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Abstract

This paper demonstrates a method for de-
termining the syntactic structure of medi-
cal terms. We use a model-fitting method
based on the Log Likelihood Ratio to clas-
sify three-word medical terms as right or
left-branching. We validate this method by
computing the agreement between the clas-
sification produced by the method and man-
ually annotated classifications. The results
show an agreement of 75% - 83%. This
method may be used effectively to enable
a wide range of applications that depend
on the semantic interpretation of medical
terms including automatic mapping of terms
to standardized vocabularies and induction
of terminologies from unstructured medical
text.

1 Introduction

Most medical concepts are expressed via a domain
specific terminology that can either be explicitly
agreed upon or extracted empirically from domain
specific text. Regardless of how it is constructed,
a terminology serves as a foundation for informa-
tion encoding, processing and exchange in a special-
ized sub-language such as medicine. Concepts in the
medical domain are encoded through a variety of lin-
guistic forms, the most typical and widely accepted
is the noun phrase (NP). In some even further spe-
cialized subdomains within medicine, such as nurs-
ing and surgery, an argument can be made that some
concepts are represented by an entire predication

rather than encapsulated within a single nominal-
ized expression. For example, in order to describe
someone’s ability to lift objects 5 pounds or heav-
ier above their head, it may be necessary to use a
term consisting of a predicate such as [LIFT] and a
set of arguments corresponding to various thematic
roles such as<PATIENT> and<PATH> (Ruggieri
et al., 2004). In this paper, we address typical med-
ical terms encoded as noun phrases (NPs) that are
often structurally ambiguous, as in Example 1, and
discuss a case for extending the proposed method to
non-nominalized terms as well.

small1 bowel2 obstruction3 (1)

The NP in Example 1 can have at least two interpre-
tations depending on the syntactic analysis:

[[small1 bowel2] obstruction3] (2)

[small1 [bowel2 obstruction3]] (3)

The term in Example 2 denotes an obstruction in
the small bowel, which is a diagnosable disorder;
whereas, the term in Example 3 refers to a small un-
specified obstruction in the bowel.

Unlike the truly ambiguous general English cases
such as the classical “American History Professor”
where the appropriate interpretation depends on the
context, medical terms, such as in Example 1, tend
to have only one appropriate interpretation. The
context, in this case, is the discourse domain of
medicine. From the standpoint of the English lan-
guage, the interpretation that follows from Example
3 is certainly plausible, but unlikely in the context
of a medical term. The syntax of a term only shows
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what interpretations are possible without restricting
them to any particular one. From the syntactic anal-
ysis, we know that the term in Example 1 has the po-
tential for being ambiguous; however, we also know
that it does have an intended interpretation by virtue
of being an entry term in a standardized terminology
with a unique identifier anchoring its meaning. What
we do not know is which syntactic structure gen-
erated that interpretation. Being able to determine
the structure consistent with the intended interpreta-
tion of a clinical term can improve the analysis of
unrestricted medical text and subsequently improve
the accuracy of Natural Language Processing (NLP)
tasks that depend on semantic interpretation.

To address this problem, we propose to use a
model-fitting method which utilizes an existing sta-
tistical measure, the Log Likelihood Ratio. We val-
idate the application of this method on a corpus
of manually annotated noun-phrase-based medical
terms. First, we present previous work on structural
ambiguity resolution. Second, we describe the Log
Likelihood Ratio and then its application to deter-
mining the structure of medical terms. Third, we
describe the training corpus and discuss the compi-
lation of a test set of medical terms and human ex-
pert annotation of those terms. Last, we present the
results of a preliminary validation of the method and
discuss several possible future directions.

2 Previous Work

The problem of resolving structural ambiguity has
been previously addressed in the computational lin-
guistics literature. There are multiple approaches
ranging from purely statistical (Ratnaparkhi, 1998),
to hybrid approaches that take into account the lexi-
cal semantics of the verb (Hindle and Rooth, 1993),
to corpus-based, which is the approach discussed
in this paper. (Marcus, 1980) presents an early ex-
ample of a corpus-based approach to syntactic am-
biguity resolution. One type of structural ambigu-
ity that has received much attention has to do with
nominal compounds as seen in the work of (Resnik,
1993), (Resnik and Hearst, 1993), (Pustejovsky et
al., 1993), and (Lauer, 1995).

