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Abstract token is assigned a tag to indicate whether it is at the
beginning (B), inside (), or outside (O) of an en-
tity, is not directly applicable when tokens belong to

Although recent named entityNE) annotation ef- more than one entity. Here we explore methods of
forts involve the markup of nested entities, there ha@ducing the nestedlER problem to one or moreio
been limited focus on recognising such nested strugroblems so that existingeRr tools can be used.
tures. This paper introduces and compares three This paper is organised as follows. In Section 2,
techniques for modelling and recognising nestethe problem of nested entities is introduced and mo-
entities by means of a conventional sequence tagvated with examples from GENIA and owPPI
ger. The methods are tested and evaluated on twenriched protein-protein interaction) data. Related
biomedical data sets that contain entity nesting. Allork is reviewed in Section 3. The proposed tech-
methods yield an improvement over the baseline tagiiques enablingieR for nestedNEs are explained in
ger that is only trained on flat annotation. Section 4. Section 5 details the experimental setup,
including descriptive statistics of the corpora and
specifics of the classifier. The results of comparing
Traditionally, named entity recognitiorNER) has different tagging methods are analysed in Section 6,
focussed on entities which areontinuous non- With a discussion and conclusion in Section 7.
nestedand non-overlapping In other words, each ..

token in the text belongs to at most one entity, ang Nested Entities

NES consist of a continuous sequence of tokenThe majority of previous work oNER is conducted
However, in some situations, it may make sense tgsing data sets annotated either with continuous,
relax these restrictions, for example by allowing ennon-nested and non-overlappings or an annota-
tities to benestedinside other entities, or allowing tion scheme reduced to a flat annotation of a similar
discontinuousentities. GENIA (Ohta et al., 2002) kind in order to simplify the recognition task. How-
and Biolnfer (Pyysalo et al., 2007) are examples odver, annotated corpora often contain entities that are
recently producedie-annotated biomedical corporanested or discontinuous. For example, the GENIA
where entities nest. Corpora in other domains, fotorpus contains nested entities such as:

example the ACEdata, also contain nested entities.

This paper compares techniques for recognising <RNA><DNA>CIITA </ DNA> mRNA</ RNA>
nested entities in biomedical text. The difficulty ofwhere the string “CIITA” denotes a DNA and the en-
this task is that the standard method for convertire string “CIITA mRNA’ refers to an RNA. Such
ing NER to a sequence tagging problem wiho-  nesting complicates the task of traditionatR sys-
encoding (Ramshaw and Marcus, 1995), where eagéms, which generally rely on data represented with
" Ihttp: // ww ni st. gov/ speech/ t est s/ ace/ the BIo encoding or other flat annotation variations
i ndex. ht m thereof. The majority ofNER studies on corpora
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GENIA EPPI

Count | Nesting Count | Nesting

3,614 | (othername ( proteint )t ) 1,698 | (fusion ( proteint )t ( proteint ))
907 | (DNA ( proteint )t ) 1,269 | ( drug/compound ( proteih ))
856 | ( protein ( proteint )t ) 455 | (fusion (fragment )t ( proteint ))
661 | ( proteint ( proteint )) 412 | ( protein ( proteirt )t )
546 | (othername (DNAt )t ) 361 | (complex ( proteirt )t ( proteint ))
541 | (othernamet (othernamet )) 298 | (fusion ( proteint )t (fragmentt ))
470 | (cell.typet (cell typet )) 246 | (fragmentt (fragmentt ))
351 | (DNAt (DNALt)) 241 | (celllinet (celllinet ))
326 | (othername (virug )t ) 207 | (fragment ( proteirt ))
262 | (othername (lipidt )t ) 201 | (fusion ( proteint )t ( mutantt ))

Table 1: 10 most frequent types of nesting in the GENIA corpod the combinedRAIN and DE-
VTESTsections of th&pridata (see Section 5.1), whereepresents the text.

