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Abstract

This paper reports on a shared task involving
the assignment of ICD-9-CM codes to radi-
ology reports. Two features distinguished
this task from previous shared tasks in the
biomedical domain. One is that it resulted in
the first freely distributable corpus of fully
anonymized clinical text. This resource is
permanently available and will (we hope) fa-
cilitate future research. The other key fea-
ture of the task is that it required catego-
rization with respect to a large and commer-
cially significant set of labels. The number
of participants was larger than in any pre-
vious biomedical challenge task. We de-
scribe the data production process and the
evaluation measures, and give a preliminary
analysis of the results. Many systems per-
formed at levels approaching the inter-coder
agreement, suggesting that human-like per-
formance on this task is within the reach of
currently available technologies.

1 Introduction

Clinical free text (primary data about patients, as op-
posed to journal articles) poses significant technical
challenges for natural language processing (NLP).
In addition, there are ethical and social demands
when working with such data, which is intended for
use by trained medical practitioners who appreciate
the constraints that patient confidentiality imposes.
State-of-the-art NLP systems handle carefully edited
text better than fragmentary notes, and clinical lan-

guage is known to exhibit unique sublanguage char-
acteristics (Hirschman and Sager, 1982; Friedman
et al., 2002; Stetson et al., 2002) (e.g. verbless
sentences, domain-specific punctuation semantics,
and unusual metonomies) that may limit the perfor-
mance of general NLP tools. More importantly, the
confidentiality requirements take time and effort to
address, so it is not surprising that much work in
the biomedical domain has focused on edited jour-
nal articles (and the genomics domain) rather than
clinical free text in medical records. The fact re-
mains, however, that the automation of healthcare
workflows can bring important benefits to treatment
(Hurtado et al., 2001) and reduce administrative bur-
den, and that free text is a critical component of
these workflows. There are economic motivations
for the task, as well. The cost of adding labels like
ICD-9-CM to clinical free text and the cost of re-
pairing associated errors is approximately $25 bil-
lion per year in the US (Lang, 2007). For these
(and many other) reasons, there have been consis-
tent attempts to overcome the obstacles which hin-
der the processing of clinical text (Uzuner et al.,
2006). This paper discusses one such attempt—
The 2007 Computational Medicine Challenge, here-
after referred to as “the Challenge”. There were two
main reasons for conducting the Challenge. One
is to facilitate advances in mining clinical free text;
shared tasks in other biomedical domains have been
shown to drive progress in the field in multiple ways
(see (Hirschman and Blaschke, 2006; Hersh et al.,
2005; Uzuner et al., 2006; Hersh et al., 2006) for a
comprehensive review of biomedical challenge tasks
and their contributions). The other is a ground-
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breaking distribution of useful, reusable, carefully
anonymized clinical data to the research commu-
nity, whose data use agreement is simply to cite the
source. The remaining sections of this paper de-
scribe how the data were prepared, the methods for
scoring, preliminary results [to be updated if sub-
mission is accepted—results are currently still under
analysis], and some lessons learned.

2 Corpus collection and coding process

Supervised methods for machine learning require
training data. Yet, due to confidentiality require-
ments, spotty electronic availability, and variance in
recording standards, the requisite clinical training
data are difficult to obtain. One goal of the chal-
lenge was to create a publicly available ”gold stan-
dard” that could serve as the seed for a larger, open-
source clinical corpus. For this we used the follow-
ing guiding principles: individual identity must be
expunged to meet United States HIPAA standards,
(U.S. Health, 2002) and approved for release by the
local Institutional Review Board (IRB); the sample
must represent problems that medical records coders
actually face; the sample must have enough data for
machine-learning-based systems to do well; and the
sample must include proportionate representations
of very low-frequency classes.
Data for the corpus were collected from the
Cincinnati Children’s Hospital Medical Center’s
(CCHMC) Department of Radiology. CCHMC’s
Institutional Review Board approved release of the
data. Sampling of all outpatient chest x-ray and re-
nal procedures for a one-year period was done us-
ing a bootstrap method (Walters, 2004). These data
are among those most commonly used, and are de-
signed to provide enough codes to cover a substan-
tial proportion of pediatric radiology activity. Ex-
punging patient identity to meet HIPAA standards
included three steps: disambiguation, anonymiza-
tion, and data scrubbing (Pestian et al., 2005).

