb is in the active voice, as in Figure 1. Other vari-
target word and the constituents realising the vari- ' 9

. _ tions, such as passive forms, imperatives and dative
ous frame elements is also added: (a) the part-of- . .
i alternations are generated automatically, for exam-
speech of the target word (e.¥, N, A, PREP); (b) . .
: : - ple by lexical rules. Secondly, parsers that build se-
the syntacticategoryof each constituent realising a " . . o
oL mantic representations typically make a distinction
frame element (e.gNP, PP, VPt 0, Sf i n); and (c) ‘ , . o
. . between ‘complements’ and ‘modifiers’. Comple-
the syntacticrole, with respect to the target word, N
. . ments are those dependents whose meaning is com-
of each constituent realising a frame element (e.

Ext Obj , Dep). Thus, each sentence in the corpu letely determined by the verb, for example the PP

can be seen to be annotated on at least three in N himin the sentencé/ary relied on him and are
) , o ﬁus listed in lexical entries. Modifiers, on the other
pendent ‘layers’, as exemplified in Figure 1.

hand, are generally not specified in verb entries —

3  Frame-based NLU although they may be associated with the underlying
verb frame, their meaning is determined indepen-

The core of any frame-based NLU system is a parsefently, usually by the preposition, such as the time

which produces domain-independent semantic repdverbialnext weekn | will see him next week

" The version of FrameNet discussed in this paper is Finally, for deep parsers, knowledge about which

FrameNet Il release 1.3 from 22 August 2006. argument of a matrix verb ‘controls’ the implicit
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Matilde fried the catfish| in a heavy iron skillet
target Appl y_heat
frame element|| COOK FOOD HEATI NG| NSTR
syntactic category NP Y NP PP
syntactic role Ext oj Dep

Figure 1: A FrameNet annotated sentence

[ORTH

(bill)
SYNCAT V
commerce-pay
SEMTYPE | ASPECT bounded
TIME-SPAN  atomic

SYNROLE comp

{pp ] >
PTYPE to

ARGS <
SEMROLE source

SYNROLE subj
SYNCAT np ,
SEMROLE agent

SYNROLE 0bj
SYNCAT np ,
SEMROLE theme

SYNCAT

Figure 2: A TRIPS lexical entry

subject of an embedded complement verb phraserised from sentences involving a ‘split’ argument,

necessary in order to to build the correct semantiboth parts of which are annotated independently in

form. In a unification parser such as TRIPS, controFrameNet, e.g. Bxt Serious concefjnarose [Ext

is usually represented by a relation of token-identityabout his motivds A second group of inappropri-

(i.e. feature structure reentrancy) between the subie entries which are thus avoided are those deriving

ject or object of a control verb and the subject of drom relative clause constructions, where the rela-

verbal complement. tive pronoun and its antecedent are also annotated
separately:

4 Harvesting a computational lexicon from

FrameNet [Ext Perp The two boys[Ext Perp whqg ab-

ducted [Obj Vi cti mJames Bulgdrare likely to
In order to harvest a computational lexicon from théhave been his murderers

FrameNet corpus, we took each of the 60,309 an- . _
notated sentences whose target word is a verb afd@lly, assuming that the arguments constitute a set

derived a lexical entry directly from the annotated™€ans that entries derived from sentences involving

information. For example, from the sentence in FigPoth canonical and non-canonical word order are

ure 1, the lexical entry in Figure 3 is deriv&d. treated as equivalent. The kinds of construction im-

In order to remove duplicate entries, we made tw8!icated here include ‘quotative inversion’ (e@r
assumptions: (a) the value of thecs feature is a El€ctric Ladyland,” added Boj and leftwards ex-

setof arguments, rather than, say, a list or multisefraction of objects and dependents, for example:

and (b) two arguments are identical just in case thexre thergfObj any placeB[Ext you want topraise

specify the same syntactic role and semantic rolepep for their special facilitie§?

These assumptions prevent a range of inappropriate

entries from being created, for example entries ddn this paper we are mainly interested in extract-
ing the possible syntax-semantics mappings from

“Our original plan was to use the automatically generategrameNet, rather than the precise details of their rel-
‘lexical entry’ files included with the most recent FrameNet ’

lease as a basis for deep parsing. However, these entrisreon ative ordering.  Since dependents in the harvested

SO0 many inappropriate subcategorisation frames, of thestyp
discussed in this paper, that we decided to start from dtratc  The canonical word order in English involves a pre-verbal
with the corpus annotations. subject, with all other dependents following the verb.
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ORTH (fry)

SYNCAT V
SEMTYPE Appl y_heat
SYNROLE Ext SYNROLE Qbj SYNROLE Dep
ARGS SYNCAT NP SYNCAT NP |, |SYNCAT PP
SEMROLE Cook || SEMROLE Food | | SEMROLE Heati ng_l nstr

Figure 3: The lexical entry derived from Figure 1

lexicon are fully specified for semantic role, syn-derstood subject is not controlled by (or even coref-
tactic categoryand syntactic role, post-verbal con- erential with) some other constituent in the sentence,
stituent ordering can-be regulated extra-lexically by.g. Beingaccused of not having a sense of humour
means of precedence rules. For example, for tHe a terrible insult and (c) those involving a non-
TRIPS and LFG formalisms, there is a straightforreferential subjecit, for examplelt is raining heav-
ward correspondence between their native syntactily or It is to beregretted that the owner should have
role specifications and the FrameNet syntactic rolesut down the treesin FrameNet annotations, non-
After duplicate entries were removed from the refeferential subjects are not identified on the syntactic
sulting lexicon, we were left with 26,022 distinct role annotation layer, and this makes it more difficult
entries. The harvested lexicon incorporated 2,00® harvest appropriate lexical entries for these verbs
distinct orthographic forms, 358 distinct framesjfrom the corpus.
and 2,661 distinct orthography-frame pairs, giving These entries are easy to locate in the harvested
a functionality ratio (average number of lexical endexicon, but more difficult to repair. Typically one
tries per orthography-type pair) of 9.8. would want to discard the entries generated from
Next, we evaluated a random sample of the dda) and (b) as they will be derived automatically in
rived lexical entries by hand. The aim here was téhe grammar, but keep the entries generated from (c)
identify general classes of the harvested verb entrigghile adding a non-referentia as a subject.
which are not appropriate for inclusion in a frame- Although the FrameNet policy is to annotate the
based verb lexicon, and which would need to béa) and (b) sentences as having a ‘non-overt’ real-
identified and fixed in some way. The main groupssation of the relevant frame element, this is con-
identified were: (a) entries with nBxt argument fined to the frame element annotation layer itself,
(section 4.1); (b) entries derived from verbs in thewith the syntactic role and syntactic category lay-
passive voice (section 4.2); (c) entries which subcaers containingio clues whatsoever about understood
egorise for modifiers (section 4.3); and (d) entriesubjects. One rather roundabout way of differentiat-

for control verbs (section 4.4). ing between these cases would involve attempting to
_ _ identify the syntactic category and semantic role of
4.1 Subjectless entries the missingExt argument by looking at other en-

The harvested lexicon contains 2,201 entries (i.dfies with the same orthography and semantic type.
9% of the total) which were derived from sentenceslowever, this whole problem could be avoided if
which donot contain an argument labelled with theunderstood and expletive subjects were identified on
Ext syntactic role, in contravention of the generthesyntacticlayers in FrameNet annotations.

ally accepted constraint on English verbs that thex >
always have a subject. ’

Three main groups of sentences are impIicateMany entries in the harvested lexicon were derived
here: (a) those featuringnperativeuses of the tar- from sentences where the target verb is used in the

get verb, e.g.Alwaysmoisturise exposed skin with Passive voice, for example:
an effective emollient like E43b) those featuring [Ext NPVi cti mThe mehhad allegedly beeab-
othernon-finiteforms of the target verb whose un-ducted [Dep PP Per p by Mrs Mandela’s body-

‘Passive’ entries
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guardg [Dep PP Ti e in 1989 The second group of passive-related entries in-

As discussed above, computational lexicons do n¥P!Ve Verbs in thereed -ingconstructios, e.g.:
usually list the kinds of lexical entry derived directly ;ext NP Cont ent Many private problenisneed
from such sentences. Thus, itis necessary toidentiyyjng [Dep PP Medi umin the family
and correct or remove them.

In FrameNet annotated sentences, the voice of takhe third group involved sentences where the target
get verbs is not marked explicitfy.We applied the Verb is used in the ‘middle’ construction:
fqllowing simplg diagnostic to identify ‘pa_lssive’ en- [Ext Experiencer Yoy frighten [Dep
tries: (a) there is afExt argument realising frame Manner easily
elemente; and (b) there is some other entry with the
same orthographic form and semantic frame, whichAgain, linguistically-motivated grammars generally
has arCbj argument realising frame element treat these three constructions in the rule component

Initially we applied this diagnostic to the entriesrather than the lexicon. Thus, the lexical entries de-
in the harvested lexicon together with a part-of+ived from these sentences need to be located and
speech tag filter. The current FrameNet release imepaired, perhaps by comparison with other entries.
cludes standard POS-tag information for each word Of the 1007 lexical entries identified by the sec-
in each annotated sentence. We considered oniynd, weaker form of the passive test, 224 (i.e. 22%)
those lexical entries derived from sentences whosarn out to be false positives. The vast majority
target verb is tagged as a ‘past-participle’ form (i.eof these involve verbs implicated in the causative-
VVN). This technique identified 4,160 entries in thenchoative alternation (e.gJohn’s back archeds.
harvested lexicon (i.e. 16% of the total) as beingohn arched his bagk The official FrameNet pol-
‘passive’. A random sample of 10% of these wagy is to distinguish between frames encoding a
examined andho false positives were found. change-of-state and those encoding the causation

The diagnostic test was then repeated on the ref such a change, for exampkmal gamati on
maining lexical entries, this timaithoutthe POS- versusCause_t o_amal gamat e, Mot i on versus
tag filter. This was deemed necessary in order tGause_not i on etc. In each case, the two frames
pick up false negatives caused by the POS-taggare linked by theCausat i ve_of frame relation.
having assigned the wrong tag to a passive targ®tost of the false positives are the result of a fail-
verb (generally the past tense form tagD). This ure to consistently apply this principle in annotation
test identified a further 1007 entries as ‘passive’ (4%ractice, for example where no causative counterpart
of the total entries). As well as mis-tagged instancelsas been defined for a particular inchoative frame,
of normal passives, this test picked up a further threer where an inchoative target has been assigned to a
classes of entry derived from target verbs appearingausative frame, or a causative target to an inchoa-
in passive-related constructions. The first of thestive frame. For example, 94 of the false positives
involves cases where the target verb is in the conare accounted for simply by the lack of a causative
plement of a ‘raising adjective’ (e.gough difficult, counterpart for thé&ody novenent frame, mean-
easy impossiblg, for example: ing that both inchoative and causative uses of verbs

[Ext NP Goal Both planning and contrdlare dif- like arch, flutter andwiggle have all been assigned

ficult to achieve [Dep PP Gi rcs in this form of (0 the same frame. o
productior] For reasons of data sparsity, it is expected that the

Th (E Net tati ideli R approach to identifying passive uses of target verbs
e current FrameNet annotation guidelines ( URiiscussed here will result in false negatives, since it

penhofer et al., 2006) state that the extracted Obje%Iies on there being at least one corresponding ac-

n thes‘? caseshou!d pe tagged qﬁbj . However, tive use in the corpus. We checked a random sample
in practice, the majority of these instances appear t& 400 of the remaining entries in the harvested lex-

have been tagged &xt . icon and found nine false negatives, suggesting that

“Whilst there are dedicated subcorpora contaimintypas- —
sive targets, it is not the case tadit passive targets are inthese.  SAlternatively merit -ing bear -ingetc.
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the test successfully identifies 91% of those lexicalhe relevant frame here Banagi ng, where the
entries derived from passive uses of target verbs. Subr egi on frame element is marked as non-
. Cor e, based on examples likdohn ripped his
4.3 Modifiers trousers[below the knde Thus in this case, the
General linguistic theory makes a distinction bedecision to retain all senses of the veip within
tween two kinds of non-subject dependent of a verhhe same frame has led to a situation where seman-
depending on the notional ‘closeness’ of the sematic and syntactic coreness have become dislocated.
tic relation — complements vs. modifiers. Take forThus, although th€or e vs. nonCor e property on
example the following sentence: frame elementsloesyield a certain amount of in-
[Ext Performer Shd's [Dep Ti me currently] formation about which arguments are complements

sarring [Dep Per f or mance in The Cemetery and which are modifiers, greater care needs to be

Club] [Dep Pl ace at the Wyvern Theatfe taken when assigning different subcategorisgtion al-

ternants to the same frame. For example, it would

. *have been more convenient to have assigned the verb
only one is an complement (tfféer f or mance); i, in the above example to tHRermovi ng frame,

the Ti me and Pl ace dependents are modifiers., nere the direct object would then be assigned the

Frame-based NLU systems do not generally I'Sé:oreframe elemenThene

modifiers in the argument st_ructure of a ver_b’s Ie_X|— In the example discussed above, FrameNet does
cal entry. Thus, we need to find a means of 'dent'fybrovide syntactic role informationGbj ) allowing

ing those dependents in the harvested lexicon Whi% to infer that a norGor e role is a complement

are actually modifiers. _ _ rather than a modifier. Where the syntactic role is
~ The FrameNet ontology provides some informag;n.y marked aDep however, it is not possible

tion to help differentiate complements and modiy, make the decision without recourse to other lexi-
fiers. A frame element can be marked @re, . resources (e.g. ComLex). Since different parsers

signifying that it “instantiates a conceptually neCy, .y ilise different criteria for distinguishing com-

essary component of a frame, while making theeants from modifiers, it might be better to post-

frame unique and different from other frames”. The, o s task to the syntactic alignment module.
annotation guidelines state that the distinction be-

tween Cor e and non€or e frame elements cov- 4.4 Control verbs

ers “the semantic spirit” of the distinction betweenpification-based parsers generally handle the dis-
complements and modifiers. - Thus, for exampl&inction between subject)¢hn promised Mary to
obligatory dependents are alway®re, as are! go) and object John persuaded Mary to yaon-

(@) those which, when omitted, receive a definitgro| yerbs in the lexicon, using coindexation of the
interpretation (e.g. theSoal in John amived;  gypject/object of the control verb and the understood
and (b) those whose semantics cannot be predictgflpject of the embedded verb. The parser can use
from their form. In thePer f or mer s.and.rol €s s |exical information to assign the correct refer-

frame used in the example above, #&r f or mer g 19 the understood subject in a sentence Jiken
andPer f or mance frame elements are marked as;gked Mary to go

Cor e, whilst Ti ne andPIl ace are not.
However, it is not clear that the notion of on- command
tological ‘coreness’ used in FrameNet corresponds AGENT  John
. - o . THEME  Mary[1]
well with the intuitive distinction between syntactic motion
complements and modifiers. This is exemplified by EFFECT {THEME }
the existence of numerous constituents in the corpus
which have been marked as direct objects, despit€ontrol verbs are annotated in FrameNet in the fol-

invoking nonCoreframe elements, for example:  lowing manner:

Of the three constituents annotated hereDe9p,

[Agent 1] ripped [Subregion the togd Perhaps[Ext NP Speaker we can persuade
[Patient from my packet of cigarettps [Cbj NP Addressee Tammukg [Dep VPto
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Cont ent to entertain hirh be equivalent in some sense) to locate this kind of re-
The lexical entries for transitive control verbs thatdundancy..Other proplems involve sentences where
. : a possessive determiner has been annotated as the
we can harvest directly from these annotations thus?ub'ect of a verb, e.glt was [his] intention toaid
fail to identify whether it is the subject or the direct> -~ » €9

) . . Larsen resulting in numerous spurious entries.
object which controls the understood subject of the " 9 . oP
The harvested lexical entries are encoded ac-

embedded verb. . .
We attempted to automatically distinguish subjec%OrOIIng to a framework-independent XML schema,
which we developed with the aim of deriving lexi-

from object control in FrameNet by looking for the : .
7 cons for use with a diverse range of parsers. At the
annotated sentences that contain independently an

oment, several additional steps are required to con-
notated argument structures for both the control verg] P d

vert the entries we extracted into a format suitable
and embedded verb. For example, let's assume the

following annotation also exists in the corpus: for a particular parser.
g pus: Firstly, the syntactic categories used by FrameNet

Perhaps we can persuad&xt NP Agent Tam- and the target lexicon have to be reconciled. While
mu3j to entertain [Cbj NP Experi encer him)| basic constituent types such as noun and adjective
phrases do not change between the theories, small
differences may still exist. For example, the TRIPS
the embedded verb to successfully idenpiyrsuade parser classifies alwh-clauses such ashat he did
: y p in | saw what he dicandWhat he did was gooes
as an object-control verb. . .
. . . ._houn phrases, the LinGO ERG grammar interprets
The problem with this approach is data sparsity, . .
The h ted lexi tains 135 distinct bhem as either noun phrases or clauses depending on
© harvested lexicon contains IStinct Verog, e context, and FrameNet annotation classifies all

which subcategorise for both a direct object an .
ntrolled VP complement. In a random mof them as clauses. The alignment, however, should
a controfie compiement. a random sa be relative straightforward as there is, in general,

ple of ten of thesaoneof the annotated sentences . . )
od agreement on the basic syntactic categdries.

had been annotated independently from the ID(;'\rs'pegé'SecondIy, the information relevant to constituent

tive of the governed verb. As the proportion of the . : : )

L ) ordering may need to be derived, as discussed in

FrameNet corpus which involves annotation of run_ . :

. | Section 4. Finally, the more abstract features such as

ning text, rather than cherry-picked example sen- :

. . . control have to be converted into feature structures
tences, increases, we would expect this to |mprve

appropriate for the unification parsers. Our schema
incorporates the possibility for embedded category
structure, as in the treatment of control verbs in CCG
The revised version of the harvested lexicon conand HPSG where the verbal complement is an ‘un-
tains 9,019 entries for 2,626 orthography-framesaturated’ category. We plan to use our schema
pairs, yielding a functionality ratio of 3.4. as a platform for deriving richer lexical represen-
This lexicon still requires a certain amount oftations from the ‘flatter’ entries harvested directly
cleaning up. For example, the vedecompanyis from FrameNet.
assigned to a number of distinct lexical entries de- As part of our future work, we expect to create
pending on the semantic role associated with the Rf&neric algorithms that help automate these steps. In
complement (i.eGoal , Pat h or Sour ce). Cases particular, we plan to include a domain-independent
like this, where the role name is determined by theet of constituent categories and syntactic role la-
particular choice of preposition, could be handledels, and add algorithms that convert between a lin-
outside the lexicon. Alternatively, it may be possiblesar ordering and a set of functional labels, for exam-
to use the ‘core set’ feature of the FrameNet ontolple (Crabbé et al., 2006). We also plan to develop
ogy (which groups together roles that are judged talgorithms to import information from other seman-

We can then use the fact that it is thbject of the
control verb which is coextensive with thext of

5 Implementation and discussion

5An alternative approach would be to consult an external ’http://www.cl.cam.ac.uk/users/alk23/classes/Classes
lexical resource, e.g. the LinGO ERG lexicon, which has goodontains a list of mappings between three different deepepsar
coverage of control verbs. and ComLex subcategorisation frames
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Abstract

The development of robust “deep” linguis-
tic parsers is known to be a difficult task.
Few such systems can claim to satisfy the
needs of large-scale NLP applications in
terms of robustness, efficiency, granular-
ity or precision. Adapting such systems
to more than one language makes the task
even more challenging.