(Lauer, 1995) points out that the existing ap-
proaches to resolving the ambiguity of noun phrases
fall roughly into two camps: adjacency and de-

pendency. The proponents of the adjacency model
((Liberman and Sproat, 1992), (Resnik, 1993) and
(Pustejovsky et al., 1993)) argue that, given a three
word noun phrase XYZ, there are two possible an-
alyzes [[XY]Z] and [X[YZ]]. The correct analysis
is chosen based on the “acceptability” of the adja-
cent bigrams A[XY] and A[YZ]. If A[XY] is more
acceptable than A[YZ], then the left-branching anal-
ysis [[XY]Z] is preferred.

(Lauer and Dras, 1994) and (Lauer, 1995) address
the issue of structural ambiguity by developing a de-
pendency model where instead of computing the ac-
ceptability of A[YZ] one would compute the accept-
ability of A[XZ]. (Lauer, 1995) argues that the de-
pendency model is not only more intuitive than the
adjacency model, but also yields better results. (La-
pata and Keller, 2004) results also support this as-
sertion.

The difference between the approaches within the
two models is the computation of acceptability. Pro-
posals for computing acceptability (or preference)
include raw frequency counts ((Evans and Zhai,
1996) and (Lapata and Keller, 2004)), Latent Se-
mantic Indexing ((Buckeridge and Sutcliffe, 2002))
and statistical measures of association ((Lapata et
al., 1999) and (Nakov and Hearst, 2005)).

One of the main problems with using frequency
counts or statistical methods for structural ambigu-
ity resolution is the sparseness of data; however,
(Resnik and Hearst, 1993) used conceptual associa-
tions (associations between groups of terms deemed
to form conceptual units) in order to alleviate this
problem. (Lapata and Keller, 2004) use the doc-
ument counts returned by WWW search engines.
(Nakov and Hearst, 2005) use theχ2 measure based
on statistics obtained from WWW search engines to
compute values to determine acceptability of a syn-
tactic analysis for nominal compounds. This method
is tested using a set of general English nominal com-
pounds developed by (Lauer, 1995) as well as a set
of nominal compounds extracted from MEDLINE
abstracts.

The novel contribution of our study is in demon-
strating and validating a corpus-based method for
determining the syntactic structure of medical terms
that relies on using the statistical measure of asso-
ciation, the Log Likelihood Ratio, described in the
following section.
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3 Log Likelihood Ratio

The Log Likelihood Ratio (G2) is a “goodness of
fit” statistic first proposed by (Wilks, 1938) to test if
a given piece of data is a sample from a set of data
with a specific distribution described by a hypothe-
sized model. It was later applied by (Dunning, 1993)
as a way to determine if a sequence of N words (N-
gram) came from an independently distributed sam-
ple.

(Pedersen et al., 1996) pointed out that there ex-
ists theoretical assumptions underlying theG2 mea-
sure that were being violated therefore making them
unreliable for significance testing. (Moore, 2004)
provided additional evidence that althoughG2 may
not be useful for determining the significance of an
event, its near equivalence to mutual information
makes it an appropriate measure of word associa-
tion. (McInnes, 2004) appliedG2 to the task of ex-
tracting three and four word collocations from raw
text.

G2, formally defined for trigrams in Equation 4,
compares the observed frequency counts with the
counts that would be expected if the words in the
trigram (3-gram; a sequence of three words) corre-
sponded to the hypothesized model.