Ambiguity and Anonymization. Not surprisingly,
some degree of disambiguation is needed to carry
out effective anonymization (Uzuner et al., 2006;
Sibanda and Uzuner, 2006). The reason is that clini-
cal text is dense with medical jargon, abbreviations,
and acronyms, many of which turn out to be ambigu-
ous between a sense that needs anonymization and a

different sense that does not. For example, in a clin-
ical setting,FT can be an abbreviation forfull-term,
fort (as inFort Bragg), feet, foot, field test, full-time
or family therapy. Fort Bragg, being a place name,
and a possible component of an address, could indi-
rectly lead to identification of the patient. Until such
occurrences are disambiguated, it is not possible to
be certain that other steps to anonymize data are ad-
equate. To resolve the relevant ambiguities found in
this free text, we relied on previous efforts that used
expert input to develop clinical disambiguation rules
(Pestian et al., 2004).

Anonymization. To assure patient privacy, clin-
ical text that is used for non-clinical reasons must
be anonymized. However, to be maximally useful
for machine-learning, this must be done in a par-
ticular way. Replacing personal names with some
unspecific value such as ”*” would lose potentially
useful information. Our goal is to replace the sensi-
tive fields with like values that obscure the identity
of the individual (Cho et al., 2002). We found that
the amount of sensitive information routinely found
in unstructured free text data is limited. In our case,
these data included patient and physician names and
sometimes dates or geographic locations, but little or
no other sensitive information turned up in the rele-
vant database fields. Using our internally developed
encryption broker software, we replaced all female
names with “Jane”, all male names with ”John”, and
all surnames with ”Johnson”. Dates were randomly
shifted.

Manual Inspection. Once the data were disam-
biguated and anonymized, they were manually re-
viewed for the presence of any Protected Health In-
formation (PHI). If a specific token was perceived to
potentially violate PHI regulations, the entire record
was deleted from the dataset. In some case, how-
ever, a general geographic area was changed and
not deleted. For example if the data read ”patient
lived near Mr. Roger’s neighborhood” it would be
deleted, because it may be traceable. On the other
hand, if the data read ”patient was from Cincinnati”
it may have been changed to read ”patient was from
the Covington” After this process, a corpus of 2,216
records was obtained (See Table 2 for details).

ICD-9-CM Assignment. A radiology report has
multiple components. Two parts in particular are
essential for the assignment of ICD-9-CM codes:
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clinical history—provided by an ordering physician
before a radiological procedure, andimpression—
reported by a radiologist after the procedure. In the
case of radiology reports, ICD-9-CM codes serve as
justification to have a certain procedure performed.
There are official guidelines for radiology ICD-9-
CM coding (Moisio, 2000). These guidelines note
that every disease code requires a minimum num-
ber of digits before reimbursement will occur; that
a definite diagnosis should always be coded when
possible; that an uncertain diagnosis should never
be coded; and that symptoms must never be coded
when a definite diagnosis is available. Particular
hospitals and insurance companies typically aug-
ment these principles with more specific internal
guidelines and practices for coding. For these rea-
sons of policy, and because of natural variation in
human judgment, it is not uncommon for multiple
annotators to assign different codes to the same text.
Understanding the sources of this variation is impor-
tant; so too is the need to create a definite gold stan-
dard for use in the challenge. To do so, data were
annotated by the coding staff of CCHMC and two
independent coding companies: COMPANY Y and
COMPANY Z.

Majority annotation. A single gold standard was
created from these three sets of annotations. There
was no reason to adopt anya priori preference for
one annotator over another, so the democratic princi-
ple of assigning a majority annotation was used. The
majority annotation consists of those codes assigned
to the document by two or more of the annotators.
There are, however, several possible problems with
this approach. For example, it could be that the ma-
jority annotation will be empty. This will be rare
(126 records out of 2,216 in our case), because it
only happens when the codes assigned by the three
annotators form disjoint sets. In most hospital sys-
tems, including our own, the coders are required to
indicate a primary code. By convention, the primary
code is listed as the record’s first code, and has an
especially strong impact on the billing process. For
simplicity’s sake, the majority annotation process ig-
nores the distinction between primary and secondary
codes. There is space for a better solution here, but
we have not seriously explored it. We have, how-
ever, conducted an analysis of agreement statistics
(not further discussed here) that suggests that the

overall effect of the majority method is to create a
coding that shares many statistical properties with
the originals, except that it reduces the effect of the
annotators’ individual idiosyncrasies. The majority
annotation is illustrated in Table 1.
Our evaluation strategy makes the simplistic as-
sumption that the majority annotation is a true gold
standard and a worthwhile target for emulation. This
is debatable, and is discussed below, but for the sake
of definiteness we simply stipulate that submissions
will be compared against the majority annotation,
and that the best possible performance is to exactly
replicate said majority annotation.