This paper describes some of the proper-
ties of Fips, a multilingual parsing sys-
tem that has been for a number of years
(and still is) under development at LATL.
Based on Chomsky’s generative grammar
for its grammatical aspects, and on object-
oriented (OO) sofware engineering tech-
niques for its implementation, Fips is de-
signed to efficiently parse the four Swiss
“national” languages (German, French,
Italian and English) to which we also
added Spanish and (more recently) Greek.

Introduction

object-oriented design adopted for the project.
Section 4 discusses some cases of cross-linguistic
syntactic variation. Finally, section 5 provides
some details about the results and presents an eval-
uation of the parser for the six languages.

2 The Fips parser

Fips is a robust “deep” linguistic parser which as-
signs to an input sentence an enriched S-structure
type of representation, along with a predicate-
argument representation. Fips can also be used
as a tagger, outputing for each word of a given
sentence a POS-tag and optionally the grammat-
ical function (associated to the first word of a con-
stituent), the base form (citation form) of the word,
and whether a word is part of an expression or a
collocation.

As an illustation, figure 1 shows the enriched
structure representation and figure 2 the POS-tags
returned by Fips for sentence (1). Notation is ex-
plained below.

(1) The record she broke was very old.

This papers describes the Fips project, whicH p [othe [(record [ [ o€l [ [

aims at developing a robust, multilingual “deep” she ] brokd DPe] 1111 was [FP [

ap Lagy Ve

linguistic parsing system efficient enough for a] old]1]

wide-range of NLP applications.

The system

is currently available for six languages (English,Figure 1: Enriched S-Structure representation for
French, German, Italian, Spanish and Greek), angentence (1)
has been extensively used for terminology extrac-

tion (Seretan & Wehrli, 2006), as well as for ter-

The linguistic assumptions used in this project

minology assistance and translation (Wehrli, 2004correspond roughly to a free-adaptation of Chom-
2006).
This paper is organized as follows. The nextfrom the Minimalist model (Chomsky, 1995,
section gives an overview of the Fips parser, de2004), from theSimpler Syntaxmodel (Culicover
scribing some of its linguistic properties and its& Jackendoff, 2005), as well as frorexical

main processes.

sky's generative linguistics, borrowing concepts

In section 3, we present thé&unctional GrammaBresnan, 1982, 2001).
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word | tag expression resented as sentences with a (usually lexically un-
the DET-SIN realized) subject. Empty categories are also used
record | NOM-SIN break-record to represent “traces” of extraposed constituents, as
she PRO-PER-SIN-FEM in wh-constructions, where a chain of coindexed
broke | VER-PAS-3-SIN break-record constituents is computed, headed by the extra-
was VER-PAS-3-SIN posed element and footed by its “trace”, an empty
very | ADV constituent in argument or adjunct position. An
old ADJ example of such chain is given in figure 1, where

the nounrecord is first coindexed with the (lex-
Figure 2: POS-tag output for sentence (1) ically unrealized) relative pronoun in the speci-
fier position of the CP constituent, which is itself
related to the empty constituehtDP €] ; in the

canonical direct object position of the verb form
broke
e the selectional properties of functional ele- Although quite complex, the computation of
ments such as prepositions, auxiliaries, detergych chains brings many benefits in terms of qual-
miners, etc. Forinstance, the English auxil-jty and accuracy of the analysis. One clear exam-
iary haveselects a [+past participle] verbal pie is provided by the identification of collocation,
projection. Similarly, in Germarwerdense- a5 exemplified in example (1) with the collocation
lects an infinitival verbal complement; break-record In that sentence, the two terms of
arguments selected by predicative headéhe collocation do not occur in the expected order
and do not even occur in the same clause, since
record is the subject of the main clause, while
e other syntactic or semantic features whichbrokeis in the relative clause. However, as the
might be relevant for syntactic processingstructure give in fig. 1 shows, the presence of the
such as [+pronominal] feature associated td'trace” of record in the direct object position of
certain verbs in French, ltalian, German, etc. the verb formbrokemakes the identification of the
types and subtypes of adverbs, control prop<€ollocation rather simple, and fig. 2 confirms that
erties of verbs selecting infinitival comple- Fips has indeed recognized the collocation.

ments, and so on. The grammar itself consists of both rules and

As shown in figure 1 above, the fundamentalProcesses. Rules specify the attachment of con-
structures built by Fips all follow the same pat- Stituents, thus determining, at least for the main
tern, that is : LeftSubconstituents Head RightSubPart, the constituent structure associated to a sen-
constituents, which can be abbreviated @R, tence. The grammatical processes, which roughly
whereL stands for the (possibly empty) list of correspond to some of the earlier transformation
left subconstituentsX for the (possibly empty) rules of Generative Grammar, are primarily re-
head of the phrase arRifor the (possibly empty) sponsible for tasks such as:
list of right subconstituents. The possible val-
ues forX are the usual lexical categoridslverb,
Adjective, Noun, Determiner,Verb, Preposition,
Complementizerlnterjection. To t_his I_ist we add e chain formation, ie. establishing a link be-
the functional categoryf ense, whlph is the head tween an extraposed element, such asha
of a sentence (TP)_, as Well &sinctional, _used to element and an empty category in an argu-
repres_ent predicative objects headed ellther by an ment or adjunct canonical position:
adjective, an adverb, a noun or a preposition.

Compared to current mainstream Chomskyan o modifications of the argument structure of
representations, Fips constituent structures arerel-  predicates (adding, deleting, modifying argu-
atively flat and make a rather parsimonious use of  ments), as is necessary to account for passive
functional projections. They do, however, contain or Romance causative constructions:
empty categories, either to represent empty sub-
jects, for instance in infinitival complements, rep- e coordination or enumeration structures.

Roughly, the grammar is lexicalist, exploiting a
rich lexicon which specifies, among others,

(nouns, verbs, adjectives);

o filling up the argument table associated with
predicative elements (mostly verbs);
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In all such cases, the claim is that a procedural b. eine— [Dpeine]
account is simpler than a rule-based description,
leading furthermore to a more efficient implemen-  ¢. with — [ with]

tation. A more powerful variant of the projection

mechanism, called metaprojection, can create
richer syntactic constituents based either on spe-
The computational model adopted for the Fipscific lexical items or on other syntactic projec-
project relies on object-oriented (OO) conceptstions. For instance, we consider pronouns to be
(see, for instance, Mossenbock, 1995). An abnominal-type lexical elements which project to a
stract model is assumed both for objects an®Pp level. Similarly, verbs are taken as sentence
for their associated procedures (usually calletheads, and will therefore give rise to richer syn-

“methods” in OO-jargon) — roughly correspond- tactic constituents, as illustrated in the following
ing to the “universal” linguistic level — from which  examples:

language-specific objects and procedures are 3@')& pronouns
rived. In other words, linguistic objects are define ]
as abstract data types, whose implementation can [Dp [Np toi]]
vary from language to language. Such variation
is handled by the type extension feature provided
by OO-models when the variation concerns data [TP mangeras [VPei 1]
structures or by the procedure redefinition feature
when variation concerns a process. [ [
Fips relies on three main objects: TP *VP

3 Object-oriented design

b. mangeras (“will-eat”)

c. reads
reads ] ]

o lexical units (exicalltem), which correspond ~ d- regnet (‘rains”)
to the “words” of a language, as they appear [ p"€9net [ [\p&11]

in the lexical database; Notice that the position of the tensed verb is dif-

ferent in the the structures given in (3b,c,d). We

assume that tensed verbs in French (and more gen-

erally in Romance) “move” to the head of TP, as

e items (tem), which correspond to an analysis shown in (3b), while such movement does not oc-
(partial or complete) — since the parser uses &ur in English (3c). An even more drastic example
parallel strategy, many items are maintainedof metaprojection occurs in German, where we as-
throughout the parsing process. sume that a whole clause structure is projected on

) ] the basis of a tensed verb (in matrix clause), as il-
The main procedures (methods) associated tQ,cirated in (3d).

those objects ar@roject Merge and Move cor-
responding to the operation of projection, combi-3.2 Merge

nation and movement, respectively. The followingpjerge is the fundamental combination mechanism
subsections will briefly discuss them in turn. in our parsing model. Each time the parser reads
3.1 Project a Wo_rd, it is flrst_tra_nsformed into a ;yntactlc
o ) _constituent, a projection, as we have just seen.
The projection mechanism creates a syntactigp,o projection, in turn, must now be combined

constituent (an object of typBrojectionin our  (arged) with (partial or complete) constituents

model), either on the basis of a lexical object, or 0N, s immediate left context. Two scenarios are

the basis of another syntactic constituent. For iNonsidered, corresponding to left attachment and

stance, any lexical item, as computed and retrieveg), i attachment. Left attachment occurs when
from the lexical database by the lexical analysis i%he projection in the left context of the new pro-

_prole_cted '”t‘? a syntactic consﬂt_uent, with the Iex'jection can be attached as a left subconstituent of
ical item as its head. Thus, givdex, a lexical

) ) ’ 9 the new projection. Right attachment corresponds
item, lex.Project(p)creates a syntactic projection y, yhe sjtuation where the new projection can be
p headed byex, as in example (2): attached as a right subconstituent of the projection
(2)a. chat— [ chat] in its left context. In fact, to be more accurate, the

e syntactic projectionsRrojectior), which are
the syntactic constituents;
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incoming projection can attach as a subconstituendtructure, provided it does violate island condi-
not just of the projection in its left context, but to tions (cf. Ross, 1967). Whenever a predicative el-
any active node of it, as illustrated in Figure 3 be-ement is added to the structure, an attempt is made
low: to complete the chain, ie. to interpret the projec-
Merge must be validated either by lexical prop-tion on top of the stack with respect to the predi-
erties such as selectional features or by generalate. If successful, an empty category coindexed
properties (adverbs, adjuncts, parentheticals cawith the extraposed projection is inserted into the

relatively freely modify projections). structure and the projection is removed from the
, stack. At the end of the parse, items containing
Left context e node S8 Unresolved chains are heavily penalized.
P n 3.4 A parsing example
To illustrate the parsing procedure and the inter-
BP  has VP El action of the 3 mechanisms described above, con-
/‘ sider the following simple sentence in French.
the NP eaten DP Constituent to be attachec (5)61. Paul mange une pomme.
‘ ‘ NP 'Paul eats an apple’
Poy ’ N
e b. [TP [DP [NPPauI]] mange [VPe,; [DPune

[ \pPomme]]]]

Step 1 the parser reads “Paul” and metaprojects a
DP structure EP [NP Paul ]].

‘ ice—cream
big

Figure 3: Active node stack

Step 2 the parser reads “manges” and metapro-
3.3 Move jects a TP-VP structureT[D mange [VP e ]

Although the general architecture of surface struc- ~ 1- A merge operation is possible with the pre-
tures results from the combination of projection ~ ceding DP structure, which yields [ [
and merge operations, an additional mechanism [NP Paul ] ] mange [Vpe,-]].

is necessary to satisfy well-formedness conditions

such as thematic assignment. As mentioned eaPtep 3 the parser reads the determiner “une” and
lier, such a mechanism reveals quite useful for the ~ creates a DP structure une ]. A merge op-
collocation identification process (cf. fig. 2). This eration is possible with the left-adjacent TP
mechanism handles extraposed elements and link  constituent, with DP attached as right con-
them to empty constituents in canonical positions,  stituent of the internal VP node 1[P [ op
thereby creating a chain between the base (can_om- [\pPaulllmange [ e [ une]]].

cal) position and the surface (extraposed) position

of the movedconstituent. To take another simple Step 4 the parser reads the noun “pomme”, cre-
example, let us consider the interrogative sentence  ates an NP StrUCtureNL pomme ], and attach

given in (4a) and the (slightly simplified) associ- it (merge operation) as a right constituent of
ated structure in (4b): the DP structure in the TP structure, which
(4)a. who did you invite ? yields the complete structure (5b).

b. [ o[ gpWhal;did; [, [oyoule [, 3.5 The grammar

invite [ DF)e] i11] Merge operations are constrained by various
mostly language-specific conditions which can be
The chain mechanism functions as follows: asdescribed by means of rules. Those rules are
the parser encountersarword in an extraposed stated in a pseudo formalism which attempts to be

position, it stores it in a stack associated with itsboth intuitive for linguists and relatively straight-
governing category (typically the CP projection forward to code. The conditions associated to the
which dominates it). As the parse proceeds, theules take the form of boolean functions, as de-
stack is transferred along the right edge of thescribed in the examples (6) for left attachments
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and in the examples (7) for right attachmentsto the subject argument slot. In our implemen-
wherea andb refer, respectively, to the first and tation, the treatment of passives takes the form
to the second constituent of a merge operation. of a grammar rule specifying the attachment of a

(6)a. AP + NP [+past participle] verbal projection as complement
a.HasFeat(prenominal) of the passive auxiliary. This attachment triggers
a.AgreeWith(b{gender, numbe) the restructuring process described aBove

b. DP + NP 3.6.2 coordination
a.HasSelectionFeat( nCompl) Coordinate structures constitute a well-known

a.AgreeWith(b{gender, number, cale problem for both theoretical and computational
- _— .. linguistics. For the latter, coordination is prob-
Rule 6a specifies that an adjective prOJectlonI . o .

. ., lematic because it is a major source of non-
structure (an AP constituent) can (left-)merge Wlthdeterminism Given the fact that such structures

a noun projection structure (&P constituent) un- . .
" . ' . are extremely common in both speech and writ-
der the two conditions (i) that the first constituent,” = .
(the adjective) bears the featurs enoni nal ing, it is therefore mandatory for NLP systems to
handle them efficiently. Our treatment of coordi-

and (ii) that both constituents agree in numberand ~ .~ . . L
) L nation is based on the following assumptions:
gender. This rule, which is part of our French

grammar, will allow forpetit animal(“small ani- e Coordination can affect any pair of like con-
mal”), but notpréhistorique animaf“prehistorical stituents;

animal”), since the adjectivpréhistoriquedoes

not bear the featurg +pr enoni nal ], nor pe- e coordinate structures do not strictly obey the
tit animaux(“small animals”), sincepetitis singu- X schema. They have the following structure:
lar while animauxis plural and hence both donot [y [ gy pXP CoNj XP ]], where X takes
agree in number. its value in the set of lexical categories aug-

Rule (6b) is taken from our German grammar. It mented by T and F (see section 2 above), and
states that a common noun can be (right-)attached  Conuis a coordination conjunction (egnd
to a determiner phrase, under the conditions (i)  or, but, etc.).
that the head of the DP bears the selectional fea-
ture [ +Nconpl enent] (ie. the determiner se-  The coordination procedure is triggered by the

lects a noun), and (i) the determiner and the nouresence of a conjunction. All the nodes on the

agree in gender, number and case. right edge of the constituent in its immediate left
context are considered potential candidates for the
3.6 Procedural grammar coordination structure. A metaprojection creates

One of the original features of the Fips parser is its coordinate projection, in which the node on the
procedural approach to several grammatical propight edge is the left subconstituent of the conjunc-
erties. In addition to the chain mechanism dedtion. The set of such projections is quickly filtered
scribed in the previous section, the procedural apout by further incoming material.

proach also concerns the treatment of passive and To illustrate our treatment of coordinate struc-
other restructuring constructions, as well as coorfures, in particular the type of structure we assume
dination. The next two paragraphs briefly sketch(slightly simplified in the (8) sentences) as well as

our treatment of passive and coordination conthe potential ambiguity of coordination, consider
structions. the following simple English examples.

