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Abstract

This paper investigates improvement of au-
tomatic biomedical named-entity recogni-
tion by applying a reranking method to the
COLING 2004 JNLPBA shared task of bio-
entity recognition. Our system has a com-
mon reranking architecture that consists of a
pipeline of two statistical classifiers which
are based on log-linear models. The ar-
chitecture enables the reranker to take ad-
vantage of features which are globally de-
pendent on the label sequences, and fea-
tures from the labels of other sentences than
the target sentence. The experimental re-
sults show that our system achieves the la-
beling accuracies that are comparable to the
best performance reported for the same task,
thanks to the 1.55 points of F-score improve-
ment by the reranker.

1 Introduction

Difficulty and potential application of biomedical
named-entity recognition has attracted many re-
searchers of both natural language processing and
bioinformatics. The difficulty of the task largely
stems from a wide variety of named entity expres-
sions used in the domain. It is common for practi-
cal protein or gene databases to contain hundreds of
thousands of items. Such a large variety of vocab-
ulary naturally leads to long names with productive
use of general words, making the task difficult to be
solved by systems with naive Markov assumption of
label sequences, because such systems must perform

their prediction without seeing the entire string of
the entities.

Importance of the treatment of long names might
be implicitly indicated in the performance com-
parison of the participants of JNLPBA shared
task (Kim et al., 2004), where the best perform-
ing system (Zhou and Su, 2004) attains their scores
by extensive post-processing, which enabled the
system to make use of global information of the
entity labels. After the shared task, many re-
searchers tackled the task by using conditional ran-
dom fields (CRFs) (Lafferty et al., 2001), which
seemed to promise improvement over locally opti-
mized models like maximum entropy Markov mod-
els (MEMMs) (McCallum et al., 2000). However,
many of the CRF systems developed after the shared
task failed to reach the best performance achieved
by Zhou et al. One of the reasons may be the defi-
ciency of the dynamic programming-based systems,
that the global information of sequences cannot be
incorporated as features of the models. Another rea-
son may be that the computational complexity of
the models prevented the developers to invent ef-
fective features for the task. We had to wait until
Tsai et al. (2006), who combine pattern-based post-
processing with CRFs, for CRF-based systems to
achieve the same level of performance as Zhou et al.
As such, a key to further improvement of the perfor-
mance of bio-entity recognition has been to employ
global features, which are effective to capture the
features of long names appearing in the bio domain.

In this paper, we use reranking architecture,
which was successfully applied to the task of nat-
ural language parsing (Collins, 2000; Charniak and
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Johnson, 2005), to address the problem. Reranking
enables us to incorporate truly global features to the
model of named entity tagging, and we aim to real-
ize the state-of-the-art performance without depend-
ing on rule-based post-processes.

Use of global features in named-entity recogni-
tion systems is widely studied for sequence labeling
including general named-entity tasks like CoNLL
2003 shared task. Such systems may be classified
into two kinds, one of them uses a single classifier
which is optimized incorporating non-local features,
and the other consists of pipeline of more than one
classifiers. The former includes Relational Markov
Networks by Bunescu et al. (2004) and skip-edge
CRFs by Sutton et al. (2004). A major drawback
of this kind of systems may be heavy computational
cost of inference both for training and running the
systems, because non-local dependency forces such
models to use expensive approximate inference in-
stead of dynamic-programming-based exact infer-
ence. The latter, pipelined systems include a re-
cent study by Krishnan et al. (2006), as well as
our reranking system. Their method is a two stage
model of CRFs, where the second CRF uses the
global information of the output of the first CRF.
Though their method is effective in capturing var-
ious non-local dependencies of named entities like
consistency of labels, we may be allowed to claim
that reranking is likely to be more effective in bio-
entity tagging, where the treatment of long entity
names is also a problem.

This paper is organized as follows. First, we
briefly overview the JNLPBA shared task of bio-
entity recognition and its related work. Then we ex-
plain the components of our system, one of which is
an MEMM n-best tagger, and the other is a reranker
based on log-linear models. Then we show the ex-
periments to tune the performance of the system us-
ing the development set. Finally, we compare our
results with the existing systems, and conclude the
paper with the discussion for further improvement
of the system.