3 Evaluation

Micro- and macro-averaging.Although we rank
systems for purposes of determining the top three
performers on the basis of micro-averaged F1, we
report a variety of performance data, including the
micro-average, macro-average, and a cost-sensitive
measure of loss. Jackson and Moulinier comment
(for general text classification) that: “No agree-
ment has been reached...on whether one should pre-
fer micro- or macro-averages in reporting results.
Macro-averaging may be preferred if a classification
system is required to perform consistently across all
classes regardless of how densely populated these
are. On the other hand, micro-averaging may be
preferred if the density of a class reflects its impor-
tance in the end-user system” (Jackson and Moulin-
ier, 2002):160-161. For the present medical ap-
plication, we are more interested in the number of
patients whose cases are correctly documented and
billed than in ensuring good coverage over the full
range of diagnostic codes. We therefore emphasize
the micro-average.

A cost-sensitive accuracy measure.While F-
measure is well-established as a method for ranking,
there are reasons for wanting to augment this with
a cost-sensitive measure. An approach that allows
penalties for over-coding (a false positive) and
under-coding (a false negative) to be manipulated
has important implications. The penalty for under-
coding is simple—the hospital loses the amount of
revenue that it would have earned if it had assigned
the code. The regulations under which coding is
done enforce an automatic over-coding penalty of
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Table 1: Majority Annotation

Hospital Company Y Company Z Majority

Document 1 AB BC AB AB

Document 2 BC ABD CDE BCD

Document 3 EF EF E EF

Document 4 ABEF ACEF CDEF ACEF

three times what is earned from the erroneous code,
with the additional risk of possible prosecution
for fraud. This motivates a generalized version of
Jaccard’s similarity metric (Gower and Legendre,
1986), which was introduced by Boutell, Shen, Luo
and Brown (Boutell et al., 2003).
Suppose thatYx is the set of correct labels for a test
set andPx is the set of labels predicted by some
participating system. DefineFx = Px − Yx and
Mx = Yx − Px , i.e. Fx is the set of false positives,
andMx is the set of missed labels or false negatives.
The score is given by

score(Px) =
(

1− β|Mx|+ γ|Fx|
|Yx ∪ Px|

)α

(1)

As noted in (Boutell et al., 2003), if β = γ = 1 this
formula reduces to the simpler case of

score(Px) =
(

1− |Yx ∩ Px|
|Yx ∪ Px|

)α

(2)

The discussion in (Boutell et al., 2003) points out
that constraints are necessary onβ andγ to ensure
that the inner term of the expression is non-negative.
We do not understand the way that they formulate
these constraints, but note that non-negativity will be
ensured if0 ≤ β ≤ 1 and0 ≤ γ ≤ 1 . Since over-
coding is three times as bad as undercoding, we use
γ = 1.0 , β = 0.33 . Varying the value ofα would
affect the range of the scores, but does not alter the
rankings of individual systems. We therefore used
α = 1 . This measure does not represent the pos-
sibility of prosecution for fraud, because the costs
involved are incommensurate with the ones that are
represented. With these parameter settings, the cost-
sensitive measure produces rankings that differ con-
siderably from those produced by macro-averaged
balanced F-measure. For example, we shall see that
the system ranked third in the competition by macro-
averaged F-measure assigns a total of 1167 labels,

where the second-ranked assigns 1232, and the cost-
sensitive measure rewards this conservatism in as-
signing labels by reversing the ranking of the two
systems. In either case, the difference between the
systems is small (0.86% difference in F-measure,
0.53% difference in the cost-sensitive measure).