G2 = 2 ∗

∑

x,y,z

nxyz ∗ log(
nxyz

mxyz

) (4)

The parameternxyz is the observed frequency of
the trigram wherex, y, andz respectively represent
the occurrence of the first, second and third words
in the trigram. The variablemxyz is the expected
frequency of the trigram which is calculated based
on the hypothesized model. This calculation varies
depending on the model used. Often the hypothe-
sized model used is the independence model which
assumes that the words in the trigram occur together
by chance. The calculation of the expected values
based on this model is as follows:

mxyz = nx++ ∗ n+y+ ∗ n++z/n+++ (5)

The parameter,n+++, is the total number of tri-
grams that exist in the training data, andnx++,
n+y+, andn++z are the individual marginal counts
of seeing wordsx, y, andz in their respective posi-
tions in a trigram. AG2 score reflects the degree to
which the observed and expected values diverge. A

G2 score of zero implies that the observed values are
equal to the expected and the trigram is represented
perfectly by the hypothesized model. Hence, we
would say that the data ’fits’ the model. Therefore,
the higher theG2 score, the less likely the words
in the trigram are represented by the hypothesized
model.

4 Methods

4.1 Applying Log Likelihood to Structural
Disambiguation

The independence model is the only hypothesized
model used for bigrams (2-gram; a sequence of
two words). As the number of words in an N-
gram grows, the number of hypothesized models
also grows. The expected values for a trigram can
be based on four models. The first model is the
independence model discussed above. The second
is the model based on the probability that the first
word and the second word in the trigram are depen-
dent and independent of the third word. The third
model is based on the probability that the second
and third words are dependent and independent of
the first word. The last model is based on the prob-
ability that the first and third words are dependent
and independent of the second word. Table 1 shows
the different models for the trigram XYZ.

Table 1: Models for the trigram XYZ
Model 1 P(XYZ) / P(X) P(Y) P(Z)
Model 2 P(XYZ) / P(XY) P(Z)
Model 3 P(XYZ) / P(X) / P(YZ)
Model 4 P(XYZ) / P(XZ) P(Y)

Slightly different formulas are used to calculate
the expected values for the different hypothesized
models. The expected values for Model 1 (the in-
dependence model) are given above in Equation 5.
The calculation of expected values for Model 2, 3, 4
are seen in Equations 6, 7, 8 respectively.

mxyz = nxy+ ∗ n++z/n+++ (6)

mxyz = nx++ ∗ n+yz/n+++ (7)

mxyz = nx+z ∗ n+y+/n+++ (8)

The parameternxy+ is the number of times words
x andy occur in their respective positions,n+yz is
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the number of times wordsy and z occur in their
respective positions andnx+z is the number of times
that wordsx andz occur in their respective positions
in the trigram.

The hypothesized models result in different ex-
pected values which results in a differentG2 score.
A G2 score of zero implies that the data are perfectly
represented by the hypothesized model and the ob-
served values are equal to the expected. Therefore,
the model that returns the lowest score for a given
trigram is the model that best represents the struc-
ture of that trigram, and hence, best ’fits’ the trigram.
For example, Table 2 shows the scores returned for
each of the four hypothesized models for the trigram
“small bowel obstruction”.

Table 2: Example for the term “small bowel obstruc-
tion”

Model G2 score Model G2 score
Model 1 11,635.45 Model 2 5,169.81
Model 3 8,532.90 Model 4 7,249.90

The smallestG2 score is returned by Model 2
which is based on the first and second words be-
ing dependent and independent of the third. Based
on the data, Model 2 best represents or ’fits’ the tri-
gram, “small bowel obstruction”. In this particular
case that happens to be the correct analysis.

The frequency counts andG2 scores for each
model were obtained using the N-gram Statistics
Package1 (Banerjee and Pedersen, 2003).

4.2 Data

The data for this study was collected from two
sources: the Mayo Clinic clinical notes and
SNOMED-CT terminology (Stearns et al., 2001).

4.2.1 Clinical Notes

The corpus used in this study consists of over
100,000 clinical notes covering a variety of ma-
jor medical specialties at the Mayo Clinic. These
notes document each patient-physician contact and
are typically dictated over the telephone. They range
in length from a few lines to several pages of text
and represent a quasi-spontaneous discourse where
the dictations are made partly from notes and partly

1http://www.d.umn.edu/ tpederse/nsp.html

from memory. At the Mayo Clinic, the dictations
are transcribed by trained personnel and are stored
in the patient’s chart electronically.