36.1 passives (7)a. the old men and women

Along with many linguists or various persua- b. [DP [Oonj b [Dpthe [NP [AP old ] men]]
sions, we assume that the fundamental property and] [ [..women]]]
of passives is the elimination (or demotion) of the S
subject argument of a predicate. Based onthatc [ the [ [..old][. .. [..men]and
assumption, our treatment is essentially a case of [Dpwomgﬁ ] ]A]P] Conj P 7NP
argument-structure modification: demotion of the NP

subject argumer\t to an opt_lonalbyﬁphrase" ar- 1The same restructuring process applies to particial struc-
gument, promotion of the direct object argumenttures, as in John left the roorwllowed by his dog.
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d. [DF> the [NP [Oonj b [NF> [Aold ]men]] atemporary data structure is used to store clitics
and] [._women]] until the parser has identified the main predicate
NP of the sentende Only then can the interpretation

(8)a. John believes Bill and Mary will be to blame. Process start. All the clitics in the temporary data
structure must be interpreted either as argument or

b. John believes 1[F, [DP Bill and Mary Jwill  as adjunct of the vefb The examples below il-
be to blame | lustrate our analysis of clitics, applied to Italian
(9), French (10) and Spanish (11). The Italian and
C. [ John believes Bill J and [, Mary will  French examples display proclitics (pre-verbal cl-
be to blame ] itics), while the Spanish example is a case of encl-

itics (post-verbal clitics). Notice also that in Ital-
] o o ian and Spanish we have clitic clusters (two clitics
4 Examples of cross-linguistic variation  concatenated in one orthographical word), and in

In the Fips system, language variation occurs not'® SPanish example, the cluster is itself concate-
only at the level of the grammar, as expected, pupated to the verb. In all three examples,. the'chtlc
also at the level of the associated procedures. CofyONouns have be properly analyzed, ie. inter-
sider for example, the case of the argument checl@reted as arguments of the verb. ThIS.IS expressed
ing procedure. Whereas a preverbal DP can be inD the resulting structures by the cha_lns connect-
terpreted as the subject of a verb if it agrees witHNd @ Pronoun and an empty category in postverbal
it (number, person) in languages such as FrencRosition. Asin thewr.rchalns discussed earlier, all
or English (as well as other so-called “configu- € €lements are coindexed.

rational languages”), the same criteria would nd®)@. Glielo ho dato. (*I have given it to him”)

hold for case-marked languages, such as German i_lo. )

or Modern Greek. In those languages, subjects . ([;P Lpeldlivlo; ho [y dato fop e ] [
can essentially occur anywhere in the sentence @a)a. If’aul] le Iui a donné. (“Paul has given it to
must be markefl +noni nat i ve] and of course him”)

agree with the verb (number, perstnRelatively _

similar at an abstract level, the argument check- 0. [1p [ opPaul]le luij a [ donné [e;]

ing procedure must be “tuned” for each individual [ 0 € 111

language. (12)a. Ij)DammeIo. (“Give it to me”)

Our second example of cross-linguistic varia- b. [ [ e]dg-me-loy [ 1o el
tion concerns clitic pronouns. The relevant data ~— "TP "DP &0 Lyp€ilppilpp
structures (objects) and interpretation procedures & 111
(methods) to handle clitics are defined at an ab- Although very similar in their fundamental be-
stract level. Specific languages (ie. Spanish, Italhavior, clitics across Romance languages are nev-
ian, French, Greek, etc.) inherit those objectsrtheless too different to be handled by exactly
and methods, which they can further specialize acthe same mechanism. Furthermore, even if such
cording to language-specific properties and conmechanism could be implemented, chances are
straints. The general mechanism to handle cliticshat it would prove insufficient or inadequate in
comprises two distinct steps: attachment and insome ways to handle an additional Romance lan-
terpretatiod. As a clitic is read (as an independentguage such as Romanian or Portuguese. Our ap-
word or as an orthographically attached affix), it isproach, based on a general abstract mechanism,
attached to the head of the verb form which fol-which can be specialized to suit the specific prop-
lows it (proclitic) or which precedes it (enclitic). erties of each language seems therefore more ap-
Since this verbal head is not necessarily the ongropriate.
with respect to which the clitic pronoun can be in'Ttemporary structure is also used to check the well-

terpreted (it might be an auxiliary, for instance), formedness of clitic sequences.
- SFor the sake of simplicity, we will leave aside a few more
2 TSRS H
We assume that German (and Modern Greek) are socomplex cases, such as French clitic “en” corresponding to
called scram'bllng languages with an unmarked basic word¢omplements of the direct object of the main veRayl en
order (cf. Haider and Rosengren, 1998, Hinterholzl, 2006) connait la raisortPaul knows the reason of it”) or so-called
3From now on, the discussion will only focus on Romance“long-distance” clitics in Italian or Spanish restructiioa
clitics. constructions.
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5 Results and evaluation language). The third line indicates the number

. . of sentences approximately 40’000 for each file,
To date, the Fips multilingual parser has been de-. PP y &0
: slightly more for the German file. We can see
veloped for 6 languages (English, French, Ger- .
. . that the average length of a sentence is roughly
man, ltalian, Spanish and Greek). Other lan- .
) 20 to 25 symbols (slightly more for French). The
guages have been very partially treated, such

. ) . -fourth line shows the percentage of sentences for

Romanian, Russian, Polish and Romansch Sursil- | . . .

van which Fips returned a complete analysis. The best
' score is obtained with English (71.95%), closely

A significant effort has been made at the lex'(?alfollowed by French (70.01%). Greek is clearly

Igvel, gualitatively and quantitatively. Thfa table N ehind with only about 31%, largely due to the
figure 4 below shows the curren approximate S1%%act that its grammar as well as its lexicon have

of each lexicon. . )
received much less attention so far. We can ob-

language] lexemes| words | collocations serve a quite clear (and unsurprising) correlation
anglais 54°000 | 90’000 5000 between rich lexical coverage (English, French)

francais | 37°000 | 227'000 12’500 and high number of complete analyzes.

allemand| 39000 | 410°000 2000 Finally the last line shows the speed of the

italien 31°000 | 220'000 2'500 parser in terms of number of words per second.
espagnol| 22’500 | 260°000 320 The mean speed of Fips is between 130 and 180
grec 12°000 | 90°000 225 word/second. FipsGreek is somewnhat faster, pre-

sumably because its grammar is less developed
%han the grammar of the other languages at this
point. It came up as a surprise to see that FipsEn-

Figure 4: Number of entries in the lexical databas

At the grammar level, the coverage of the Eng'glish was clearly slower. The reason has probably

lish:and French grammar is quite satisfactory, ltaly ' \ith the high number of lexical ambiguities
ian, Spanish and especially German still need im

) . of the type N/V (e.g. lead, study, balance, need)
provements, while the Greek grammar is very par- . . S .
tial which are likely to significantly increase the num-

. ber of parallel (partial) analyzes.
Fips attempts to produce complete analyzes P (b ) y

for input sentences. Since the parsing strategy
is (pseudo-)parallel, many analyzes are produceg Concluding remarks
and ranked according to preferences such as local

vs. non-local attachments, argument vs. adjunct

interpretation, presence vs. absence of a collg?lthough the research described in this paper is
cation, etc. When a complete analysis fails, thdy N0 means completed, it has already achieved

parser outputs a sequence of partial analyzes coy€veral important goals. First of all, it has shown
ering the whole sentence. that “deep linguistic parsing” should not neces-

A comparative evaluation has been conducted@ly be equated with “inefficient parsing”. Al-

to show how the various implementations of Fipsthough clearly slower than shallow parsers, Fips is

compare with respect to a near identical cor-f_aSt enough for such dem.anding tasks as transla-
pus, the European Parliament corpus (cf. Koehrfion Or terminology extraction.
2005). We parsed approximately 1 million words At the software level, the adopted design makes
in each of the six languages. The table given irit possible to “plug” an additional language with-
figure 5 show the results: out any change or any recompilation of the sys-
The first line in table 5 show the size of each filetem. It is sufficient to add the language-specific
in terms of symbols (word, punctuation, format- modules and lexical databases to have a fully func-
ting symbol, etc.), approximately 1 million sym- tional parser for that language. Arguably the
bols for each file. The second line gives the num-model has so far not been tested with languages
ber of unknown words, not counting words start-belonging to widely distinct language types. In
ing with an uppercase letter which are assumedact, it has only been applied to (a small set) of Eu-
to be proper nouns (given the fact that in Ger-ropean languages. Future work will address that
man common nouns are capitalized, we did notssue, and we are planning to extend our work to-
leave aside capitalized unknown words for thatwards Asian and Semitic languages.
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| language | German| English | Spanish| French | Greek | ltalian |
number of symbols 1082117| 1046431| 1041466| 1144345| 1045778| 998871
unknown words 13569 879 6825 853 26529 | 3099
number of sentences 45880 40348 40576 38653 39812 | 37726
% of complete analyzes| 48.04% | 71.95% | 56.87% | 70.01% | 30.99% | 58.74%
speed(word/second) 138 82 127 133 243 182

Figure 5: Comparative evaluation of the parsers
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Abstract al., 2004) reported coverage of 57% of the strings

, _ . with full lexical span from the British National
This paper presents an approach to partial corpus (BNC). Although recent extensions to the
parse selection for robust deep processing. grammar and lexicon have improved the coverage
The work is based on a bottom-up chart  gjgnificantly, full coverage over unseen texts by the
parser for HPSG parsmg._FoIIowmg the def- grammar is still not anywhere in sight.
inition of partial parses in (Kasper et al., Other domains are even more likely to not fit
1999), different partial parse selection meth-  jniq ERG’s universe, such as transcripts of sponta-
ods are presented and evaluated on the basis neqysly produced speech where speaker errors and
of multiple metrics, from both the syntactic  gisfiyencies are common. Using a recent version of
and semantic viewpoints. The application e ERG, we are not able to parse 22.6% of a ran-
of the partial parsing in spontaneous speech  4om sample of 500 utterances of conversational tele-
texts processing shows promising cOmpe-  phone speech data. 76.1% of the unparsed data was
tence of the method. independently found to contain speaker errors and
disfluencies, and the remaining data either contained
filled pauses or other structures unaccounted for in
Linguistically deep processing is of high theoretthe grammar. Correctly recognizing and interpreting
ical and application interest because of its abilitithe substrings in the utterance which have coherent
to deliver fine-grained accurate analyses of natudeep syntax is useful both for semantic analysis and
ral language sentences. Unlike shallow methodss building blocks for attempts to reconstruct the dis-
which usually return analyses for any input, deefluent spontaneously produced utterances into well-
processing methods with precision grammars noformed sentences.
mally make a clear grammaticality judgment on in- For these reasons, it is preferable to exploit the
puts, therefore avoiding the generation of erroneougtermediate syntactic and semantic analysis even if
analyses for less well-formed inputs. This is a desithe full analysis is not available. Various efforts have
able feature, for it allows for a more accurate modbeen made on the partiality of language processing.
eling of language itself. In bottom-up chart parsing, the passive parser edges

However, this feature largely limits the robustnessicensed by the grammar can be taken as partial anal-
of deep processing, for when a sentence is judgedes. However, as pointed out in (Kasper et al.,
to be ungrammatical, normally no analysis is gen1999), not all passive edges are good candidates, as
erated. When faced with the noisy inputs in reahot all of them provide useful syntactic/semantic in-
applications (e.g., input errors introduced by speectormation. Moreover, the huge amount of passive
recognizers or other pre-processors, mildly ungramedges suggests the need for a technique of select-
matical sentences with fragmental utterances, selfig an optimal subset of them. During recent devel-
editing chunks or filler words in spoken texts, ancdbpment in statistical parse disambiguation, the use
so forth), lack of robustness means poor coveragef log-linear models has been pretty much standard-
and makes deep processing less competitive as coired. However, it remains to be explored whether the
pared to shallow methods. techniques can be adapted for partial parse selection.

Take the English Resource Grammar In this paper, we adopt the same definition for
(ERG; Flickinger (2000)), a large-scale accupartial parse as in (Kasper et al., 1999) and de-
rate HPSG for English, for example. (Baldwin etfine the task of partial parse selection. Several dif-

1 Introduction
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ferent partial parse selection models are presentédres (attribute value pairs) and a type inheritance

and implemented for an efficient HPSG parser system. Therefore, each passive edge on the parsing

PET (Callmeier, 2001). chart corresponds to a TFS. A relatively small set of
One of the main difficulties in the research of parhighly generalized rules are used to check the com-

tial analyses is the lack of good evaluation measurgatibility among smaller TFSes and build up larger

ments. Pure syntactic comparisons for parser evabnes.

uation are not good as they are very much specific

to the annotation guidelines. Also, the deep gran?-2 Partial Parses

mars we are working with are not automatically exBased on the bottom-up chart parsing, we use the
tracted from annotated corpora. Therefore, unlesgsrm Partial Parse to describe a set of intermediate
there are partial treebanks built specifically for thQ)assive parsing edges whose spans (beginning and
deep grammars, there is simply no ‘gold’ standarénd positions) are non-overlapping between each
for non-golden partial analyses. other, and together they cover the entire input se-
Instead, in this paper, we evaluate the partial anaguence (i.e., no skipped input tokens).
yses results on the basis of multiple metrics, from |n a graph view, the intermediate results of a chart
both the syntactic and semantic point of views. Emparser can be described as a directed graph, where
pirical evaluation has been done with the ERG on gi| positions between input tokens/words are ver-
small set of texts from the Wall Street Journal SeCticeS, and all the passive edges derived during pars-
tion 22 of the Penn Treebank (Marcus et al., 1993)ng are the directed graph arcs. Obviously such a
A pilot study of applying partial parsing in sponta-graph is acyclic and therefore topologically sorted.
neous speech text processing is also carried out. A partial parse is then a path from the source vertex
The remainder of the paper is organized as folithe beginning position of the input) to the terminal
low. Section 2 provides background knowledgesertex (the end position of the input).
about partial analysis. Section 3 presents various Suppose in chart parsing, we derived the interme-
partial parse selection models. Section 4 describefate results as in Figure 1. There are in tatglos-
the evaluation setup and results. Section 5 concludgfle partial parses{a, b, c, d}, {a,b, f}, {a, e, d}

the paper. and{a, g}.

2 Partial Parsing

21 HPSG Parsing A A e\

Our work on partial parsing is done with the e ---y--®--/--®--ar--®--5/--@

DELPH-IN HPSG grammars. Many of these gram- 0 Moy W W Wy

mars can be used for both parsing and generatiop, . . . .

In this paper, we only focus on the parsing task. F rigure 1: Graph representation of intermediate chart

efficient parsing, we use PETThe parsing module Parsing results

in PET is essentially a bottom-up chart parser. The Note that each passive edge is a sub-structure li-

parsing process is guided by the parsing tasks on agnsed by the grammar. A derivation tree or TFS can

agenda. A parsing task represents the combinatidre reconstructed for it if required. This definition of

of a passive chart edge and an active chart edge jpartial parse is effectively the same to the view of

a rule. When the combination succeeds, new taskartial analyses in (Kasper et al., 1999).

are generated and put on to the agenda. The parser o .

terminates either when the task agenda is empty 83 L ocal Ambiguity Packing

when a specific number of full analyses has beeThere is one more complication concerning the par-

found (only in the no-packing best-first mode). tial parses when the local ambiguity packing is used

HPSG grammars use typed feature structures (Thn the parser.

Ses) as their background formalism. The TFSes rep- Due to the inherent ambiguity of natural lan-

resent various linguistic objects with a set of feaguage, the same sequence of input may be ana-

B T - lyzed as the same linguistic object in different ways.
LKB (Copestake, 2002) has a similar chart based IC)a'rseguch intermediate analyses must be recorded dur-

being less efficient mainly due to its implementation in Lisp: ) ‘
rather than C/C++. ing the processing and recovered in later stages.
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Without any efficient processing technique, parsingpproaches to partial parse selection, as well as new

becomes computationally intractable with the compartial parse ranking models.

binatory explosion of such local ambiguities. In

PET, the subsumption-based ambiguity packing af1 Longest Edge

gorithm proposed in (Oepen and Carroll, 2000) i©ne of the simplest and most commonly used cri-

used. This separates the parsing into two phasesrion in selecting the best partial parse is to prefer

forest creation phase and read-out/unpacking phaghe partial parses which contain an edge that covers
In relation to the work on partial parsing in thisthe largest fragment of the input. For example, un-

paper, the local ambiguity packing poses an effider such a criterion, the best partial parse in Figure 1

ciency and accuracy challenge, as not all the intewill be {a, g}, since edge has the largest span. The

mediate parsing results are directly available as pa®gic behind this criterion is that such largest frag-

sive edges on the chart. Without unpacking the amments should preserve the most interesting linguistic

biguity readings, interesting partial analyses migh&nalysis of the input. As an added incentive, finding

be lost? But exhaustively unpacking all the readinggthe longest edge does not involve much search.

will pay back the efficiency gain by ambiguity pack- The limitations of such an approach are obvious.

ing, and eventually lead to computational intractabl@here is no guarantee that the longest edge will be

results. significantly better than shorter edges, or that it will
To efficiently recover the ambiguous readingsven correspond to a valid constituent. Moreover,

from packed representations, the selective unpacken there are multiple edges with the same length

ing algorithm has been recently implemented as afwhich is often the case in parsing), the criterion

extension to the algorithm described in (Carroll andloes not suffice for the choice of the best partial

Oepen, 2005). It is able to recover the tofhbest parse.

readings of a given passive parser edge based on the

score assigned by a maximum entropy parse rang:2 Shortest Path

ing model. This neat feature largely facilitates th€Kasper et al., 1999) proposed an alternative solu-

efficient searching for best partial parses describeiibn to the problem. If the preference of each edge

in later sections. as a part of the partial parse can be quantitatively de-
cided as a weight of the edge (with smaller weights
3 Partial Parse Selection assigned to better candidates), then the problem of

_ _ , ) finding the best partial parse is to find the shortest

A partial parse is a set of partial analyses licensegath from the start vertex to the end vertex. Since
by the grammar which cover the entire input withouthe graph is completely connected (by the lexical
overlapping. As shown in the previous section, ther@dges spanning all the input tokens) and topolog-
are usually more than one possible partial pars§gally sorted, such a path always exists. The dis-
for a given input. For deep linguistic processing, &overy of such a path can be done in linear time
high level of local ambiguity means there are eVeO(|V| + |E|)) with the DAG-shortest-path algo-
more partial parses due to the combinatory explQijthm (Cormen et al., 1990). Though not explic-
sion. However, not all the possible partial parses afgy npointed out by (Kasper et al., 1999), such an
equally good. Some partial parses partition the ingjgorithm allows the weights of the edges to be of
putinto fragments that do not correspond to linguiszny real value (no assumption of positive weights)
tic constituents. Even if the bracketing is correctgg’|ong as the graph is a Directed Acyclic Graph
the different edges with the same span represent sigyaG).
nificantly different linguistic objects, and their sub- (K asper et al., 1999) did point out that the weights
structures can be completely different, as well. Al the edges can be assigned by an estimation func-
these indicate the need for methods that can apprgon.  For example, the implementation of the al-
priatgly select the best partial parses from all th%orithm in PET preferred phrasal edges over lexi-
possible ones. _ ~ cal edges. Other types of edges are not allowed in

In this section, we review some of the previoughe partial parse. Suppose that we assign weight

2More informative analyses are subsumed by less informat-0 phrasal edges; to lexical edges, anhf to all

tive ones. In subsumption-based packing, such analyses é?@her edges. Then for the graph in 2, the best par-
packed and are not directly accessible. tial parses arge, g} and{f, g}, both of which have
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the path length o. It should be noted that such an{w;,...,w;} is a segmentation of the input se-
approach does not always favor the paths with thguence so that each local analysisc & corre-
longest edges (i.e., patfh,d} is not preferred in sponds to a substring; € 2 of the input sequence

the given example). w. Therefore, the probability of the partial parde
given an input sequence is:
e:1 1
: P(®w) = P(Qlw) - P(@[Q) (1)
a2 2 C:2 2