4 The Data

We selected for the challenge a subset of the com-
prehensive data set described above. The subset was
created by stratified sampling, such that it contains
20% of the documents in each category. Thus, the
proportion of categories in the sample is the same as
the proportion of categories in the full data set. We
included in the initial sample only those categories
to which 100 or more documents from the compre-
hensive data set were assigned. After the process
summarized in Table 2, the data were divided into
two partitions: a training set with 978 documents,
and a testing set with 976. Forty-five ICD-9-CM
labels (e.g 780.6) are observed in these data sets.
These labels form 94 distinct combinations (e.g. the
combination 780.6, 786.2). We required that any
combination have at least two exemplars in the data,
and we split each combination between the train-
ing and the test sets. So, there may be labels and
combinations of labels that occur only one time in
the training data, but participants can be sure that
no combination will occur in the test data that has
not previously occurred at least once in the train-
ing data. Our policy here has the unintended con-
sequence that any combination that appears exactly
once in the training data is highly likely to appear
exactly once in the test data. This gives unnecessary
information to the participants. In future challenges
we will drop the requirement for two occurrences in
the data, but ensure that single-occurrence combina-
tions are allocated to the training set rather than the
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test set. This maintains the guarantee that there will
be no unseen combinations in the test data. The full
data set may be downloaded from the official chal-
lenge web-site.

5 Results

Notice of the Challenge was distributed using elec-
tronic mailing lists supplied by the Association of
Computational Linguistics, IEEE Computer Intelli-
gence and Data Mining, and American Medical In-
formatics Association’s Natural Language Process-
ing special interest group. Interested participants
were asked to register at the official challenge web-
site. Registration began February 1, 2007 and ended
February 28, 2007. Approximately 150 individu-
als registered from 22 countries and six continents.
Upon completing registration, an automated e-mail
was sent with the location of the training data. On
March 1, 2007 participants received notice of the
location of the testing data. Participants were en-
couraged to use the data for other purposes as long
as it was non-commercial and the appropriate cita-
tion was made. There were no other data use re-
strictions. Participants had until March 18, 2007
to submit their results and an explanation of their
model. Approximately 33% (50) of the partici-
pants submitted results. During the course of the
Challenge participants asked a range of questions.
These were posted to the official challenge web-site
- www.computationalmedicine.org/challenge.
The figure below is a scatterplot relating micro-
averaged F1 to the cost-sensitive measure described
above. Each point represents a system. The top-
performing systems achieved 0.8908, the minimum
was 0.1541, and the mean was 0.7670, with a SD
of 0.1340. There are 21 systems with a micro-
averaged F1 between 0.81 and 0.90. Another 14
haveF1 > 0.70 . It is noticeable that the systems
are not ranked identically by the cost-sensitive and
the micro-averaged measure, but the differences are
small in each case.
A preliminary screening using a two-factor ANOVA
with system identity and diagnostic code as predic-
tive factors for balanced F-measure revealed a sig-
nificant main effect of both system and code. Pair-
wise t-tests using Holm’s correction for multiple
comparisons revealed no statistically significant dif-

Figure 1: Scatter plot of evaluation measures

ferences between the systems performing at F=0.70
or higher. Differences between the top system and a
system with a microaveraged F-measure of 0.66 do
come out significant on this measure.

We have also calculated (Table 3) the agreement
figures for the three individual annotations that
went into the majority gold standard. We see
that CCHMC outranks COMPANY Y on the cost-
sensitive measure, but the reverse is true for micro-
and macro-averaged F1, with the agreement be-
tween the hospital and the gold standard being espe-
cially low for the macro-averaged version. To under-
stand these figures, it is necessary to recall that the
gold standard is a majority annotation that is formed
from the the three component annotations. It appears
that for rare codes, which have a disproportionate
effect on the macro-averaged F, the majority anno-
tation is dominated by cases where company Y and
company Z assign the same code, one that CCHMC
did not assign.

The agreement figures are comparable to those of
the best automatic systems. If submitted to the
competition, the components of the majority anno-
tation would not have outranked the best systems,
even though the components contributed to the ma-
jority opinion. It is tempting to conclude that the
automated systems are close to human-level perfor-
mance. Recall, however, that while the hospital and
the companies did not have the luxury of exposure
to the majority annotation, the systems did have that
access, which allowed them to explicitly model the
properties of that majority annotation. A more mod-
erate conclusion is that the hospital and the compa-
nies might be able to improve (or at least adjust)
their annotation practices by studying the majority
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Table 2: Characteristics of the data set through the development process.

