L earning Dependency Relations of
Japanese Compound Functional Expressions

Takehito Utsuro' and Takao Shimef and Masatoshi Tsuchiya'™
Suguru Matsuyoshit® and Satoshi Sato'*
TGraduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1, Tennodai, Tsukuba, 305-8573, JAPAN
INEC Corporation
TTComputer Center, Toyohashi University of Technology,
Tenpaku-cho, Toyohashi, 441-8580, JAPAN
t1Graduate School of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN

Abstract

This paper proposes an approach of process-
ing Japanese compound functional expressions
by identifying them and analyzing their depen-
dency relations through a machine learning tech-
nique. First, we formalize the task of identify-
ing Japanese compound functional expressions
in a text as a machine learning based chunking
problem. Next, against the results of identify-
ing compound functional expressions, we apply
the method of dependency analysis based on the
cascaded chunking model. The results of ex-
perimental evaluation show that, the dependency
analysis model achieves improvements when ap-
plied after identifying compound functional ex-
pressions, compared with the case where it is ap-
plied without identifying compound functional
expressions.

1 |Introduction

In addition to single functional words, the Japanese
language has many more compound functional ex-
pressions which consist of more than one word in-
cluding both content words and functional words.
They are very important for recognizing syntactic
structures of Japanese sentences and for understand-
ing their semantic content. Recognition and under-
standing of them are also very important for vari-
ous kinds of NLP applications such as dialogue sys-
tems, machine translation, and question answering.
However, recognition and semantic interpretation of
compound functional expressions are especially dif-
ficult because it often happens that one compound
expression may have both a literal (i.e. compo-

65

sitional) content word usage and a non-literal (i.e.
non-compositional) functional usage.

For example, Table 1 shows two example sen-
tences of a compound expression “IC (ni) DWW T
(tsuite)”, which consists of a post-positional particle
“IC (ni)”, and a conjugated form “DW T (tsuite)” of
averb “D< (tsuku)”. In the sentence (A), the com-
pound expression functions as a case-marking parti-
cle and has a non-compositional functional meaning
“about”. On the other hand, in the sentence (B), the
expression simply corresponds to a literal concate-
nation of the usages of the constituents: the post-
positional particle “IC (ni)” and the verb “DW\ T
(tsuite)”, and has a content word meaning “follow”.
Therefore, when considering machine translation of
these Japanese sentences into English, it is neces-
sary to judge precisely the usage of the compound
expression “IC (ni) DT (tsuite)”, as shown in the
English translation of the two sentences in Table 1.

There exist widely-used Japanese text processing
tools, i.e. combinations of a morphological analy-
sis tool and a subsequent parsing tool, such as JU-
MAN?!+ KNP? and ChaSen®+ CaboCha®*. However,
they process those compound expressions only par-
tially, in that their morphological analysis dictionar-
ies list only a limited number of compound expres-
sions. Furthermore, even if certain expressions are
listed in a morphological analysis dictionary, those
existing tools often fail in resolving the ambigui-

http://nlp.kuee.kyoto-u.ac.jp/
nl-resource/juman-e.html

Zhttp://nlp.kuee.kyoto-u.ac.jp/
nl-resource/knp-e.html

Shttp://chasen.naist.jp/hiki/ChaSen/

4http://chasen.org/~taku/software/
cabocha/

Proceedings of the Workshop on A Broader Perspective on Multiword Expressions, pages 65-72,
Prague, June 2007. (©2007 Association for Computational Linguistics

AL (watashi) (& (ha) 7% (kare) 1 (ni) DT (tsuite) & U7z (hanashita)
A) 0 (TOP) (he) (about) (talked)
(I talked about him.)
FL (watashi)y (& (ha) 7% (kare) Ic (ni) DU C (tsuite) xE- 7z (hashitta)
(B) 0 (TOP) (he) (ACC) (follow) (ran)
(I ran following him.)

Table 1: Translation Selection of a Japanese Compound Expression ‘¢ (ni) DT (tsuite)”

with a Case Marking Particle Usage.

(1) Correct Dependency Relation by Identifying Compound Functional Expression: “&-LT”

KRE [

USA-TOP

BRFRELT

as a means for solution

Av7 4

Russia-NOM also|

2 LT L3

participate in

SRR RIGHHE O

of OSCE

FRZ

activity-ACC]|

EE LT,

recommended

)

Correct English Translation:

of a Verb “3°%” (do).

