Implementation of the Arabic Numerals and their Syntax in GF

Ali Dada
SAP Research CEC
Blumenbergplatz 9
9000 St. Gallen, Switzerland

ali.dada@sap.com

Abstract

The numeral system of Arabic is rich in its
morphosyntactic variety yet suffers from the
lack of a good computational resource that
describes it in a reusable way. This implies
that applications that require the use of rules
of the Arabic numeral system have to either
reimplement them each time, which implies
wasted resources, or use simplified, impre-
cise rules that result in low quality appli-
cations. A solution has been devised with
Grammatical Framework (GF) to use lan-
guage constructs and grammars as libraries
that can be written once and reused in vari-
ous applications. In this paper, we describe
our implementation of the Arabic numeral
system, as an example of a bigger imple-
mentation of a grammar library for Arabic.
We show that users can reuse our system
by accessing a simple language-independent
API rule.

1 Introduction

1.1 Problem

Language technology and software localization con-
sume a significant share of many companies’ time
and work. Translating an operating system or an ap-
plication to different languages involves, in the tra-
ditional approach, translating out-of-context strings
into different languages. This requires a language
expert for each new language, and will still in-
volve language-related problems because of the dif-
ficulty in translating out-of-context strings and tak-

9

ing care of morphological and syntactic variations at
the same time. We illustrate this with an example.
A mail reader application wants to display messages
like

You have 1 new message

2 new messages

3 new messages
100 new messages

You have
You have
You have

If these are to be translated into Arabic, special mor-
phological and syntactic considerations should be
made, which include inflecting “message” in num-
ber:

1 message 5\.&) risalatun
2 messages QE.\’L&; risalatani
(3-10) messages J;sz rasaila

(11-99) messages 5\.&) risalatan
x100 messages ijl.&; risalatin

So the word “messages” is translated into dif-
ferent words in Arabic, depending on the numeral
counting it. Counted nouns are an extreme example
of how varied case inflection can be: The case of the
singular and the dual is determined by their syntac-
tic function (nominative in the example above). This
is not the case for plurals, which assume the geni-
tive case from three to ten (_J5 L5 is diptote, thus the
{>29 marker), then accusative (singular) from eleven
to nighty-nine, and genitive again for plurals that are
multiples of hundred. This is not to mention noun-
adjective agreement which should be taken care of
when translating “new messages” into Arabic.

The aforementioned details should not be the re-
sponsibility of the application programmer, and hav-

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 9-16,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics

ing translators do this work over and over again for
each application can be costly and lead to repeated
work and/or poor results.

1.2 Solution and Contributions

We reviewed in other works (Dada and Ranta, 2007)
an approach that addresses problems in language
technology similar but not limited to the above. We
applied this approach to Arabic, thus developing a
resource grammar for Arabic in which we imple-
ment rules that cover the orthography, morphology,
and syntax. In short, this approach is based on de-
veloping libraries of natural language constructs and
rules, which can be used by an application program-
mer who is not knowledgeable in a specific lan-
guage. The core programming language is Gram-
matical Framework (GF) (Ranta, 2004). The lan-
guage library, called a resource grammar (Khegai
and Ranta, 2004) and comprising the linguistic rules,
can be reused in applications through an Application
Programming Interface (API) by programmers that
are unaware of the details of the specific natural lan-
guage. Such a programmer uses a resource gram-
mar assuming it will take care of morphological and
syntactic rules. So far, we have implemented signif-
icant parts of the Arabic morphology, syntax, ortho-
graphic rules, and provided a sample lexicon of 300
words based on the Swadesh list (Hymes, 1960).

In this paper, we only describe part of the work,
namely the numeral system of Arabic and its syntax.
In the next section we elaborate on the approach, the
programming language that implements it, and on
Resource Grammars.

2 GF and the Resource Library

GF is a special-purpose functional programming
language for defining grammars of (formal or natu-
ral) languages. A common API and resource gram-
mars for various natural languages accompany GF
with a purpose similar to that of libraries in gen-
eral programming languages: implementing pieces
of code that can be reused by the application pro-
grammer.