containing nested structures focus on recognisinpe EPPI corpus, fusions and complexes often con-
the outermost (non-embedded) entities (e.g. Kim é&in nested proteins, e.g. the complex “CBP/p300”,
al. 2004) , as they contain the most informationwhere “CBP” and “p300” are marked as proteins.
including that of embedded entities (Zhang et al., 2. Entities with more than one entity typel-
2004). This enables a simplification of the recogthough they occur in both data sets, they are very
nition task to a sequential analysis problem. rare in the GENIA corpus. For example, the string
Our aim is to recognise all levels ofe nesting “p21ras” is annotated both as DNA and protein. In
occurring in two biomedical corpora: the GENIAthe EPPI data, proteins can also be annotated as
corpus (Version 3.02) and tlePpPicorpus (see Sec- drug/compound, where it can be clearly established
tion 5.1). The latter data set was collected and anhat the protein is used as a drug to affect the func-
notated as part of thexm project. Its annotation tion of an organism, cell, or biological process.
contains 9 different biomedical entities. While the 3. Coordinated entitiesCoordinatedNEs account
GENIA corpus contains nested entities up to a levebr approximately 2% of alNEs in the GENIA and
of four layers of embedding, the nested entities irkppi data. In the original corpora they are anno-
the EPPIcorpus only have three layers. Table 1 listsated differently, but for this work they are all con-
the ten most frequent types of entity nesting occuiverted to a common form&t.The outermost anno-
ring in both corpora. In the remainder of the papenation of coordinated structures and any continuous
we differentiate between: entity mark-up within them is retained. For exam-
ple, in “human interleukin-2 and -4" both the con-

embedded NEs: contained In otheREs tinuous embedded entity “human interleukin-2” and

non-embedded NEs: not contained in othemes the entire string are marked as proteins. The markup
containing NES. containing otheNES for discontinuous embedded entities, like “human
non-containing NES. not containing othexEs interleukin-4” in the previous example, is not re-

tained, as they could be derived in a post-processing
The GENIA corpus is made up of a larger perstep once nested entities are recognised.
centage of both embedded entity (18.61%) and con-
taining entity (16.95%) mentions than teerpidata 3 Related Work

(12.02% and 8.27%, respectively). In both corpora, _ _ "
nesting can occur in three different ways: In previous work addressing nested entities, Shen et

1. Entities containing one or more shorter embed@!- (2003), Zhang et al. (2004), Zhou et al. (2004),
ded entities. Such nesting is very frequent in both£Nou (2006), and Gu (2006) considered the GENIA

data sets. For example, the DNA “IL-2_promoter” in 2Both corpora are represented in XML with standoff anno-
the GENIA corpus contains the protein “IL-2". In tation, potentionally allowing overlappinges.
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corpus, where nested entities are relatively frequenbutermost entities and, conversely, using the inner
All these studies ignore embedded entities occufabelling results in highest scores for recognising in-
ring in coordinated structures and only retain theiner entities. The best exact matEh-scores of 73.0
outermost annotation. Shen et al. (2003), Zhang and 47.5 for proteins and DNA, respectively, are ob-
al. (2004), and Zhou et al. (2004) all report on a ruletained when training on data with inner labelling and
based approach to dealing with nestegs in the evaluating on the inner entities.

GENIA corpus (Version 3.0) in combination with a McDonald et al. (2005) propose structured multil-
Hidden Markov Model (HMM) that first recognises abel classification as opposed to sequential labelling
innermostNEsS. They use four basic hand-craftedfor dealing with nested, discontinuous, and overlap-
patterns and a combination thereof to generate negting NEs. This approach uses a novel text segment
ing rules from the training data and thereby deriveepresentation in preference to tieeo-encoding.
NES containing the innermostes. The experimen- Their corpus contains MEDLINE abstracts on the
tal setup of these studies differs slightly. While Sheinhibition of the enzyme CYP450 (Kulick et al.,
et al. (2003) and Zhang et al. (2004) report result8004), specifically those abstracts that contain at
testing on 4% of the abstracts in the GENIA corpudgast one overlapping and one discontinuous anno-
Zhou et al. (2004) report 10-fold cross-validationtation. While this data does not contain nestes,
scores. Zhou (2006) applies the same rule-baselikcontinuous and overlappinges make up 6% of
method for dealing with nested entities to the outall NEs. The classifier performs competitively with
put of a mutual information independence mode$sequential tagging models on continuous and non-
(MIIM) combined with a support vector machine overlapping entities fokErR and noun phrase chunk-
(SVM) plus sigmoid. His results are based on 5-foldng. On discontinuous and overlappimgs in the
cross-validation on the GENIA corpus (Version 3.0)biomedical data alone, its best performance is 56.25
In each of the studies, the rule-based approach 1. As the corpus does not contain nestegs, it
nested entities results in an improvement of betweenould be of interest to investigate the algorithm’s
3.0 and 3.5 points irF'1 over the baseline model. performance on the GENIA corpus.

