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Abstract 

Morphological analysis as applied to Eng-
lish has generally involved the study of 
rules for inflections and derivations. Recent 
work has attempted to derive such rules 
from automatic analysis of corpora. Here 
we study similar issues, but in the context 
of the biological literature. We introduce a 
new approach which allows us to assign 
probabilities of the semantic relatedness of 
pairs of tokens that occur in text in conse-
quence of their relatedness as character 
strings. Our analysis is based on over 84 
million sentences that compose the MED-
LINE database and over 2.3 million token 
types that occur in MEDLINE and enables 
us to identify over 36 million token type 
pairs which have assigned probabilities of 
semantic relatedness of at least 0.7 based 
on their similarity as strings. 

1 Introduction 

Morphological analysis is an important element 
in natural language processing. Jurafsky and 
Martin (2000) define morphology as the study of 
the way words are built up from smaller meaning 
bearing units, called morphemes.  Robust tools 
for morphological analysis enable one to predict 
the root of a word and its syntactic class or part 
of speech in a sentence. A good deal of work has 
been done toward the automatic acquisition of 
rules, morphemes, and analyses of words from 
large corpora (Freitag, 2005; Jacquemin, 1997; 
Monson, 2004; Schone and Jurafsky, 2000; 

Wicentowski, 2004; Xu and Croft, 1998; 
Yarowsky and Wicentowski, 2000). While this 
work is important it is mostly concerned with 
inflectional and derivational rules that can be 
derived from the study of texts in a language. 
While our interest is related to this work, we are 
concerned with the multitude of tokens that ap-
pear in English texts on the subject of biology.  
We believe it is clear to anyone who has exam-
ined the literature on biology that there are many 
tokens that appear in textual material that are 
related to each other, but not in any standard way 
or by any simple rules that have general applica-
bility even in biology. It is our goal here to 
achieve some understanding of when two tokens 
can be said to be semantically related based on 
their similarity as strings of characters.  

Thus for us morphological relationship will be a 
bit more general in that we wish to infer the re-
latedness of two strings based on the fact that 
they have a certain substring of characters on 
which they match. But we do not require to say 
exactly on what part of the matching substring 
their semantic relationship depends. In other 
words we do not insist on the identification of 
the smaller meaning bearing units or mor-
phemes. Key to our approach is the ability to 
measure the contextual similarity between two 
token types as well as their similarity as strings. 
Neither kind of measurement is unique to our 
application. Contextual similarity has been stud-
ied and applied in morphology (Jacquemin, 
1997; Schone and Jurafsky, 2000; Xu and Croft, 
1998; Yarowsky and Wicentowski, 2000) and 
more generally (Means and others, 2004).  String 
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similarity has also received much attention 
(Adamson and Boreham, 1974; Alberga, 1967; 
Damashek, 1995; Findler and Leeuwen, 1979; 
Hall and Dowling, 1980; Wilbur and Kim, 2001; 
Willett, 1979; Zobel and Dart, 1995).  However, 
the way we use these two measurements is, to 
our knowledge, new. Our approach is based on a 
simple postulate: If two token types are similar 
as strings, but they are not semantically related 
because of their similarity, then their contextual 
similarity is no greater than would be expected 
for two randomly chosen token types. Based on 
this observation we carry out an analysis which 
allows us to assign a probability of relatedness to 
pairs of token types. This proves sufficient to 
generate a large repository of related token type 
pairs among which are the expected inflectional 
and derivationally related pairs and much more 
besides.  

2 Methodology 

We work with a set of 2,341,917 token types 
which are the unique token types that occurred 
throughout MEDLINE in the title and abstract re-
cord fields in November of 2006. These token 
types do not include a set of 313 token types that 
represent stop words and are removed from con-
sideration. Our analysis consists of several steps. 

