
Proceedings of the 5th Workshop on Important Unresolved Matters, pages 81–88,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

An Arabic Slot Grammar Parser

Michael C. McCord

IBM T. J. Watson Research Center
P.O.B. 704

Hawthorne, NY 10532
mcmccord@us.ibm.com

Violetta Cavalli-Sforza
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

violetta@cs.cmu.edu

Abstract

We describe a Slot Grammar (SG) parser
for Arabic, ASG, and new features of SG
designed to accommodate Arabic as well as
the European languages for which SGs
have been built. We focus on the integra-
tion of BAMA with ASG, and on a new,
expressive SG grammar formalism, SGF,
and illustrate how SGF is used to advan-
tage in ASG.

1 Introduction

In this paper we describe an initial version of a Slot
Grammar parser, ASG, for Arabic. Slot Grammar
(SG) (McCord, 1980. 1993) is dependency-
oriented, and has the feature that deep structure
(via logical predicate arguments) and surface struc-
ture are both shown in parse trees.
 A new formalism SGF (Slot Grammar Formal-
ism) for SG syntax rules has been developed
(McCord, 2006), and the ASG syntax rules are
written in SGF. SGF is largely declarative, and
can be called “object-oriented” in a sense we will
explain. The rules in SGF all have to do with slot
filling.

ASG uses BAMA (Buckwalter, 2002), in a ver-
sion from Qamus, as its morphological analyzer.
All the internal processing of ASG is done with the
Buckwalter Arabic transliteration – though of
course ASG can take real Arabic script (in UTF-8
form) as input. We use BAMA features in the
processing (and parse trees), but augmented with
other features more unique to ASG. The Penn
Arabic Treebank (ATB), which also uses BAMA
features, has served as a development guide in the

work. But SG is a rule-based system, and there is
no automatic training from the ATB.

Prior to this work, SGs had been written for
English (McCord), German (Claudia Gdaniec), and
for the Romance languages (Esméralda Manandise)
Spanish, French, Italian and Portuguese. For han-
dling Arabic, there have been two main new adap-
tations of SG.

One adaptation is in the treatment of features in
the form that BAMA delivers. This treatment in-
cludes a feature lexicon in ASG, which can specify
two kinds of relations among features, which we
will describe below. We also take steps to handle
the large number of analyses returned by BAMA.
Special treatment of features appears as well in the
SGF syntax rules. The other main adaptation is in
the treatment of clitics, where special things hap-
pen in Arabic for proclitics.

Although the basic ideas of SG have not
changed in treating Arabic, ASG has been serving
as a test bed for the new syntax rule formalism
SGF.

Overall, the design of the SG system has be-
come neater by including Arabic as well as the
European languages. For instance, the new treat-
ment of features generalizes the existing treatment
in the German SG. And the new treatment of cli-
tics will make the treatment of clitics for the Ro-
mance languages neater.

In Section 2, we discuss the ASG feature system.
Section 3 briefly describes the ASG slot frame
lexicon. Sections 4 and 5 deal with syntactic
analysis. In Section 6, we discuss current perform-
ance of ASG (coverage and speed), and in Section
7, related work.

81

2 The Feature System

Features for an SG parser for language X are speci-
fied externally as character strings, listed by the
grammar writer in the feature lexicon Xfeas.lx (Ar-
feas.lx for Arabic). Internally, features are repre-
sented in two ways, for efficient processing: (1)
The features themselves are “atoms”, represented
by integers. (2) The set of features for a parse
node is represented by a bit string, where each fea-
ture atom is assigned a bit position. For ASG,
these bit strings are currently of length 512. But
these internal representations are invisible to the
grammar writer.

In the set of features for a node, some subsets
can be viewed disjunctively. For instance if a noun
is ambiguously singular or plural, it might have
both features sg and pl. This situation occurs
very much for Arabic text input because of the
ambiguity due to unvocalized script. In order not
to choke the parse space, the SG-BAMA interface
combines some BAMA analyses, basically ones
that have the same stem and POS, so that nodes
have disjunctive BAMA features. But agreement
rules or slot filler constraints often reduce the
ambiguity. Such rules, specified in a perspicuous
way in SGF, as we will see below, are
implemented internally by intersecting the bit
string representations of relevant feature sets.

