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Abstract

This paper discusses the semantic interpre-
tation of compound nominalizations in Chi-
nese. We propose four coarse-grained se-
mantic roles of the noun modifier and use a
Maximum Entropy Model to label such re-
lations in a compound nominalization. The
feature functions used for the model are
web-based statistics acquired via role related
paraphrase patterns, which are formed by a
set of word instances of prepositions, sup-
port verbs, feature nouns and aspect mark-
ers. By applying a sub-linear transformation
and discretization of the raw statistics, a rate
of approximately 77% is obtained for classi-
fication of the four semantic relations.

I ntroduction

the underlying semantic relationships between the
constituent concepts. For example, the semantic re-
lations involved insatellite communication system
can be expressed by the conceptual graph (Sowa,
1984) in Figure 1, in which, for instance, the se-
mantic relation betweesatellite and communica-
tion is MANNER. Due to the productivity of NCs
and the lack of syntactic clues to guide the interpre-
tation process, the automatic interpretation of NCs
has been proven to be a very difficult problem in
NLP.

In this paper, we deal with the semantic interpre-
tation of NCs in Chinese. Especially, we will fo-
cus on a subset of NCs in which the head word is a
verb nominalization. Nominalization is a common
phenomenon across languages in which a predica-
tive expression is transformed to refer to an event
or a property. For example, the English vextm-
municatehas the related nominalized foroommu-

A nominal compound (NC) is the concatenation ofiication Different from English, Chinese has little
any two or more nominal concepts which functiongnorphology. Verb nominalization in Chinese has the
as a third nominal concept (Finin, 1980). (Leonard$ame form as the verb predicate.

1984) observed that the amount of NCs had been in- Nominalizations retain the argument structure of
creasing explosively in English in recent years. NCthe corresponding predicates. The semantic relation
such assatellite navigation systerre abundant in between a noun modifier and a verb nominalization
news and technical texts. In other languages such hsad can be characterized by the semantic role the
Chinese, NCs have been more productive since eanodifier can take respecting to the corresponding
lier days as evidenced by the fact that many simpleerb predicate. Our method uses a Maximum En-
words in Chinese are actually a result of compoundropy model to label coarse-grained semantic roles
ing of morphemes.
Many aspects in Natural Language Processingpproaches in compound interpretation and seman-
(NLP), such as machine translation, information retic role labeling, we don’t exploit features from
trieval, question answering, etc. call for the autoany parsed texts or lexical knowledge sources. In-
matic interpretation of NCs, that is, making explicitstead, features are acquired using web-based statis-
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[satellite] «<~(MANNER) <-[communication] <~(TELIC) <[system]
Figure 1: The conceptual graph featellite communication system

tics (PMI-IR) produced from paraphrase patterns gect and object. Grover(2005) and Nicholson (2005)

the compound Nominalization. classify relations of subject, object and prepositional
The remainder of the paper is organized as folebject.

lows: Section 2 describes related works. Section _ _ .

3 describes the semantic relations for our Iabeliné'2 Semantic Role L abeling of Nominalization

task. Section 4 introduces the paraphrase patterM©st previous work on semantic role labeling of

used. Section 5 gives a detailed description of outominalizations are conducted in the situation where

algorithm. Section 6 presents the experimental ré verb nominalization is the head of a general noun

sult. Finally, in Section 7, we give the conclusiongphrase. (Dahl et al., 1987; Hull and Gomez, 1996)

and discuss future work. use hand-coded slot-filling rules to determine the se-
mantic roles of the arguments of a nominalization.
2 Related Works In such approaches, first, parsers are used to identify