2.1 Measuring Contextual Similarity 

In considering the context of a token in a MED-
LINE record we do not consider all the text of 
the record. In those cases when there are multi-
ple sentences in the record the text that does not 
occur in the same sentence as the token may be 
too distant to have any direct bearing on the in-
terpretation of the token and will in such cases 
add noise to our considerations. Thus we break 
the whole of MEDLINE into sentences and con-
sider the context of a token to be the additional 
tokens of the sentence in which it occurs. Like-
wise the context of a token type consists of all 
the additional token types that occur in all the 
sentences in which it occurs. We used our own 
software to identify sentence boundaries (unpub-
lished), but suspect that published and freely 
available methods could equally be used for this 
purpose. This produced 84,475,092 sentences 

over all of MEDLINE. While there is an advan-
tage in the specificity that comes from consider-
ing context at the sentence level, this approach 
also gives rise to a problem. It is not uncommon 
for two terms to be related semantically, but to 
never occur in the same sentence. This will hap-
pen, for example, if one term is a misspelling of 
the other or if the two terms are alternate names 
for the same object. Because of this we must es-
timate the context of each term without regard to 
the occurrence of the other term. Then the two 
estimates can be compared to compute a similar-
ity of context. This we accomplish using formu-
las of probability theory applied to our setting. 

Let T  denote the set of 2,341,917 token types 
we consider and let 1t  and 2t  be two token types 
we wish to compare. Then we define 

1 1

2 2

( ) ( | ) ( ) and 

( ) ( | ) ( ) 
c i T

c i T

p t p t i p i

p t p t i p i
∈

∈

=

=

∑
∑

. (1) 

Here we refer to 1( )cp t  and 2( )cp t  as contextual 
probabilities for 1t  and 2t , respectively. The ex-
pressions on the right sides in (1) are given the 
standard interpretations. Thus ( )p i  is the frac-
tion of tokens in MEDLINE that are equal to i  
and 1( | )p t i  is the fraction of sentences in 
MEDLINE that contain i  that also contain 1t . 
We make a similar computation for the pair of 
token types 

1 2 1 2

1 2

( ) ( | ) ( )

( | ) ( | ) ( )
c i T

i T

p t t p t t i p i

p t i p t i p i
∈

∈

∧ = ∧

=

∑
∑

. (2) 

Here we have made use of an additional assump-
tion, that given i , 1t  and 2t  are independent in 
their probability  of occurrence. While inde-
pendence is not true, this seems to be just the 
right assumption for our purposes. It allows our 
estimate of 1 2( )cp t t∧  to be nonzero even 
though 1t  and 2t  may never occur together in a 
sentence. In other words it allows our estimate to 
reflect what context would imply if there were 
no rule that says the same intended word will 
almost never occur twice in a single sentence, 
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etc. Our contextual similarity is then the mutual 
information based on contextual probabilities 

1 2
1 2

1 2

( )( , ) log
( ) ( )
c

c c

p t tconSim t t
p t p t

⎛ ⎞∧
= ⎜ ⎟

⎝ ⎠
 (3) 

There is one minor practical difficulty with this 
definition. There are many cases where 1 2( )cp t t∧  
is zero. In any such case we define 1 2( , )conSim t t  
to be -1000. 

2.2 Measuring Lexical Similarity 

Here we treat the two token types, 1t  and 2t  of 
the previous section, as two ASCII strings and 
ask how similar they are as strings. String simi-
larity has been studied from a number of view-
points (Adamson and Boreham, 1974; Alberga, 
1967; Damashek, 1995; Findler and Leeuwen, 
1979; Hall and Dowling, 1980; Wilbur and Kim, 
2001; Willett, 1979; Zobel and Dart, 1995). We 
avoided approaches based on edit distance or 
other measures designed for spell checking  be-
cause our problem requires the recognition of 
relationships more distant than simple misspell-
ings. Our method is based on letter ngrams as 
features to represent any string (Adamson and 
Boreham, 1974; Damashek, 1995; Wilbur and 
Kim, 2001; Willett, 1979). If " "t abcdefgh=  
represents a token type, then we define ( )F t  to 
be the feature set associated with t  and we take 

( )F t  to be composed of i) all the contiguous 
three character substrings  “abc”, “bcd”, “cde”, 
“def”, “efg”, “fgh”; ii) the specially marked first 
trigram " !"abc ; and iii) the specially marked 
first letter " #"a .  This is the form of ( )F t  for 
any t  at least three characters long. If t  consists 
of only two characters, say " "ab , we take i) 
" "ab ; ii) " !"ab ; and iii) is unchanged. If t  con-
sists of only a single character " "a , we likewise 
take i) “a”; ii) “a!”; and iii) is again unchanged. 
Here ii) and iii) are included to allow the empha-
sis of the beginning of strings as more important 
for their recognition than the remainder. We em-
phasize that ( )F t  is a set of features, not a “bag-
of-words”, and any duplication of features is ig-
nored. While this is a simplification, it does have 
the minor drawback that different strings, e.g., 

" "aaab  and " "aaaaab , can be represented by 
the same set of features.  