2 JNLPBA shared task and related work

This section overviews the task of biomedical named
entity recognition as presented in JNLPBA shared
task held at COLING 2004, and the systems that

were successfully applied to the task. The train-
ing data provided by the shared task consisted of
2000 abstracts of biomedical articles taken from the
GENIA corpus version 3 (Ohta et al., 2002), which
consists of the MEDLINE abstracts with publication
years from 1990 to 1999. The articles are annotated
with named-entity BIO tags as an example shown in
Table 1. As usual, ‘B’ and ‘I’ tags are for beginning
and internal words of named entities, and ‘O’ tags
are for general English words that are not named en-
tities. ‘B’ and ‘I’ tags are split into 5 sub-labels,
each of which are used to represent proteins, genes,
cell lines, DNAs, cell types, and RNAs. The test
set of the shared task consists of 404 MEDLINE ab-
stracts whose publication years range from 1978 to
2001. The difference of publication years between
the training and test sets reflects the organizer’s in-
tention to see the entity recognizers’ portability with
regard to the differences of the articles’ publication
years.

Kim et al. (Kim et al., 2004) compare the 8 sys-
tems participated in the shared task. The systems
use various classification models including CRFs,
hidden Markov models (HMMs), support vector ma-
chines (SVMs), and MEMMs, with various features
and external resources. Though it is impossible to
observe clear correlation between the performance
and classification models or resources used, an im-
portant characteristic of the best system by Zhou et
al. (2004) seems to be extensive use of rule-based
post processing they apply to the output of their clas-
sifier.

After the shared task, several researchers tack-
led the problem using the CRFs and their ex-
tensions. Okanohara et al. (2006) applied semi-
CRFs (Sarawagi and Cohen, 2004), which can treat
multiple words as corresponding to a single state.
Friedrich et al. (2006) used CRFs with features from
the external gazetteer. Current state-of-the-art for
the shared-task is achieved by Tsai et al. (2006),
whose improvement depends on careful design of
features including the normalization of numeric ex-
pressions, and use of post-processing by automati-
cally extracted patterns.
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IL-2 gene expression requires reactive oxygen production by 5-lipoxygenase .
B-DNA I-DNA O O O O O O B-protein O

Figure 1: Example sentence from the training data.

State name Possible next state

BOS B-* or O
B-protein I-protein, B-* or O
B-cell type I-cell type, B-* or O
B-DNA I-DNA, B-* or O
B-cell line I-cell line, B-* or O
B-RNA I-RNA, B-* or O
I-protein I-protein, B-* or O
I-cell type I-cell type, B-* or O
I-DNA I-DNA, B-* or O
I-cell line I-cell line, B-* or O
I-RNA I-RNA, B-* or O
O B-* or O

Table 1: State transition of MEMM.

3 N-best MEMM tagger

As our n-best tagger, we use a first order MEMM
model (McCallum et al., 2000). Though CRFs (Laf-
ferty et al., 2001) can be regarded as improved ver-
sion of MEMMs, we have chosen MEMMs because
MEMMs are usually much faster to train compared
to CRFs, which enables extensive feature selection.
Training a CRF tagger with features selected us-
ing an MEMM may result in yet another perfor-
mance boost, but in this paper we concentrate on the
MEMM as our n-best tagger, and consider CRFs as
one of our future extensions.

Table 1 shows the state transition table of our
MEMM model. Though existing studies suggest
that changing the tag set of the original corpus, such
as splitting of O tags, can contribute to the perfor-
mances of named entity recognizers (Peshkin and
Pfefer, 2003), our system uses the original tagset
of the training data, except that the ‘BOS’ label is
added to represent the state before the beginning of
sentences.