GF makes a distinction between abstract and con-
crete syntaxes. The common API specifies a set of
syntactic rules that are language independent (ab-
stract syntax), and the resource grammar imple-

10

ments each rule according to the particular rules of
the language (concrete syntax). This latter involves
word order, agreement, case inflection, etc. This dis-
tinction can abstract over language-dependent fea-
tures and enables an application programmer to
write sentences in a language only by describing
their abstract syntax trees or by translating them
from another language, preferably in a limited do-
main. The abstract representation would then act as
interlingua.

3 The Numerals

We give here an explanation of our treatment of
the Arabic number system, namely the numerals
and their counted nouns. Our implementation is
based on the work done by Hammarstréom and Ranta
(2004) in defining the cardinal numerals in GF. We
will gradually give the governing grammar rules
along with their our formal description in GF.

The numbers from one to nineteen in Arabic have
two forms, a masculine form and a feminine one,
so in general we will take gender to be one of the
inflecting attributes of numbers. Which of these two
forms to use depends on the counted noun and the
counting number:

e The numerals 1 and 2 show gender agreement
with the counted noun (their grammatical role
is an adjective modifying this noun).

e Numerals 3-10 show gender polarity with the
counted noun, so a masculine noun is counted
with a number in its feminine form and vice
versa, e.g. d\o S SN (three [+FEM] men
[+MASC]) but slai &M (three [+MASC]
women [+FEM)).

e Numbers 11 and 12 have two constituents
which show gender agreement with each other
and with the counted noun, e.g. Mo , £& o
(eleven [+MASC] men [+MASC)).

e Numbers 13-19 show gender polarity between
their first constituent and the counted noun.
e Numbers further on, except those ending in 01
and 02, show no gender distinction.
Numerals dictate the number of the counted noun
is a way different to what is the case in other lan-
guages:

e Numeral One: The noun is in the singular form.

e Numeral Two: The noun is in the dual form.

e Numerals 3—1(): The noun is in the plural form,
e.g. J& , &> (three men [+PLUR]).

e Numerals > 10: The noun is in singular form
again, e.g. >l> 50 y}U (thirty men [+SING]).

The numbers inflect also in case, so in the gen-
eral case the number can have different forms for
the three cases: nominative, accusative, and geni-
tive. But again, as with gender, this will depend on
the particular range of numerals:

e Numeral 1: full case distinction (it is an adjec-
tive)

e Number 2: usually the noun in dual is used
alone, and if the number 2 is specified then it
is usually only for emphasis. In this case it’s
an adjective in the dual form, thus it has two
cases: nominative and oblique, e.g. H\S! oI 9
[+NOM] and (31 -, g [+OBL].

e Numerals 3-10 : full case distinction for the
numbers; the counted noun is always genitive,
e.g. J L (five [+NOM] books [+GEN]),
S L (five [+ACC] books [+GEN]),
J L. (five [+GEN] books [+GEN]).

° Numerals 11 and 13-19: only accusative, same
as their counted noun, e.g. 3 Fas Ay J‘
(fourteen [+ACC] pens [+ACC]).

e 12: same as 2, but the counted noun is always
accusative

e The tens (20, 30, 90): nominative and
oblique cases, the counted noun is accusative

e multiples of 100 or 1000: the counted noun is
genitive.

e composites: the case distinction of the number
is the same as each of its constituent parts, and
the case of the counted noun is determined by
the rule of the last part of the compound con-
struction. For example, 23: the three follows
the rule of 3-10, the 20 follows the rule of the
tens, and the counted noun is accusative as in
the rule of the tens, the last part of the construc-
tion twenty three (three and twenty in Arabic).