syntactic clues such as prepositional types. Then,
rules are applied to label semantic roles according
The methods used in the semantic interpretation @) clues and constraints of different roles.
NCs fall into two main categories: rule-based ones Supervised machine learning methods become
and statistic-based ones. The rule-based approachggvalent in recent years in semantic role labeling
such as (Finin, 1980; Mcdonald, 1982; Leonardef verb nominalizations as part of the resurgence
1984; Vanderwende, 1995) think that the interpretaof research in shallow semantic analysis. (Pradhan
tion of NCs depends heavily on the constituent coret al., 2004) use a SVM classifier for the semantic
cepts and model the semantic interpretation as a sleble labeling of nominalizations in English and Chi-
filling process. Various rules are employed by suchese based on the FrameNet database and the Chi
approaches to determine, for example, whether thsse PropBank respectively. (Xue, 2006) uses the
modifier can fill in one slot of the head. Chinese Nombank to label nominalizations in Chi-
The statistic-based approaches view the semanese. Compared to English, the main difficulty of
tic interpretation as a multi-class classification probysing supervised method for Chinese, as noted by
lem. (Rosario and Hearst, 2001; Moldovan et al.Xue (2006), is that the precision of current parsers
2004; Kim and Baldwin, 2005) use supervised methef Chinese is very low due to the lack of morphol-
ods and explore classification features from a simplegy, difficulty in segmentation and lack of sufficient
structured type hierarchy. (Kim and Baldwin, 2006}raining materials in Chinese.
use a set of seed verbs to characterize the semantic
relation between the constituent nouns and explorés3 ~Web asalarge Corpus
a parsed corpus to classify NCs. (Turney, 2005) us€ata sparseness is the most notorious hinder for ap-
latent relational analysis to classify NCs. The simiplying statistical methods in natural language pro-
larity between two NCs is characterized by the simeessing. However, the World Wide Web can be seen
ilarity between their related pattern set. as a large corpus. (Grefenstette and Nioche, 2000;
(Lauer, 1995) is the first to use paraphrase basddnes and Ghani, 2000) use the web to generate cor-
unsupervised statistical models to classify semantmora for languages for which electronic resources
relations of NCs. (Lapata, 2000; Grover et al., 2005re scarce. (Zhu and Rosenfeld, 2001) use Web-
Nicholson, 2005) use paraphrase statistics computédsed n-gram counts for language modeling. (Keller
from parsed texts to interpret compound nominalizeand Lapata, 2003) show that Web page counts and
tion, but the relations used are purely syntactic. Laa-gram frequency counts are highly correlated in a
pata(2000) only classifies syntactic relations of subdeg scale.

2.1 Nominal Compound Interpretation
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3 Semantic Relations patterns to characterize each semantic relation. The
patterns we adopted mainly exploit a set of word in-

Although verb nominalization is commonly con- .
: .__stances of prepositions, support verbs, feature nouns
sidered to have arguments as the verb predicate
and aspect markers.

Xue(2006) finds that there tend to be fewer argu- " - .
Prepositions are strong indicators of semantic

ments and fewer types of adjuncts in verb nomi-

nalizations compared to verb predicates in ChineS(r—:-Oles in Chinese. For example, in sentence 1), the

We argue that this phenomenon is more obvious i%'reposition:}a(ba) indicates that the noufil (door)

compound nominalization. By analyzing a set of”md # = (Zhangsajis the Proto-Patient and Proto-

o ] i
compound nominalizations of length two from a bal—A gent of verbii(lock) respectively.

anced corpus(Jin et al., 2003), we find the semantic

24 = A} i]i
relations between a noun modifier and a verb nomi- 1) aik=derngt

nalization head can be characterized by four coarse- P+ Zhangsan ba door locked

grained semantic roles: Proto-Agent (PA), Proto- ¢. Zhangsan locked the daor

Patient (PP), Range (RA) and Manner (MA). This

is illustrated by Tablel. The prepositions we use to characterize each rela-

tion are listed in table 2.

Relations Examples

PA % /3% (Blood Circulation) Relations Prepositional Indicators
B % it#  (Bird Migration) PP # (bei), ik (rang), 1 (jiao), e (you)
PP &k 438 (Enterprise Management) PA 42(ba), ¥ (jiang), &7 (suo), % (dui)
4 4%  (Animal Categorization) MA i it (tongguo), A (yong), vA(yi)
MA M A% (Laser Storage) RA £ (zai), T (yu), AA(cong)
RA ii I:/jj;_ gg?otzgrig;&r:;g; atlon)TabIe 2: Prepositional indicators of different rela-

¥4 % /&  (Long-time Development) 0" " Chinese.

Table 1: Semantic Relations between Noun Modifier Support verbs such ag 47(conduc}, %= A (put-
and Verb Nominalization Head. to) can take verb nominalizations as objects. When

o _ combined with prepositions, they could be good
Due to the linking between semantic roles anghdicators of semantic roles. For example in 2),
syntactic roles (Dowty, 1991), the relations abovgne verbi# 47(conduc) together with the preposi-

overlap with syntactic roles, for example, Prototion 2+(dui) indicate that the relation betweedx
Agent with Subject and Proto-Patient with Object.x (categorizatioh and )44 (animal) is PA.