Probability of state transition to thei-th label of a
sentence is calculated by the following formula:

P (li|li−1, S) =
exp(

∑
j λjfj(li, li−1, S))

∑
l exp(

∑
j λjfj(l, li−1, S))

. (1)

Features used Forward tagging Backward tagging
unigrams, bi-
grams and pre-
vious labels

(62.43/71.77/66.78) (66.02/74.73/70.10)

unigrams and
bigrams (61.64/71.73/66.30) (65.38/74.87/69.80)

unigrams and
previous labels (62.17/71.67/66.58) (65.59/74.77/69.88)

unigrams (61.31/71.81/66.15) (65.61/75.25/70.10)

Table 2: (Recall/Precision/F-score) of forward and
backward tagging.

where li is the next BIO tag,li−1 is the previous
BIO tag, S is the target sentence, andfj and lj
are feature functions and parameters of a log-linear
model (Berger et al., 1996). As a first order MEMM,
the probability of a labelli is dependent on the pre-
vious labelli−1, and when we calculate the normal-
ization constant in the right hand side (i.e. the de-
nominator of the fraction), we limit the range ofl to
the possible successors of the previous label. This
probability is multiplied to obtain the probability of
a label sequence for a sentence:

P (l1...n|S) =
∏

i

P (li|li−1). (2)

The probability in Eq. 1. is estimated as a single
log-linear model, regardless to the types of the target
labels.

N-best tag sequences of input sentences are ob-
tained by well-known combination of the Viterbi al-
gorithm and A* algorithm. We implemented two
methods for thresholding the best sequences:N -
besttakes the sequences whose ranks are higher than
N , andθ-besttakes the sequences that have proba-
bility higher than that of the best sequences with a
factorθ, whereθ is a real value between 0 and 1. The
θ-best method is used in combination withN -best to
limit the maximum number of selected sequences.

3.1 Backward tagging

There remains one significant choice when we de-
velop an MEMM tagger, that is, the direction of tag-
ging. The results of the preliminary experiment with
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forward and backward MEMMs with word unigram
and bigram features are shown in Table 2. (The eval-
uation is done using the same training and develop-
ment set as used in Section 5.) As can be seen, the
backward tagging outperformed forward tagging by
a margin larger than 3 points, in all the cases.

One of the reasons of these striking differences
may be long names which appear in biomedical
texts. In order to recognize long entity names, for-
ward tagging is preferable if we have strong clues of
entities which appear around their left boundaries,
and backward tagging is preferable if clues appear
at right boundaries. A common example of this ef-
fect is a gene expression like ‘XXX YYY gene.’ The
right boundary of this expression is easy to detect
because of the word ‘gene.’ For a backward tagger,
the remaining decision is only ‘where to stop’ the
entity. But a forward tagger must decide not only
‘where to start,’ but also ‘whether to start’ the en-
tity, before the tagger encounter the word ‘gene.’ In
biomedical named-entity tagging, right boundaries
are usually easier to detect, and it may be the reason
of the superiority of the backward tagging.

We could have partially alleviated this effect by
employing head-word triggers as done in Zhou et
al. (2004), but we decided to use backward tag-
ging because the results of a number of preliminary
experiments, including the ones shown in Table 2
above, seemed to be showing that the backward tag-
ging is preferable in this task setting.

3.2 Feature set

In our system, features of log-linear models are gen-
erated by concatenating (or combining) the ‘atomic’
features, which belong to their corresponding atomic
feature classes. Feature selection is done by de-
ciding whether to include combination of feature
classes into the model. We ensure that features in the
same atomic feature class do not co-occur, so that a
single feature-class combination generates only one
feature for each event. The following is a list of
atomic feature classes implemented in our system.

Label features The target and previous labels. We
also include the coarse-grained label distinction to
distinguish five ‘I’ labels of each entity classes from
the other labels, expecting smoothing effect.

Word-based features Surface strings, base forms,
parts-of-speech (POSs), word shapes1, suffixes and
prefixes of words in input sentence. These features
are extracted from five words around the word to be
tagged, and also from the words around NP-chunk
boundaries as explained bellow.

Chunk-based features Features dependent on the
output of shallow parser. Word-based features of
the beginning and end of noun phrases, and the dis-
tances of the target word from the beginning and end
of noun phrases are used.