For ASG, there are two categories of features.
One category consists of BAMA compound
features like

NOUN+NSUFF_FEM_PL+CASE_DEF_ACC

(indicating a feminine plural definite accusative
noun). Although such features are compound in
intent, they are treated as atomic symbols by ASG
(as are all features specified in Xfeas.lx).

Features of the other category are more special
to ASG. Some of them have to do with syntactic
structure (like presence of an overt subject), and
others are morphological. Typical morphological
features are standard, simple ones that appear in
sets of values for attributes like case, number,
gender, and definiteness – for example:

nom, acc, gen
sg, dual, pl
m, f,
def, indef

Besides declaring features, Xfeas.lx can specify
relations between features. One way is to specify
simple hierarchical relations. An entry of the form

x < y … z …

specifies that feature x implies features y … z. This
means for instance that if the feature x is marked
on a node, then a test in the grammar for feature y
will succeed. Hierarchical information like this is
stored internally in bit string arrays and allows ef-
ficient processing.

If an entry is of the form

x < … > u … v

then we say that x extends the feature set {u ... v},
and x is an extending feature. The basic idea is that
x is a kind of abbreviation for the disjunction of the
set {u ... v}, but x may appear on a node independ-
ently of that set. We will explain the exact mean-
ing in the section below on the syntax rules. A
typical example of an extending feature rule in Ar-
feas.lx is as follows:

gen < >
 NOUN+NSUFF_FEM_DU_GEN
 NOUN+NSUFF_FEM_PL+CASE_DEF_GEN
 NOUN+NSUFF_FEM_PL+CASE_INDEF_GEN

 ...

where we list all BAMA compound features that
include a genitive subfeature. Rules in the syntax
component can test simply for extending features
like gen, as we will see below. The syntax com-
ponent does not even mention BAMA features.
But this representational scheme allows us to keep
BAMA compound features as units -- and this is
important, because the morphological analysis
(with ambiguities shown) requires such groupings.
The internal representation of an extending feature
relationship of x to {u ... v} associates with the
atom for x the disjunction of the bit strings for u ...
v, and the processing is quite efficient.

Although the features in Xfeas.lx are generally
morphosyntactic, and have internal atom and bit
string position representations in limited storage
areas, SG also allows open-ended features, which
may be used in the SG lexicon and tested for in the
syntax component. These are typically semantic
features.

82

3 The SG Lexicon

Although BAMA contains lexicons for doing
Arabic morphological analysis, an SG needs its SG
lexicon to drive syntactic analysis and help pro-
duce parse trees that show (deep) predicate argu-
ment structure. The main ingredients associated
with index words in an SG lexicon are sense
frames. A sense frame can specify a part of speech
(POS), features (typically semantic features), a slot
frame, and other ingredients. The most important
ingredient is the slot frame, which consists of an
ordered list of (complement) slots. Slots can be
thought of as grammatical relations, but also as
names for logical arguments for word sense predi-
cates. An example from the ASG lexicon, called
Ar.lx, is:

Eoniy < v (obj n fin)

This says that Eoniy (�����) is a verb (stem) with a
direct object slot (obj) which can be filled by ei-
ther an NP (indicated by the n) or a finite VP (in-
dicated by the fin). A slot can be either an atomic
symbol or a list of the form

(SlotName Option1 … Optionn)

where the options are terms that specify conditions
on the fillers of the slot. If no options are specified,
then defaults are used. The Eoniy (�����) example
shows no subject slot, but the default is that every
verb has a subject slot (even though it may not be
overtly filled). One can specify a subject slot
(subj) if it needs non-default options.

For the index words for ASG, we are currently
using vocalized stems – stems as in the ATB, or as
produced by BAMA. To produce a starter for
Ar.lx, we extracted stems from the ATB, listed by
frequency, and associated default sense frames
based on the BAMA features in the ATB. Using
vocalized stems entails some repetition of sense
frames, since there can be more than one vocalized
stem for a given word sense.

Index words in the SG lexicon can also be mul-
tiwords. Some multiword entries occur in Ar.lx.