(As a means of solving the problem, USA recommended the activity of OSCE in which Russia participates.)

(2) Incorrect Dependency Relation without Identifying Compound Functional Expression: “&-LT”,
which Literally Consists of a Post-positional Particle “&” (with) and a Conjugation Form “L T”

RE [

USA-TOP

RRFRE &

with a means for
solution

A7 %

Russia-NOM also

LT,

LT W3

participate in

ST R HHEE O

of OSCE

FERZE

activity-ACC

HEELT,

recommended

¢

Figure 1: Example of Improving Dependency Analysis of Compound Functional Expressions by Identifying

them before Dependency Analysis

ties of their usages, such as those in Table 1. This
is mainly because the framework of these existing
tools is not designed so as to resolve such ambigu-
ities of compound (possibly functional) expressions
by carefully considering the context of those expres-
sions.

Actually, as we introduce in the next section, as a
first step towards studying computational processing
of compound functional expressions, we start with
125 major functional expressions which have non-
compositional usages, as well as their variants (337
expressions in total). Out of those 337 expressions,
111 have both a content word usage and a functional
usage. However, the combination of JUMAN+KNP
is capable of distinguishing the two usages only for
43 of the 111 expressions, and the combination of
ChaSen+CaboCha only for 40 of those 111 expres-
sions. Furthermore, the failure in distinguishing the
two usages may cause errors of syntactic analysis.
For example, (1) of Figure 1 gives an example of
identifying a correct modifiee of the second bunsetsu

66

segment ° “fIR B & L C (as a means for solu-
tion)” including a Japanese compound functional ex-
pression “& L T (as)”, by appropriately detecting
the compound functional expression before depen-
dency analysis. On the other hand, (2) of Figure 1
gives an example of incorrectly indicating an erro-
neous modifiee of the third bunsetsu “L T”, which
actually happens if we do not identify the compound
functional expression “& L C (as)” before depen-
dency analysis of this sentence.

Considering such a situation, it is necessary to
develop a tool which properly recognizes and se-
mantically interprets Japanese compound functional
expressions. This paper proposes an approach of
processing Japanese compound functional expres-
sions by identifying them and analyzing their de-
pendency relations through a machine learning tech-
nique. The overall flow of processing compound
functional expressions in a Japanese sentence is il-

SA Japanese bunsetsu segment is a phrasal unit which con-
sits of at least one content word and zero or more functional
words.

bunsetsu

(As a means of solving the
problem, USA recommended the
activity of OSCE in which Russia
participates.)

segmentation
morphological Identifyi o 9 &
analysis entitying 7 P
b Ch);Sen (solution) compound (solution) (solution) depende.ncy (solution)
y Py functional P analysis
o) expression (mom) (n?':fir;s) I_> (;f:fi,;s) —
& &
(with) I_> (with) ; 7|)_—(l;,s)‘c t(«l;s;c
L L chunking R
KREFBRFEELT, (do) (do) . o .
O 7HSML TS LR . R '
RRIBHEHEDERE T T —
HEELF (and) (and)
ESLIZ. segment ‘

.
)
. dependency
relation

compound
functional
expression

Figure 2: Overall Flow of Processing Compound Functional Expressions in a Japanese Sentence

lustrated in Figure 2. First of all, we assume a
sequence of morphemes obtained by a variant of
ChaSen with all the compound functional expres-
sions removed from its outputs, as an input to our
procedure of identifying compound functional ex-
pressions and analyzing their dependency relations.
We formalize the task of identifying Japanese com-
pound functional expressions in a text as a machine
learning based chunking problem (Tsuchiya et al.,
2006). We employ the technique of Support Vec-
tor Machines (SVMs) (Vapnik, 1998) as the ma-
chine learning technique, which has been success-
fully applied to various natural language process-
ing tasks including chunking tasks such as phrase
chunking and named entity chunking. Next, against
the results of identifying compound functional ex-
pressions, we apply the method of dependency anal-
ysis based on the cascaded chunking model (Kudo
and Matsumoto, 2002), which is simple and efficient
because it parses a sentence deterministically only
deciding whether the current bunsetsu segment mod-
ifies the one on its immediate right hand side. As
we showed in Figure 1, identifying compound func-
tional expressions before analyzing dependencies in
a sentence does actually help deciding dependency
relations of compound functional expressions.