Given that each string is represented by a set of 
features, it remains to define how we compute 
the similarity between two such representations. 
Our basic assumption here is that the probability 

2 1( | )p t t , that the semantic implications of 1t  are 
also represented at some level in 2t , should be 
represented by the fraction of the features repre-
senting 1t  that also appear in 2t . Of course there 
is no reason that all features should be consid-
ered of equal value. Let F  denote the set of all 
features coming from all 2.34 million strings we 
are considering. We will make the assumption 
that there exists a set of weights ( )w f  defined 
over all of f F∈  and representing their seman-
tic importance. Then we have 

( ) ( )1 2 1
2 1 ( )

( | ) ( ) / ( )
f F t F t f F t

p t t w f w f
∈ ∩ ∈

=∑ ∑ . (4) 

Based on (4) we define the lexical similarity of 
two token types as 

1 2 2 1 1 2( , ) ( ( | ) ( | )) / 2lexSim t t p t t p t t= +  (5) 

In our initial application of lexSim we take as 
weights the so-called inverse document fre-
quency weights that are commonly used in in-
formation retrieval (Sparck Jones, 1972). If 

2,341,917, N =  the number of token types, and 
for any feature f , fn  represents the number of 
token types with the feature f , the inverse 
document frequency weight is 

( ) log
f

Nw f
n

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. (6) 

This weight is based on the observation that very 
frequent features tend not to be very important, but 
importance increases on the average as frequency 
decreases. 

2.3 Estimating Semantic Relatedness 

The first step is to compute the distribution of 
1 2( , )conSim t t  over a large random sample of 

pairs of token types 1t  and 2t .  For this purpose 
we computed 1 2( , )conSim t t  over a random 

203



sample of 302,515 pairs. This resulted in the 
value -1000, 180,845 times (60% of values).  
The remainder of the values, based on nonzero 

1 2( )cp t t∧  are distributed as shown in Figure 1. 

Let τ  denote the probability density for 
1 2( , )conSim t t  over random pairs 1t  and 2t . Let 

1 2( , )Sem t t  denote the predicate that asserts that 1t  
and 2t  are semantically related. Then our main 
assumption which underlies the method is  
Postulate. For any nonnegative real number r  

{ }1 2 1 2 1 2( , ) | ( , ) ( , )Q conSim t t lexSim t t r Sem t t= > ∧ ¬ (7) 
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Figure 1.  Distribution of  conSim values for the 
40% of randomly selected token type pairs 
which gave values above -1000, i.e., for which 

1 2( ) 0cp t t∧ > .  

has probability density function equal to τ . 
 
This postulate says that if you have two token 
types that have some level of similarity as strings 
( 1 2( , )lexSim t t r> ) but which are not semantically 
related, then 1 2( , )lexSim t t r>   is just an accident 
and it provides no information about 

1 2( , )conSim t t .  
 
The next step is to consider a pair of real numbers 

1 20 r r≤ <  and the set 
{ }1 2 1 2 1 1 2 2( , ) ( , ) | ( , )S r r t t r lexSim t t r= ≤ <  (8) 

they define.  We will refer to such a set as a lexSim 
slice. According to our postulate the subset of 

1 2( , )S r r  which are pairs of tokens without a se-
mantic relationship will produce conSim values 
obeying the τ  density. We compute the conSim 
values and assume that all of those pairs that pro-
duce a conSim value of -1000 represent pairs that 
are unrelated semantically. As an example, in one 
of our computations we computed a slice 

(0.7,0.725)S  and found the lexSim value -1000 
produced 931,042 times. In comparing this with 
the random sample which produced 180,845 values 
of -1000, we see that  
931,042 180,845 5.148=  (9) 

So we need to multiply the frequency distribution 
for the random sample (shown in Figure 1) by 
5.148 to represent the part of the slice 