4 Reranker

Our reranker is based on a log-linear classifier.
Given n-best tag sequencesLi(1 ≤ i ≤ n), a log-
linear model is used to estimate the probability

P (Li|S) =
exp(

∑
j λjfj(Li, S))

∑
k exp(

∑
j λjfj(Lk, S))

. (3)

From the n-best sequences, reranker selects a se-
quence which maximize this probability.

The features used by the reranker are explained in
the following sections. Though most of the features
are binary-valued (i.e. the value offj in Eq. 3. is
exclusively 1 or 0), the logarithm of the probability
of the sequence output by the n-best tagger is also
used as a real-valued feature, to ensure the reranker’s
improvement over the n-best tagger.

4.1 Basic features

Basic features of the reranker are straightforward ex-
tension of the features used in the MEMM tagger.
The difference is that we do not have to care the lo-
cality of the features with regard to the labels.

Characteristics of words that are listed as word-
based features in the previous section is also used
for the reranker. Such features are chiefly extracted
from around the left and right boundaries of entities.
In our experiments, we used five words around the
leftmost and rightmost words of the entities. We also
use the entire string, affixes, word shape, concatena-
tion of POSs, and length of entities. Some of our

1The shape of a word is defined as a sequence of character
types contained in the word. Character types include uppercase
letters, lowercase letters, numerics, space characters, and the
other symbols.
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features depend on two adjacent entities. Such fea-
tures include the word-based features of the words
between the entities, and the verbs between the en-
tities. Most of the features are used in combination
with entity types.

4.2 N-best distribution features

N-best tags of sentences other than the target sen-
tence is available to the rerankers. This information
is sometimes useful for recognizing the names in
the target sentence. For example, proteins are often
written as ‘XXX protein’ where XXX is a protein
name, especially when they are first introduced in an
article, and thereafter referred to simply as ‘XXX.’
In such cases, the first appearance is easily identified
as proteins only by local features, but the subsequent
ones might not, and the information of the first ap-
pearance can be effectively used to identify the other
appearances.

Our system uses the distribution of the tags of
the 20 neighboring sentences of the target sentence
to help the tagging of the target sentence. Tag
distributions are obtained by marginalizing the n-
best tag sequences. Example of an effective feature
is a binary-valued feature which becomes 1 when
the candidate entity names in the target sentence is
contained in the marginal distribution of the neigh-
boring sentences with a probability which is above
some threshold.

We also use the information of overlapping
named-entity candidates which appear in the target
sentence. When there is an overlap between the en-
tities in the target sequence and any of the named-
entity candidates in the marginal distribution of the
target sentence, the corresponding features are used
to indicate the existence of the overlapping entity
and its entity type.

5 Experiments

We evaluated the performance of the system on the
data set provided by the COLING 2004 JNLPBA
shared-task. which consists of 2000 abstracts from
the MEDLINE articles. GENIA tagger2, a biomed-
ical text processing tool which automatically anno-

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/. The
tagger is trained on the GENIA corpus, so it is likely to show
very good performance on both training and development sets,
but not on the test set.

Features used (Recall/Precision/F-score)
full set (73.90/77.58/75.69)
w/o shallow parser (72.63/76.35/74.44)
w/o previous labels (72.06/75.38/73.68)

Table 3: Performance of MEMM tagger.

tates POS tags, shallow parses and named-entity tags
is used to preprocess the corpus, and POS and shal-
low parse information is used in our experiments.

We divided the data into 20 contiguous and
equally-sized sections, and used the first 18 sec-
tions for training, and the last 2 sections for testing
while development (henceforth the training and de-
velopment sets, respectively). The training data of
the reranker is created by the n-best tagger, and ev-
ery set of 17 sections from the training set is used
to train the n-best tagger for the remaining section
(The same technique is used by previous studies
to avoid the n-best tagger’s ‘unrealistically good’
performance on the training set (Collins, 2000)).
Among the n-best sequences output by the MEMM
tagger, the sequence with the highest F-score is used
as the ‘correct’ sequence for training the reranker.