In the experimental evaluation, we focus on 59
expressions having balanced distribution of their us-
ages in the newspaper text corpus and are among the
most difficult ones in terms of their identification in
a text. We first show that the proposed method of

67

chunking compound functional expressions signifi-
cantly outperforms existing Japanese text processing
tools. Next, we further show that the dependency
analysis model of (Kudo and Matsumoto, 2002) ap-
plied to the results of identifying compound func-
tional expressions significantly outperforms the one
applied to the results without identifying compound
functional expressions.

2 Japanese Compound Functional
Expressions

There exist several collections which list Japanese
functional expressions and examine their usages.
For example, (Morita and Matsuki, 1989) exam-
ine 450 functional expressions and (Group Jamashii,
1998) also lists 965 expressions and their example
sentences. Compared with those two collections,
Gendaigo Hukugouji Youreishu (National Language
Research Institute, 2001) (henceforth, denoted as
GHY) concentrates on 125 major functional expres-
sions which have non-compositional usages, as well
as their variants®, and collects example sentences of
those expressions. As we mentioned in the previous
section, as a first step towards developing a tool for
identifying Japanese compound functional expres-
sions, we start with those 125 major functional ex-
pressions and their variants (337 expressions in to-

®For each of those 125 major expressions, the differences
between it and its variants are summarized as below: i) inser-
tion/deletion/alternation of certain particles, ii) alternation of

synonymous words, iii) normal/honorific/conversational forms,
iv) base/adnominal/negative forms.

(a) Classification of Compound Functional Expressions based on Grammatical Function

| Grammatical Function Type

| #of major expressions | # of variants |

Example |

post-positional | conjunctive particle 36 67 <RI (kuse-ni)
particle type case-marking particle 45 121 & LT (to-shite)
adnominal particle 2 3 W5 (to-iu)
auxiliary verb type 42 146 T (te-ii)
| total I 125 | 337 | — |
(b) Examples of Classifying Functional/Content Usages
| | Expression | Example sentence (English translation) | Usage
1) I ICEEZR5| {HIC || BT THEXC LD, functional
(kuse-ni) (To my brother, (someone) gave money, while (he/she) did noth- (< BT (kuse-ni) = while)
ing to me but just sent a letter.)
2) <RI WDZD| K BT |(HhAKE N, content
. . . . (~ < BT (kuse-ni)
(kuse-ni) (They all were surprised by his habit.) = by one's habit
3) LLT HlFZ DFEOEMSR L LT HISEN TV, functional
(to-shite) | (He is known asan expert of the problem.) (~ & EESE%'Sh'te)
4) LT TNHELWLDNEINE>ED L LT [FEN, content
(to-shite) | (Please make it clear whether this is true or not.) (~z : rr%al&évi (tNO'Sh'te)
(5) AN WIFEETVB| LS HISEZFBIVZ, functional
(to-iu) (I heard that he is alive.) (~ &5 (to-iu) = that ~)
(6) PR GREGISRTTEWN] [&0 (AW 5, content
. w N (~ &V (to-iu)
(to-iu) (Somebody says “Please visit us.”.) = say (that) ~)
©) TV T DM T2 BAREEL| TV |, functional
(te-ii) (You may have a break after we finish this discussion.) (~ T (te-ii) = may ~)
(8) QAR TOMEAFKEL] TN content
. . - s (~ T (te-ii)
(te-ii) (This bag is nice because it is big.) = nice because ~)

Table 2: Classification and Example Usages of Compound Functional Expressions

tal). In this paper, following (Sag et al., 2002), we
regard each variant as a fixed expression, rather than
a semi-fixed expression or a syntactically-flexible
expression /. Then, we focus on evaluating the
effectiveness of straightforwardly applying a stan-
dard chunking technique to the task of identifying
Japanese compound functional expressions.

As in Table 2 (a), according to their grammat-
ical functions, those 337 expressions in total are
roughly classified into post-positional particle type,
and auxiliary verb type. Functional expressions of
post-positional particle type are further classified
into three subtypes: i) conjunctive particle types,
which are used for constructing subordinate clauses,
ii) case-marking particle types, iii) adnominal parti-
cle types, which are used for constructing adnominal

"Compound functional expressions of auxiliary verb types
can be regarded as syntactically-flexible expressions.