(0.7,0.725)S  that represents pairs not semantically 
related. This situation is illustrated in Figure 2.  
Two observations are important here. First, the two 
curves match almost perfectly along their left 
edges for conSim values below zero. This suggests 
that sematically related pairs do not produce con-
Sim scores below about -1 and adds some credibil-
ity to our assumption that semantically related 
pairs do not produce conSim values of -1000.  The 
second observation is that while the higher graph 
in Figure 2 represents all pairs in the lexSim slice 
and the lower graph all pairs that are not semanti-
cally related, we do not know which pairs are not 
semantically related. We can only estimate the 
probability of any pair at a particular conSim score 
level being semantically related. If we let Ψ  rep-
resent the upper curve coming from the lexSim 
slice and Φ  the lower curve coming from the ran-
dom sample, then (10) represents the probability  

( ) ( )( )
( )

x xp x
x

Ψ −Φ
=

Ψ
 (10) 

that a token type pair with a conSim score of x  is a 
semantically related pair. Curve fitting or regres-
sion methods can be used to estimate p . Since it is 
reasonable to expect p  to be a nondecreasing 
function of its argument, we use isotonic regres-
sion to make our estimates. For a full analysis we 
set 

0.5 0.025ir i= + ×  (11) 
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and consider the set of lexSim slices { }20
1 0

( , )i i i
S r r + =

 
and determine the corresponding set of probability 
functions { }20

0i i
p

=
.  

2.4 Learned Weights  

Our initial step was to use the IDF weights defined 
in equation (6) and compute a database of all non-
identical token type pairs among the 2,341,917 
token types occurring in MEDLINE for which 

1 2( , ) 0.5lexSim t t ≥ .  We focus on the value 0.5 be-
cause the similarity measure lexSim has the  
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Figure 2. The distribution based on the random sample 
of pairs represents those pairs in the slice that are not 
semantically related, while the portion between the two 
curves represents the number of semantically related 
pairs. 

property that if one of 1t  or 2t  is an initial seg-
ment of the other (e.g., ‘glucuron’ is an initial 
segment of ‘glucuronidase’) then 

1 2( , ) 0.5lexSim t t ≥  will be satisfied regardless of 
the set of weights used. The resulting data in-
cluded the lexSim and the conSim scores and 
consisted of 141,164,755 pairs. We performed a 
complete slice analysis of this data and based on 
the resulting probability estimates 20,681,478 
pairs among the 141,164,755 total had a prob-
ability of being semantically related which was 
greater than or equal to 0.7.  While this seems 
like a very useful result, there is reason to be-
lieve the IDF weights used to compute lexSim 
are far from optimal. In an attempt to improve 
the weighting we divided the 141,164,755 pairs 

into 1C−  consisting of 68,912,915 pairs with a 
conSim score of -1000 and 1C  consisting of the 
remaining 72,251,839 pairs. Letting w  denote 
the vector of weights we defined a cost function 

( )
( )

1 2 1

1 2 1

1 2( , )

1 2( , )

( ) log ( , )

log 1 ( , )
t t C

t t C

w lexSim t t

lexSim t t
−

∈

∈

Λ = −

+ − −

∑
∑

 (12) 

and carried out a minimization of Λ  to obtain a 
set of learned weights which we will denote by 

0w . The minimization was done using the L-
BFGS algorithm (Nash and Nocedal, 1991). 
Since it is important to avoid negative weights 
we associate a potential ( )v f  with each ngram 
feature f  and set  

( ) exp( ( ))w f v f= . (13) 

The optimization is carried out using the poten-
tials.  

The optimization can be understood as an at-
tempt to make lexSim as close to zero as possible 
on the large set 1C−  where 1000conSim = −  and 
we have assumed there are no semantically re-
lated pairs, while at the same time making lex-
Sim large on the remainder. While this seems 
reasonable as a first step it is not conservative as 
many pairs in 1C  will not be semantically re-
lated.  Because of this we would expect that 
there are ngrams for which we have learned 
weights that are not really appropriate outside of 
the set of 141,164,755 pairs on which we 
trained. If there are such, presumably the most 
important cases would be those where we would 
score pairs with inappropriately high lexSim 
scores. Our approach to correct for this possibil-
ity is to add to the initial database of 
141,164,755 pairs all additional pairs which pro-
duced a 1 2( , ) 0.5lexSim t t ≥  based on the new 
weight set 0w . This augmented the data to a new 
set of 223,051,360 pairs with conSim scores. We 
then applied our learning scheme based on 
minimization of the function Λ  to learn a new 
set of weights 1w . There was one difference. 
Here and in all subsequent rounds we chose to 
define 1C−  as all those pairs with 
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1 2( , ) 0conSim t t ≤  and 1C  those pairs with 
1 2( , ) 0conSim t t > . We take this to be a conserva-