4.2.2 SNOMED-CT

SNOMED-CT (Systematized Nomenclature of
Medicine, Clinical Terminology) is an ontologi-
cal resource produced by the College of American
Pathologists and distributed as part of the Unified
Medical Language System2 (UMLS) Metathesaurus
maintained by the National Library of Medicine.
SNOMED-CT is the single largest source of clini-
cal terms in the UMLS and as such lends itself well
to the analysis of terms found in clinical reports.

SNOMED-CT is used for many applications in-
cluding indexing electronic medical records, ICU
monitoring, clinical decision support, clinical trials,
computerized physician order entry, disease surveil-
lance, image indexing and consumer health informa-
tion services. The version of SNOMED-CT used in
this study consists of more than 361,800 unique con-
cepts with over 975,000 descriptions (entry terms)
(SNOMED-CT Fact Sheet, 2004).

4.3 Testset of Three Word Terms

We used SNOMED-CT to compile a list of terms
in order to develop a test set to validate theG2

method. The test set was created by extracting all
trigrams from the corpus of clinical notes and all
three word terms found in SNOMED-CT. The inter-
section of the SNOMED-CT terms and the trigrams
found in the clinical notes was further restricted to
include only simple noun phrases that consist of a
head noun modified with a set of other nominal or
adjectival elements including adjectives and present
and past participles. Adverbial modification of ad-
jectives was also permitted (e.g. “partially edentu-
lous maxilla”). Noun phrases with nested prepo-
sitional phrases such as “fear of flying” as well as
three word terms that are not noun phrases such as
“does not eat” or “unable to walk” were excluded
from the test set. The resulting test set contains 710
items.

The intended interpretation of each three word
term (trigram) was determined by arriving at a

2Unified Medical Language System is a compendium of
over 130 controlled medical vocabularies encompassing over
one million concepts.
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consensus between two medical index experts
(kappa=0.704). These experts have over ten years of
experience with classifying medical diagnoses and
are highly qualified to carry out the task of deter-
mining the intended syntactic structure of a clinical
term.

Table 3: Four Types of Syntactic Structures of Tri-
gram Terms

left-branching ((XY)Z):
[[urinary tract] infection]
[[right sided] weakness]

right-branching (X(YZ)):
[chronic [back pain]]
[low [blood pressure]]

non-branching ((X)(Y)(Z)):
[[follicular][thyroid][carcinoma]]
[[serum][dioxin][level]]

monolithic (XYZ):
[difficulty finding words]
[serous otitis media]

In the process of annotating the test set of tri-
grams, four types of terms emerged (Table 3). The
first two types are left and right-branching where the
left-branching phrases contain a left-adjoining group
that modifies the head of the noun phrase. The right-
branching phrases contain a right-adjoining group
that forms the kernel or the head of the noun phrase
and is modified by the remaining word on the left.
The non-branching type is where the phrase contains
a head noun that is independently modified by the
other two words. For example, in “follicular thyroid
carcinoma”, the experts felt that “carcinoma” was
modified by both “follicular” and “thyroid” indepen-
dently, where the former denotes the type of cancer
and the latter denotes its location. This intuition is
reflected in some formal medical classification sys-
tems such as the Hospital International Classifica-
tion of Disease Adaptation (HICDA) where cancers
are typically classified with at least two categories -
one for location and one for the type of malignancy.
This type of pattern is rare. We were able to iden-
tify only six examples out of the 710 terms. The
monolithic type captures the intuition that the terms
function as a collocation and are not decomposable
into subunits. For example, “leg length discrepancy”

denotes a specific disorder where one leg is of a dif-
ferent length from the other. Various combinations
of subunits within this term result in nonsensical ex-
pressions.