However, as explicitly stated by Shen et al. (2003)

and Zhang et al. (2004), this evaluation is limited t¢* M odelling Techniques

non-embedded (i.e. top-level and non-nested) en

ties. The highest overall'1-score reported for all voted to work on non-nesteslER using thesIo-

entities in the GENIA corpus is 71.2 (Zhou, 2006)’encoding approach, it would be useful if this work

which again only appears to reflect the performanceé . : )
on non-embedded entities. could be easily applied to neste@Rr. In this paper,

three different ways of addressing nestesR will
Zhang et al. (2004) also compare the rule-bas compared:layering cascading andjoined la-

method with HMM-based cascaded recognition thgfg| 154ing All techniques aim to reduce the nested
extends iteratively from the shortest to the Ionges,{]ER problem to one or moreio problems, so that

entities. Their basic HMM model is combined WithexistingNERtooIs can be used. Table 2 sh,ows N~
HMM models trained on transformed cascaded aréimple representation for each modelling technique

notations. During training, embedded entity termsy w0 ¢5lowing two non-nested and nested entity
are replaced by their entity type as a way of unnests L otations found in a GENIA abstract:
ing the data. During testing, subsequent iterations

rely on the tagging of the first recognition pass andMul ti cel | >mice</ nul ti cell>...
are repeated until no more entities are recognisedfot her name><RNA><pr ot ei n>tumor
However, this method only results in an improvenecrosis factor-alpkd pr ot ei n>

ment of 1.2 points irf'1 over their basic classifier. (<Pr ot ei n>TNF-alpha/ pr ot ei n>)

Gu (2006) reports results on recognising nesteffi€ssenger RNA/ RNA> levels</ ot her _nanme>
entities in the GENIA corpus (Version 3.02) when In layering, each level of nesting is modelled as a
training an SVM-light binary classifier to recogniseseparateio problem. The output of models trained
either proteins or DNA. Training with the outermoston individual layers is combined subsequent to tag-
labelling yields better performance on recognisingying by taking the union. Layers can be created

th large amounts of time and effort have been de-
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Token Inside-out layering Outside-in layering

Model Layer1 Layer 2 Layer 3 Layer 3 Layer2 | Layerl

mice B-multi_cell (@) (@) B-multi_cell (@) (@)

tumor B-protein B-RNA B-othername || B-othername | B-RNA | B-protein

necrosis I-protein I-RNA I-othername || I-othername | I-RNA | I-protein

factor-alpha I-protein I-RNA I-othername || I-othername | I-RNA | I-protein

( (0] I-RNA I-othername || I-othername | I-RNA (0]

TNF-alpha B-protein I-RNA I-othername || |-othername | I-RNA | B-protein

) (0] I-RNA I-othername || I-othername | I-RNA (0]

messenger O I-RNA I-othername || l-othername | I-RNA (0]

RNA (0] I-RNA I-othername || I-othername | I-RNA (0]

levels (@) o] I-othername || |-othername (@) o]
Cascading Joined label tagging

Model All entity types other RNA Joined labels

mice B-multi_cell (@) @) B-multi_cell+O+0O

tumor B-protein B-othername B-RNA B-protein+B-RNA+B-othemame

necrosis I-protein I-other.name I-RNA I-protein+I-RNA+I-othetname

factor-alpha I-protein I-other_-name I-RNA I-protein+I-RNA+I-othetname

( (0] I-other_-name I-RNA O+I-RNA+I-othername

TNF-alpha B-protein I-other.name I-RNA B-protein+|-RNA+I-othername

) (0] I-other_-name I-RNA O+I-RNA+I-othername

messenger O I-other.name I-RNA O+I-RNA+I-othername

RNA (0] I-other_-name I-RNA O+I-RNA+I-othername

levels (@) I-other.name o] O+0+l-othername

Table 2: Example representation of nested entities foouarimodelling techniques.