The rules above only treat the indefinite state of
the numerals, since the numerals in the definite state
will be an adjective modifying the noun. The case

11

of such a noun will not then follow the rules above
but will assume the case dictated by its syntactic role
in the sentence. We do however give below the type
of the numerals inflection table including all the at-
tributes that a number can inflect in: gender, state,
and case.

lincat Numeral = {
s : Gender => State => Case => Str ;
n : Size

b

param Size =

One | Two | ThreeTen | Teen
| NonTeen | Hundreds | None ;
param
Gender = Masc | Fem ;
State = Def | Indef | Const ;
Case = Nom | Acc | Gen ;

The lincat (linearize category) statement
defines the type of a numeral in Arabic. It states that
in GF, an Arabic numeral is a record that comprises
two fields. The first is a string s which is in this
case an inflection table specifying that a numeral is
inflected in gender, state, and case. The => operator
is the table operator in GF, so having three inputs to
the table means that a Numeral is inflected in these
three attributes. The three inflectional attributes are
defined as parameters that take one of predefined
values: gender can be masculine or feminine, case
can be nominative, accusative, or genitive, and state
can be definite with al, definite with a genitive con-
struction (4;\.@‘) or indefinite. The second field is n
of type Size, which is also defined as a parameter
with several possible values. These values specify
which range of numbers does the numeral belong to.
This is needed to be able to apply the rules above
properly at all stages, including the formation of the
number and the formation of the noun phrase from
the number and the counted noun.

As mentioned earlier, GF differentiates between
abstract and concrete syntaxes, and this differentia-
tion also applies for the numeral system. So first an
abstract syntax defines how numbers are formed in
a language-independent way. The numbers are de-
fined in a way that draws similarities found across
languages in the formation of compound numbers.
We linearize the rules into Arabic thus making use
of this division but making distinctions because of
the special rules that govern numerals in Arabic. A
typical example of such numbers is the special treat-

ment that numbers ending in 2 have in Arabic due to
the notion of the dual.

We give here the rules for the first division of
numbers and show how we implement them for Ara-
bic. The API specifies the following categories and
rules for numbers less than ten:

cat
Digit ; -— 2..9
Subl0 ; —— 1..9
fun
n2, n3, n4, n5, n6, n7, n8, n9 : Digit ;
pot01 Subl0 ; -— 1
pot0 : Digit -> SublO ; —d + 1

So the number 1 is treated separately from the re-
maining digits. We want to preserve a difference in
our Arabic implementation between n2 and the re-
maining digits because of the different way the digit
2 combines in compound numbers later on. This is
the motivation between the division seen in Size
between Two and ThreeTen.

Following is the type of the categories above in
Arabic (the concrete syntax):
lincat Digit = {

s : DForm => Gender => State => Case => Str;

n : Size

b

lincat Subl0 = {
s : DForm => Gender => State => Case => Str;
n : Size

}og

param DForm = unit | ten ;

The inflection table shows what we discussed earlier,
that Arabic numbers get in the general case inflected
in gender, state, and case. The DForm is used to
calculate both the digit and its multiple of ten.

We write functions that form the inflection tables
of the digits: one function for numeral 2 (num2, not
shown here) and one function for the rest of the dig-
its, including 1 (num1_10, shown below). !

oper numl_10 Str -=> { s : DForm => Gender

=> State => Case => Str } = \xams -—>
let xamsa = xams + "ap" in {
s= table {
unit => table {
Masc => \\s,c => (sing xams) ! s ! c;

'Our grammar files are in unicode, but the example codes
shown here are written using the Buckwalter (2003) translitera-
tion with a few changes that suit our needs. We note our use of
‘c’ to denote the ayn.

12

Fem => \\s,c => Al ! s + xamsa
+ declsg ! s ! ¢
één => _,s,c => Al ! s + xams +
m_pl ! Indef ! c
}
i

Note the following GF syntax notations: The key-
word oper defines a GF function. An oper judg-
ment includes the name of the defined operation
(e.g. numl_10 in the example above), its type
(e.g. Str -> { s DForm => Gender
=> State => Case => Str }), and an ex-
pression defining it (everything after the = opera-
tor). As for the syntax of the defining expression,
notice the lambda abstraction form \x -> t of the
function. Inflection tables are either specified by the
table keyword or using the shorthand \\ ... =>
notation. Finally, + is the character concatenation
operator and ! is the table selection operator.