With the bold assumption th&t(¢;|w;) are mutually

® - —-\pn7 - ©® —- -- @ —-\p7-- ® - - --e
0 W 1 W 2 W W 4 independent for different, we can derive:
N k

P(®|w) = P(Qw) - [[ Pltilw) ()

i=1

Figure 2: Shortest path partial parses with heuristi-

cally assigned edge weights Therefore, the log-probability will be
k

However, (Kasper et al., 1999) did not pro- P(®lw) ~ loe P(Q loz P(£:w:) (3
vide any sophisticated estimation functions basedlog (®lw) ~ log P(Q|w) +¢:Z1 og P(tilwi) (3)

on the shortest path approach. Using the heuristic ) o N
weight described above, usually thousands of differ- EGuation 3 indicates that the log-probability of a
ent paths are found with the same weight. (Kaspdatial parse for a given input is the sum of the log-
et al., 1999) rely on another scoring function in or _probabl_ll'ty of local analyses for the sub-strings, with
der to re-rank the partial parses. Although differenfn additional component log P(Q|w) represent-
requirements for the scoring function are discussed}d the conditional log-probability of the segmen-
no further details have been defined. tation. If we use—log P(t;|w;) as the weight for

It should be noted that different variations of the®@ch local analysis, then the DAG shortest path al-

shortest path approach are widely in use in many rglorithm will quickly find the partial parse that max-
®|w) — log P(Qw).

bust deep parsing systems. For instance, (Riezler @iZ€s1og P(Q| _ _
al., 2002) uses théewest chunk method to choose _ '€ probabilityP(t; |w;) can be modeled in a sim-
the best fragment analyses for sentences withol® Way to the maximum entropy based full parse

full analysis. The well-formed chunks are preferrecd€lection models:

over token chunks. With this partial parse selection exp Y0y A f(ti, w)
method, the grammar achieves 100% coverage on P(tilw;) = S e ST A () (4)
unseen data. A similar approach is also used in (van veT €XP 2 j=1 Aj [ (U, Wy

Noord et al., 1999). where T is the set of all possible structures that
can be assigned t0;, fi ... f, are the features and
A1...\, are the parameters. The parameters can
Generally speaking, the weights of the edges in thige efficiently estimated from a treebank, as shown
shortest path approach represent the quality of thg/ (Malouf, 2002). The only difference from the
local analyses and their likelihood of appearing irfull parse selection model is that here intermediate
the analysis of the entire input. results are used to generate events for training the
This is an interesting parallel to the parse seleanodel (i.e. the intermediate nodes are used as posi-
tion models for the full analyses, where a goodned$re events if it occurs on one of the active tree, or as
score is usually assigned to the full analysis. Famegative events if not). Since there is a huge number
example, the parse disambiguation model described intermediate results availalbe, we only randomly
in (Toutanova et al., 2002) uses a maximum entropgelect a part of them as training data. This is es-
approach to model the conditional probability of asentially similar to the approach in (Osborne, 2000),
parse for a given input sequené¥t|w). A similar  where there is an infeasibly large number of training
approach has also been reported in (Johnson et avents, only part of which is used in the estimation
1999; Riezler et al., 2002; Malouf and van Noordstep. The exact features used in the log-linear model
2004). can significantly influence the disambiguation accu-
For a given partial pars@ = {t1,...,t:}, Q@ = racy. In this experiment we used the same features

3.3 Alternative Estimation Functions
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as those used in the PCFG-S model in (Toutanova etFor robust deep processing, the ability to gener-

al., 2002) (i.e., depth-1 derivation trees). ate partial semantics is very important. Moreover, it
The estimation ofP(Q2|w) is more difficult. In also provides us with a way to evaluate the partial

a sense it is similar to a segmentation or chunkingarses which is more or less independent from the

model, where the task is to segment the input intsyntactic analysis.

fragments. However, it is difficult to collect train-

ing data to directly train such a model for the deegl Evaluation

grammar we have. Here we take a simple rough es- _ _ _
The evaluation of partial parses is not as easy as the

timation: .
evaluation of full parses. For full parsers, there are
Y ()] generally two ways of evaluation. For parsers that
P(Qw) = Z(w)] (5) are trained on a treebank using an automatically ex-

tracted grammar, an unseen set of manually anno-
whereY (Q) is the set of all partial parses that havetated data is used as the test set. The parser out-
the segmentatiof; Z(w) is the set of all partial put on the test set is compared to the gold standard
parses for the inpub. annotation, either with the widely usé&h\RSEVAL
Unfortunately, the shortest path algorithm is notmeasurement, or with more annotation-neutral de-
able to directly find the maximize®(®|w). Fully pendency relations. For parsers based on manually
searching all the paths is not practical, since thereompiled grammars, more human judgment is in-
are usually tens of thousands of passive edges. Wlved in the evaluation. With the evolution of the
order to achieve a balance between accuracy and gkammar, the treebank as the output from the gram-
ficiency, two different approximation approaches arenar changes over time (Oepen et al., 2002). The
taken. grammar writer inspects the parses generated by the
One way is to assume that the componergrammar and either “accepts” or “rejects” the anal-
log P(Qw) in Equation 3 has less significant ef-ysis.
fect on the quality of the partial parse. If this is In partial parsing for manually compiled gram-
valid, then we can simply uselog P(¢;|w;) asedge mars, the criterion for acceptable analyses is less
weights, and use the shortest path algorithm to olevident. Most current treebanking tools are not de-
tain the bestb. This will be referred to asnodel  signed for annotating partial analyses. Large-scale
l. manually annotated treebanks do have the annota-
An alternative way is to first retrieve severaltion for sentences that deep grammars are not able
“good” 2 with relatively highP(Q|w), and then se- to fully analyze. And the annotation difference in
lect the best edges that maximize P(¢;|w;) for other language resources makes the comparison less
eachw; in Q. We call this approach thmodel 1I. straightforward. More complication is involved with
How well these strategies work will be evaluatedhe platform and resources used in our experiment.
in Section 4. Other strategies or more sophisticategince the DELPH-IN grammars (ERG, JaCY, GG)
searching algorithms (e.g., genetic algorithm) canse MRS for semantics representation, there is no
also be used, but we will leave that to future rereliable way of evaluating the output with traditional

search. metrics, i.e., dependency relations.
_ _ _ In this paper, we use both manual and automatic
3.4 Partial Semantic Construction evaluation methods on the partial parsing results.

For each local analysis on the partial parse derived iaifferent processing resources are used to help the
the above steps, a semantic fragment can be derivéyaluation from the syntactic, as well as the seman-
The HPSG grammars we use take a compositionf Point of view.

approach to semantic construction. Minimal Re- ) )

cursion Semantics (MRS; Copestake et al. (2006fy1 Syntactic Evaluation

is used for semantic representation. MRS can Ha order to evaluate the quality of the syntactic struc-

easily converted to (Robust) MRS (RMRS; Copestures of the partial parses, we implemented the par-
take (2006)), which allows further underspecificatial parse models described in the previous section
tion, and can be used for integration of deep and/an the PET parser. The Nov-06 version of the ERG

shallow processing tools. is used for the experiment. As test set, we used a
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subset of sentences from the Wall Street Journal Seesed. The RMRS semantic representations are gen-
tion 22 from the Penn Treebank. The subset contairsated from the partial parses with different selection
143 sentences which do not receive any full analysimodels. To compare with, we used RASP 2 (Briscoe
licensed by the grammar, and do not contain lexiet al., 2006), a domain-independent robust parsing
cal gaps (input tokens for which the grammar cansystem for English. According to (Briscoe and Car-
not create any lexical edge). The average sentenoal, 2006), the parser achieves fairly good accuracy
length is 24 words. around 80%. The reasons why we choose RASP
Due to the inconsistency of the tokenisationfor the evaluation are: i) RASP has reasonable cov-
bracketing and branching between the Penn Treerage and accuracy; ii) its output can be converted
bank annotation and the handling in ERG, we manunto RMRS representation with the LKB system.
ally checked the partial parse derivation trees. Eachince there is no large scale (R)MRS treebank with
output is marked as one of the three cageBL if sentences not covered by the DELPH-IN precision
both the bracketing and the labeling of the partiayrammars, we hope to use the RASP’s RMRS out-
parse derivation trees are good (with no more thaput as a standalone annotation to help the evaluation
two brackets crossing or four false labelinggB if  of the different partial parse selection models.
the bracketings of the derivation trees are good (with To compare the RMRS from the RASP and the
no more than two brackets crossing), but the labepartial parse selection models, we used the simi-
ing is bad (with more than four false labelings);Er larity measurement proposed in (Dridan and Bond,
if otherwise. 2006). The comparison outputs a distance value be-
The manual evaluation results are listed in Tatween two different RMRSes. We normalized the
ble 1. The test set is processed with two modeldistance value to be betweérand1. For each se-
presented in Section 3.3Vl for model I, M-Il lection model, the average RMRS distance from the
for model 11). For comparison, we also evaluate forRASP output is listed in Table 2.
the approach using the shortest path with heuristic

weights (denoted b$P). In case there are more than RMRS Dist.)
one path found with the same weight, only the first SP 0.674
one is recorded and evaluated. M- 0.330
GBL GB £ M-Il 0.296
#1 % | #] % | #| % Table 2: RMRS distance to RASP outputs
SP | 55| 38.5%| 64| 44.8% | 24 | 16.8% Again, we see that the outputs ofiodel I
M-I | 61| 42.7% | 46 | 32.2% | 36 | 25.2%| achieve the highest similarity when compared with
M-Il | 74| 51.7% | 50 | 35.0% | 19 | 13.3%| the RASP output. With some manual validation,

_ _ we do confirm that the different similarity does im-
Table 1: Syntactic Evaluation Results ply a significant difference in the quality of the out-

The results show that the naive shortest path aput RMRS. The shortest path with heuristic weights
proach based on the heuristic weights works prettyielded very poor semantic similarity. The main rea-
well at predicting the bracketing (with 83.3% of theson is that not every edge with the same span gen-
partial parses having less than two brackets crossrates the same semantics. Therefore, although the
ing). But, when the labeling is also evaluated it iSSP receives reasonable bracketing accuracy, it has
worse tharmodel |, and even more significantly out- less idea of the goodness of different edges with the

performed bymodel 1. same span. By incorporating(t;|w;) in the scoring
. _ model, the model | and Il can produce RMRSes with

Evaluation of the syntactic structure only reflects the i i

partial parse quality from some aspects. In ordef3 Evaluating partial parses on spontaneous

to get a more thorough comparison between differ- ~ SPeech text

ent selection models, we look at the semantic outpdthe above evaluation shows in a comparative way

generated from the partial parses. that model |l outperforms other selection models
The same set of 143 sentences from the Waliom both syntactic and semantic points of view. In

Street Journal Section 22 of the Penn Treebank @der to show its competence in real applications,
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we applied the best performingodel Il on sponta- gions and potentially capturing meaningful text is a
neous speech transcripts, which have a high level shallow parsing method described in (Johnson and
informality and irregularity not available in newspa-Charniak, 2004), which searches the text string for
per texts such as the Wall Street Journal. approximately repeated constituents. We ran their

To evaluate the accuracy and potential interpresystem on our random sample of the Fisher data, and
tational value of partial parsing on spontaneousompared its results to the partial parse output of the
speech transcripts, we considered a 100-sentencime well-segmented partial parses analyses (every
random sample of the Fisher Conversational Telastterance of which contained some speaker-induced
phone Speech 2004 development subcorpus (Ciglisfluency) to see how well partial parsing could po-
et al., 2004), used in the fall 2004 NIST Rich Trantentially fare as an approach for identifying disfluent
scription task. regions of speech text.

Of these 100 sentences, six utterances receivedOften the (Johnson and Charniak, 2004) method
neither full nor partial parses due to lexical gaps creidentified disfluent regions overlapped with identi-
ated by words not found in the grammar’s lexicbn. fied fragments found in the partial parse, the removal
75 utterances produced full HPSG parses. For thef which would yield a fluent sentence. As we hope
remaining 19 utterances, the one best partial parsetts learn confidence measures to determine which
found for each usingnodel 1. fragments are contentless or repetitive in the fu-

According to manual evaluation of the output, seture, we identified those partial parses where whole
mantically and syntactically cohesive partial analyfragments could be deleted to obtain a fluent and
ses were successfully assigned to 9 of the 19 pameaning-preserving sentence.
tially parsed utterances. 3 of the 19 received incom- In three cases, simple repeated phrases caught by
plete semantics. The remaining 7 were judged t@ohnson and Charniak, 2004) were also caught in
be poor due to false segmentation, the syntax arme form by the partial parse partitioning. In an-
semantics within those parsed fragments, or botlather case, the speaker interrupts one thought to say
In one instance, the interpretation was plausible b@inother, and both approaches identify in a single
viewed as far less likely by the evaluator than thgragment the final fluent statement. Finally, of the
preferable interpretation (*. [i think you know it it’s]  nine well-segmented utterances, two partial parses
[court]”4). Itis likely thatn-best partial parsing could potentially catch deeper speaker errors that cannot
help us in most cases. This would only require &e caught by (Johnson and Charniak, 2004).
straightforward extension of the current partial pars-
ing models. 5 Conclusion and Future Work

Current partial parsing models do not use any con-
fidence thresholds. Therefore, any input will receivén this paper, we have presented work on partial
some full or partial analysis (ignoring the case oParse selection. Different selection models have
unknown words), together with semantics. Semarpeen presented and evaluated from syntactic and
tic completeness is not checked in partial parsing. I8emantic viewpoints. In the application of spon-
future research, we may consider finding a sophistfaneous speech text processing, the method shows
cated solution of assigning confidence scores to tHgomising competence, as well as a few problems
output RMRS fragments. for further study.

Overall though, we believe that the current 50% One thing we did not do is a systematic compar-
acceptability of segmentation is reasonable perfoison on the efficiency of different partial parse se-
mance considering the types of noise in the speedection models. Although it is clear that less search-
transcript input. ing is involved with the shortest path approach and

As a further step to show the competence of parodel | comparing tomodel 11, a scientific bench-
tial parsing, we briefly investigated its applicationmarking of such difference will be helpful for the
in capturing disfluent regions in speech texts. Thehoice between efficiency and accuracy. Also, a
state of the art approach in identifying disfluent remore sophisticated estimation B{(2|w) can poten-
3Lexical prediction was not used here to avoid obfuscatinéj[lally help the accuracy of the selectlo_n models.
the quality of partial parsing by introducing lexical typesgdic- Another alternative way 9f evaluation would be
tion errors. to generate an ungrammatical corpus by randomly

“The repetition error of “it” is interpreted as a topicalizat.  introducing grammar errors. The performance of the
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partial parse selection models can be measured Mark Johnson and Eugene Charniak. 2004. A tag-based noisy-
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for partial analyses. We also see that the conditional based grammars. Proceedings of the 37th Annual Meeting
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Abstract

We present a validation methodology for
a cross-linguistic grammar resource which
produces output in the form of small gram-
mars based on elicited typological descrip-
tions. Evaluating the resource entails sam-
pling from a very large space of language
types, the type and range of which preclude
the use of standard test suites development
techniques. We produce a database from
which gold standard test suites for these
grammars can be generated on demand, in-
cluding well-formed strings paired with all
of their valid semantic representations as
well as a sample of ill-formed strings. These
string-semantics pairs are selected from a
set of candidates by a system of regular-
expression based filters. The filters amount
to an alternative grammar building system,
whose generative capacity is limited com-
pared to the actual grammars. We perform
error analysis of the discrepancies between
the test suites and grammars for a range of
language types, and update both systems ap-
propriately. The resulting resource serves as
a point of comparison for regression testing
in future development.

1 Introduction

The development and maintenance of test suites is
integral to the process of writing deep linguistic
grammars (Oepen and Flickinger, 1998; Butt and
King, 2003). Such test suites typically contain hand-
constructed examples illustrating the grammatical
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phenomena treated by the grammar as well as rep-
resentative examples taken from texts from the tar-
get domain. In combination with test suite manage-
ment software such as [incr tsdb()] (Oepen, 2002),
they are used for validation and regression testing of
precision (deep linguistic) grammars as well as the
exploration of potential changes to the grammar.

In this paper, we consider what happens when the
precision grammar resource being developed isn’t a
grammar of a particular language, but rather a cross-
linguistic grammar resource. In particular, we con-
sider the LinGO Grammar Matrix (Bender et al.,
2002; Bender and Flickinger, 2005). There are sev-
eral (related) obstacles to making effective use of
test suites in this scenario: (1) The Matrix core
grammar isn’t itself a grammar, and therefore can’t
parse any strings. (2) There is no single language
modeled by the cross-linguistic resource from which
to draw test strings. (3) The space of possible gram-
mars (alternatively, language types) modeled by the
resource is enormous, well beyond the scope of what
can be thoroughly explored.

We present a methodology for the validation and
regression testing of the Grammar Matrix that ad-
dresses these obstacles, developing the ideas origi-
nally proposed in (Poulson, 2006). In its broad out-
lines, our methodology looks like this:

o Define an abstract vocabulary to be used for test
suite purposes.

e Define an initial small set of string-semantics
pairs.

e Construct a large set of variations on the string-
semantics pairs.

Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 136-143,
Prague, Czech Republic, June, 2007. (©2007 Association for Computational Linguistics



o Define a set of filters that can delineate the le-
gitimate string-semantics pairs for a particular
language type

The filters in effect constitute a parallel grammar
definition system, albeit one that creates ‘grammars’
of very limited generative capacity. As such, the out-
put of the filters cannot be taken as ground truth.
Rather, it serves as a point of comparison that al-
lows us to find discrepancies between the filters and
the Grammar Matrix which in turn can lead us to
errors in the Grammar Matrix.

2 Background

The Grammar Matrix is an open-source starter kit
designed to jump-start the development of broad-
coverage precision grammars, capable of both pars-
ing and generation and suitable for use in a vari-
ety of NLP applications. The Grammar Matrix is
written within the HPSG framework (Pollard and
Sag, 1994), using Minimal Recursion Semantics
(Copestake et al., 2005) for the semantic represen-
tations. The particular formalism we use is TDL
(type description language) as interpreted by the
LKB (Copestake, 2002) grammar development en-
vironment. Initial work on the Matrix (Bender et
al., 2002; Flickinger and Bender, 2003) focused on
the development of a cross-linguistic core grammar.
The core grammar provides a solid foundation for
sustained development of linguistically-motivated
yet computationally tractable grammars (e.g., (Hel-
lan and Haugereid, 2003; Kordoni and Neu, 2005)).