inside-outor outside-in For inside-out layering, the quent categories. It is possible, however, to create a
first layer is made up of all non-containing entitiescascaded tagger combining one model trained on all
the second layer is composed of all those entitiesntity types with models trained on entity types that
which only contain one layer of nesting, etc. Confrequently contain other entities.
versely, outside-in layering means that the first layer Finally, joined label tagging entails creating one
contains all non-embedded entities, the second lay&gging problem for all entities by concatenating the
contains all entities which are only contained withireio tags of all levels of nesting. A conventional
one outer entity, etc. Both directions of layering camamed entity recogniser is then trained on the data
be modelled using a conventiongi tagger. containing the joined labels. Once the classifier has
. assigned the joined labels during tagging, they are
Cascading reduces the nesteR task 10 SeV- yacoded into their originasio format for each in-
eral IO problems by grouping one or more entity i iqa| entity type. Compared to the other tech-
types and training a separate model for each groupjq,es  joined label tagging involves a much larger
Again, the output from individual models is cOm-y,q set " which can increase dramatically with the
bined during tagging. Subsequent models in the cagymper of entity types occurring in a data set. This

cade may have access to the guesses of Previolg, yaqit in data sparsity which may have a detri-
ones by means of auessfeature. The cascaded mental effect on performance

method is unable to recognise entities containing en-

tities of the same type, which may be a drawback fof  Experimental Setup

some data sets. Cascading also raises the issue of

how to group entity types. This is dependent on tha-l Corpora

types of entities that nest within a given data set anGENIA (V3.02), a large publicly available biomedi-
would potentially require large amounts of experi-cal corpus annotated with biomediogts, is widely
mentation to determine the best combination. Moredsed in the text mining community (Cohen et al.,
over, training a model for each entity type lengtheng005). This data set consists of 2,000 MEDLINE ab-
training time considerably, and may degrade perforstracts in the domain of molecular biology@.5m
mance due to the dominance of theags for infre- tokens). The annotations used for the experiments
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reported here are based on the GENIA ontologyClark (2003) (hereafter referred to as C&C) for
published in Ohta et al. (2002). It contains the folthe CoNLL-2003 shared task (Tjong Kim Sang and
lowing classes: amino acid monomer, atom, bodipe Meulder, 2003), trained on the MedPost data
part, carbohydrate, cell component, cell line, cel{Smith et al., 2004). Information on lemmatisa-
type, DNA, inorganic, lipid, mono-cell, multi-cell, tion, as well as abbreviations and their long forms, is
nucleotide, other name, other artificial source, otheadded using thenorphalemmatiser (Minnen et al.,
organic compound, peptide, polynucleotide, proteir2000) and thdxtractAbbrevscript of Schwartz and
RNA, tissue, and virus. In this work, protein, DNA Hearst (2003), respectively. A lookup step uses on-
and RNA sub-types are collapsed to their super-typéological information to identify scientific and com-
as done in previous studies (e.g. Zhou 2006). To thmon English names of species. Finally, a rule-based
best of our knowledge, no inter-annotator agreemehunker marks up noun and verb groups and their
(1aA) figures on thene-annotation in the GENIA heads (Grover and Tobin, 2006).
corpus are reported in the literature.