tive approach as one would expect semantically 
related pairs to have a similar context and satisfy 

1 2( , ) 0conSim t t > and  graphs such as Figure 2 
support this. In any case we view this as a con-
servative move and calculated to produce fewer 
false positives based on lexSim score recommen-
dations of semantic relatedness.  We actually go 
through repeated rounds of training and adding 
new pairs to the set of pairs. This process is con-
vergent as we reach a point where the weights 
learned on the set of pairs does not result in the 
addition of a significant amount of new material. 
This happened with weight set 4w  and a total 
accumulation of 440.4 million token type pairs.  

Table 1. Number of token pairs and the level of 
their predicted probability of semantic related-
ness found with three different weight sets.  

Weight 
Set 

Prob. Se-
mantically 
Related 

0.7≥  

Prob. Se-
mantically 
Related 

0.8≥  

Prob. Se-
mantically 
Related 

0.9≥  

4w  36,173,520 22,381,318 10,805,085 

Constant 34,667,988 20,282,976 8,607,863 

IDF 31,617,441 18,769,424 8,516,329 

3 Probability Predictions 

Based on the learned weight set 4w  we per-
formed a slice analysis of the 440 million token 
pairs on which the weights were learned and ob-
tained a set of 36,173,520 token pairs with pre-
dicted probabilities of being semantically related 
of 0.7 or greater. We performed the same slice 
analysis on this 440 million token pair set with 
the IDF weights and the set of constant weights 
all equal to 1. The results are given in Table 1. 
Here it is interesting to note that the constant 
weights perform substantially better than the IDF 
weights and come close to the performance of 
the 4w  weights.  While the 4w  predicted about 
1.5 million more relationships at the 0.7 prob-

ability level, it is also interesting to note that the 
difference between the 4w  and constant weights 
actually increases as one goes to higher probabil-
ity levels so that the learned weights allow us to  

Table 2. A table showing 30 out of a total of 379 
tokens predicted to be semantically related to 
‘lacz’ and the estimated probabilities. Ten en-
tries are from the beginning of the list, ten from 
the middle, and ten from the end. Breaks where 
data was omitted are marked with asterisks.  

Probability 
Semantic 
Relation Token 1  Token 2 
0.973028 lacz 'lacz 
0.975617 lacz 010cblacz 
0.963364 lacz 010cmvlacz 
0.935771 lacz 07lacz 
0.847727 lacz 110cmvlacz 
0.851617 lacz 1716lacz 
0.90737 lacz 1acz 
0.9774 lacz 1hsplacz 
0.762373 lacz 27lacz 
0.974001 lacz 2hsplacz 
*** *** *** 
0.95951 lacz laczalone 
0.95951 lacz laczalpha 
0.989079 lacz laczam 
0.920344 lacz laczam15 
0.903068 lacz laczamber 
0.911691 lacz laczatttn7 
0.975162 lacz laczbg 
0.953791 lacz laczbgi 
0.995333 lacz laczbla 
0.991714 lacz laczc141 
*** *** *** 
0.979416 lacz ul42lacz 
0.846753 lacz veroicp6lacz 
0.985656 lacz vglacz1 
0.987626 lacz vm5lacz 
0.856636 lacz vm5neolacz 
0.985475 lacz vtkgpedeltab8rlacz 
0.963028 lacz vttdeltab8rlacz 
0.993296 lacz wlacz 
0.990673 lacz xlacz 
0.946067 lacz zflacz 

predict over 2 million more relationships at the 
0.9 level of reliability. This is more than a 25% 
increase at this high reliability level and justifies 
the extra effort in learning the weights.  
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Table 3. A table showing 30 out of a total of 96 
tokens predicted to be semantically related to 
‘nociception’ and the estimated probabilities. 
Ten entries are from the beginning of the list, 
ten from the middle, and ten from the end. 
Breaks where data was omitted are marked 
with asterisks. 