However, the core grammar alone cannot parse
and generate sentences: it needs to be specialized
with language-specific information such as the or-
der of daughters in its rules (e.g., head-subject or
subject-head), and it needs a lexicon. Although
word order and many other phenomena vary across
languages, there are still recurring patterns. To al-
low reuse of grammar code across languages and to
increase the size of the jump-start provided by the
Matrix, in more recent work (Bender and Flickinger,
2005; Drellishak and Bender, 2005), we have been
developing ‘libraries’ implementing realizations of
various linguistic phenomena. Through a web in-
terface, grammar developers can configure an initial
starter grammar by filling out a typological question-
naire about their language, which in turn calls a CGI
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script to ‘compile’ a grammar (including language-
specific rule types, lexical entry types, rule entries,
and lexical entries) by making appropriate selections
from the libraries. These little grammars describe
very small fragments of the languages they model,
but they are not toys. Their purpose is to be good
starting points for further development.

The initial set of libraries includes: basic word or-
der of major constituents in matrix clauses (SOV et
al), optionality/obligatoriness of determiners, noun-
determiner order, NP v. PP arguments of intransitive
and transitive verbs, strategies for expressing senten-
tial negation and yes-no questions, and strategies for
constituent coordination. Even with this small set of
phenomena covered (and limiting ourselves for test-
ing purposes to maximally two coordination strate-
gies per language), we have already defined a space
of hundreds of thousands of possible grammars.*

3 TheNon-modularity of Linguistic
Phenomena

In this section we discuss our findings so far about
the non-modularity of linguistic phenomena, and ar-
gue that this makes the testing of a broad sample of
grammars even more pressing.

The Grammar Matrix customization system reads
in the user’s language specification and then outputs
language-specific definitions of types (rule types,
lexical entry types and ancillary structures) that in-
herit from types defined in the crosslinguistic core
of the Matrix but add constraints appropriate for the
language at hand. Usability considerations put two
important constraints on this system: (1) The ques-
tions must be ones that are sensible to linguists, who
tend to consider phenomena one at a time. (2) The
output grammar code must be both readable and
maintainable. To achieve readable grammar code
in the output TDL, among other things, we follow
the guideline that any given constraint is stated only
once. If multiple types require the same constraint,
they should all inherit from some supertype bearing
that constraint. In addition, all constraints pertaining
to a particular type are stated in one place.

In light of the these usability considerations, we

LIf all of the choices in the customization system were in-
dependent, we would have more than 2 x 107 grammars. In
actuality, constraints on possible combinations of choices limit
this space considerably.



conp- head- phrase : = basi c- head- 1st - conp- phrase & head-final.
subj - head- phrase : = basi c- head- subj - phrase & head-final &
[ HEAD- DTR. SYNSEM LOCAL. CAT. VAL. COWPS < > ].

Figure 1. Specialized phrase structure rule types for SOV language

have found that it is not possible to treat the li-
braries as black-box modules with respect to each
other. The libraries are interdependent, and the por-
tions of the script that interpret one part of the input
guestionnaire frequently need to make reference to
information elicited by other parts of the question-
naire. For example, the customization system imple-
ments major constituent word order by specializing
the head-complement and head-subject rule types
provided in the core grammar. In an SOV language,
these would both be cross-classified with the type
head-final, and the head-subject rule would further
be constrained to take only complement-saturated
phrases as its head daughter. The TDL encoding of
these constraints is shown in Figure 1.

Following standard practice in HPSG, we use the
head-complement phrase not only for ordinary VPs,
but also for PPs, CPs, and auxiliary-headed VPs,
etc. Consider Polish, a free word order language that
nonetheless has prepositions. To allow complements
on either side of the head, we instantiate both head-
comp and comp-head rules, inheriting from head-
initial and head-final respectively. Yet the preposi-
tions must be barred from the head-final version lest
the grammar license postpositional phrases by mis-
take. We do this by constraining the HEAD value of
the comp-head phrase. Similarly, question particles
(such as est-ce que in French or ma in Mandarin)
are treated as complementizers: heads that select for
an S complement. Since these, too, may differ in
their word order properties from verbs (and preposi-
tions), we need information about the question par-
ticles (elicited with the rest of the information about
yes-no questions) before we have complete informa-
tion about the head-complement rule. Furthermore,
it is not simply a question of adding constraints to
existing types. Consider the case of an SOV lan-
guage with prepositions and sentence-initial ques-
tion particles. This language would need a head-
initial head-comp rule that can take only preposi-
tions and complementizers as its head. To express
the disjunction, we must use the supertype to prep
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and comp. This, in turn, means that we can’t decide
what constraint to put on the head value of the head-
comp rule until we’ve considered questions as well
as the basic word order facts.

We expect to study the issue of (non-)modularity
as we add additional libraries to the resource and to
investigate whether the grammar code can be refac-
tored in such a way as to make the libraries into true
modules. We suspect it might be possible to reduce
the degree of interdependence, but not to achieve
completely independent libraries, because syntactic
phenomena are inherently interdependent. Agree-
ment in NP coordination provides an example. In
English and many other languages, coordinated NPs
are always plural and the person of the coordinated
NP is the minimal person value of the coordinands.

(1) a.Acatand adog are/*is chasing a mouse.
b. Kim and | should handle this ourselves.
¢. You and Kim should handle this yourselves.

Gender systems often display a similar hierarchy of
values, as with French coordinated NPs, where the
whole NP is feminine iff all coordinands are femi-
nine and masculine otherwise. Thus it appears that
it is not possible to define all of the necessary con-
straints on the coordination rules without having ac-
cess to information about the agreement system.
Even if we were able to make our analyses of
different linguistic phenomena completely modular,
however, we would still need to test their interaction
in the analysis of particular sentences. Any sentence
that illustrates sentential negation, a matrix yes-no
guestion, or coordination also necessarily illustrates
at least some aspects of word order, the presence
v. absence of determiners and case-marking adpo-
sitions, and the subcategorization of the verb that
heads the sentence. Furthermore, broad-coverage
grammars need to allow negation, questions, coor-
dination etc. all to appear in the same sentence.
Given this non-modularity, we would ideally like
to be able to validate (and do regression testing on)
the full set of grammars generable by the customiza-



Form | Description | Options

det determiner

nl, n2 nouns det is optional, obligatory, impossible
iv, tv intransitive, transitive verb | subj, obj are NP or PP

p-nom, p-acc | case-marking adpositions preposition or postposition

neg negative element adverb, prefix, suffix

col, co2 coordination marks word, prefix, suffix

gpart question particle

Table 1: Standardized lexicon

tion system. To approximate such thoroughness, we
instead sample from the grammar space.

4 Methodology

This section describes in some detail our methodol-
ogy for creating test suites on the basis of language-
type descriptions. A language type is a collection
of feature-value pairs representing a possible set
of answers to the Matrix customization question-
naire. We refer to these as language types rather
than languages, because the grammars produced by
the customization system are underspecified with re-
spect to actual languages, i.e., one and the same
starter grammar might be extended into multiple
models corresponding to multiple actual human lan-
guages. Accordingly, when we talk about the pre-
dicted (well)formedness, or (un)grammaticality, of a
candidate string, we are referring to its predicted sta-
tus with respect to a language type definition, not its
grammaticality in any particular (human) language.

4.1

The test suite generation system includes a MySQL
database, a collection of Python scripts that interact
with the database, and some stored SQL queries. As
the set of items we are manipulating is quite large
(and will grow as new items are added to test ad-
ditional libraries), using a database is essential for
rapid retrieval of relevant items. Furthermore, the
database facilitates the separation of procedural and
declarative knowledge in the definition of the filters.

Implementation: Python and MySQL

4.2 Abstract vocabulary for abstract strings

A grammar needs not just syntactic constructions
and lexical types, but also an actual lexicon. Since
we are working at the level of language types, we
are free to define this lexicon in whatever way is
most convenient. Much of the idiosyncrasy in lan-
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guage resides in the lexicon, both in the form of mor-
phemes and in the particular grammatical and collo-
cational constraints associated with them. Of these
three, only the grammatical constraints are manip-
ulated in any interesting way within the Grammar
Matrix customization system. Therefore, for the test
suite, we define all of the language types to draw the
forms of their lexical items from a shared, standard-
ized vocabulary. Table 1 illustrates the vocabulary
along with the options that are currently available
for varying the grammatical constraints on the lex-
ical entries. Using the same word forms for each
grammar contributes substantially to building a sin-
gle resource that can be adapted for the testing of
each language type.

4.3 Constructing master item set

We use string to refer to a sequence of words to
be input to a grammar and result as the (expected)
semantic representation. An item is a particular
pair of string and result. Among strings, we have
seed strings provided by the Matrix developers to
seed the test suite, and constructed strings derived
from those seed strings. The constructor function
is the algorithm for deriving new strings from the
seed strings. Seed strings are arranged into seman-
tic equivalence classes, from which one representa-
tive is designated the harvester string. We parse the
harvester string with some appropriate grammar (de-
rived from the Matrix customization system) to ex-
tract the semantic representation (result) to be paired
with each member of the equivalence class.

The seed strings, when looked at as bags of words,
should cover all possible realizations of the phe-
nomenon treated by the library. For example, the
negation library allows both inflectional and adver-
bial negation, as well as negation expressed through
both inflection and an adverb together. To illustrate



negation of transitive sentences (allowing for lan-
guages with and without determiners?), we require
the seed strings in (2):

(2) Semtag: negl Semtag: neg2

nln2 neg tv det nl det n2 neg tv
nln2 neg-tv det n1 det n2 neg-tv
nl n2 tv-neg det n1 det n2 tv-neg

nln2 neg neg-tv det nl det n2 neg neg-tv
nln2 neg tv-neg detnl det n2 neg tv-neg

Sentential negation has the same semantic reflex
across all of its realizations, but the presence v. ab-
sence of overt determiners does have a semantic ef-
fect. Accordingly, the seed strings shown in (2) can
be grouped into two semantic equivalence classes,
shown as the first and second columns in the table,
and associated with the semantic tags ‘negl’ and
‘neg?2’, respectively. The two strings in the first row
could be designated as the harvester strings, associ-
ated with a grammar for an SOV language with op-
tional determiners preceding the noun and sentential
negation expressed as a pre-head modifier of V.

We use the LKB in conjunction with [incr tsdb()]
to parse the harvester strings from all of the equiva-
lence classes with the appropriate grammars. Then
the seed strings and the parsing results from the har-
vester strings, as well as their semantic tags, are
stored and linked in our relational database. We use
the constructor function to create new strings from
these seed strings. This produces the master item set
that provides the basis for the test suites.

Currently, we have only one constructor function
(‘permute’) which takes in a seed string and returns
all unique permutations of the morphemes in that
seed string.2 This constructor function is effective
in producing test items that cover the range of word
order variations currently permitted by the Grammar
Matrix customization system. Currently, most of the
other kinds of variation countenanced (e.g., adver-
bial v. inflectional negation or presence v. absence
of determiners) is handled through the initial seed
string construction. As the range of phenomena han-
dled by the customization system expands, we will
develop more sophisticated constructor functions to

2\We require additional seed strings to account for languages
with and without case-marking adpositions

S<permute’ strips off any affixes, permutes the stems, and
then attaches the affixes to the stems in all possible ways.
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handle, for example, the addition of all possible case
suffixes to each noun in the sentence.

4.4 Filters

The master item set provides us with an inventory
from which we can find positive (grammatical) ex-
amples for any language type generated by the sys-
tem as well as interesting negative examples for any
language type. To do so, we filter the master item
set, in two steps.

4.4.1 Universal Filters

The first step is the application of ‘universal’ fil-
ters, which mark any item known to be ungrammat-
ical across all language types currently produced by
the system. For example, the word order library does
not currently provide an analysis of radically non-
configurational languages with discontinuous NPs
(e.g., Warlpiri (Hale, 1981)). Accordingly, (3) will
be ungrammatical across all language types:

(3) det detnln2tv

The universal filter definitions (provided by the
developers) each comprise one or more regular ex-
pressions, a filter type that specifies how the regular
expressions are to be applied, and a list of seman-
tic tags specifying which equivalence classes they
apply to. For example, the filter that would catch
example (3) above is defined as in (4):

(4) Filter Type:  reject-unless-match

Regexp: (det (n1|n2).*det (n1|n2))|
(det (n1|n2).*(n1|n2) det)|
((n1|n2) det.*det (n1|n2))|
((n1|n2) det.*(n1|n2) det)
Sem-class:  [semantic classes for all transitive

sentences with two determiners.]

We apply each filter to every item in the database.
For each filter whose semantic-class value includes
the semantic class of the item at hand, we store the
result (pass or fail) of the filter on that item. We can
then query the database to produce a list of all of the
potentially well-formed items.

4.4.2 Specific Filters

The next step is to run the filters that find the
grammatical examples for a particular language
type. In order to facilitate sampling of the entire
language space, we define these filters to be sensi-
tive not to complete language type definitions, but



rather to particular features (or small sets of fea-
tures) of a language type. Thus in addition to the
filter type, regular expression, and semantic class
fields, the language-specific filters also encode par-
tial descriptions of the language types to which they
apply, in the form of feature-value declarations. For
example, the filter in (5) plays a role in selecting
the correct form of negated sentences for language
types with both inflectional and adverbial negation
in complementary distribution (like English n't and
sentential not). The first regular expression checks
for neg surrounded by white space (i.e., the negative
adverb) and the second for the negative affixes.

(5) Filter Type:  reject-if-both-match

Regexpl: (\s|)neg(\s|$)

Regexp2: -neg|neg-

Sem-class:  [sem. classes for all neg. sent.]
Lg-feat: and(infl neg:on,adv neg:on,

multineg:comp)

This filter uses a conjunctive language feature spec-
ification (three feature-value pairs that must apply),
but disjunctions are also possible. These specifica-
tions are converted to disjunctive normal form be-
fore further processing.

As with the universal filters, the results of the spe-
cific filters are stored in the database. We process
each item that passed all of the universal filters with
each specific filter. Whenever a filter’s semantic-
class value matches the semantic-class of the item
at hand, we store the value assigned by the filter
(pass or fail). We also store the feature-value pairs
required by each filter, so that we can look up the
relevant filters for a language-type definition.

4.4.3 Recursive Linguistic Phenomena

Making the filters relative to particular semantic
classes allows us to use information about the lexi-
cal items in the sentences in the definition of the fil-
ters. This makes it easier to write regular-expression
based filters that can work across many different
complete language types. Complications arise, how-
ever, in examples illustrating recursive phenomena
To handle such phenomena with our finite-state sys-
tem, we do multiple passes with the filters. All items
with coordination are first processed with the co-
ordination filters, and then rewritten to replace any
well-formed coordinations with single constituents.
These rewritten strings are then processed with the
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rest of the filters, and we store the results as the re-
sults for those filters on the original strings.

4.5 Language types

The final kind of information we store in the
database is definitions of language types. Even
though our system allows us to create test suites for
new language types on demand, we still store the
language-type definitions of language types we have
tested, for future regression testing purposes. When
a language type is read in, the list of feature-value
pairs defining it is compared to the list of feature-
groups declared by the filters. For each group of
feature-value pairs present in the language-type def-
inition, we find all of the filters that use that group.
We then query the database for all items that pass
the filters relevant to the language type. This list
of items represents all those in the master item set
predicted to be well-formed for this language type.
From the complement of this set, we also take a ran-
dom selection of items to test for overgeneration.

4.6 Validation of grammars

Once we have created the test suite for a partic-
ular language type, the developer runs the Matrix
customization system to get a starter grammar for
the same language type. The test suite is loaded
into [incr tsdb()] and processed with the grammar.
[incr tsdb()] allows the developer to compare the
grammar’s output with the test suite at varying lev-
els of detail: Do all and only the items predicted to
be well-formed parse? Do they get the same number
of readings as predicted? Do they get the semantic
representations predicted? A discrepancy at any of
these levels points to an error in either the Grammar
Matrix or the test suite generation system. The de-
veloper can query the database to find which filters
passed or failed a particular example as well as to
discover the provenance of the example and which
phenomena it is meant to test.

This methodology provides the ability to gener-
ate test suites for any arbitrary language type on de-
mand. Although this appears to eliminate the need to
store the test suites we do, in fact, store information
about previous test suites. This allows us to track the
evolution of the Grammar Matrix in relation to those
particular language types over time.



4.7 Investment and Return

The input required from the developer in order to test
any new library is as follows: (1) Seed strings illus-
trating the range of expressions handled by the new
library, organized into equivalence classes. (2) Des-
ignated harvester strings for each equivalence class
and a grammar or grammars that can parse them to
get the target semantic representation. (3) Universal
filters specific to the phenomenon and seed strings.
(4) Specific filters picking out the right items for
each language type. (5) Analysis of discrepancies
between the test suite and the generated grammars.
This is a substantial investment on the part of the de-
veloper but we believe the investment is worth it for
the return of being able to validate a library addition
and test for any loss of coverage going forward.

Arnold et al. (1994) note that writing grammars
to generate test suites is impractical if the test suite
generating grammars aren’t substantially simpler to
write than the ‘actual’ grammars being tested. Even
though this system requires some effort to maintain,
we believe the methodology remains practical for
two reasons. First, the input required from the de-
veloper enumerated above is closely related to the
knowledge discovered in the course of building the
libraries in the first place. Second, the fact that the
filters are sensitive to only particular features of lan-
guage types means that a relatively small number of
filters can create test suites for a very large number
of language types.

5 Reéated Work

Kinyon and Rambow (2003) present an approach to
generating test suites on the basis of descriptions
of languages. The language descriptions are Meta-
Grammar (MG) hierarchies. Their approach appears
to be more flexible than the one presented here in
some ways, and more constrained in others. It does
not need any input strings, but rather produces test
items from the language description. In addition,
it annotates the output in multiple ways, including
phrase structure, dependency structure, and LFG F-
structure. On the other hand, there is no apparent
provision for creating negative (ungrammatical) test
data and it is does not appear possible to compose
new MG descriptions on the fly. Furthermore, the
focus of the MG test suite work appears to be the
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generation of test suites for other grammar develop-
ment projects, but the MGs themselves are crosslin-
guistic resources in need of validation and testing.
An interesting area for future work would be the
comparison between the test suites generated by the
system described here and the MG test suites.