68

clauses. Furthermore, for examples of compound
functional expressions listed in Table 2 (a), Table 2
(b) gives their example sentences as well as the de-
scription of their usages.

3 Identifying Compound Functional
Expressions by Chunking with SVMs

This section describes summaries of formalizing the
chunking task using SVMs (Tsuchiya et al., 2006).
In this paper, we use an SVMs-based chunking tool
YamCha® (Kudo and Matsumoto, 2001). In the
SVMs-based chunking framework, SVMs are used
as classifiers for assigning labels for representing
chunks to each token. In our task of chunking
Japanese compound functional expressions, each

8http ://chasen.org/ " taku/software/
yamcha/

sentence is represented as a sequence of morphemes,
where a morpheme is regarded as a token.

3.1 Chunk Representation

For representing proper chunks, we employ 10B2
representation, which has been studied well in var-
ious chunking tasks of natural language processing.
This method uses the following set of three labels
for representing proper chunks.

| Current token is a middle or the end of a
chunk consisting of more than one token.

O Current token is outside of any chunk.

B Current token is the beginning of a chunk.

Given a candidate expression, we classify the us-
ages of the expression into two classes: functional
and content. Accordingly, we distinguish the chunks
of the two types: the functional type chunk and the
content type chunk. In total, we have the follow-
ing five labels for representing those chunks: B-
functional, | -functional, B-content, | -content, and
O. Finally, as for extending SVMs to multi-class
classifiers, we experimentally compare the pairwise
method and the one vs. rest method, where the pair-
wise method slightly outperformed the one vs. rest
method. Throughout the paper, we show results with
the pairwise method.

3.2 Features

For the feature sets for training/testing of SVMs, we
use the information available in the surrounding con-
text, such as the mor[ﬁhemes, their parts-of-speech
tags, as well as the chunk labels. More precisely,
suppose that we identify the chunk label ¢ for the
i-th morpheme:

—— Parsing Direction —

Morpheme mMi—2 Mi—1 m; Mi+1 Mi+2
Feature set Fi_o Fi_4 F; F»;+1 F»;Jrg
at a position

Chunk label Ci—2 Ci—1

Here, m; is the morpheme appearing at i-th posi-
tion, F; is the feature set at ¢-th position, and ¢ is
the chunk label for i-th morpheme. Roughly speak-
ing, when identifying the chunk label ¢ for the i-th
morpheme, we use the feature sets F;_», F;_1, F;
Fii1, F;yo at the positions ¢ — 2, i — 1, i, i + 1,
1+ 2, as well as the preceding two chunk labels ¢_o
and ¢;_1. The detailed definition of the feature set
F; at i-th position is given in (Tsuchiya et al., 2006),
which mainly consists of morphemes as well as in-

69

formation on the candidate compound functional ex-
pression at i-th position.

4 Learning Dependency Relations of
Japanese Compound Functional
Expressions

4.1 Japanese Dependency Analysisusing
Cascaded Chunking

411 Cascaded Chunking Model

First of all, we define a Japanese sen-
tence as a sequence of bunsetsu segments
B = (bi,ba,...,by,) and its syntactic struc-
ture as a sequence of dependency patterns
D = (Dep(1),Dep(2),...,Dep(m — 1)), where
Dep(i) = j means that the bunsetsu segment b
depends on (modifies) bunsetsu segment b;. In
this framework, we assume that the dependency
sequence D satisfies the following two constraints:

1. Japanese is a head-final language. Thus, except
for the rightmost one, each bunsetsu segment
modifies exactly one bunsetsu segment among
those appearing to its right.

2. Dependencies do not cross one another.

Unlike probabilistic dependency analysis models
of Japanese, the cascaded chunking model of Kudo
and Matsumoto (2002) does not require the proba-
bilities of dependencies and parses a sentence de-
terministically. Since Japanese is a head-final lan-
guage, and the chunking can be regarded as the cre-
ation of a dependency between two bunsetsu seg-
ments, this model simplifies the process of Japanese
dependency analysis as follows: °

1. Put an O tag on all bunsetsu segments. The O
tag indicates that the dependency relation of the
current segment is undecided.

2. For each bunsetsu segment with an O tag, de-
cide whether it modifies the bunsetsu segment
on its immediate right hand side. If so, the O
tag is replaced with a D tag.