Morpholexical analysis for ASG combines
BAMA analysis with look-up in Ar.lx. BAMA
provides morphological features (BAMA com-
pound features) associated with vocalized stems.
Also, an algorithm in ASG separates clitics out of

the BAMA analyses and represents them in a form
convenient for the parser. The vocalized stems are
looked up in Ar.lx, and the sense frames found
there (if look-up is successful) are merged with
compatible analyses from BAMA. If look-up in
Ar.lx fails, then the BAMA analyses can still be
used, with default slot frames assigned. In the
other direction, look-up in BAMA may fail, and
special entries in Ar.lx can cover such words
(specifying morphological features as well as slot
frames).

4 The Parsing Algorithm

The SG parser is a bottom-up chart parser. Ini-
tial chart elements are one-word (or one-multiword)
phrases that arise from morpholexical analysis. All
further chart elements arise from binary combina-
tions of a modifier phrase M with a higher phrase
H, where M fills a slot S in H. The slot S could be
a complement slot which is stored with H, having
arisen from the lexical slot frame of the word sense
head of H. Or S could be an adjunct slot associated
with the POS of M in the syntax rule component
X.gram. In both cases, the conditions for filling S
are specified in X.gram. The parser attaches post-
modifiers first, then premodifiers.
 Normally, M and H will be existing adjacent
phrases in the chart. But there is an interesting
treatment of clitics that is especially relevant for
Arabic. The SG data structure for a phrase P in-
cludes two fields for clitics associated with the
head word of P – a list of proclitics, and a list of
enclitics. Each clitic is itself a (one-word) phrase
data structure, ready to be used for slot filling. So
the parsing algorithm can combine not only adja-
cent phrases in the chart in the normal way, but can
also combine a phrase with one of its clitics. For
Arabic, all enclitics (typically pronouns) for a
phrase P are attached to P (by postmodification)
before P enters into any other slot filling. On the
other side, proclitics (typically conjunctions and
prepositions) of P are used only as higher phrases
where P is the modifier. But a proclitic can get
“passed upwards” before it is treated as a higher
phrase. A non-deterministic option in the parser is
that a phrase M becomes a premodifier of an adja-
cent phrase H in the chart, and the proclitic list of
M is passed up to become the proclitic list of H.
For instance a conjunction like “w”/“wa” [�� , “and”]
might be attached as a proclitic to the first word in

83

a (premodifying) subject of a clause C, and the
conjunction proclitic gets passed upwards until it
finally takes C as a postconjunct modifier.
 Although SG is a rule-based system, it does use
a numerical scoring system for phrases during
parsing. Real numbers are attached to phrases,
indicating, roughly, how likely it is that the phrase
is a good analysis of what it spans. Partial analy-
ses (phrases) can be pruned out of the chart if their
scores are too bad. Also, final parses get ranked by
their scores. Scores can arise from rules in the
syntax component, in the lexicon, or in the shell.
A general rule in the shell is that complement slots
are preferred over adjunct slots. The specific val-
ues of scores are normally determined by the
grammar writer, with regression testing.

5 The ASG Syntax Rule Component

In an SG syntax rule component X.gram
(Ar.gram for Arabic), the rules are written in the
formalism SGF (McCord, 2006). Each rule deals
with slot filling, and is either a complement slot
rule or an adjunct slot rule. Each rule is of the
form

S < Body

where S is the index, which is a complement slot
for a complement slot rule, or a POS for an adjunct
slot rule. The Body is basically a logical expres-
sion (in a form we will describe) which is true iff
the corresponding slot filling can succeed. The
rules can be viewed largely declaratively, even
though there are some operators that look like
commands.
 The rule system is applied by the parsing algo-
rithm when it is looking at specific phrases M and
H that are adjacent or have a clitic relationship, and
asking whether M can fill a slot in H. For a yet
unfilled complement slot S of H, with a chosen slot
option, the parser looks for the complement slot
rule in X.gram indexed by S, and applies its body,
requiring that to be true before doing the slot fill-
ing. And the parser also looks at the POS of M,
finds the corresponding adjunct slot rule indexed
by that POS, and applies its body. In this case, the
body determines what the adjunct slot and option
are; and it can do so non-deterministically: The
body may be a disjunction, with operator ||, of sev-
eral sub-bodies, which are all tried for insertion of