The key to the test-suite development process pro-
posed here is to leverage the work already being
done by the Matrix developers into a largely auto-
mated process for creating test-suite items. The in-
formation required from the developers is essentially
a structured and systematic version of the knowledge
that is required for the creation of libraries in the first
place. This basic approach, is also the basis for the
approach taken in (Broker, 2000); the specific forms
of knowledge leveraged, and the test-suite develop-
ment strategies used, however, are quite different.

6 Future Work

The addition of the next library to the Grammar Ma-
trix will provide us with an opportunity to try to
quantify the effect of this methodology. With the
Grammar Matrix and the filters stabilized, the vali-
dation of a new library can be carefully tracked. We
can try to quantify the number of errors obtained and
the source of the errors, e.g., library or filters.

In addition to this kind of quantification and error
analysis as a means of validating this methodology,
we also intend to undertake a comparison of the test
suites created from our database to hand built cre-
ated for Matrix-derived grammars by students in the
multilingual grammar engineering course at the Uni-
versity of Washington.* Students in this class each
develop grammars for a different language, and cre-
ate test suites of positive and negative examples as
part of their development process. We plan to use
the lexical types in the grammars to define a map-
ping from the surface lexical items used in the test
suites to our abstract vocabulary. We can then com-
pare the hand built and autogenerated test suites in
order to gauge the thoroughness of the system pre-
sented here.

7 Conclusion

The methodology outlined in this paper addresses
the three obstacles noted in the introduction: Al-

“http://courses.washington.edu/ling567



though the Grammar Matrix core itself isn’t a gram-
mar (1), we test it by deriving grammars from it.
Since we are testing the derived grammars, we are
simultaneously testing both the Matrix core gram-
mar, the libraries, and the customization script. Al-
though there is no single language being modeled
from which to draw strings (2), we can nonethe-
less find a relevant set of strings and associate
these strings with annotations of expected well-
formedness. The lexical formatives of the strings
are drawn from a standardized set of abstract forms.
The well-formedness predictions are made on the
basis of the system of filters. The system of filters
doesn’t represent ground truth, but rather a second
pathway to the judgments in addition to the direct
use of the Matrix-derived starter grammars. These
pathways are independent enough that the one can
serve as an error check on the other. The space of
possible language types remains too large for thor-
ough testing (3). However, since our system allows
for the efficient derivation of a test suite for any arbi-
trary language type, it is inexpensive to sample that
language-type space in many different ways.
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Local ambiguity packing and discontinuity in German
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Abstract Kaplan, 1995). For parsing with constraint-based
_ grammars, such as HPSG, which do not possess an

We report on recent advances in HPSG pars- - explicit context-free backbone, (Oepen and Carroll,
ing of German with local ambiguity pack-  2000) have proposed an efficient packing algorithm
ing (Oepen and Carroll, 2000), achieving @  phased on feature structure subsumption only.
speed-up factor of 2 on a balanced test-suite. | contrast to the symbols in context-free gram-
In contrast to earlier studies c_arrled out for  mars, feature structures in unification-based gram-
English using the same packing algorithm,  mgars often include information encoding (part of)
we show that restricting semantic features  the derivation history, most notably semantics. In or-
only is insufficient for achieving acceptable  qer to achieve successful packing rates, feature re-
runtime performance with a German HPSG  gyriction (Shieber, 1985) is used to remove this in-
grammar. In a series of experiments relating  formation during creation of the packed parse forest.
to the three different types of discontinuities During the unpacking phase, which operates only

in German (head movement, extraction, ex-  on successful parse trees, these features are unified
traposition), we examine the effects of re-  pack in again.

strictor choice, ultimately showing that ex-

- ] ) For their experiments with efficient subsumption-
traction and head movement require partial

e ; based packing, (Oepen and Carroll, 2000) experi-
restriction of the respective features encod-  nented with different settings of the packing restric-
ing the dependency, whereas full restriction 4 for the English Resource Grammar ERG (Copes-
gives best results for extraposition. take and Flickinger, 2000): they found that good
packing rates, and overall good performance dur-
ing forest creation and unpacking were achieved, for
It is a well-known fact that chart parsing with-the ERG, with partial restriction of the semantics,
out techniques for local ambiguity packing (Earleye.g. keeping index features unrestricted, since they
1970) faces a combinatorial explosion of the seardhave an impact on external combinatorial potential,
space, owing to the (structural) ambiguity immi-but restricting most of the internal MRS represen-
nent to natural language. Thus, identical edges witfation, including the list of elementary predications
different internal derivation history can be packednd scope constraints. Restriction of syntactically
into a single representative for further processingqotent features, has thus been found both unneces-
thereby effectively solving the complexity issue. Insary and less efficient.

context-free grammars augmented with a unifica- First experiments in ambiguity packing with a
tion formalism, packing based on the CF symboGerman HPSG grammar (GG; http://gg.dfki.de) re-
equality has been complemented by subsumption- gealed that restriction of semantics only does not
disjunction-based packing of the associated featuggve rise to any acceptible results in terms of runtime
structures (Moore and Alshawi, 1992; Maxwell andoerformance. It became clear quite quickly that the

1 Introduction
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bulk of failing subsumptions impeding creation of a S

—_—
NP-A-V-MOD SINP-A-V-MOD
1

suff!C|entIy compact forest were related to two syn-— ; PO EAVMOD
tactic features, SLASH and DSL. In German, theSe wonag  lasse NP-NOWSG  EPSINP-AV-MOD

. A} P
features contain references to non-empty valence ich  NP-ACC-SG EPS/NP-AV-MOD
lists, which eventually wind up encoding derivation nn D“EﬂN EPS’N:F.‘,‘;V'MOD
history. Using a more aggressive restrictor to elim- o e !

inate these features during forest creation did not helfen
show the desired performance either: owing to mas-

sive overgeneration, the resulting forest was either Figure 1: DSL:Monday let he him the man help
not compact enough, or most of the efficiency gains

were wasted on unpacking failures in the Secongrgument structure of the final cluster with the sub-

phase.' _categorisation requirements percolated down from
In this paper we report on recent advances Witthq finite verb using a special feature DSL (=“dou-

local ambiguity packing for German, showing how,|e 51 ASH™). Arguments in the Mittelfeld are satu-

partial restriction can achieve good packing rates @keq a5 complements of the clause-final trace. The
negligible unpacking cost, yielding an overall speed-

g " Lgrammar used here assumes head movement for dis-
up by a factor of 2, as compared to parsing withoWntinuous predicates (Crysmann, 2003), following

ambiguity packing. Running a series of experiments, :q respect the earlier implementation byi(iér

with different restrictor setting for three different ;.4 Kasper, 2000). In order to relate the initial verb
features involved with non-local dependencies Wg; ihe verb,cluster and its arguments in the Mit-
examine in detail how the choice of restrictor affect§e|fe|d1 like the subject and direct object in figure 2,

the observable performance. The paper is organisggh ps_ (or V1) feature must percolate subcategori-
as follows: section 2 will give an overview of the rel-g4tjon requirements for subject and object, as well as
evant syntactic constructions of Qerman, 3”0! thefbr the verb cluster. At the gap site, the valence in-
implementation in GG. Section 3 gives a descriptiog,mation percolated via DSL is inserted into the ac-
of the experimental setup (3.1), followed by a disy, 5| yajence lists of the verb trace. Since the require-

cussion of the main results (3.2), detailing how dify,antg are matched against actual arguments found

ferent settings for feature restriction affect parsingn the Mittelfeld, the valence lists contained in DSL

performance. get instantiated to whatever argument it satisfies,
) o thereby creating a partial representation of deriva-
2 Discontinuity in German tion history. While theoretically, this is just the right

Head movement German, in contrast to English is behamo_ur, I ha_s clear repercussions for parsing with
atmblgwty packing.

a verb-final language with a verb-second effect, tha
is, non-finite verbs are standardly placed sentencpartial VP fronting  Another aspect, in which the
finally. In clauses other than complementizersyntax of German differs from that of English is
introduced subclauses and relative clauses, the finii¢ the area of extraction: while in English only
verb surfaces in a clause-initial position (either firstonstituents with a saturated COMPS list can un-
or second). Any major constituent may occupy thélergo wh-movement, this is not the case in Ger-
topic position preceding the finite verb, includingman: as shown in figure 2, the vedzhenken
subject, complements or modifiers. ‘give/donate’ has been fronted, leaving its two com-
Owing to the V2 effect, the parts of a verb clusteiplements behind.
are discontinuous. Since both the finite verb and the In HPSG, partial VP fronting is analysed by
non-finite verb cluster impose constraints on cona combination of two mechanisms {l\fer, 1999;
stituents in the Mittelfeld, standard approaches tblerbonne, 1994): first, standard argument com-
German syntax in HPSG assume, since (Kiss ambsition in the verb cluster, following (Hinrichs
Wesche, 1991), that the initial verb is related t@and Nakazawa, 1990), combined with a standard
the final verb cluster by means of head movemen8LASH-based treatment of long-distance extraction.
clause-finally, a trace is inserted that combines the Again, since argument composition is performed
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= To ensure that we can study parser performance
\% SIV

D T ey oninput of increasing length, we used a rather gener-
schenken hat NP-NOMSG  EPSV ous upper limit of 150,000 passive edges. Taking as
1 ——— - - -
e NPDAT  EPSV a guideline the average space consumption per edge
hm - NPACCSG EP./S’V of the non-packing parser, we calculated that pars-
D N VIV . . . .
e Blen U ing could still be done comfortably in main memory,
v i.e., without using swap space.
wollen All measurements were performed using the [incr

) ) ) tsdb()] profiling platform (Oepen and Flickinger,
Figure 2: SLASHgive has he him the book wanted; 9gg). parsing times reported are total CPU times

(in seconds), includingxhaustivaunpacking of the

by strcuture-sharing, i.e. reentrancy between the vRarse forest, whenever applicable.

lence list of the governing predicate and the unsatlé—_2 Results

rated valence list of the governed predicate, extrac- _ . o
tion of the governed predicate by means of sLASH he main result of our study is that local ambiguity
percolation carries this reentrancy over into SLASHPacking in constraint-based parsing of German can
From a general linguistic point of view, this is highly!€ad to performance improvements, once feature re-
desirable, because valence requirements of the eitiction is extended from purely semantic features
tracted verb must be matched against the argumenigsSyntactically potent features used to model dis-
that satisfy them in the Mittelfeld. The only draw-continuity, such as SLASH, DSL, and ANC (see be-
back is, that we are confronted, again, with a syntac@W). We also found that positive performance ef-
tic feature containing, among other things, record&@cts could only be achieved, if SLASH and DSL

of derivation history. features were partially restricted in such a way as to
only eliminate all records of derivation history (in
3 Evaluation terms of instatiated subcategorisation lists), while

retaining most of the other constraints represented
in these features.

In order to systematically investigate the effect of re- Compared to a non-packing baseline parser with
striction of syntactically potent features on the parsfeature structure unfilling, we observed an overall
ing efficiency with local ambiguity packing, we cre-speed-up by a factor of 2 with local ambiguity pack-
ated a test field consisting of 8 different parameteng on a balanced test suite. As shown by figure
settings (out of 27 logically possible settings): 1 rur8.2, local ambiguity packing with optimal restrictor
without packing, 1 run with optimal settings for thesettings is effective in taming the combinatorial ex-
three features under consideration, and 2 runs wittlosition of the search observed by the non-packing
suboptimal settings for each of the three features. parser.

All test runs were performed on a balanced test Analogous to the reduction in search space, per-
suite extracted from the Verbmobil corpus, usindormance savings grow continuously with increas-
100 items per input length, from sentence length ithg input length: from sentence length 14 onwards
to 22, thus totalling 2200 test items. Although thefactor 0.84) relative processing time decreases con-
Verbmobil corpus does contain test sentences of umually up to a factor of 0.27 at sentence length
to 70 words long, their number drops quite quickly22. With an average CPU time of 0.69s at sentence
from sentence length 23 on. length 22, performance is by far better than real-

The parser used in the experiments is the cutime behaviour. Note further, that the non-packing
rent SVN version of Pet (Callmeier, 2000), run-parser benefits here from a ceiling effect: with 25 out
ning the March 24 version of GG (http://gg.dfki.de;of 2200 test items (1%), the available resources of
(Muller and Kasper, 2000; Crysmann, 2003; Crysi50,000 passive chart edges were exhausted before
mann, 2005)). Tests were run on an Intel Core Duthe search space was fully explored. With ambiguity
machine using a single T2600 CPU at 2.16GHz witpacking under an appropriate restrictor, by contrast,
2 GB main memory. the search space was fully explored.

3.1 Testsetup
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Figure 4: Comparison of processing time relative to input length

Restricting DSL The first syntactically potent formation of the V2 verb, derivation history must be
feature investigated in these experiments is the feaarried along as part of the DSL feature.

ture DSL (or V1), which serves to relate, by means Obviously, any feature that (partially) encodes
of simulated head movement, the finite verb inderivation history is a potential threat to efficient
clause-second position to the clause-final verb cluaimbiguity packing. We therefore experimented with
ter. Essentially, this feature is used to pass dowthree different settings regarding restriction of this
the valence information from the initial verb to thefeature: full restriction, no restriction, and a par-
clause-final verb trace, where this valence informasial restriction, where only constraints pertaining to
tion is combined with that of the cluster. In theHEAD information of the final cluster were retained,
grammar under consideration, verb movement is rguch as category, or form (most crucial for stranded
stricted to discontinuous verb clusters (Crysmanmparticles).

2003), i.e., to situations where there is either an overt Results are summarised in table 1. Besides the
verb cluster, or a stranded verb particle in the righfeature studied here, the restrictor includes the se-
sentence bracket.

Si tual tati ts of th 'Here, and in the following two tables stands for packing
Ince actual or putative arguments o e VerQnder equivalencey for proactive packing_ for retroactive

trace must be checked against the actual valence isacking, andL for freezing.
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Edges Time (s) Unpack (s) Subsumptiore 3 C L Factor (time) Subs. cost Pack rate

Unfill 6424 0.56 0 0 0 0 0 0 1 N/A 0

Partial DSL 1494 0.28 0.01 36404.15 307.28 193.33 36.67 335.840.5 67.76 0.36
Full DSL 1832 1.96 0.01 363840.47 186.19 111.31 42.96 251.32 3.5 1068.68  0.19
NoDSL 1917 0.61 0.01 106392.57 568.34 484.68 80.8 926.79 1.09 93.83 0.59

Table 1: Performance of packed parsing with different restriction of DSL

mantic features like RELS and HCONS, as imartial restriction of DSL was the only setting that
(Oepen and Carroll, 2000), as well as optimal setactually beat the baseline defined by parsing with-
tings for SLASH and ANC. out ambiguity packing.

Leaving DSL unrestricted features the lowest
number of packings, amongst the three setting&estricting SLASH The second experiment we
both in absolute terms, and in relative packings pearried out relates to the feature SLASH, used for
edge (0.19). As a consequence, average chart sizdqgg-distance dependencies. Owing to the V2 ef-
bigger than with either partially or fully restricted fectin German, constituents in the clause-initial pre-
DSL. Another negative behaviour of packed parsverbal position are typically placed there by means
ing with an unrestricted DSL is the incommensuOf extraction, including unmarked subjects. This dif-
rate number of subsumption tests carried out: atfgrs quite clearly from English, where standard SVO
ratio of 1068.68 subsumption tests per packing, thidrder does not involve any movement at all. Another
accounts chiefly for the inefficiency, in particular,striking difference between the two languages is that
when compared to the much more moderate ratézerman, but not English permits fronting of par-
of 67.76 and 93.83 achieved with partially restrictedial VPs: in complex predicates, as witnessed with
and fully restricted DSL. Thus, even though overmodals and control verbs, as well as in auxiliary-
all chart size is reduced when compared to parsirgrticiple combinations, the downstairs predicate
without ambiguity packing, these savings in spacéan be fronted, leaving part (or even all) of its com-
are not sufficient enough to pay off the overhead irplements to be realised in the Mittelfeld. Since Ger-
curred by testing for subsumption. As a net effectan is a non-configurational language, pretty much
overall parsing time is 3.5 times longer compared t8ny combination of fronted vs. stranded comple-
the non-packing baselirfe. ments can be found, in any order. In GG, partial

Fully restricting DSL by contrast yields a veryVP_ fronting is effected by special gxtraction rules,
good packing rate (0.59) at moderate costs in terny¥hich removes the valency of _pertglng to the fronted
of subsumption test per packing (93.83). Howevel/€rP from the subcategorisation list of the embed-
with the grammar not being restrictive enough durding predicate, and inserts it into SLASH. Simulta-
ing forest creation, overall chart size is bigger (1839€0usly, the remaining complements of the embed-
passive edges) than with partially restricted DSIHING verb are composed with the locally underspec-
(1494). Best results are obtained with partially relfied subcategorisation list of the extracted \_/erb_al
stricted DSL, where derivation history in terms ofcOmplement. In order to match the subcategorisation
actual or putative arguments of the verb trace is rdduirement of the extracted verb with those of its
moved, but reference to HEAD information of thecomplements that are realised in the Mittelfeld, the
final cluster is maintained, thereby ensuring that theubcategorisation list must be percolated via SLASH
initial verb only combines with appropriate verb@S Well- Since elements on the subcategorisation list
clusters. This not only leads to the most compadf! SLASH are reentrant with elements on the com-
chart, but also features the lowest number of Sut_p_osed subcategorisation list of the embedding pred-

sumption tests, both absolute and relative. In surifate; the former gets specified to the complements
that saturate the requirements in the Mittelfeld. As a
2Edges in packed parsing are actually more costly than ifeSUlt, we observe a massive encoding of derivation

parsing without ambiguity packing. Since efficient subsumptiorlnistory in SLASH.