Probability 
Semantic 
Relation Token 1  Token 2 
0.727885 nociception actinociception 
0.90132 nociception actinociceptive 
0.848615 nociception anticociception 
0.89437 nociception anticociceptive 
0.880249 nociception antincociceptive 
0.82569 nociception antinoceiception 
0.923254 nociception antinociceptic 
0.953812 nociception antinociceptin 
0.920291 nociception antinociceptio 
0.824706 nociception antinociceptions 
*** *** *** 
0.802133 nociception nociceptice 
0.985352 nociception nociceptin 
0.940022 nociception nociceptin's 
0.930218 nociception nociceptine 
0.944004 nociception nociceptinerg 
0.882768 nociception nociceptinergic 
0.975783 nociception nociceptinnh2 
0.921745 nociception nociceptins 
0.927747 nociception nociceptiometric 
0.976135 nociception nociceptions 
*** *** *** 
0.88983 nociception subnociceptive 
0.814733 nociception thermoantinociception 
0.939505 nociception thermonociception 
0.862587 nociception thermonociceptive 
0.810878 nociception thermonociceptor 
0.947374 nociception thermonociceptors 
0.81756 nociception tyr14nociceptin 
0.981115 nociception visceronociception 
0.957359 nociception visceronociceptive 
0.862587 nociception withnociceptin 

A sample of the learned relationships based on 
the 4w  weights is contained in  

Table 2 and Table 3. The symbol ‘lacz’ stands 
for a well known and much studied gene in the 
E. coli bacterium. Due to its many uses it has 
given rise to myriad strings representing differ-
ent aspects of molecules, systems, or method-
ologies derived from or related to it. The results 

are not typical of the inflectional or derivational 
methods generally found useful in studying the 
morphology of English. Some might represent 
misspellings, but this is not readily apparent by 
examining them.  On the other hand ‘nocicep-
tion’ is an English word found in a dictionary 
and meaning “a measurable physiological event 
of a type usually associated with pain and agony 
and suffering” (Wikepedia). The data in Table 3 
shows that ‘nociception’ is related to the 
expected inflectional and derivational forms, 
forms with affixes unique to biology, readily 
apparent misspellings, and foreign analogs. 

4 Discussion & Conclusions 

There are several possible uses for the type of 
data produced by our analysis. Words semanti-
cally related to a query term or terms typed by a 
search engine user can provide a useful query 
expansion in either an automatic mode or with 
the user selecting from a displayed list of options 
for query expansion. Many misspellings occur in 
the literature and are disambiguated in the token 
pairs produced by the analysis. They can be rec-
ognized as closely related low frequency-high 
frequency pairs. They may allow better curation 
of the literature on the one hand or improved 
spelling correction of user queries on the other. 
In the area of more typical language analysis, a 
large repository of semantically related pairs can 
contribute to semantic tagging of text and ulti-
mately to better performance on the semantic 
aspects of parsing. Also the material we have 
produced can serve as a rich source of morpho-
logical information. For example, inflectional 
and derivational transformations applicable to 
the technical language of biology are well repre-
sented in the data.   

There is the possibility of improving on the 
methods we have used, while still applying the 
general approach. Either a more sensitive con-
Sim or lexSim measure or both could lead to su-
perior results. While it is unclear to us how con-
Sim might be improved, it seems there is more 
potential with lexSim. lexSim treats features as 
basically independent contributors to the similar-
ity of token types and this is not ideal. For ex-
ample the feature ‘hiv’ usually refers to the hu-
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man immunodeficiency virus. However, if ‘ive’ 
is also a feature of the token we may well be 
dealing with the word ‘hive’ which has no rela-
tion to a human immunodeficiency virus. Thus a 
more complicated model of the lexical similarity 
of strings could result in improved recognition of 
semantically related strings.  
In future work we hope to investigate the applica-
tion of the approach we have developed to multi-
token terms. We also hope to investigate the possi-
bility of more sensitive lexSim measures for im-
proved performance. 
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