The numl_10 function takes a string which can
be any of the stems of the numerals from one to
ten excluding two, e.g. hams. From this stem, and
using helping functions from the nominal morphol-
ogy modules, we build the inflection table of the nu-
meral. For example, for the case where DForm is
unit and the Gender is feminine (e.g. hamsah),
the actual numeral string would be the concatena-
tion of a possible definite marker (al), the stem, and
a suffix determined by the state and the case of the
numeral, s and c respectively. The helping function
that determines if the definite marker is needed is the
following:

Al State => Str =
table {
Def => "Al";

=> nn

}i

The second helping function defines the suffixes
that attach to singular or broken plurals of the first
(strong) declension of Arabic nominal words (Retso,
1984). It calculates, given the state of the word and
its case, what its suffix will be. Note that N, F, and
K are the nominative, accusative, and genitive nuna-
tion diacritics.

declsg : State => Case => Str =
table {
Indef =>
table {
Nom => "N";
Acc => "F";

Gen => "K"
}i
o=
table {
Nom => "u";
Acc => "a";
Gen => "i"

As expected, only words with indefinite state take
double diacritics (nunation), where as the rest (al-
definite or construct-definite words) take simple di-
acritics. The remaining helping functions will not be
all explained here as they follow similar logic.

The numl_10 and num2 produce only the inflec-
tion tables (the s field of the digit record). We sim-
ply add the correct Size parameter to each digit as
follows:

oper num3_10 Str —> { s DForm => Gender

=> State => Case => Str ; n Size } =
\xams ->
numl_10 xams *x { n = ThreeTen } ;

lin n2 = num2 ** {n = Two };

lin n3 = num3_10 "valAv";

lin n4 = num3_10 ">arbac";

lin n5 = num3_10 "xams";

lin n6 = num3_10 "sit™";

lin n7 = num3_10 "sabc";

lin n8 = num3_10 "vamAnI";

lin n9 = num3_10 "tisc";

lin pot0l = numl_10 "wAHid" xx { n = One }
lin pot0 d = d ;

The last function in the linearization shown
above, pot0, is used to promote a Digit into a
Subl0 in order to use it later on as any numeral
less that ten. This is the way the API specifies dif-
ferent numerals, dividing them into categories based
on the decimal system. We give here the rest of the
API categories and their linearization in Arabic:

cat
Subl100 ; -— 1..99
Sub1000 ; -— 1..999
Sub1000000 ; —--= 1..999999

lincat Subl00 = {
s Gender => State => Case => Str ;
n Size
b
We will now show only a few implementation ex-
amples of the rules that specify the formation of the
Sub100 category. The rest of the rules for this and

13

other categories don’t show any different logic and
will not be detailed here. The first rule we give is for
the special cases of numeral 11:

fun

potlll Subl00 ;

lin potlll

s = \\g/d,_
case g of {
Masc => Al !
Fem => Al !
}i

{
=>

d + ">aHada" ++ teen !
d + "<iHdaY" ++ teen !

Masc;
Fem

NonTeen
}i

oper teen Gender => Str

table {
Masc => "caS$ara";
Fem => "caSrapa"

}i

The implementation shows how the qualitative
rules stated at the beginning are described formally.
The inflection table doesn’t give different forms for
the three cases, and the accusative is used whatever
the context case is. Both parts of the construction
show gender agreement.