the filled version of H into the chart. Complement
slot rules can also use the infix operator || for dis-
junctions of the body on the top level, but in this
case the || behaves deterministically – as in an if-
then-else.
 A simple example of a complement slot rule is
the following, for the object of a preposition:

objprep <
 ri
 (opt n)
 (mpos noun)
 (extmf gen)
 (removemf nom acc)
 satisfied

The body is a sequence of tests which are viewed
conjunctively. The first test, ri, means that the
filler M is on the “ right” of H (a postmodifier).
The opt test checks that the slot option is n, re-
quiring an NP. The next test requires that the filler
M has POS noun. In SGF rules, the letter m in
operators indicates the filler M as an implicit oper-
and, and h indicates the higher phrase H.
 The term (extmf gen) is an extending feature
test on M for the feature gen (genitive). This will
succeed iff either gen is marked explicitly on M or
M has at least one of the BAMA features associ-
ated with gen in the extending feature rule for gen
in Arfeas.lx (see Section 2). The test (removemf
nom acc) always succeeds, and it will remove
explicit occurrences of nom or acc on M, as well
as any BAMA features associated with those fea-
tures by extending feature rules.
 Finally, the test satisfied succeeds iff M has
no unfilled obligatory complement slots.
 The syntax of the SGF formalism is Cambridge
Polish (Lisplike), except for the uses of the binary
operators < and ||. There are quite a number of
“ built-in” operators in SGF, and many of them can
take any number of arguments.
 Tests in SGF can be nested; some operators, in-
cluding all the logical operators, can contain other
tests as arguments. We mentioned that SGF is
“ object-oriented” in a certain sense. In any given
test, however much embedded, there is always a
phrase in focus, which is an implicit argument of
the test. The phrase in focus can be considered
like this in object-oriented languages. The de-
fault phrase in focus on top-level tests is M (the
modifier). But some operators can shift the focus

84

to another phrase, and this can happen an unlimited
number of times in nested tests. For example, a
test of the form

 (rmod Test1 ... Testn)

searches the postmodifiers of the current phrase in
focus and succeeds iff, for one of them as a new
phrase in focus, all of the test arguments are satis-
fied. This scheme allows for quite compact ex-
pressions for searching and testing parse trees.
 Now let us look at (a modified form of) an ad-
junct slot rule in Ar.gram, for adjectives that post-
modify nouns:

adj <
 ri
 (hf noun)
 (agreef nom acc gen)
 (agreef def indef)
 (if (& (exthf pl) (nhf h))
 /* then */
 (extmf sg f)
 /* else */
 (& (agreef sg pl dual)
 (agreef m f)))
 satisfied
 (setslot nadj)
 (setopt aj)

 So the filler M should be an adjective phrase.
The first two tests check that M postmodifies H,
and H is a noun phrase. The main operator here is
agreef, which works with a list of extending fea-
tures. The list of features should consist of the
possible values of an attribute like case, number,
gender, etc. The agreef test will succeed iff M
and H agree along this dimension. For at least one
of the argument features, both M and H should
have this feature (as an extending feature). Fur-
thermore, agreef takes care of reducing feature
ambiguity in M and H (if it succeeds): If x is an
argument feature such that one of M and H has x
(as an extending feature) but the other does not,
then x is removed from the other (as an extending
feature).
 For the adj rule at hand, the if statement can
be interpreted as follows: If H (the noun) is plural
and not human, then M (the adjective) must be sin-
gular and feminine; otherwise M and H must agree
in number and gender. The actual current rule in
Ar.gram skips the agreement test for plural non-

human nouns, because we do not currently have
enough marking of the human (h) features.
 For subject-verb agreement, we have the situa-
tion that verbs do not use the same extending fea-
ture names as nouns do. (This has to do with cor-
responding BAMA features.) To handle this,
agreef can take as arguments pairs of features,
like (sg vsg), where the first element is checked
for M (the subj noun), and the second is checked
for H (the verb). Here is a shortened form of the
subject slot rule of ASG, which contains the cur-
rent subject-verb agreement rule for ASG:

subj <
 (opt n)
 (mpos noun)
 (if (mf pron)
 /* then */
 (& (agreef (m vm) (f vf))
 (agreef (sg vsg)
 (pl vpl)
 (dual vdual))
 (agreef (pers1 vpers1)
 (pers2 vpers2)
 (pers3 vpers3)))
 /* else */
 (& (exthf vpers3)
 (if (| (^ (extmf pl)) (mf h))
 (&
 (agreef (m vm) (f vf))
 (if le
 /* subj before verb */
 (agreef (sg vsg)
 (pl vpl)
 (dual vdual))
 /*subj after verb: */
 (exthf vsg)))))