The EPPI corpus consists of 217 full-text papers®-3 Named Entity Tagging
selected from PubMed and PubMedCentral as corfhe C&C tagger, referred to earlier, forms the basis
taining protein-protein interactions (PPIs). The paof the NErR component of thexMm natural language
pers were either retrieved kML or HTML, depend- processing NLP) pipeline designed to detect entity
ing on availability, and converted to an internahL  relations and normalisations (Grover et al., 2007).
format. Domain experts annotated all documentshe tagger, in common with manyL approaches
for NEs and PPIs, as well as extra (enriched) into NER, reduces the entity recognition problem to
formation associated with PPIs and normalisationg sequence tagging problem by using the en-
of entities to publicly available ontologies. The encoding of entities. As well as performing well on
tity annotations are the focus of the current workthe CoNLL-2003 task, Maximum Entropy Markov
The types of entities annotated in this data set arglodels have also been successful on biomedical
complex, cell line, drug/compound, experimentaer tasks (Finkel et al., 2005). As the vanilla C&C
method, fusion, fragment, modification, mutant, angagger (Curran and Clark, 2003) is optimised for
protein. Out of the 217 papers, 125 were singlperformance on newswire text, various modifica-
annotated, 65 were doubly annotated, and 27 wefns were applied to improve its performance for
triply annotated. TheaA, measured by taking the pijomedicalNER. Table 3 lists the extra features
F1 score of one annotator with respect to anothespecifically designed for biomedical text. The C&C
when the same paper is annotated by two differermggger was also extended using several gazetteers,
annotators, ranges from 60.40 for the entity typencluding a protein, complex, experimental method
mutant to 91.59 for protein, with an overall micro-and modification gazetteer, targeted at recognising
averaged-'1-score of 84.87. Theppicorpus £2m  entities occurring in theeppi data. Further post-
tokens) is divided into three sectiomRAIN (66%), processing specific to tiePpidata involves correct-
DEVTEST (17%), andresT (17%), withTEST only  ing boundaries of some hyphenated proteins and fil-
to be used for final evaluation, and not to be contering out entities ending in punctuation.
sulted by the researchers in the development and fea-a|| experiments with the C&C tagger involve 5-
ture optimisation phrase. The experiments describ&g|d cross-validation on all 2,000 GENIA abstracts
here involve the&EPPI TRAIN andDEVTEST Sets. and the combine@&PP! TRAIN andDEVTEST sets.
Cross-validation is carried out at the document level.
For simple tagging, the C&C tagger is trained on
All documents are passed through a sequence of ptite non-containing entities (innermost) or on the
processing steps implemented using tliexmML2 non-embedded entities (outermost). For inside-out
andLT-TTT2 tools (Grover et al., 2006) with the out- and outside-in layering, a separate C&C model is
put of each step encoded imL mark-up. Tokeni- trained for each layer of entities in the data, i.e. four
sation and sentence splitting is followed by part-ofmodels for the GENIA data and three models for
speech tagging with the Maximum Entropy Markovthe EpPidata. Cascading is performed on individual
Model (MEMM) tagger developed by Curran andentities with different orderings, either ordering en-

5.2 Pre-processing

69



Feature Description 6 Results

CHARACTER | Regular expressions match- Tapje 4 lists overall cross-validatioR1-scores cal-
ing typical protein names culated for allNEs at all levels of nesting when ap-

WORDSHAPE | Extended version of the C&L  \ving the various modelling techniques. For GE-
WORDTYPE feature NIA, cascading on individual entities when order-

HEADWORD Head word of the current ihg entity models by performance yields the high-
noun phrase est F'1-score of 67.88. Using this method yields

ABBREVIATION | Term identified as an abbre- 5, jncrease of 3.2671 over the best simple tag-
viation of a gazetteer t€rM  ging method, which scores 64.621. Joined label

within a document | tagging results in the second best overall-score
TITLE Termseeninanounphrasein of 67.82. Both layering (inside-out) and cascading
the document title (combining a model trained on alles with 4 mod-

WORDCOUNTER| Non-stop word thatis among  g|s trained on other name, DNA, protein, or RNA)
the 10 most frequent ones in - 5150 perform competitively, reaching1-scores of

=]

adocument _ 67.62 and 67.56, respectively. In the experiments
VERB Verb lemma information  yith the ppi corpus, cascading is also the winner
added to each noun phrase ith an F'1-score of 70.50 when combining a model
token in the sentence trained on allNEswith one trained on fusions. This
FONT Text in italic and subscript  method only results in a small, yet statistically sig-
contained in the original docr  pificant (2, p < 0.05), increase inF1 of 0.43 over
ument format the best simple tagging algorithm. This could be due

to the smaller number of nesteuts in theeppPidata
and the fact that this data contains mawss with
more than one category. Layering (inside-out) per-
tity models according to performance or entity freforms almost as well as cascadingl=70.44).
quency in the training data, ranging from highest to The difference in the overall performance be-
lowest. Cascading is also carried out on groups afveen the GENIA and thePpI corpus is partially
entities (e.g. one model for all entities, one for alue to the difference in the number mEs which
specific entity type, and combinations). Subsequei@&C is required to recognise, but also due to the
models in the cascade have access to the guesse$agt that all features used are optimised for Hre|
previous ones via @UEssfeature. Finally, joined data and simply applied to the GENIA corpus. The
label tagging is done by concatenating individuabnly feature not used for the experiments with the
BIO tags from the innermost to the outermost layer.GENIA corpus isFONT, as this information is not
As in the GENIA corpus, the most frequently an-preserved in the originatmL of that corpus.
notated entity type in theppPidata is protein with al- _ _ _
most 55% of all annotations in the combiresiain 7 Discussion and Conclusion
and DEVTEST data (see Table 5). Given that theAccording to the results for the modelling tech-
scores reported in this paper are calculatedfas niques, each proposed method outperforms simple
micro-averages over all categories, they are strongbagging. Cascading yields the best result on the GE-
influenced by the classifier's performance on proNIA (F£'1=67.88) and=pridata ('1=70.50), see Ta-
teins. However, scoring is not limited to a particulaible 5 for individual entity scores. However, it in-
layer of entities (e.g. only outermost layer), but in-olves extensive amounts of experimentation to de-
cludes all levels of nesting. During scoring, a correctermine the best model combination. The best setup
match is achieved when exactly the same sequenfog cascading is clearly data set dependent. With
of text (encoded in start/end offsets) is marked witharger numbers of entity types annotated in a given
the same entity type in the gold standard and the syserpus, it becomes increasingly impractical to ex-
tem output. Precision, recall arfdl are calculated haustively test all possible orders and combinations.
in standard fashion from the number of true positiveMoreover, training and tagging times are lengthened
false positive and false negatiwes recognised. as more models are combined in the cascade.