checking and feature structure unfilling are mutually exclusive, . . .
edges in general consume much more space when parsing withBes‘Ides the r.ules for partial VP fronting, the
ambiguity packing, increasing the cost of copying in unificationgrammar recognises 3 more extraction rules, one for
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subject, one for non-subject complements, and orsiboptimal packing together with the excessive sub-
for adjuncts. Out of these three, only adjunct exsumption costs account for the fact that this setting
traction rules encode reference to their extractioperforms more than 8 times as badly as the baseline.
context in SLASH: since modifiers select the heads ajthough packed parsing with fully restricted

they adjoin to via a feature MOD, which is reentranig| AsH performs much better than having SLASH
with the SYNSEM of that head, they inevitably carryentirely unrestricted, it still falls short of the base-
along a good deal of that head’s derivation history. |ine by a factor of 1.36. This is due to several rea-
We tested three different configurations of the regons: first, although the packing rate is good (0.59),
strictor: one with unrestricted SLASH, one whergne chart is the biggest observed with packed pars-
the entire SLASH feature was removed during for-mg in all the experiments carried out, being more
est creation, and a partially restricted variant. Thighan 2 times as big as the parse chart with optimal
partially restricted variant preserves the full SLASHeestrictor settings. This is mainly due to the fact that
representation for ordinary subject and complemefke grammar is far to unconstrained during forest
extraction, but uses an impoverished representatigeation, allowing too many inconsistent analyses to
for adjunct extraction and partial VP fronting. Tech-gnter the chart. This is also corroborated by the fact
nically, this was achieved by using two SLASH feathat this is the only test run where we experienced a
tures in parallel: an auxiliary, impoverishe8LASH  poticeable increase in unpacking time. Another ob-
to be used during forest creation, and the fulkeryation, for which we cannot offer any explanation
SLASH feature during unpacking. For adjunct exut present, pertains to the increased cost associated
traction and partial VP fronting,SLASH contains ith retroactive packing: the amount of frezing that
type restrictions on the head value of the fronted ehas to be done for edges masked by retroactive pack-

ement, together with restrictions on the saturation g is far higher than any other value found in these
valence lists, if applicablg For subject and comple- experiments.
ment extraction SLASH contains the same infor- In a separate test run. we used simultaneous full
mation as SLASH. In sum, partial restriction tries asep i . .
L . . restriction for DSL and SLASH, in order to verify
to maximise restrictiveness in those case, where na . .
: : Whether our assumtion that the choice of one re-
reference to the extraction context is encoded in, . o
SLASH. while at the same time it minimises encod_strlctor is independent from the others. By and large,
. L : . our hypothesis was confirmed: having both DSL and
ing of derivation history in the other cases, by re- :
lacing token identity with somewhat weaker t SLASH fully restricted performed more than 2.5
Eonstrgints y YPSimes worse than full restrcition of SLASH whith
' . . tial tricti f DSL.
The results of this second experiment are sunf?’ I_a res riction of DS o _
marised in table 2. Again, we have used optimal set- Stll in parallel to our findings regarding DSL,
tings for DSL and ANC, as established by indepenpart'al restriction of SLASH performs best, con-
dent experiments. firming that the compromise between restrictiveness
Parallel to our observations regarding the restri@nd eI_elmlnatlon_of derlvatl_on history is effective
tion of DSL, we observe that performance is worstO achiéve a runtime behaviour that clearly outper-
for packed pasring with a completely unrestrictedo'MS the baseline. The packing rate achieved with
SLASH feature: not only is the packing rate quiteoart'al _restrlctlon of semantics, DSL a_nd SLASH
low (0.25 packings per edge), but also the cosid-36) is actually very close to the packing rates re-
for packing in terms of the number of subsumptio?°rted in (Oepen and Carroll, 2000) for the ERG,
checks carried out is highest amongst all the expefthich figures around 0.33 for input longer than 10
ments reported on in this paper, peaking at 1355.8@;ords.. Also, t_he compactne§s of the chart with in-
subsumption tests per successful packing. The inRut of increasing length (cf. figure 3.2), and the low
pact on chart size is slightly worse than what we og?umber (2) of performance outliers (cf. figure 3.2)

served with an unrestricted DSL feature. In sum, th8U99est that we are indeed close to optimal feature
restriction.

3E.g., modifiers must have saturated valence lists, whereas Decisi hich feat ¢ ithi
fronted partial VP constituents may have open valencies relating ecisions on whnich features o preserve within

to complements in the Mittelfeld. SLASH under partial restriction were mainly de-
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Edges Time (s) Unpack (s) Subsumptiore 3 C L Factor (time) Subs. cost Pack rate

Unfill 6424  0.56 0 0 0 0 0 0 1 N/A 0

Partial SLASH 1494 0.28 0.01 36404.15 307.28 193.33 36.67 335.840.5 67.76 0.36
Full SLASH 2187 4.72 0.01 728385.4 314.66 149.21 73.35 826.1 8.43 1355.85 0.25
No SLASH 3435 0.76 0.16 97965.05 883.79 994.87 145.44 2583.51 1.36 48.4 0.59

Table 2: Performance of packed parsing with different restriction of SLASH

rived in a test-debug cycle. We therefore plan tmot record the nature of the anchors, at least one way
investigate different configurations of partially re-in which derivation history is recorded is effectively
stricted SLASH in future work. masked.
Contrary to our previous experiments, however,

Restricting ANC  The last experiment we carried partial restriction does not outperform full restric-
out relates to the ANC (=ANCHOR) feature usedijon. Although this finding comes somewhat at a
to percolate semantic attachment anchors for relgurprise, there is nevertheless a straightforward ex-
tive clause extraposition in the style of (Kiss, 2005p|anation for the difference in behaviour: while full
Crysmann, 2005). Using ANC, index and handle ofestriction necessarily improves chart compactness,
each and every NP are collected and passed up i adverse effects of full restriction do not come
tree, to be bound by an extraposed relative clausg bear as often as in the case of fully restricted
attached to the same subclause. SLASH or DSL, since attachment of extraposed rel-

Again, we tested three different settings: full reative clauses presupposes the existence of an al-
striction of all 3 anchor feature (SELF, ACTIVE, IN- ready constructed chart edge for the relative clause.
ERT), no restriction, and partial retsriction, wheregn contrast to extraction and head movement, which
the elements on the lists were restricted to *top*can be found in practically every sentence-size test
thereby recording only the number of percolated aritem, distribution of relative clauses is comparatively
chors, but not their nature in terms of index featow. Furthermore, constituents serving as fillers for
tures. ANC features encode derivation history in tw&SLASH or DSL dependencies can actually be quite
ways: first, structurally higher anchors (NPs) argmall in size and different in shape, which increases
represented at the front of the list, whereas monge potential for overgeneration with fully restricted
deeply embedded anchors are found further dowmovement features. Relative clauses, on the other
the list. Second, to control for spurious attachmentsand, are always clause-sized, and their properties
only anchors inherited from a left daughter are acdepend on the information percolated in ANC only
cessible for binding (ACTIVE), the others remain onto a very little degree (namely number and gender
the INERT list. Both the order of indices on the lists agreement of the relative pronoun).
list length and the distribution of anchors over AC- .
TIVE and INERT lists partially encode constituent-4 €onclusion

internal structure. _ ~In this paper, we have explored the effects in the
Results of this experiment are summarised in tachoice of restrictor for HPSG parsing of German
ble 3. with local ambiguity packing. Based on initial ob-

Similar to our two previous experiments, en-servation that a semantics-only restrictor gives sub-
tirely unrestricted ANC behaves worst, but nowher@ptimal runtime performance in packed parsing, we
nearly as bad as having SLASH or DSL unrestrictedound that three features representing discontinuities
In fact, relative packing rates achieved by all thregvere mainly responsible for inefficiency with lo-
restrictor settings are by and large the same igal ambiguity packing, namely SLASH for extrac-
this experiment. The main difference between unton, DSL for head movement, and ANC for relative
restricted ANC concerns the overall compactness efause extraposition, all of which may encode part
the forest and the number of subsumption test pesf the derivation history.
formed. We have shown that partial restriction of SLASH

Partial restriction already performs better than unand DSL features, together with full restriction
restricted ANC: since partially restricted ANC doesof ANC yields satisfactory parsing performance
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Edges Time (s) Unpack (s) Subsumptiore - C 1 Factor (time) Subs. cost Pack rate

Unfill 6424 0.56 0 0 0 0 0 0 1 N/A 0
Partial ANC 1586 0.37 0.01 55392.34 319.35 232.28 51.34 608.51 0.66 91.87 0.38
Full ANC 1704 0.58 0.01 104699.81 346.35 257.92 64.66 758.27 1.04 156.52 0.39

No ANC 1494 0.28 0.01 36404.15 307.28 193.33 36.67 335.840.5 67.76 0.36

Table 3: Performance of packed parsing with different restriction of ANC
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Abstract

This paper is concerned with the standard-
isation of evaluation metrics for lexical ac-
quisition over precision grammars, which
are attuned to actual parser performance.
Specifically, we investigate the impact that
lexicons at varying levels of lexical item
precision and recall have on the perfor-
mance of pre-existing broad-coverage pre-
cision grammars in parsing, i.e., on their
coverage and accuracy. The grammars used
for the experiments reported here are the
LinGO English Resource Grammar (ERG;
Flickinger (2000)) and AICY (Siegel and
Bender, 2002), precision grammars of En-

of diminished coverage is the lack of lexical cover-
age.

Various attempts have been made to ameliorate
the deficiencies of hand-crafted lexicons. More
recently, there has been an explosion of interest
in deep lexical acquisition (DLA; (Baldwin, 2005;
Zhang and Kordoni, 2006; van de Cruys, 2006))
for broad-coverage deep grammars, either by ex-
ploiting the linguistic information encoded in the
grammar itself iy vivo), or by using secondary lan-
guage resourcedn(vitro). Such approaches provide
(semi-)automatic ways of extending the lexicon with
minimal (or no) human interference.

One stumbling block in DLA research has been
the lack of standardisation in evaluation, with
commonly-used evaluation metrics including:

glish and Japanese, respectively. Our re-
sults show convincingly that traditional F-
score-based evaluation of lexical acquisition
does not correlate with actual parsing per- ®
formance. What we argue for, therefore, is a
recall-heavy interpretation of F-score in de- °
signing and optimising automated lexical ac-
quisition algorithms.

e Type precisionthe proportion of correctly hy-
pothesised lexical entries

Type recall the proportion of gold-standard
lexical entries that are correctly hypothesised

Type F-measurte the harmonic mean of the
type precision and type recall

e Token Accuracythe accuracy of the lexical en-
tries evaluated against their token occurrences

1 Introduction in gold-standard corpus data

Deep processing is the process of applying rich lin- It is often the case that the different measures lead
guistic resources within NLP tasks, to arrive at do significantly different assessments of the quality
detailed (=deep) syntactic and semantic analysis of DLA, even for a given DLA approach. Addi-
the data. It is conventionally driven by deep gramtionally, it is far from clear how the numbers gen-
mars, which encode linguistically-motivated predic-erated by these evaluation metrics correlate with ac-
tions of language behaviour, are usually capable ¢fial parsing performance when the output of a given
both parsing and generation, and generate a higBlLA method is used. This makes standardised com-
level semantic abstraction of the input data. Whilgarison among the various different approaches to
enjoying a resurgence of interest due to advancd3LA very difficult, if not impossible. It is far from

in parsing algorithms and stochastic parse prurelear which evaluation metrics are more indicative of
ing/ranking, deep grammars remain an underutilisethe true “goodness” of the lexicon. The aim of this
resource predominantly because of their lack of cowesearch, therefore, is to analyse how the different
erage/robustness in parsing tasks. As noted in prevgévaluation metrics correlate with actual parsing per-
ous work (Baldwin et al., 2004), a significant causéormance using a given lexicon, and to work towards
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a standardised evaluation framework for future DLAally done by running the grammar over a carefully
research to ground itself in. designed test suite and inspecting the outputs. This
In this paper, we explore the utility of different procedure becomes less reliable as the grammar gets
evaluation metrics at predicting parse performanck@rger. Also we can never expect to attain complete
through a series of experiments over two broad covexical coverage, due to language evolution and the
erage grammars: the English Resource Grammeaffects of domain/genre. A static, manually com-
(ERG; Flickinger (2000)) andALY (Siegel and piled lexicon, therefore, becomes inevitably insuffi-
Bender, 2002). We simulate the results of DLAcient when faced with open domain text.
by generating lexicons at different levels of preci- In recent years, some approaches have been de-
sion and recall, and test the impact of such lexicongeloped to (semi-)automatically detect and/or repair
on grammar coverage and accuracy related to golthe lexical errors in linguistic grammars. Such ap-
standard treebank data. The final outcome of thigroaches can be broadly categorised as either sym-
analysis is a proposed evaluation framework for fubolic or statistical.
ture DLA research. Erbach (1990), Barg and Walther (1998) and
The remainder of the paper is organised as foFouvry (2003) followed a unification-based sym-
lows: Section 2 reviews previous work on DLA for bolic approach to unknown word processing for
the robust parsing task; Section 3 describes the egonstraint-based grammars. The basic idea is to
perimental setup; Section 4 presents the experimense underspecified lexical entries, namely entries
results; Section 5 analyses the experiment resultgith fewer constraints, to parse whole sentences,

Section 6 concludes the paper. and generate the “real” lexical entries afterwards by
collecting information from the full parses. How-
2 Lexical Acquisition in Deep Parsing ever, lexical entries generated in this way may be ei-

ther too general or too specific. Underspecified lex-

Hand-crafted large-scale grammars are error-prongal entries with fewer constraints allow more gram-
An error can be roughly classified asdergenerat- mar rules to be applied while parsing, and fully-
ing (if it prevents a grammatical sentence from beunderspecified lexical entries are computationally
ing generated/parsed) overgeneratind(if it allows intractable. The whole procedure gets even more
an ungrammatical sentence to be generated/parsecddpmplicated when two unknown words occur next
Hence, errors in deep grammar lexicons can be clag each other, potentially allowing almost any con-
sified into two categories: i) a lexical entry is miss-stituent to be constructed. The evaluation of these
ing for a specific lexeme; and ii) an erroneous lexicaproposals has tended to be small-scale and some-
entry enters the lexicon. The former error type willwhat brittle. No concrete results have been pre-
cause the grammar to fail to parse/generate certagented relating to the improvement in grammar per-
sentences (i.e. undergenerate), leading to a lossfiirmance, either for parsing or for generation.
coverage. The latter error type will allow the gram- Baldwin (2005) took a statistical approach to au-
mar to parse/generate inappropriate sentences (itemated lexical acquisition for deep grammars. Fo-
overgenerate), potentially leading to a loss in aceused on generalising the method of deriving DLA
curacy. In the first instance, we will be unable tamodels on various secondary language resources,
parse sentences involving a given lexical item if it iBaldwin used a large set of binary classifiers to pre-
missing from our lexicon, i.e. coverage will be af-dict whether a given unknown word is of a particular
fected assuming the lexical item of interest occurkexical type. This data-driven approach is grammar
in a given corpus. In the second instance, the imindependent and can be scaled up for large gram-
pact is indeterminate, as certain lexical items magnhars. Evaluation was via type precision, type recall,
violate constraints in the grammar and never be litype F-measure and token accuracy, resulting in dif-
cenced, whereas others may be licenced more liferent interpretations of the data depending on the
erally, generating competing (incorrect) parses for avaluation metric used.
given input and reducing parse accuracy. It is these Zhang and Kordoni (2006) tackled the robustness
two competing concerns that we seek to quantify iproblem of deep processing from two aspects. They
this research. employed error mining techniques in order to semi-

Traditionally, errors in the grammar are detectedwutomatically detect errors in deep grammars. They
manually by the grammar developers. This is usuhen proposed a maximum entropy model based lex-
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ical type predictor, to generate new lexical entriesarge-scale HPSGs (Pollard and Sag, 1994), based
on the fly. Evaluation focused on the accuracy obn two distinct languages.
the lexical type predictor over unknown words, not The LinGO English Resource Gramm¢ERG;
the overall goodness of the resulting lexicon. SimiFlickinger (2000)) is a broad-coverage, linguis-
larly to Baldwin (2005), the methods are applicabldically precise HPSG-based grammar of English,
to other constraint-based lexicalist grammars, but n@hich represents the culmination of more than 10
direct measurement of the impact on grammar peperson years of (largely) manual effort. We use the
formance was attempted. jan-06version of the grammar, which contains about
van de Cruys (2006) took a similar approach ove23K lexical entries and more than 800 leaf lexical
the Dutch Alpino grammar (cf. Bouma et al. (2001)) types.
Specifically, he proposed a method for lexical ac- JACY (Siegel and Bender, 2002) is a broad-
quisition as an extension to automatic parser erraroverage linguistically precise HPSG-based gram-
detection, based on large amounts of raw text (ctnar of Japanese. In our experiment, we use the
van Noord (2004)). The method was evaluated usNovember 2005 version of the grammar, which con-
ing type precision, type recall and type F-measurdains about 48K lexical entries and more than 300
Once again, however, these numbers fail to give Usaf lexical types.
any insight into the impact of lexical acquisition on It should be noted in HPSGs, the grammar is
parser performance. made up of two basic components: the grammar
Ideally, we hope the result of DLA to be both ac-rules/type hierarchy, and the lexicon (which inter-
curate and complete. However, in reality, there wilfaces with the type hierarchy via leaf lexical types).
always be a trade-off between coverage and pars€his is different to strictly lexicalised formalisms
accuracy. Exactly how these two concerns should Hike LTAG and CCG, where essentially all linguistic
balanced up depends largely on what task the grardescription resides in individual lexical entries in the
mar is applied to (i.e. parsing or generation). In thisexicon. The manually compiled grammars in our
paper, we focus exclusively on the parsing thsk. experiment are also intrinsically different to gram-
mars automatically induced from treebanks (e.g. that
3 Experimental Setup used in the Charniak parser (Charniak, 2000) or the

In this research, we wish to evaluate the impacéarlous CCG parsers (Hockenmaier, 2006)). These

of different lexicons on qrammar performance. B ifferences sharply differentiate our work from pre-
rammar performance gwe rincip ally mean 'Co\yvious research on the interaction between lexical ac-
9 P ! P patly isition and parse performance.

fg:?fhgngﬁi (i:grl:éacé tﬁgwfggr’ngrsfgmd tﬁg 2\(/);?(_&”Furthermore, to test the grammar precision and
y orthe g -9 accuracy, we use two treebanks: Redwoods (Oepen

age number of edges in the parse chart, the average | 2002) for English and Hinoki (Bond et al

time to parse a sentence and/or the average num N N

. . 04) for Japanese. These treebanks are so-called
of analyses per sentence—is also an important pek;

. .dynamic treebanks, meaning that they can be (semi-
formance measurement which we expect the quali . .