The numbers 12-19 have a common rule in the
API but we should differentiate in the Arabic lin-
earization between 12 and 13-19 because of the spe-
cial status of the dual in Arabic and the different
rules that these numbers assume in Arabic (see rules

above).
i fun
potltol9 Digit -> Subl00 ; -- 10 + d
lin potltol9 dig = {
s = \\g,d,c =>
case dig.n of {
Two => Al ! d + num2.s ! unit ! g
! Const ! ¢ ++ teen ! g ;
_ => dig.s ! unit ! g ! Const ! Acc
++ teen ! (genPolarity ! g)
}i
n =
case dig.n of {
Two => NonTeen;
_ => Teen
}
}i
oper
genPolarity Gender => Gender =
table {

Masc => Fem;
Fem => Masc
}i
The pot 1t o019 function takes a Digit as argu-
ment. In our implementation we take cases for the

Size of the digit. When the Size is Two, i.e. the
number will be 12, we apply the rules for number
12 as given in the beginning: gender agreement be-
tween the two constituents, the first constituent is
inflected in case (it is basically number 2 in the
Const state). Otherwise (when the digit size is
ThreeTen), we apply the rules of numbers 13 - 19:
gender polarity between the two constituents and the
first constituent is the digit inflected for the construct
state and accusative case. The second constituent for
all the numbers 11-19 is always accusative as shown
in the t een helping function before.

The rest of the rules for forming numbers will
not be detailed here. Instead we will explain how
all these numbers will combine with nouns to form
noun phrases. The different number ranges as de-
fined by the Size parameter will be now used ex-
tensively in applying the proper rules. Following is
the rule that takes that takes a Determiner (which
can, among others, be a numeral) and a common
noun to give a noun phrase.

fun

DetCN : Det -=> CN -> NP ;

The rule above has the same type in all languages
since it’s part of the language-independent API (ab-
stract syntax). The advantage of this is that a user
of our system can access the Arabic numerals at this
high level of abstraction, without being knowledge-
able about the details of our implementation.

When determiners combine with common nouns
in the general case, it will make a difference whether
or not the determiner was a numeral, and if it were
then the range of the numeral will probably deter-
mine the case of the noun in the resulting NP. Thus
the type of the determiner category should include a
Size field which is taken directly from the size of
the number if that determiner is a numeral:

lincat Det = {

s : Species => Gender => Case => Str ;
d : State;
n : Size

}og

param Species = NoHum | Hum ;

If the determiner is not a numeral, then this will
be denoted by n =
The first determiner-noun modification we will
introduce is the determiner’s gender. If we don’t

None.

14

consider numerals, then a determiner’s gender is di-
rectly deduced from that of the noun. But, as we saw
in the rules for Arabic counted nouns, if the numeral
was in the range 3-10 or 13-19 (Sizeis ThreeTen
or Teen), then the numeral will show gender po-
larity instead of agreement. The rest of the cases
continue to show agreement. This is described in
detGender:

oper
detGender : Gender -> Size -> Gender =
\g,s —>
case s of {
ThreeTen | Teen => genPolarity ! g;
_=>g9

}i

The arguments are the gender of the noun and the
size of the determiner. The correct gender of the de-
terminer is calculated after taking cases of the Size.

Again, if we were not to consider numerals, the
number in which we should inflect the common
noun (singular, dual, or plural) would be directly de-
termined by the number of the determiner. Now with
the consideration of numerals and their special rules
that dictate the number of the counted noun, we have
to specify a correcting function:

\s —>

oper sizeToNumber : Size -> Number =

case s of {
ThreeTen |
Two => DI1;
_ => 359
b

None => P1l;

param Number = Sg | D1 | P1;

This function converts from the Size of the de-
terminer to a number in which the noun should be
inflected in. As the rules of Arabic numerals spec-
ify, only the 3-10 numeral range dictate a noun in
the plural form. Apart from the dual, the remaining
numeral ranges take a singular noun.

The last way that a numeral will affect the noun it
counts is by specifying its case as we have already
seen in the rules. Without considering numerals,
the case of the noun would always be determined
by its grammatical role in the sentence. Again, this
changes with the introduction of numerals. We write
now a function that takes the case from the sentence,
along with the size and state of the determiner, and
modifies the case if required:

oper
nounCase : Case —-> Size —-> State —-> Case
\c,size,s —>

case <size,s> of {
<Teen,_> => Acc;
<NonTeen,_> => Acc;

<ThreeTen,_> => Gen;
<Hundreds,_> => Gen;
<_,Const> => Gen;

=> C

i

Numbers from 11 to 99 dictate the accusative case
on the nouns they count, numbers from 3 to 10
and multiples of hundred dictate the genitive case
of the nouns they count, and the remaining numbers
(1 and 2) don’t change the case determined by the
context. The remaining case of State = Const
takes care of the idafah genitive constructions.