)

The agreement part is the outer if test, and can be
interpreted as follows:

1. If M is a pronoun, then M agrees with H
in gender, number and person;

2. else H must be 3rd-person and if M is
non-plural or human, then:

a. M agrees with H in gender and
b. if M premodifies H then it

agrees with H in number,
c. else H is singular.

This formulation shows the way we are currently
ignoring agreement for plural non-human nouns,
until we get human markings on nouns.

85

 Now let us illustrate how an adjunct slot rule can
overcome a seeming problem for dependency
grammars when there is a “ missing head word” for

a phrase. Consider n the sentence shown in Figure
1, along with its ASG parse tree.

�����������	
���
�
���������������
��
��������������
��� � .
wh*h ZAhrp $A}Ep jdAF qd ysbbhA Alxwf Aw AlADTrAbAt AlmEwyp.

 [This is a very common phenomenon, which may be caused by fear or intestinal disorder.]
--
o----------- top wa(111,u,1) noun pron
`----------- rconj h`*ihi(1) noun pron
 `--------- npred ZAhir(2) noun sg cn def indef nom f
 `------- nadj $A}iE(3) adj sg def indef nom acc gen f
 | `----- adjpost jid~(4) noun cn indef acc qualnoun
 | .----- vadv qad(5) adv
 `-+----- nrel sab~ib(6,8,113) verb pronobj
 `----- obj(n) hA(113) noun pron acc encliticf
 | .--- lconj xawof(7) noun cn def nom acc gen
 `-+--- subj(n) Oaw(8,7,9) noun pl cn def nom acc f
 `--- rconj {iDoTirAb(9) noun pl cn def nom acc gen f
 `- nadj miEawiy~(10) adj sg def nom acc gen f
--

 Figure 1. Handling a “ missing head word”

Here Arabic does without a form of “ be” . In the
ATB, the parse tree shows an S node with three
daughters:

(S
 (CONJ wa)
 (NP-SBJ
 (DEM_PRON_F h`*ihi))
 (NP-PRD
 (NP (NOUN… ZAhir+ap+N))

 ...)
)

Since the ATB does not use a dependency tree
scheme, there is no need for a word acting as a
verb head of this S.

 In ASG we solve the problem of the “ missing
head word” by letting the “ clause” be a nominal
phrase with head h`*ihi [�	�
�� “ this”] (this is the
subj in the ATB tree), where the predicate NP fills
an adjunct slot npred of the head NP. Logically,
this is not unreasonable, because adjuncts often
predicate logically on the phrase they modify. And
a predicate NP for a “ be” verb can do just that.
 The npred rule in Ar.gram is as follows (in ab-
breviated form):

noun <
 ri
 (hf noun)
 (exthf nom)
 (extmf nom)
 (^ (mf propn) (hf propn))
 (nhf ri1 num)
 satisfied
 (^ (lmod lconj (rmod nrel)))
 (removehf acc gen)
 (removemf acc gen)
 (setslot npred)
 (setopt n)

The rule is indexed under the POS noun, since the
npred filler M is an NP. (Actually the noun rule
has several other disjunctive components, sepa-
rated by the operator ||, for other ways NPs can
modify other phrases as adjuncts.) So this rule
requires that M postmodifies H, H is an NP, both
M and H have extending features nom, neither M
nor H is a proper noun, H has no postmodfiers, and
is not a number, and H is satisfied. The test

 (^ (lmod lconj (rmod nrel)))

illustrates two focus-shifting operations (see
above). This says that it is not the case that M has
a preconjunct which has a postmodifying relative
clause. Finally, the rule removes the extending

86

features acc and gen from both H and M, sets the
adjunct slot to npred, and sets its option to n.
 The parse in Figure 1 illustrates several other
interesting features of Arabic syntax, for instance
the resumptive pronoun in the relative clause (ad-
junct slot nrel). And this pronoun is an enclitic,
treated by the ASG methods described in Section 4.
(The conjunction “ wa” in the tree is marked as a
noun, because (coordinating) conjunctions in SG
inherit features from their conjuncts. In SG, a
phrase’s features are carried on its head word.)