: N utomatically updated when the grammar is up-
of the lexicon to impinge on. Here, however, w i

ated. This feature is especially useful when we

expect to be able to call on external processing OpR'K/ant to evaluate the grammar performance with dif-
misation$ to dampen any loss in efficiency, in a way,

which we cannot with coverage and accurac ferent lexicon configurations. With conventional
9 Y- treebanks, our experiment is difficult (if not impos-

sible) to perform as the static trees in the treebank
. cannot be easily synchronised to the evolution of the
In order to get as representative a set of results @Fammar, meaning that we cannot regenerate gold-
possible, we choose to run the experiment over W& andard parse trees relative to a given lexicon (es-
1in generation, we tend to have a semantic representatiddecially when f(?r reduced recall where there is no
as input, which is linked to pre-existing lexical entrieseride, guarantee we will be able to produce all of the parses
lexical acquisition has no direct impact on generation. in the 100% recall gold-standard). As a result, it is

2 e . .
For example, (van Noord, 2006) shows that a HMM POSy remely difficult to faithfully update the statistical
tagger trained on the parser outputs can greatly reducexie |

cal ambiguity and enhance the parser efficiency, withouttan o models. ]
servable decrease in parsing accuracy. The Redwoods treebank we use is @tle growth

3.1 Resources
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which is synchronised with than-06version of the the combined probability is:
ERG. It contains about 41K test items in total.

The Hinoki treebank we use is updated for the ) 1)) _ Cr(l) - Cr(t)
November 2005 version of the @Y grammar. The ’ 2w ner Cl') - Cr(t)
“Rei” sections we use in our experiment contains

(6)

45K test items in total. The erroneous entries are generated in the same
_ _ way among all possible combinations of lexemes
3.2 Lexicon Generation and lexical types. The difference is that only open

To simulate the DLA results at various levels of precategory types and less frequent lexemes are used
cision and recall, a random lexicon generator is useéRr generating new entries (e.g. we wouldn’'t expect
In order to generate a new lexicon with specific preto learn a new lexical item for the lexentiee or the
cision and recall, the generator randomly retains kgxical typed_- t he | e in English). In our ex-
portion of the gold-standard lexicon, and generatesReriment, we consider lexical types with more than
pre-determined number of erroneous lexical entrieg predefined number of lexical entries (20 for the
More specifically, for each grammar we first ex-ERG, 50 for ACY) in the gold-standard lexicon to
tract a subset of the lexical entries from the lexiconbe open-class lexical types; the upper-bound thresh-
each of which has at least one occurrence in the treeld on token frequency is set to 1000 for English and
bank. This subset of lexical entries is considered t637 for Japanese, i.e. lexemes which occur more fre-
be the gold-standard lexicon (7,156 entries for thguently than this are excluded from lexical acquisi-
ERG, 27,308 entries fonLY). tion under the assumption that the grammar develop-
Given the gold-standard lexicah, the target pre- €rs will have attained full coverage of lexical items
cision P and recallR, a new lexiconZ’ is created, for them.
which is composed of two disjoint subsets: the re- For each grammar, we then generate 9 differ-
tained part of the gold-standard lexicéh and the ent lexicons at varying precision and recall levels,
erroneous entrie&. According to the definitions of namely 60%, 80%, and 100%.
precision and recall:
3.3 Parsar Coverage
Coverage is an important grammar performance
@ 2) measurement, and indicates the proportion of inputs
|L| for which a correct parse was obtained (adjudged
relative to the gold-standard parse data in the tree-
banks). In our experiment, we adopt a weak defini-
IL'| = |G| + |E| (3) tion of coverage as “obtaining at least one spanning
tree”. The reason for this is that we want to obtain

|G|

7| (1)

and the fact that:

we get: an estimate for novel data (for which we do not have
G| = |L|'R (4) gold-standard parse data) of the relative number of

1 strings for which we can expect to be able to produce

|E| = |L|-R- (F -1) (5) atleast one spanning parse. This weak definition of

coverage actually provides an upper bound estimate
To retain a specific number of entries from thepf coverage in the strict sense, and saves the effort to
gold-standard lexicon, we randomly selg€| en- manually evaluate the correctness of the parses. Past
tries based on the combined probabilistic distribugyaluations (e.g. Baldwin et al. (2004)) have shown
tion of the corresponding lexeme and lexical tyBes.that the grammars we are dealing with are relatively
We obtain the prObabiIiStiC distribution of IexemeSprecise. Based on this’ we claim that our results for
from large corpora (BNC for English and Mainichi parse coverage provide a reasonable estimate indica-
Shimbun [1991-2000] for Japanese), and the distrtion of parse coverage in the strict sense of the word.
bution of lexical types from the corresponding tree- |n principle, coverage will only decrease when
banks. For each lexical entry(l,?) in the gold- the lexicon recall goes down, as adding erroneous
standard lexicon with lexemeand lexical typef, entries should not invalidate the existing analy-
3For simplicity, we assume mutual independence of the lex$€S. However, in practice, the introduction of er-
emes and lexical types. roneous entries increases lexical ambiguity dramati-
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0.6 0.8 1.0
PAR C E A C E A C E A
0.6 | 4294 2862 7156 5725 3817 9542 7156 4771 11927
0.8 | 4294 1073 5367 5725 1431 7156/ 7156 1789 8945
1.0 | 4294 0 4294| 5725 0 5725| 7156 0 7156

Table 1: Different lexicon configurations for the ERG witlethumber of correct (C), erroneous (E) and
combined (A) entries at each level of precision (P) and éBg!

0.6 0.8 1.0
PAR C E A C E A C E A
0.6 | 16385 10923 2730§ 21846 14564 36410 27308 18205 45513
0.8 | 16385 4096 20481 21846 5462 2730§ 27308 6827 34135
1.0 | 16385 0 16385 21846 0 21846 27308 0 27308

Table 2: Different lexicon configurations fonCY with the number of correct (C), erroneous (E) and
combined (A) entries at each level of precision (P) and t¢Bgl

cally, readily causing the parser to run out of memME models, various feature types can be incor-
ory. Moreover, some grammars use recursive unagorated into the model. In combination with the
rules which are triggered by specific lexical typesdynamic treebanks where the analyses are (semi-
Here again, erroneous lexical entries can lead to “fa)automatically disambiguated, the models can be
to parse” errors. easily re-trained when the grammar is modified.
Given this, we run the coverage tests for the two For each lexicon configuration, after the cover-
grammars over the corresponding treebanks: Redge test, we do an automatic treebank update. Dur-
woods and Hinoki. The maximum number of pasing the automatic treebank update, only those new
sive edges is set to 10K for the parser. We usegarse trees which are comparable to the active trees
[incr tsdb()] (Oepen, 2001) to handle the dif-in the gold-standard treebank are marked as cor-
ferent lexicon configurations and data sets, B&Ed  rect readings. All other trees are marked as in-
(Callmeier, 2000) for parsing. active and deemed as overgeneration of the gram-
mar. The ME-based parse disambiguation models
are trained/evaluated using these updated treebanks
Another important measurement of grammar perforwith 5-fold cross validation. Since we are only in-
mance is accuracy. Deep grammars often generatrested in the difference between different lexicon
hundreds of analyses for an input, suggesting theonfigurations, we use the simpRCFG-Smodel
need for some means of selecting the most probableom (Toutanova et al., 2002), which incorporates
analysis from among them. This is done with thd®CFG-style features from the derivation tree of the
parse disambiguation model proposed in Toutanoyaarse. The accuracy of the disambiguation model
et al. (2002), with accuracy indicating the proportioris calculated by top analysis exact matching (i.e. a
of inputs for which we are able to accurately selectanking is only considered correct if the top ranked
the correct parse. analysis matches the gold standard prefered reading
The disambiguation model is essentially a maxiin the treebank).
mum entropy (ME) based ranking model. Given an All the Hinoki Rei noun sections (about 25K
input sentence with possible analyses ... ¢, the items) were used in the accuracy evaluation for

3.4 Parser Accuracy

conditional probability for analysis is given by: JACY. However, due to technical limitations, only
" the jh sections (about 6K items) of the Redwoods
P(ti|s) = exp 2t fi(ti)A; @) Treebank were used for training/testing the disam-
Sy exp YT fi(tn) A biguation models for the ERG.

where fi...f, are the features and...\, 4 Experiment Results
are the corresponding parameters. When ranking

parses,> 7, f;(ti)A; is the indicator of “good- The experiment consumes a considerable amount of
ness”. Drawing on the discriminative nature of thecomputational resources. For each lexicon config-
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P\R| 06 08 1.0 06%-560 fgtzrgs 62A\23%°/ 0.59%
- . 0 . (V)
0.6 | 44.56% 66.88% 75.51% 060-080 | 19800 60.57% 0.83%
0.8 | 42.18% 65.82% 75.86% 060-100 | 22361 59.61% 0.63%
1.0 | 40.45% 66.19% 76.15% 080-060| 14701  63.27%  0.62%
080-080 | 23184 60.97% 0.48%
- 0, 0,
Table 3: Parser coverage af@Y with different lex- 238_(1)28 %égé 22:8‘1102 8;2202
icons 100-080 | 26859 61.47% 0.68%
100-100| 31870 60.48% 0.71%
P\R 0.6 0.8 1.0 Table 5 A ¢ di b _ dels f
0.6 1 27.86% 39.17% 79.66% ch\e( 5: hClt;fcfuracylo_ isambiguation models for
0.8 | 27.06% 37.42% 79.57% with difterent lexicons
1.0 | 26.34% 37.18% 79.33% PR [ #ptee  AVg. =
o 060-060| 737 71.11% 3.55%
Table 4: Parser coverage of the ERG with different 060-080| 1093 63.94% 2.75%
lexicons 060-100| 3416 60.92% 1.23%
080-060| 742 70.07% 1.50%
uration of a given grammar, we need to i) process 828-(1)28 ééig gég%gﬁ i.gggf
1 1 i - . (1) . 0
(parse_z) all the items in the treebank, ii) compare the 1000601 778 609.76% 4.62%
resulting trees with the gold-standard trees and up- 100-080| 1440 60.59% 2.64%
date the treebank, and iii) retrain the disambiguation 100-100| 4689 57.03% 1.36%

models over 5 folds of cross validation. Given the , _ _
two grammars with 9 configurations each, the enlable 6: Accuracy of disambiguation models for the

tire experiment takes over 1 CPU month and abolgRG with different lexicons

120GB of disk space. for JACY and the ERG, respectively. When the lex-
The coverage results are shown in Table 3 ani@don recall goes up, we observe a small but steady
Table 4 for ACY and the ERG, respectively.As  decrease in the accuracy of the disambiguation mod-
expected, we see a significant increase in grammajs, for both ACY and ERG. This is generally a side
coverage when the lexicon recall goes up. This ineffect of change in coverage: as the grammar cover-
crease is more significant for the ERG tharC), age goes up, the parse trees become more diverse,
mainly because theaCY lexicon is about twice as gnd are hence harder to discriminate.
large as the ERG lexicon; thus, the most frequent \yhen the recall is fixed and the precision of the
entries are still in the lexicons even with low recall. |ayicon goes up, we observe a very small accuracy
When the lexicon recall is fixed, the grammar COVyain for ACY (around 0.5% for each 20% increase
erage does not change significantly at different levin precision). This shows that the grammar accu-
els of lexicon precision. Recall that we are not eval,-éICy gain is limited as the precision of the lexicon
uating the correctness of such parses at this stageincreases, i.e. that the disambiguation model is re-
Itis clear that the increase in lexicon recall boostgnarkably robust to the effects of noise.
the grammar coverage, as we would expect. The |t should be noted that for the ERG we failed to
precision of the lexicon does not have a large ingpserve any accuracy gain at all with a more pre-
fluence on coverage. This result confirms that withise |exicon. This is partly due to the limited size
DLA (where we hope to enhance lexical coveraggs the updated treebanks. For the lexicon config-
relative to a given corpus/domain), the coverage Qfration060 — 060, we obtained only 737 preferred
the grammar can be enhanced significantly. readings/trees to train/test the disambiguation model
The accuracy results are obtained with 5-folcyyer. The 5-fold cross validation results vary within
cross validation, as shown in Table 5 and Table § margin of 10%, which means that the models are

“Note that even with the lexicons at 100% precision and re§tIII not converging. However, the result does con-

call level, there is no guarantee of 100% coverage. As the cofirm that f[here i_s no Signif_ic_ant ga_in in grammar ac-
tents of the Redwoods and Hinoki treebanks were determineglracy with a higher precision lexicon.

independently of the respective grammars, rather thanrtdrag ; ;
mars being induced from the treebanks e.g., they both still ¢ Finally, we combine the coverage and accuracy

tain significant numbers of strings for which the grammar-canSCOr€S Into a smgle_ F-measuv@ €1) _Value- The
not produce a correct analysis. results are shown in Figure 1. Again we see that
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the difference in lexicon recall has a more signifthe lexicon) make up a large proportion of lexical
icant impact on the overall grammar performancentries. Hence, any loss in precision means a signif-
than precision. icant degradation of the “core” lexicon, which leads
to performance loss of the grammar. For example,
we find that the inclusion of one or two erroneous
entries for frequent closed-class lexical type words
(such aghe, orof in English, for instance) may eas-
1 ily “break” the parser.
i However, in state-of-the-art broad-coverage deep
grammars such aaCY and ERG, the lexicons are
much larger. They usually have more or less similar
1 “cores” to the smaller lexicons, but with many more
open-class lexical entries and less frequent entries,
which compose the “peripheral” parts of the lexi-
cons. In our experiment, we found that more than
; . : 1 95% of the lexical entries belong to the top 5% of
06 08 10 05 o8 10 the open-class lexical types. The bigger the lexicon
Lex. Precision Lex. Recall is, the larger the proportion of lexical entries that be-
_ __long to the “peripheral” lexicon.
Figure 1: .Grammar performance (F-score) with dif- |, our experiment, we only change the “periph-
ferent lexicons eral” lexicon by creating/removing lexical entries
for less frequent lexemes and open-class lexical
types, leaving the “core” lexicon intact. Therefore, a
more accurate interpretation of the experimental re-
51 IsF-measureagood metric for DLA sults is that the precision of tr@pen typeandless
evaluation? frequentlexical entries does not have a large impact

_ _ _ on the grammar performance, but their recall has a
As mentioned in Section 2, a number of relevant eagyycjal effect on grammar coverage.

lier works have evaluated DLA results via the un- The consequence of this finding is that the bal-

weighted F-score (relative to type precision and reance between precision and recall in the deep lexi-
call). This implicitly assumes that the precision ant¢.gn should be decided by their impact on the task to
recall of the lexicon are equally important. HOW-which the grammar is applied. In research on auto-
ever, this is clearly not the case as we can see in thgated DLA, the motivation is to enhance the robust-
results of the grammar performance. For exampléess/coverage of the grammars. This work shows
the lexicon configuration860 — 100 and100 — 060 that grammar performance is very robust over the
of JACY (i.e. 60% precision, 100% recall vs. 100%jnevitable errors introduced by the DLA, and that
precision, 60% recall, respectively) have the samggre emphasis should be placed on recall.
unweighted F-scores, but their corresponding over- Again, caution should be exercised here. We
all grammar performance (parser F-score) differs by not mean that by blindly adding lexical entries
up to 17%. without worrying about their correctness, the per-
formance of the grammar will be monotonically en-
hanced — there will almost certainly be a point at
The most interesting finding in our experiment iswhich noise in the lexicon swamps the parse chart
that the precision of the deep lexicon does not a@and/or leads to unacceptable levels of spurious am-
pear to have a significant impact on grammar accusiguity. Also, the balance between precision and re-
racy. This is contrary to the earlier predominant beeall of the lexicon will depend on various expecta-
lief that deep lexicons should be as accurate as pasens of the grammarians/lexicographers, i.e. the lin-
sible. This belief is derived mainly from observa-guistic precision and generality, which is beyond the
tion of grammars with relatively small lexicons. Inscope of this paper.

such small lexicons, the closed-class lexical entries As a final word of warning, the absolute gram-
and frequent entries (which comprise the “core” ofnar performance change that a given level of lexi-

07 + g
06 -

05

F-score (JaCY)

04

0.7 -

0.6 -

05

F-score (ERG)

04

5 Discussion

5.2 Doesprecision matter?
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con type precision and recall brings about will obvi-Gregor Erbach. 1990. Syntactic processing of unknown words
ously depend on the grammar. In looking across two 'WBS Report 131, IBM, Stuttgart, Germany.
grammars from two very different languages, we ar@an Fickinger. 2000 On building a more efficlent S by
confident of the robustness of our results (at least for 28'_0 g ypes. guage =ng AR
grammars of the same 'Ik) and the conclusions th"lHrederik Fouvry. 2003. Lexicon acquisition with a large-
we have drawn from them. For any novel grammar coverage unification-based grammar. Rroc. of the 10th
and/or formalism, however, the performan hange Conference of the European Chapter of the Association for
. - P ce change Computational Linguistics (EACL 20Q3)ages 87-90, Bu-
should ideally be quantified through a set of exper- gapest, Hungary.
iments with different |§XICOI’1 configurations, ba_secbulia Hockenmaier. 2006. Creating a CCGbank and a wide-
on the procedure outlined here. Based on this, it coverage CCG lexicon for German. Rroc. of the 21st

should be possible to find i - International Conference on Computational Linguisticslan
P the optimal balance be 44th Annual Meeting of the Association for Computational

tween the different lexicon evaluation metrics. Linguistics pages 505-512, Sydney, Australia.
i Stephan Oepen, Kristina Toutanova, Stuart Shieber, @ptisr
6 Conclusion Manning, Dan Flickinger, and Thorsten Brants. 2002. The

) ) ) ] ~ LinGO Redwoods treebank: Motivation and preliminary ap-
In this paper, we have investigated the relationship plications. InProc. of the 17th international conference on

between evaluation metrics for deep lexical acquisi- computational linguistics (COLING 2002Jaipei, Taiwan.

tion and grammar performance in parsing tasks. Thgiephan Oepen. 2001. [incr tsdb()] — competence and perfor-
results show that traditional DLA evaluation based farael cieraeirs Sentiaan Univescin o e P
tational Linguistics, Saarland University, Saarbriickéer-

on F-measure is not reflective of grammar perfor- many.
mance. The precision of the lexicon appears to hawarl Pollard and Ivan Sag. 1994ead-Driven Phrase Struc-
minimal impact on grammar accuracy, and therefore ture Grammar University of Chicago Press, Chicago, USA.

i i lelanie Siegel and Emily Bender. 2002. Efficient deep pro-
recall should be emphasised more greatly in the dé! cessing of Japanese. Boc. of the 3rd Workshop on

sign of deep lexical acquisition techniques. Asian Language Resources and International Standardiza-
tion, Taipei, Taiwan.
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