Thus, after applying all the “correction” functions
above, we get the following implementation of the
noun determination rule:

lin DetCN det cn =
let number = sizeToNumber det.n in {

s = \\c =>
det.s ! cn.h ! (detGender cn.g det.n) ! c
++ cn.s ! number !

words and gives all their possible morphological in-
terpretations, each solution having a unique lemma
ID, different word constituents, the part-of-speech,
and English glosses.

Other works that also use functional languages for
the treatment of Arabic include a morphology sys-
tem by SmrZ (in prep.). This work is based on Func-
tional Morphology (Forsberg and Ranta, 2004), a
methodology for building morphological systems in
the Haskell programming language. Our treatment
of Arabic shares similarities with that of Functional
Morphology. Both approaches use typed languages,
making use of finite algebraic datatypes to define
linguistic categories. Both languages are functional,
so the approaches use functions to realize linguis-
tic abstractions. A large-scale implementation of
this approach, in which a typed functional program-
ming language is used to build a morphology, is
Huet’s Sanskrit dictionary and morphological sys-

(nounState det.d number)tem (Huet, 2006) upon which the Zen computational

! (nounCase c det.n det.d); linguistics toolkit is based (Huet, 2005).

a =

}i

agrP3 cn.h cn.g number

oper agrP3 : Species -> Gender -> Number

—> PerGenNum=
\hl g,n —>
case <h,n> of {
<NoHum,P1> => Per3 Fem Sg;
=> Per3 g n

}i
The agrP3 helping function tests for the case
when the species and number are nonhuman and
plural. This case is treated in agreement as the fem-
inine singular.

4 Related Work

A large-scale implementation of the Arabic mor-
phological system is the Xerox Arabic Morphologi-
cal Analyzer and Generator (Beesley and Karttunen,
2000; Beesley, 2001). This system is developed us-
ing only the Xerox Finite State Technology tools
(Beesley and Karttunen, 2003) from which an Ara-
bic Finite State Lexical Transducer is written. A re-
search version is available for online testing, and an
expanded and updated version can be obtained with
a commercial license. Another notable computa-
tional model of the Arabic morphology is Tim Buck-
walter’s Arabic Morphological Analyzer (Buckwal-
ter, 2004b,a). Buckwalter’s analyzer parses Arabic

15

Of the available works in Arabic syntax, we men-
tion El-Shishiny (1990) who developed a formal de-
scription of Arabic syntax in Definite Clause Gram-
mar. We also make note of the work in Othman
et al. (2003), where the authors describe a parser
they wrote in Prolog to parse and disambiguate the
Arabic sentence. Shaalan (2005) builds on this work
to develop a syntax-based grammar checker for Ara-
bic called Arabic GramCheck.

5 Discussion

Our implementation of the Arabic numerals covers
all natural numbers in the range 1-999,999. This
was accomplished by implementing only a few func-
tions, thanks to the repetitive way in which numer-
als are composed to form larger numerals. As for
performance, Arabic grammars are slower to com-
pile than comparable GF grammars of other lan-
guages, partly because of the additional complexity
of Arabic and partly because of the general way in
which our lexicon is specified. Our implementation
stresses more on elegance and generality rather than
efficiency, thus more work needs to be done on the
latter.

6 Conclusion

We discussed in this paper the details of implement-
ing the Arabic numeral system in GF. We motivated
our work by taking an example that shows the value
of having the necessary language rules implemented
in a reusable fashion. We built up our implementa-
tion towards a single language-independent rule that
a user can call to access our system. We show how
the grammar formalism we use in our implementa-
tion parallels the way linguists think.