6 Performance of ASG

 Since SG has its own linguistic choices (includ-
ing being a dependency grammar), it is difficult to
measure ASG automatically against the ATB with-
out considerable conversion efforts. We plan to
look into comparisons with the Prague Treebank
(!"#$%�&'�"()*�+,,-., but have not had time yet. The
best approach, however, may be to create a tree-
bank that simply uses the ASG design. The SG
system has some tools for doing that – using SG
parsing as a starter, and hand-correcting the trees.

For the immediate purposes of getting some idea
of where ASG currently stands, we did a short
measurement (hand-scored) on 20 untrained-on
segments from the ATB chosen at random, scoring
only the first (highest-ranked) parse for each seg-
ment. The scoring consisted of marking each parse
tree node N for correctness of N in the sense that N
has the correct mother node and the correct POS.
(The parser does make an assignment of POS and
mother for every word/node, even when there is no
complete (segment-spanning) parse for the seg-
ment.) Note that correctness of all mother nodes
implies correct tree shape. With this measurement,
the percentage of correct nodes in the test set was
64%.

On 1,000 sentences from ATB3 of length 13 to
20 words, the percentage of complete parses
(phrase analyses that span the whole segment) was
72% (with no guarantee of correctness of these
parses).

Speed of ASG analysis seems good. On the
1,000 sentences mentioned above, parsing was at
the rate of 2,500 words per second (on a laptop).
This is with SGF being used in interpreted mode.
There is a compiler for SGF (compiling X.gram to
a C program) that provides about a twofold speed-
up for syntactic analysis, although the compiler is

not currently up-to-date with the latest set of opera-
tors for SGF.

 For the morpholexical processing part of
analysis, the rate was 10,000 words per second.
This includes look-up and morphology in BAMA,
and look-up in Ar.lx – the complete morpholexical
process.

7 Related Work

Surprisingly little information is available regard-
ing existing Arabic parsers and their performance,
though some commercial parsers must exist. Until
very recently, the focus of published research for
Arabic NLP has been on low-level forms of proc-
essing, including morphological analysis, part-of-
speech tagging, automatic diacriticization, and
named entity transliteration; and frequently the
term “ parsing” in the context of Semitic languages
refers to morphological and not syntactic parsing.

One symbolic approach to parsing Arabic (Oth-
man et al., 2003, 2004) uses a unification-based
grammar formalism and a chart parser imple-
mented in Prolog. Information in the lexicon on
“ subject rationality” and “ object rationality” is
combined with “ rationality” features on head
nouns and noun phrases to eliminate some of the
choices proposed by the morphological analyzer.
No information is provided regarding the coverage
of the grammar or the performance of the parser.

More performance data is available for two re-
lated statistical parsers trained on Arabic treebank
data. Bikel's (2004) implementation of the Collins
(2003) parser, trained on the Arabic TreeBank 1
(ATB1), reached recall/precision = 75.4/76.0 on
sentences of 40 words or less and 72.5/73.4 on all
sentences. Kulick et al. (2006) used the Bikel
parser on a revised version of the ATB1 with re-
sults comparable to Bikel, and then on ATB3,
where initial performance dropped slightly. A
number of successive improvements allowed the
parser to achieve recall/precision = 78.14/80.26 on
sentences of 40 words or less and 73.61/75.64 on
all sentences. The two most substantial improve-
ments were obtained by changing the handling of
punctuation and choosing a tagset that preserves a
bit more information than the severely reduced one
distributed with the ATB segments.