3. Delete all bunsetsu segments with a D tag that
immediately follows a bunsetsu segment with
an O tag.

®The O and D tags used in this section have no relation to
those chunk reppresentation tags introduced in section 3.1.

)

®iE HED BHL BT BRELS,
He her warm heart be moved

(He was moved by her warm heart.)

Initialization
Input: fEIE H&D BHL BEZ BRBEILE
Tag o o o (o} o
Input: fEIE K&D EHL BEbI BEELE
Tag: o o D D o

S o1 ..
Input: &I ®ZD Bl REELE
Tag o D D o

_____________ Deleted e
Input: % HibMz BEELE
Tag (0] D O

SO o1, -1\ W
Input: 1&I& REELT=
Tag: D O

o Deleted .
Input: BHLL
Tag: O

Finish

Figure 3: Example of the Parsing Process with Cas-
caded Chunking Model

4. Terminate the algorithm if a single bunsetsu
segment remains, otherwise return to the step
2 and repeat.

Figure 3 shows an example of the parsing process
with the cascaded chunking model.

4.1.2 Features

As a Japanese dependency analyzer based on the
cascaded chunking model, we use the publicly avail-
able version of CaboCha (Kudo and Matsumoto,
2002), which is trained with the manually parsed
sentences of Kyoto text corpus (Kurohashi and Na-
gao, 1998), that are 38,400 sentences selected from
the 1995 Mainichi newspaper text.

The standard feature set used by CaboCha con-
sists of static featuresand dynamic features. Static
features are those solely defined once the pair
of modifier/modifiee bunsetsu segments is speci-
fied. For the pair of modifier/modifiee bunsetsu
segments, the following are used as static fea-
tures: head words and their parts-of-speech tags,
inflection-types/forms, functional words and their
parts-of-speech tags, inflection-types/forms, inflec-
tion forms of the words that appear at the end
of bunsetsu segments. As for features between
modifier/modifiee bunsetsu segments, the distance

70

of modifier/modifiee bunsetsu segments, existence
of case-particles, brackets, quotation-marks, and
punctuation-marks are used as static features. On the
other hand, dynamic features are created during the
parsing process, so that, when a certain dependency
relation is determined, it can have some influence
on other dependency relations. Dynamic features in-
clude bunsetsu segments modifying the current can-
didate modifiee (see Kudo and Matsumoto (2002)
for the details).

4.2 Copingwith Compound Functional
Expressions

As we show in Figure 2, a compound functional ex-
pression is identified as a sequence of several mor-
phemes and then chunked into one morpheme. The
result of this identification process is then trans-
formed into the sequence of bunsetsu segments. Fi-
nally, to this modified sequence of bunsetsu seg-
ments, the method of dependency analysis based on
the cascaded chunking model is applied.

Here, when chunking a sequence of several mor-
phemes constituting a compound functional expres-
sion, the following two cases may exist:

(A) Asin the case of the example (A) in Table 1, the
two morphemes constituting a compound func-
tional expression “IZ (ni) DU T (tsuite)” over-
laps the boundary of two bunsetsu segments.
In such a case, when chunking the two mor-
phemes into one morpheme corresponding to
a compound functional expression, those two
bunsetsu segments are concatenated into one
bunsetsu segment.

% I |[DuT " 1oV T
kare ni tsuite | = | kare ni-tsuite
(he) (he) (about)

(B) As we show below, a compound functional ex-
pression “C & (koto) /' (ga) & % (aru)” over-
laps the boundary of two bunsetsu segments,
though the two bunsetsu segments concatenat-
ing into one bunsetsu segment does include no
content words. In such a case, its immedi-
ate left bunsetsu segment (“47 - (itt) 7z (ta)“ in
the example below), which corresponds to the
content word part of “C & (koto) /' (ga) & %
(aru)”, has to be concatenated into the bunsetsu
segment “Z & (koto) A (ga) H 5 (aru)”.

& N »H%
koto ga aru

7o 72 TEWHHB
itt ta koto-ga-aru
(have been ~)

11> I
itt ta
(went)

Next, to the compound functional expression, we
assign one of the four grammatical function types
listed in Table 2 as its POS tag. For example,
the compound functional expression “I< (ni) DWW\ T
(tsuite)” in (A) above is assigned the grammatical
function type “case-marking particle type”, while *
C & (koto) AY (ga) & 5 (aru)” in (B) is assigned
“auxiliary verb type”.