Table 3: Extra features added to C&C.
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| GENIA V3.02 | EPPI |

| Technique | F1 || Technique | F1 |
Simple Tagging

Training on innermost entities 64.62 || Training on innermost entities 70.07

Training on outermost entities 62.72 || Training on outermost entities 69.18
Layering

Inside-out 67.62 || Inside-out 70.44

Outside-in 67.02 || Outside-in 70.21
Cascading

Individual NE models (by performance) 67.88 || Individual NE models (by performance) 70.42
Individual NE models (by frequency) | 67.72 || Individual NE models (by frequency) | 70.43

All-cell _type 64.55 || All-complex 70.03
All-DNA 65.02 || All-drug/compound 70.08
All-other_.name 66.99 || All-fusion 70.50
All-protein 64.77 || All-protein 70.02
All-RNA 64.80 || All-complex-fusion 70.46
All-other_name-DNA-protein-RNA 67.56 || All-drug/compound-fusion 70.50
Joined label tagging
Inside-out | 67.82]| Inside-out | 70.37

Table 4: Cross-validatiot'1-scores for different modelling techniques on the GENIA ardidata. Scores
in italics mark statistically significant improvementg?(p < 0.05) over the best simple tagging score.

Despite the large number of tags involved in usple tagging method for both biomedical data sets.
ing joined label tagging, this method outperforms Future work will involve testing the proposed
simple tagging for both data sets and even results technigues on other data sets containing entity nest-
the second-best overalll-score of 67.72 obtained ing, including the ACE data. We will also determine
for the GENIA corpus. The fact that joined labeltheir merit when applying a different learning algo-
tagging only requires training and tagging with oneithm. Furthermore, possible solutions for recognis-
model makes this approach a viable alternative timg discontinuous entities will be investigated.

cascading which is far more time-consuming to run.
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| GENIA V3.02 | EPPI |

| Entity type | Count| P | R [ F1 | Entitytype | Count| P | R | F1 |
| All | 94,014| 69.3| 66.5| 67.9 || All | 134,059| 73.1| 68.1| 70.5|
protein 34,813| 75.1| 74.9| 75.0 || protein 73,117| 76.2 | 82.1| 79.0
other name 20,914| 60.0| 67.2| 63.4 || expt. method 12,550 74.3| 72.4| 73.3
DNA 10,589 | 64.2 | 57.5| 60.6 || fragment 11,571| 545 | 41.7 | 47.3
cell type 7,408 | 71.2| 69.2 | 70.2 || drug/compound| 10,236| 64.9| 37.7 | 47.7
other org. compound 4,109| 76.6 | 57.8 | 65.9 || cell line 6,505 | 68.3| 53.4 | 59.9
cell line 4,081| 66.3| 53.8| 59.4 || complex 6,454 | 62.5| 32.2 | 425
lipid 2,359 | 76.9| 65.6 | 70.8 || modification 5,727| 95.4| 94.2 | 94.8
virus 2,133| 76.0| 73.4| 74.7 || mutant 4,025 40.7 | 23.2| 29.6
multi-cell 1,784 | 72.5| 60.1| 65.7 || fusion 3,874 | 56.6 | 36.0 | 44.0

Table 5: Individual counts and scores of the most frequeniNlBEand all EPPI entity types for the best-
performing method: cascading.
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