Other statistical parsers that have been used with
Arabic include one trained on a segment of the
Prague Arabic Dependency TreeBank (!"#$% et al.,

87

2004) and then used to assist in the annotation of
the remainder, but little seems to be published
about its performance. The Stanford Parser has
been used with Arabic (http://nlp.stanford.
edu/downloads/ lex-parser.shtml), but no specific
performance information could be found. It is
based on the ideas that there are advantages in fac-
toring out the phrase structure tree and the lexical
dependency tree models and estimating them sepa-
rately, and that significant improvements can be
achieved without including any lexical dependency
information by adding a few linguistically moti-
vated annotations to phrase structure tree models
(Klein and Manning, 2002, 2003).

Finally Chiang et al. (2006) used both Bikel's
(2002) and Chiang's (2000) parsers to develop dif-
ferent approaches to parsing text in Levantine Ara-
bic based on the Arabic Treebank data.

Even less information was found for parsing of
other Semitic Languages (with the exception of
http://www.cs.technion.ac.il/~winter/Corpus-
Project/project-description.html) and Wintner's
(1998) discussion of Hebrew syntax form a com-
putational perspective. However, while the authors
are not very familiar with this language, known
similarities with Arabic give us reason to believe
that some of our work on ASG could be readily
reusable for Hebrew SG.

References
Daniel M. Bikel. 2002. Design of a multi-lingual, paral-

lel processing statistical parsing engine. In Proceed-
ings of International Conference on Human Lan-
guage Technology Research (HLT).

Daniel M. Bikel. 2004. On the Parameter Space of
Lexicalized Statistical Parsing Models. PhD thesis,
Department of Computer and Information Sciences,
University of Pennsylvania.

Tim Buckwalter. 2002. Arabic Morphological Analyzer
Version 1.0. Linguistic Data Consortium catalog
number LDC2002L49, ISBN 1-58563-257-0.

David Chiang. 2000. Statistical parsing with an auto-
matically-extracted tree adjoining grammar. In Pro-
ceedings of the 38th Meeting of the Association for
Computational Linguistics (ACL’00), Hong Kong,
China, 456–463.

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Sharif. 2006. Parsing Arabic Dia-
lects. In Proceedings of the 11th Conference of the

European Chapter of the Association for Computa-
tional Linguistics, Trento, Italy, 369–376.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Lin-
guistics, 29:589–637.

/"0�!"#$%*�1'"2"3�4536*�7&'3�8&590&2*�/"0�:0"idauf,
and Emanuel Beška. 2004. Prague Arabic Depend-
ency Treebank: Development in Data and Tools. In
Proceedings of NEMLAR 2004.

/"0�!"#$%�&'�"()�+,,-)� Prague Dependency Treebank
Version 2.0. Linguistic Data Consortium catalog
number LDC2006T01, ISBN 1-58563-370-4.

Seth Kulick, Ryan Gabbard, and Mitchell Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Im-
;3<=&5&0'>)� �?0�!"#$%�/)�"0@�A$=3&*�/)�B&@>).C� Pro-
ceedings of the TLT 2006, pp. 31-42. Institute of
Formal and Applied Linguistics, Prague, Czech Re-
public.

Dan Klein and Christopher D. Manning. 2002. Fast Ex-
act Inference with a Factored Model for Natural Lan-
guage Parsing. In Advances in Neural Information
Processing Systems 15 (NIPS 2002).

Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. In Proceedings of the 41st
Meeting of the Association for Computational Lin-
guistics.

Michael C. McCord. 1980. Slot Grammars. Computa-
tional Linguistics, 6:31-43.

Michael C. McCord. 1993. Heuristics for Broad-
Coverage Natural Language Parsing. In Proceedings
of the ARPA Human Language Technology Work-
shop. Morgan-Kaufmann, 127-132.

Michael C. McCord. 2006. A Formal System for Slot
Grammar. Technical Report RC 23976, IBM T.J.
Watson Research Center.

E Othman, K Shaalan, A Rafea. 2003. A Chart Parser
for Analyzing Modern Standard Arabic Sentence. In
Proceedings of the MT Summit IX Workshop on Ma-
chine Translation.

E Othman, K Shaalan, and A Rafea. 2004. Towards
Resolving Ambiguity in Understanding Arabic Sen-
tences. In Proceedings of NEMLAR 2004.

Shuly Wintner. 1998. Towards a linguistically moti-
vated computational grammar for Hebrew. In Pro-
ceedings of the ACL-98 Workshop on Computational
Approaches to Semitic Languages, 82-88.

88