These modifications cause differences in the final
feature representations. For example, let us compare
the feature representations of the modifier bunsetsu
segments in (1) and (2) of Figure 1. In (1), the mod-
ifier bunsetsu segment is “fi#R B & L C” which
has the compound functional expression “& L C”
in its functional word part. On the other hand, in
(2), the modifier bunsetsu segment is “L C”, which
corresponds to the literal verb usage of a part of the
compound functional expression “& L TC”. In the
final feature representations below, this causes the
following differences in head words and functional
words / POS of the modifier bunsetsu segments:

| [(1) of Figure 1 | (2) of Figure1 |
head word TFEX (means) g % (do)
functional word E LT (a9 T (and)
POS subsequent to nominal conjunctive
/ modifying predicate particle

5 Experimental Evaluation

5.1 Training/Test Data Sets

For the training of chunking compound functional
expressions, we collected 2,429 example sentences
from the 1995 Mainichi newspaper text corpus. For
each of the 59 compound functional expressions for
evaluation mentioned in section 1, at least 50 ex-
amples are included in this training set. For the
testing of chunking compound functional expres-
sions, as well as training/testing of learning depen-
dencies of compound functional expressions, we
used manually-parsed sentences of Kyoto text cor-
pus (Kurohashi and Nagao, 1998), that are 38,400
sentences selected from the 1995 Mainichi newspa-
per text (the 2,429 sentences above are selected so
that they are exclusive of the 37,400 sentences of
Kyoto text corpus.). To those data sets, we manually
annotate usage labels of the 59 compound functional
expressions (details in Table 3).

71

Usages # of
functional | content || total sentencey
for chunker
training 1918 1165 3083 2429
Kyoto text corpus 5744 1959 7703 38400
Table 3: Statistics of Data Sets
Acc. of
Identifying classifying
functional chunks functional
content
Prec. Rec. Fjs—; | chunks
majority (= functional) || 746 100 855 74.6
Juman/KNP 85.8 405 55.0 58.4
ChaSen/CaboCha 85.2 26.7 40.6 51.1
SVM 914 946 929 89.3
Table 4: Evaluation Results of Chunking (%)
5.2 Chunking

As we show in Table 4, performance of our SVMs-
based chunkers as well as several baselines includ-
ing existing Japanese text processing tools is evalu-
ated in terms of precision/recall/F3—; of identifying
all the 5,744 functional chunks included in the test
data (Kyoto text corpus in Table 3). Performance is
evaluated also in terms of accuracy of classifying de-
tected candidate expressions into functional/content
chunks. Among those baselines, “majority (= func-
tional)” always assigns functional usage to the de-
tected candidate expressions. Performance of our
SVMs-based chunkers is measured through 10-fold
cross validation. Our SVMs-based chunker signif-
icantly outperforms those baselines both in Fz—;
and classification accuracy. As we mentioned in
section 1, existing Japanese text processing tools
process compound functional expressions only par-
tially, which causes damage in recall in Table 4.

5.3 Analyzing Dependency Relations

We evaluate the accuracies of judging dependency
relations of compound functional expressions by the
variant of CaboCha trained with Kyoto text cor-
pus annotated with usage labels of compound func-
tional expressions. This performance is measured
through 10-fold cross validation with the modified
version of the Kyoto text corpus. In the evaluation
phase, according to the flow of Figure 2, first we ap-
ply the chunker of compound functional expressions
trained with all the 2,429 sentences in Table 3 and
obtain the results of chunked compound functional
expressions with about 90% correct rate. Then, bun-
setsu segmentation and dependency analysis are per-

| [| modifier | modifiee |

baselines | CaboCha (w/o FE) 72.5 88.0

CaboCha (public) 73.9 87.6
chunker + CaboCha (proposed) 74.0 88.0
reference + CaboCha (proposed) 744 88.1

Table 5: Accuracies of
fier(s)/Modifiee (%)

Identifying Modi-

formed by our variant of CaboCha, where accu-
racies of identifying modifier(s)/modifiee of com-
pound functional expressions are measured as in Ta-
ble 5 (“chunker + CaboCha (proposed)” denotes that
inputs to CaboCha (proposed) are with 90% correct
rate, while “reference + CaboCha (proposed)” de-
notes that they are with 100% correct rate). Here,
“CaboCha (w/o FE)” denotes a baseline variant of
CaboCha, with all the compound functional expres-
sions removed from its inputs (which are outputs
from ChaSen), while “CaoboCha (public)” denotes
the publicly available version of CaboCha, which
have some portion of the compound functional ex-
pressions included in its inputs.