Table 4: Distribution of term types in the test set
Type Count %total
Left-branching 251 35.5
Right-branching 378 53.4
Non-branching 6 0.8
Monolithic 73 10.3

Total 708 100

Finally, there were two terms for which no con-
sensus could be reached: “heart irregularly irregu-
lar” and “subacute combined degeneration”. These
cases were excluded from the final set. Table 4
shows the distribution of the four types of terms in
the test set.

5 Evaluation

We hypothesize that general English typically has
a specific syntactic structure in the medical domain,
which provides a single semantic interpretation. The
patterns observed in the set of 710 medical terms
described in the previous section suggest that the
G2 method offers an intuitive way to determine the
structure of a term that underlies its syntactic struc-
ture.

Table 5:G2 Model Descriptions
left-branching Model 2 [ [XY] Z ]
right-branching Model 3 [ X [YZ] ]

The left and right-branching patterns roughly cor-
respond to Models 2 and 3 in Table 5. Models 1
and 4 do not really correspond to any of the pat-
terns we were able to identify in the set of terms.
Model 1 would represent a term where words are
completely independent of each other, which is an
unlikely scenario given that we are working with
terms whose composition is dependent by definition.
This is not to say that in other applications (e.g.,
syntactic parsing) this model would not be relevant.
Model 4 suggests dependence between the outer
edges of a term and their independence from the
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Figure 1: Comparison of the results with two base-
lines: L-branching and R-branching assumptions

middle word, which is not motivated from the stand-
point of a traditional context free grammar which
prohibits branch crossing. However, this model may
be welcome in a dependency grammar paradigm.

One of the goals of this study is to test an ap-
plication of theG2 method trained on a corpus of
medical data to distinguish between left and right-
branching patterns. The method ought to suggest
the most likely analysis for an NP-based medical
term based on the empirical distribution of the term
and its components. As part of the evaluation, we
compute theG2 scores for each of the terms in the
test set, and picked the model with the lowest score
to represent the structural pattern of the term. We
compared these results with manually identified pat-
terns. At this preliminary stage, we cast the problem
of identifying the structure of a three word medical
term as a binary classification task where a term is
considered to be either left or right-branching, ef-
fectively forcing all terms to either be represented
by either Model 2 or Model 3.

6 Results and Discussion

In order to validate theG2 method for determin-
ing the structure of medical terms, we calculated
the agreement between human experts’ interpreta-
tion of the syntactic structure of the terms and the
interpretation suggested by theG2 method. The
agreement was computed as the ratio of match-
ing interpretations to the total number of terms be-
ing interpreted. We used two baselines, one estab-
lished by assuming that each term is left-branching

and the other by assuming that each term is right-
branching. As is clear from Table 4, the left-
branching baseline is 35.5% and the right-branching
baseline is 53.4% meaning that if we simply as-
sign left-branching pattern to each three word term,
we would agree with human experts 35.5% of the
time. TheG2 method correctly identifies 185 tri-
grams as being left-branching (Model 2) and 345 tri-
grams as being right-branching (Model 3). There are
116 right-branching trigrams incorrectly identified
as left-branching, and 62 left-branching trigrams in-
correctly identified as right- branching. Thus the
method and the human experts agreed on 530 (75%)
terms out of 708 (kappa=0.473), which is better than
both baselines (Figure 1). We did not find any over-
lap between the terms that human experts annotated
as non-branching and the terms whose corpus dis-
tribution can be represented by Model 4 ([[XZ]Y]).
This is not surprising as this pattern is very rare.
Most of the terms are represented by either Model 2
(left-branching) or Model 3 (right-branching). The
monolithic terms that the human experts felt were
not decomposable constitute 10% of all terms and
may be handled through some other mechanism
such as collocation extraction or dictionary lookup.
Excluding monolithic terms from testing results in
83.5% overall agreement (kappa=0.664).

We observed that 53% of the terms in our test
set are right-branching while only 35% are left-
branching. (Resnik, 1993) found between 64% and
67% of nominal compounds to be left-branching and
used that finding to establish a baseline for his exper-
iments with structural ambiguity resolution. (Nakov
and Hearst, 2005) also report a similar percentage
(66.8%) of left-branching noun compounds. Our
test set is not limited to nominal compounds, which
may account for the fact that a slight majority of the
terms are found to be right-branching as adjectival
modification in English is typically located to the
left of the head noun. This may also help explain
the fact that the method tends to have higher agree-
ment within the set of right-branching terms (85%)
vs. left-branching (62%).