Step Removed Total documents

One-year collection of documents 20,275

20 percent sample of one-year collection 4,055

Manual inspection for anonymization problems 1,839 2,216

Removal of records with no majority code 126 2,090

Removal of records with a code occurring only once 136 1,954

Table 3: Comparison of human annotators against majority.

Annotator Cost-sensitive Micro-averaged F1 Macro-averaged F1

HOSPITAL 0.9056 0.8264 0.6124

COMPANY Y 0.8997 0.8963 0.8973

COMPANY Z 0.8621 0.8454 0.8829

annotation and adapting as appropriate.

6 Discussion

Compared to other recent text classification shared
tasks in the biomedical domain (Uzuner et al., 2006;
Hersh et al., 2004; Hersh et al., 2005), this task re-
quired categorization with respect to a set of labels
more than an order of magnitude larger than previ-
ous evaluations. This increase in the size of the set
of labels is an important step forward for the field–
systems that perform well on smaller sets of cate-
gories do not necessarily perform well with larger
sets of categories (Jackson and Moulinier, 2002), so
the data set will allow for more thorough text cat-
egorization system evaluations than have been pos-
sible in the past. Another important contribution of
the work reported here may be the distribution of
the data—the first fully distributable, freely usable
data set of clinical text. The high number of partici-
pants and final submissions was a pleasant surprise;
we attribute this, among other things, to the fact that
this was an applied challenge, that real data were
supplied, and that participants were free to use these
data in other venues.
Participants utilized a diverse range of approaches.
These system descriptions are based on brief com-
ments entered into the submission box, and are ob-
viously subject to revision. The three highest scor-
ers all mentioned “negation,” all seemed to be us-
ing the structure of UMLS in a serious way. The

better systems frequently mentioned “hypernyms”
or “synonyms,” and were apparently doing signifi-
cant amounts of symbolic processing. Two of the
top three had machine-learning components, while
one of the top three used purely symbolic methods.
The most common approach seems to be thought-
ful and medically-informed feature engineering fol-
lowed by some variety of machine learning. The
top-performing system used C4.5, suggesting that
use of the latest algorithms is not a pre-requisite for
success. SVMs and related large-margin approaches
to machine learning were strongly represented, but
did not seem to be reliably predictive of high rank-
ing.

6.1 Observations on running the task and the
evaluation

The most frequently viewed question of the FAQ
was related to a script to calculate the evaluation
score. This was supplied both as a downloadable
script and as an interactive web-page with a form for
submission. In retrospect, we realize that we had not
fully thought through what would happen as people
began to use this script. If we run a similar contest
in the future, we will be better prepared for the con-
fusion that this can cause.

A novel aspect of this task was that although we only
scored a single run on the test data, we allowed par-
ticipants to submit their “final” run up to 10 times,
and to see their score each time. Note that although
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participants could see how their score varied on suc-
cessive submissions, they didnot have access to the
actual test data or to the correct answers, and so there
were no opportunities for special-purpose hacks to
handle special cases in the test data. The average
participant tried 5.27 (SD 3.17) submissions against
the test data. About halfway through the submis-
sion period we began to realize that in a competi-
tive situation, there are risks in providing the type
of feedback given on the submission form. In fu-
ture challenges, we will be judicious in selecting the
number of attempts allowed and the provision of any
type of feedback. As far as we can tell our general
assumption that the scientific integrity of the partic-
ipants was greater than the need to game the system
is true. It is good policy for those administering the
contest, however, to keep temptations to a minimum.
Our current preference would be to provide only the
web-page interface with no more than five attempts,
and to tell participants only whether their submis-
sion had been accepted, and if so, how many items
and how many codes were recognized.

We provided an XML schema as a precise and pub-
licly visible description of the submission format.
Although we should not have been, we were sur-
prised when changes to the schema were required
in order to accommodate small but unexpected vari-
ations in participant submissions. An even simpler
submission format would have been good. The ad-
vantage of the approach that we took was that XML
validation gave us a degree of sanity-checking at lit-
tle cost. The disadvantage was that some of the nec-
essary sanity-checking went beyond what we could
see how to do in a schema.

The fact that numerous participants generated sys-
tems with high performance indicates that the task
was reasonable, and that sufficient information
about the coding task was either provided by us or
inferred by the participants to allow them to do their
work. Since this is a first attempt, it is not yet clear
what the upper limits on performance are for this
task, but preliminary indications are that automated
systems are or will soon be viable as a component of
deployed systems for this kind of application.
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