but they are not the same, as illustrated by the
example 3} 4 4~ & (Animal Categorization Al- 2) a xtEhitiTak
though the predicaté 3 (categorizg in Chinese is
an intransitive verb, the semantic relation between
#) 4 (animal) and 4~ % (categorizatiol is Proto-

b. dui animal conduct categorization
c. conduct categorization regarding animal

Patient. Nouns such asy 7% (method, 7 X.,(manne), ;&

4 Paraphrase Patterns [ (range and iﬂ?,‘%\(plgce) can be used as fe.atu.res
o when co-occurring with the compound nominaliza-

41 Motivations tions under consideration. For example,4f %

Syntactic patterns provide clues for semantic rela E (global rangg co-occurs frequently withe
tions (Hearst, 1992). For example, Hearst(1992)z(positioning, it will indicate a possible RA rela-
uses the pattern "NP such as List” to indicate thaion betweenazk(global) and 5z 4= (positioning.
nouns in List are hyponyms of NP. To classify the Another set of word instances we use is as-
four semantic relations listed in section 3, we propect, tense and modal markers. As we have men-
pose some domain independent surface paraphrdgmed, verb nominalizations have the same form as
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the corresponding verb predicates in Chinese. A& System Description
pect tense and modal markers make a good indica-

tor for recognizing a verb predicate. For example ip-1

Data Source

a verb is directly followed by an aspect marker such

as 7 (le), which indicates a finished state, it could

Nominalization
be safely viewed as a predicate. Such markers are Rec‘fmzer

very useful in paraphrase patterns. This can be illus-

trated by 3), in which, the tense mark#r5 (start)

indicates a strong agentive meaning of the néyin
% (bird) and provides good clues of the relation PP

betweert; % (bird) andif 4 (migration) in the com-
pound & £ if £ (bird migration).
3) a LEIFHbiEs
b. Bird start migrate
c. Birds start to migrate

4.2 Paraphrase Pattern Templates

We use the set of word instances above to form

Compound
Extractor

Pattern
Templates

Compound
ominalizations

Search Engine

J PMI Statistic
Data Preprocessing

N2

ME Semantic
Classifier Relations

pattern templates which could be instantiated by

the compound nominalization under consideration

Figure 2: System Architecture

to form paraphrase patterns. The templates are ex-
pressed using the employed search engine’s qUerygig e 2 jllustrates the system architecture of our
language. Currently, we employ totally 30 featur‘%\pproach. We view the semantic labeling of com-

templates for the four semantic relations. A sampl
of the pattern templates is listed in Tabel 3, in which

ﬁound nominalization as a data-driven classification
problem. The data used for the experiment is auto-

x, y is the variable which need to be instantiated by, acted from the Chinese National Corpus (Jin et
the noun modifier and verb nominalization respecy| 2003), which is a balanced segmented and POS

tively.

Relations

Paraphrase Pattern Templates

PP

PA

MA

RA

SEXIEATY” (7 dui X conduct Y")
"Fex "y (" ba X" "y")

"y EX ('Y zhe X")

XA Y (X bei” y")
"X Y (7 bei XY

"X I LEY” ("X starty”)
"X IR (X can y”)
"XFTY” ("X suoy”)

KECESRY

("tongguo X

” n

yn =l j\,iixy"

"X 7 k" ”y” ("X method’ ”y”)
n/&xn nyu n ’é-y”(” Zai Xn

"X Y (" cong X

"X;E,@

” n

""Y)
yn (”X Tange” ”,

”,

yu _n

y")

y” =" tongguo Xy")

zai y")

tagged corpus with 8M characters. Because the cor-
pus doesn’t distinguish verb predicates with verb

nominalizations, a verb nominalization recognizer is

first used to recognize all the verb nominalizations

in the corpus, and then, a compound extractor identi-
fies all the compound nominalizations having a noun

modifier and a verb nominalization head in the cor-

pus. We manually examined a sample of the result
set and finally randomly select 300 correct noun-

nominalization pairs as our training and testing set
for semantic interpretation.

One PHD student majored in computer science
and one in linguistics were employed to label all
the 300 data samples simultaneously according to
the relation set given in section 3. The annotator’s
agreement was measured using the Kappa statistic
(Siegel and Castellan, 1988) illustrated in (1), of

Table 3: A Sample Set of the Paraphrase Pattemhich Pr(A) is the probability of the actual out-

Templates.
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of the annotation is 87.3%. t,, the PMI-IR score betweemand¢; can be com-
puted by formula (3).