The two log-linear models for the MEMM tagger
and reranker are estimated using a limited-memory
BFGS algorithm implemented in an open-source
software Amis3. In both models, Gaussian prior dis-
tributions are used to avoid overfitting (Chen and
Rosenfeld, 1999), and the standard deviations of the
Gaussian distributions are optimized to maximize
the performance on the development set. We also
used a thresholding technique which discards fea-
tures with low frequency. This is also optimized us-
ing the development set, and the best threshold was
4 for the MEMM tagger, and 50 for the reranker4.
For both of the MEMM tagger and reranker, com-
binations of feature classes are manually selected to
improve the accuracies on the development set. Our
final models include 49 and 148 feature class combi-
nations for the MEMM tagger and reranker, respec-
tively.

Table 3 shows the performance of the MEMM
tagger on the development set. As reported in many

3http://www-tsujii.is.s.u-tokyo.ac.jp/amis/.
4We treated feature occurrences both in positive and nega-

tive examples as one occurrence.
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Features used (Recall/Precision/F-score)
oracle (94.62/96.07/95.34)
full set (75.46/78.85/77.12)
w/o features that
depend on two
entities

(74.67/77.99/76.29)

w/o n-best distribu-
tion features

(74.99/78.38/76.65)

baseline (73.90/77.58/75.69)

Table 4: Performance of the reranker.

of the previous studies (Kim et al., 2004; Okanohara
et al., 2006; Tzong-Han Tsai et al., 2006), features of
shallow parsers had a large contribution to the per-
formance. The information of the previous labels
was also quite effective, which indicates that label
unigram models (i.e. 0th order Markov models, so
to speak) would have been insufficient for good per-
formance.

Then we developed the reranker, using the results
of 50-best taggers as training data. Table 4 shows the
performance of the reranker pipelined with the 50-
best MEMM tagger, where the ‘oracle’ row shows
the upper bound of reranker performance. Here, we
can observe that the reranker successfully improved
the performance by 1.43 points from the baseline
(i.e. the one-best of the MEMM tagger). It is also
shown that the global features that depend on two
adjacent entities, and the n-best distribution features
from the outside of the target sentences, are both
contributing to this performance improvement.

We also conducted experimental comparison of
two thresholding methods which are described in
Section 3. Since we can train and test the reranker
with MEMM taggers that use different thresholding
methods, we could make a table of the performance
of the reranker, changing the MEMM tagger used
for both training and evaluation5.

Tables 5 and 6 show the F-scores obtained by
various MEMM taggers, where the ‘oracle’ column
again shows the performance upper bound. (All
of the θ-best methods are combined with 200-best
thresholding.) Though we can roughly state that the
reranker can work better with n-best taggers which

5These results might not be a fair comparison, because the
feature selection and hyper-parameter tuning are done using a
reranker which is trained and tested with a 50-best tagger.

are more ambiguous than those used for their train-
ing, the differences are so slight to see clear ten-
dencies (For example, the columns for the reranker
trained using the 10-best MEMM tagger seems to be
a counter example against the statement).

We may also be able to say that theθ-best meth-
ods are generally performing slightly better, and it
could be explained by the fact that we have bet-
ter oracle performance with less ambiguity inθ-best
methods.

However, the scores in the column corresponding
to the 50-best training seems to be as high as any of
the scores of theθ-best methods, and the best score
is also achieved in that column. The reason may be
because our performance tuning is done exclusively
using the 50-best-trained reranker. Though we could
have achieved better performance by doing feature
selection and hyper-parameter tuning again usingθ-
best MEMMs, we use the reranker trained on 50-
best tags run with 70-best MEMM tagger as the best
performing system in the following.

5.1 Comparison with existing systems

Table 7 shows the performance of our n-best tag-
ger and reranker on the official test set, and the best
reported results on the same task. As naturally ex-
pected, our system outperformed the systems that
cannot accommodate truly global features (Note that
one point of F-score improvement is valuable in this
task, because inter-annotator agreement rate of hu-
man experts in bio-entity recognition is likely to be
about 80%. For example, Krauthammer et al. (2004)
report the inter-annotater agreement rate of 77.6%
for the three way bio-entity classification task.) and
the performance can be said to be at the same level as
the best systems. However, in spite of our effort, our
system could not outperform the best result achieved
by Tsai et al. What makes Tsai et al.’s system per-
form better than ours might be the careful treatment
of numeric expressions.