Acknowledgments

Most of the work was done at Chalmers Univer-
sity of Technology. Thanks to Prof. Aarne Ranta
for supervising this work and providing constant
help. Also thanks to Bjorn Bringert, Harald Ham-
marstrom, and Otakar SmrZz for giving valuable
comments.

References

Kenneth Beesley. Finite-State Morphological Anal-
ysis and Generation of Arabic at Xerox Research:
Status and Plans in 2001. In Workshop Proceed-
ings on Arabic Language Processing: Status and
Prospects, pages 1-8, Toulouse, 2001. ACL.

Kenneth Beesley and Lauri Karttunen. Finite-state
non-concatenative morphotactics. In Proceedings
of the Fifth Workshop of the ACL SIG in Compu-
tational Phonology, pages 1-12, 2000.

Kenneth R. Beesley and Lauri Karttunen. Finite
State Morphology. CSLI Studies in Computa-
tional Linguistics. CSLI Publications, Stanford,
California, 2003.

Tim Buckwalter. Arabic transliteration, 2003. http:

//www.gamus.org/transliteration.htm.

Tim Buckwalter. Issues in Arabic Orthography
and Morphology Analysis. In Proceedings of
the COLING 2004 Workshop on Computational
Approaches to Arabic Script-based Languages,
pages 31-34, 2004a.

Tim Buckwalter. Buckwalter Arabic Morphologi-
cal Analyzer Version 2.0. LDC catalog number
LDC2004L02, ISBN 1-58563-324-0, 2004b.

Ali Dada and Aarne Ranta. Implementing an Open
Source Arabic Resource Grammar in GF. In

16

Mustafa Mughazy, editor, Perspectives on Arabic
Linguistics, volume XX. John Benjamins, 2007.

Hisham EI-Shishiny. A formal description of Arabic
syntax in definite clause grammar. In Proceed-
ings of the 13th Conference on Computational
Linguistics, pages 345-347. ACL, 1990.

Markus Forsberg and Aarne Ranta. Functional Mor-
phology. In Proceedings of the Ninth ACM SIG-
PLAN International Conference on Functional
Programming, ICFP 2004, pages 213-223. ACM
Press, 2004.

Harald Hammarstrom and Aarne Ranta. Cardinal
Numerals Revisited in GF. In Workshop on Nu-
merals in the World’s Languages, Leipzig, Ger-
many, 2004. Dept. of Linguistics Max Planck In-
stitute for Evolutionary Anthropology.

Gérard Huet. A Functional Toolkit for Morphologi-
cal and Phonological Processing, Application to a

Sanskrit Tagger. Journal of Functional Program-
ming, 15:573-614, 2005.

Gérard Huet. Sanskrit Site, 2006.

sanskrit.inria.fr/.

http://

D. H. Hymes. Lexicostatistics so far. Current An-
thropology, 1:3-44, 1960.

Janna Khegai and Aarne Ranta. Building and Using
a Russian Resource Grammar in GF. In Intelli-
gent Text Processing and Computational Linguis-
tics (CICLing-2004), pages 38—41, Korea, 2004.

E. Othman, K. Shaalan, and A. Rafea. A Chart
Parser for Analyzing Modern Standard Arabic
Sentence. In Proceedings of the MT Summit
IX Workshop on Machine Translation for Semitic
Languages, pages 3744, 2003.

Aarne Ranta. Grammatical Framework: A Type-
theoretical Grammar Formalism. Journal of
Functional Programming, 14:145-189, 2004.

Jan Retso. State, Determination and Definiteness in
Arabic: A Reconsideration. Orientalia Suecana,
33-35:341-346, 1984.

Khaled F. Shaalan. Arabic GramCheck: a grammar
checker for Arabic: Research Articles. Software -
Pracice and Experience, 35(7):643—665, 2005.

Otakar Smrz. Functional Arabic Morphology. For-
mal System and Implementation. PhD thesis,
Charles University in Prague, in prep.