= Pr(A) — Pr(E) 1)
1— Pr(E) Hits(p,ti)
After discussion, the two annotators reached Hits(p)

agreement on a final version of the data sample la- . .
g P In which, PMI(p,t;) is the co-occurrence web

beling. In which, the proportion of relations PP, PA, )
g prop page counts ofp(x,y) and t;. For example, if

MA, RA is 45.6%, 27.7%, 16.7% and 10% respecih i latet is "xH(dui B d n
tively, giving a baseline of 45.6% of the classifica- ed ﬂe]mp arel 1S q ( u_|) i( 3?47(_00{;1 uc) éﬁ
tion problem by viewing all the relations to be ppand the compound nominalization 1s the pal

Finally, the 300 data instances were partitioned intgh(ammab’ﬁJ X (categorization), then Hits(p,t)

atraining set and a testing set containing 225 and {Ethe \ﬁeb c;ur;ts' rgjlj;]ned f rom gtﬁ‘searcg eng@ e for
instances respectively. e pattern ¢ (dui) (animal) #£47(conduc) %

% (categorizatioiy'.

3)

5.2 Maximum Entropy Modéel

We use the Maximum Entropy (ME) Model (Berger5'4 Scaling of PM Features

et al., 1996) for our classification task. Given a se¥Veb counts are inflated which need to be scaled to
of training examples of a random process, ME igttain a good estimation of the underlying probabil-
a method of estimating the conditional probabilityity density function in ME. In our approach, first, a
p(y|x) that, given a context, the process will out- 0g sub-linear transformation is used to preprocess
puty. In our task, the output corresponds to the fouthe raw PMI-IR feature function for the ME model.
relation labels PP, PA, MA and RA. Then, a discretization algorithm called CAIM (Kur-
The modeling of ME is based on the Maximumgan and Cios, 2004) is used to transform the contin-
Entropy Principle, that is, modeling all that is knownuous feature functions into discrete ones.
and assuming nothing about what is unknown. The CAIM is a supervised discretization algorithm
computation ofp(y|z) is illustrated as the formula which can discretize an attribute into the smallest
(2). fi(z,y) are binary valued feature functions withnumber of intervals and maximize the class-attribute
the parameteh; used to express the statistics of theénterdependency. Suppose that the data set consists
data sampleZ, () is a normalization factor. of M examples and each example belongs to only
one of the S classeg: indicates the continuous fea-
ture functions produced from paraphrase patterns in
exp (Z \ifi(z, y)> (2) ourtask.D is a discretization scheme dn, which
p discretizesF' into n non-overlapping discrete inter-
vals. The class variable and the discretization vari-
53 PMI-IR Score as Features able of attributeF” are treated as two random varibles
The feature functions we adopted for ME differen-defining a two-dimensional frequency matrix(called
tiate from most other works on the semantic labelguanta matrix) that is shown in Table 4, in which,
ing task, which mainly exploited features from well-¢;, is the total number of continuous values belong-
parsed text. Instead, we use a web-based statiag to thei'” class that are within intervéd, 1, d,],
tic called PMI-IR which mainly measures the co-while M. is the total number of values belong-
occurrence between the data to classify and the setiofy to thei*" class, andM,.,. is the total number
paraphrase pattern templates we stated in sectionof.values of attribute F that are within the interval
The PMI-IR measure was first adopted by (Turneyd,_1,d,], fori = 1,2,...,.S andr = 1,2,...,n.
2001) for mining synonyms from the Web. (EtzioniThe CAIM algorithm uses a greedy search to find
et al., 2004) uses the PMI-IR measure to evaluate tliee specific discretization sechmie according to

Pl = 5

information extracted from the Web. the Class-Attribute Interdependency Maximization
Given a compound nominalization paiz,y) (CAIM) criterion defined as(4), wherewax, is the
and a set of paraphrase pattern templates,, ..., maximum value among ad};, values.
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Class [do,d1] [dr_1.d;] [dn_1.d,] | Class Total
C q11 qir qin My
Ci gi Qir Qin My
Cs qs1 qsr qsn Mg
Interval Total| M, My, My, M

Table 4: The Quanta Matrix for Attribute F and Discretizatiécheme D

feature space can enable the ME model to give a

n 2 . . . -
CAIM(C, D|F) = 1 Z max; 4) gpod estl_matlon of the underlying probability den-
n ‘= My, sity function of the data. As to the usefulness of

) ) the discretization of the data, we think that it is
6 Resultsand Discussion mainly because that the web-based statistics contain