It is also notable that our MEMM tagger scored
71.10, which is comparable to the results of the sys-
tems that use CRFs. Considering the fact that the
tagger’s architecture is a simple first-order MEMM
which is far from state-of-the-art, and it uses only
POS taggers and shallow parsers as external re-
sources, we can say that simple machine-learning-
based method with carefully selected features could

214



Thresholding method for training
Thresholding
method for
testing

oracle avg. # of an-
swers

10-best 20-best 30-best 40-best 50-best 70-best 100-best

10-best 91.00 10 76.51 76.53 76.85 76.73 77.01 76.68 76.86
20-best 93.31 20 76.40 76.55 76.83 76.62 76.95 76.68 76.85
30-best 94.40 30 76.34 76.52 76.91 76.63 77.06 76.75 76.90
40-best 94.94 40 76.39 76.58 76.91 76.71 77.14 76.75 76.92
50-best 95.34 50 76.37 76.58 76.90 76.65 77.12 76.78 76.92
70-best 95.87 60 76.38 76.57 76.91 76.71 77.16 76.81 76.97
100-best 96.26 70 76.38 76.59 76.95 76.74 77.10 76.82 76.98

Table 5: Comparison of the F-scores of rerankers trained andevaluated with variousN -best taggers.

Thresholding method for training
Thresholding
method for
testing

oracle
avg. #
of an-
swers

0.05-best 0.02-best 0.008-best 0.004-best 0.002-best 0.0005-best 0.0002-best

0.05-best 91.65 10.7 76.70 76.80 76.93 76.64 77.02 76.78 76.52
0.02-best 93.45 17.7 76.79 76.91 77.07 76.79 77.09 76.89 76.70
0.008-best 94.81 27.7 76.79 77.01 77.05 76.80 77.14 76.88 76.73
0.004-best 95.55 37.5 76.79 76.98 76.97 76.74 77.12 76.86 76.71
0.002-best 96.09 49.3 76.79 76.98 76.96 76.73 77.13 76.85 76.72
0.0005-best 96.82 77.7 76.79 76.98 76.96 76.73 77.13 76.85 76.70
0.0002-best 97.04 99.2 76.83 77.01 76.96 76.71 77.13 76.88 76.70

Table 6: Comparison of the F-scores of rerankers trained andevaluated with variousθ-best taggers.

F-score Method

71.10 MEMMThis paper
72.65 reranking

Tsai et al. (2006) 72.98
CRF, post-
processing

Zhou et al. (2004) 72.55

HMM,
SVM, post-
processing,
gazetteer

Friedrich et al. (2006) 71.5
CRF,
gazetteer

Okanohara et al. (2006) 71.48 semi-CRF

Table 7: Performance comparison on the test set.

be sufficient practical solutions for this kind of tasks.

6 Conclusion

This paper showed that the named-entity recogni-
tion, which have usually been solved by dynamic-
programming-based sequence-labeling techniques
with local features, can have innegligible perfor-
mance improvement from reranking methods. Our
system showed clear improvement over many of the

machine-learning-based systems reported to date,
and also proved comparable to the existing state-of-
the-art systems that use rule-based post-processing.

Our future plans include further sophistication of
features, such as the use of external gazetteers which
is reported to improve the F-score by 1.0 and 2.7
points in (Zhou and Su, 2004) and (Friedrich et
al., 2006), respectively. We expect that reranking
architecture can readily accommodate dictionary-
based features, because we can apply elaborated
string-matching algorithms to the qualified candi-
date strings available at reranking phase.

We also plan to apply self-training of n-best tag-
ger which successfully boosted the performance
of one of the best existing English syntactic
parser (McClosky et al., 2006). Since the test data of
the shared-task consists of articles that represent the
different publication years, the effects of the publi-
cation years of the texts used for self-training would
be interesting to study.
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