For the modifier accuracy, the difference of
“chunker + CaboCha (proposed)” and “CaboCha
(w/o FE)” is statistically significant at a level of
0.05. Identifying compound functional expressions
typically contributes to improvements when the lit-
eral constituents of a compound functional expres-
sion include a verb. In such a case, for bunsetsu
segments which usually modifies a verb, an incor-
rect modifee candidate is removed, which results in
improvements in the modifier accuracy. The dif-
ference between ‘CaoboCha (public)” and “chunker
+ CaboCha (proposed)” is slight because the pub-
licly available version of CaboCha seems to include
compound functional expressions which are dam-
aged in identifying their modifiers with “CaboCha
(w/o FE)”. For the modifiee accuracy, the difference
of “chunker + CaboCha (proposed)” and “CaboCha
(w/o FE)” is zero. Here, more than 100 instances of
improvements like the one in Figure 1 are observed,
while almost the same number of additional fail-
ures are also observed mainly because of the sparse-
ness problem. Furthermore, in the case of the modi-
fiee accuracy, it is somehow difficult to expect im-
provement because identifying modifiees of func-
tional/content bunsetsu segments mostly depends on
features other than functional/content distinction.

72

6 Concluding Remarks

We proposed an approach of processing Japanese
compound functional expressions by identifying
them and analyzing their dependency relations
through a machine learning technique. This ap-
proach is novel in that it has never been applied
to any language so far. Experimental evaluation
showed that the dependency analysis model applied
to the results of identifying compound functional ex-
pressions significantly outperforms the one applied
to the results without identifying compound func-
tional expressions. The proposed framework has ad-
vantages over an approach based on manually cre-
ated rules such as the one in (Shudo et al., 2004), in
that it requires human cost to create manually and
maintain those rules. Related works include Nivre
and Nilsson (2004), which reports improvement of
Swedish parsing when multi word units are manu-
ally annotated.

References

Group Jamashii, editor. 1998. Nihongo Bunkei Jiten. Kuroshio
Publisher. (in Japanese).

T. Kudo and Y. Matsumoto. 2001. Chunking with support vec-
tor machines. In Proc. 2nd NAACL, pages 192-199.

T. Kudo and Y. Matsumoto. 2002. Japanese dependency ana-
lyisis using cascaded chunking. In Proc. 6th CoNLL, pages
63-69.

S. Kurohashi and M. Nagao. 1998. Building a Japanese parsed
corpus while improving the parsing system. In Proc. 1st
LREC, pages 719-724.

Y. Morita and M. Matsuki. 1989. Nihongo Hyougen Bunkei,
volume 5 of NAFL Sensho. ALC. (in Japanese).

National Language Research Institute. 2001. Gendaigo Huku-
gouji Youreishu. (in Japanese).

J. Nivre and J. Nilsson. 2004. Multiword units in syntactic
parsing. In Proc. LREC Workshop, Methodologies and Eval-
uation of Multiword Unitsin Real-World Applications, pages
39-46.

I. Sag, T. Baldwin, F. Bond, A. Copestake, and D. Flickinger.
2002. Multiword expressions: A pain in the neck for NLP.
In Proc. 3rd CICLING, pages 1-15.

K. Shudo, T. Tanabe, M. Takahashi, and K. Yoshimura. 2004.
MWEs as non-propositional content indicators. In Proc. 2nd
ACL Workshop on Multiword Expressions. Integrating Pro-
cessing, pages 32-39.

M. Tsuchiya, T. Shime, T. Takagi, T. Utsuro, K. Uchimoto,
S. Matsuyoshi, S. Sato, and S. Nakagawa. 2006. Chunk-
ing Japanese compound functional expressions by machine
learning. In Proc. Workshop on Multi-Word-Expressions in
a Multilingual Context, pages 25-32.

V. N. Vapnik. 1998. Satistical Learning Theory. Wiley-
Interscience.