We also observed that many of the terms marked
as monolithic by the experts are of Latin origin such
as the term in Example 9 or describe the functional
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status of a patient such as the term in Example 10.

erythema1 ab2 igne3 (9)

difficulty1 swallowing2 solids3 (10)

Example 10 merits further discussion as it illus-
trates another potential application of the method
in the domain of functional status terminology. As
was mentioned in the introduction, functional status
terms may be be represented as a predication with
a set of arguments. Such view of functional status
terminology lends itself well to a frame-based repre-
sentation of functional status terms in the context of
a database such as FrameNet3 or PropBank4. One of
the challenging issues in representing functional sta-
tus terminology in terms of frames is the distinction
between the core predicate and the frame elements
(Ruggieri et al., 2004). It is not always clear what
lexical material should be part of the core predicate
and what lexical material should be part of one or
more arguments. Consider the term in Example 10
which represents a nominalized form of a predica-
tion. Conceivably, we could analyze this term as a
frame shown in Example 11 where the predication
consists of a predicate [DIFFICULTY] and two ar-
guments. Alternatively, Example 12 presents a dif-
ferent analysis where the predicate is a specific kind
of difficulty with a single argument.

[P:DIFFICULTY]
[ARG1:SWALLOWING<ACTIVITY >]
[ARG2:SOLIDS<PATIENT>]

(11)

[P:SWALLOWING DIFFICULTY]
[ARG1: SOLIDS<PATIENT>]

(12)

The analysis dictates the shape of the frames
and how the frames would fit into a network of
frames. TheG2 method identifies Example 10 as
left-branching (Model 2), which suggests that it
would be possible to have a parent DIFFICULTY
frame and a child CLIMBING DIFFICULTY that
would inherit form its parent. An example where
this is not possible is the term “difficulty staying
asleep” where it would probably be nonsensical or at
least impractical to have a predicate such as [STAY-
ING DIFFICULTY]. It would be more intuitive to

3http://www.icsi.berkeley.edu/framenet/
4http://www.cis.upenn.edu/ ace/

assign this term to the DIFFICULTY frame with
a frame element whose lexical content is “staying
asleep”. The method appropriately identifies the
term “difficulty staying asleep” as right-branching
(Model 3) where the words “staying asleep” are
grouped together. This is an example based on in-
formal observations; however, it does suggest a util-
ity in constructing frame-based representation of at
least some clinical terms.

7 Limitations

The main limitation of theG2 method is the expo-
nential growth in the number of models to be evalu-
ated with the growth in the length of the term. This
limitation can be partly alleviated by either only con-
sidering adjacent models and limiting the length to
5-6 words, or using a forward or backward sequen-
tial search proposed by (Pedersen et al., 1997) for
the problem of selecting models for the Word Sense
Disambiguation task.

8 Conclusions and Future Work

This paper presented a simple but effective method
based onG2 to determine the internal structure of
three-word noun phrase medical terms. The abil-
ity to determine the syntactic structure that gives
rise to a particular semantic interpretation of a med-
ical term may enable accurate mapping of unstruc-
tured medical text to standardized terminologies and
nomenclatures. Future directions to improve the ac-
curacy of our method include determining how other
measures of association, such as dice coefficient and
χ2, perform on this task. We feel that there is a pos-
sibility that no single measure performs best over all
types of terms. In that case, we plan to investigate in-
corporating the different measures into an ensemble-
based algorithm.

We believe the model-fitting method is not lim-
ited to structural ambiguity resolution. This method
could be applied to automatic term extraction and
automatic text indexing of terms from a standard-
ized vocabulary. More broadly, the principles of us-
ing distributional characteristics of word sequences
derived from large corpora may be applied to unsu-
pervised syntactic parsing.
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