In this section, we present our experimental result@UCh noise and the f_eatures produced _from para-
on the semantic relation labeling of our Compoun(ﬁ’hrase patterns are highly carrelated with specific

Nominalization Dataset. We compared the perforc/asses. CAIM discretization algorithm can maxi-

mance between two different engines, also betwedRize the class-attribute interdependence in the data
the raw PMI and the scaled one ' ’ and can be seen as a noise pruning process in some

Two search engines, Google (www.google.com§ense'
and Baidu (www.baidu.com) are used and compared Among the four semantic relations labeled, PP
to obtain the PMI scores between a verb nominalizg€ts the best precision and recall overall and rela-
tion pair and the set of paraphrase patterns. The réons such as RA gets a lower F-score. We think
sult of using Google and Baidu are comparable. Fdhat this is mainly due to the difficulty in selecting
example, when using raw PMI score as the featurd¥raphrase patterns for RA compared to PP. Some
of ME classification model, Google based algorithnPatterns are not as indicative as others for the rela-
obtains a correct classification rate of 65.3%, whiléions considered. For example, the paraphrase pat-
Baidu based algorithm obtains a correct classificd€rns "Ex""y” - fy” ('in X" "y” ~"in y”) for RA
tion rate of 62.7%. The main difference between thi$ not as indicative as the patteratt1Ty” (dui
two search engines is their indexing and rating algo< conduct ¥ for PP. Discovering and selecting the
rithm of the web pages. Compared to Google, Baidnost indicative patterns for each relation is the key
uses a stop wordlist, including empty markers sucflement for our algorithm.
as 7 (le), to filter the queries. While this is benefi- We can make a rough comparison to the related
cial for common users, it hurts our algorithm whichworks in the literature. In syntactic relation label-
depends heavily on such information. ing of compound nominalization in English, Lap-

Compared with using raw PMI as the classifi-ata (2000) and Grover et al. (2005) both apply
cation features, feature scaling improves much oparsed text and obtains 87.3%, 77% accuracy for
the classification result. Using Log transformationthe subject-object and subject-object-prepositional
Both Google based and Baidu based algorithm imbjects classification tasks respectively. Nicholson
crease about 4 percent on the correct classificatig@005) uses both the parsed text and the web for the
rate and when CAIM algorithm is employed to pre-classification of subject-object-prepositional objects
process the data, both algorithm’s correct classificand the result is comparatively poor. Compared to
tion rates increase more than 8 percent. We thinkuch works, the relations we exploited in the label-
that the usefulness of log sub-linear transformatioing task is purely semantic which makes the clas-
is mainly due to the fact that the Web is extremelification task more difficult and we don’t use any
biased and inflated. The compression of the inflatgolrsed text as input. Considering the difficulty of
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Google Baidu
Precision Recall F-Score precision Recall F-Score

Raw PMI
PP 72.5 82.9 77.3 65.3 88.9 75.2
PA 476 50.0 48.8 50.0 42.1 45.7
MA 75.0 50.0 60.0 50.0 27.3 35.3
RA 66.7 50.0 57.1 80.0 44.4 57.1
Rate 65.3 62.7
Log

PP 66.7 85.7 75.0 68.2 83.3 75.0
PA 647 55.0 59.5 60.0 47.4 52.9
MA 80.0 66.7 72.7 66.7 54.5 60.0
RA 100 37.5 54.5 71.4 55.5 62.5
Rate 69.3 66.7

Log+Discretization
PP 82.5 94.3 88.0 80.9 94.4 87.2
PA 813 65.0 72.2 64.7 57.9 61.1
MA 75.0 50.0 60.0 87.5 63.6 73.7
RA 545 75.0 63.2 64.5 55.6 58.8
Rate 77.3 76.0

Table 5: Results comparing different search engines, rawd@Meatures vs. scaled features. Rate is the
correct classification rate for the four semantic relatiownsrall.

the problem and the unsupervised nature of our al- The major limitation of our approach is that the
gorithm, the results (accuracy 77.3%) are very erparaphrase pattern templates we use now are hand-

couraging. coded according to the linguistic theory. To achieve
_ more generality of our method, in the future, we
7 Conclusions and Future Work should study automatic template induction and fea-

ture selection algorithms for the classifier to select

In this paper, we view the semantic relation label- 2
pap the set of most indicative pattern templates for each

ing of compound nominalization as a classification . )
. semantic relation.

problem. We propose four coarse-grained semantic
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