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sentence? Conversely, would knowing the correct
Abstract translation for the DTPs improve the system’s
translation for the rest of the sentence?
This paper studies the impact that difficult-to-  In this work, we model difficulty as a meas-
translate source-language phrases might haueement with respect to a particular MT system.
on the machine translation process. We formWe further assume that the degree of difficultyof
late the notion of difficulty as a measurableohrase is directly correlated with the quality loé¢ t
guantity; we show that a classifier can bdéranslation produced by the MT system, which can
trained to predict whether a phrase might bkee approximated using an automatic evaluation
difficult to translate; and we develop a framemetric, such as BLEU (Papineni et al., 2002). Us-
work that makes use of the classifier and exng this formulation of difficulty, we build a
ternal resources (such as human translators)ftamework that augments an off-the-shelf phrase-
improve the overall translation quality.based MT system with a DTP classifier that we
Through experimental work, we verify that bydeveloped. We explore the three questions in a set
isolating difficult-to-translate phrases andof experiments, using the framework as a testbed.
processing them as special cases, their nega- In the first experiment, we verify that our pro-
tive impact on the translation of the rest of thgosed difficulty measurement is sensible. The sec-
sentences can be reduced. ond experiment evaluates the classifier's accuracy
in predicting whether a source phrase is a DTP.
For that, we train a binary SVM classifier via a
1 Introduction series of lexical and system dependent features.
The third is an oracle study in which the DTPs are
For translators, not all source sentences areetteaperfectly identified and human translations are ob-
equal. Some are straight-forward enough to hgined. These human-translated phrases are then
automatically translated by_ a machine, while othe{gsed to constrain the MT system as it translates th
may stump even professional human translatoligst of the sentence. We evaluate the translation
Similarly, within a single sentence there may bguality of the entire sentence and also the phéts t
some phrases that are more difficult to translaige not translated by humans. Finally, the frame-
than others. The focus of this paper is on identifyyork is evaluated as a whole. Results from our
ing Difficult-to-Translate Phrase¢DTPs) within a experiments suggest that improved handling of
source sentence and determining their impact @irps will have a positive impact the overall MT
the translation process. We investigate three quesistput quality. Moreover, we find the SVM-
tions: (1) how should we formalize the notion ofrained DTP classifier to have a promising rate of
difficulty as a measurable quantity over an appregccuracy, and that the incorporation of DTP infor-
priately defined phrasal unit? (2) To what level ofyation can improve the outputs of the underlying
accuracy can we automatically identify DTPs? (3T system. Specifically, we achieve an improve-
To what extent do DTPs affect an MT system'ment of translation quality for non-difficult seg-
performance on other (not-as-difficult) parts of th
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ments of a sentence when the DTPs are translatgddssifier, the score can be in various format$suc

by humans. as class probablity, confidence measure, etc. In
o our SVM based classifier, the score is the distance
2 Motivation from the margin.

There are several reasons for investigating ways to @i az... & ... ak... an
identify DTPs. For instance, it can help to find

better training examples in an active learning
framework; it can be used to coordinate outputs of
multiple translation systems; or it can be used as
means of error analysis for MT system

development. It can also be used as a pre-
processing step, an alternative to post-editingr F

many languages, MT output requires post-
translation editing that can be cumbersome task for

Phrase Extraction

low quality outputs, long sentences, complicated A A
structures and idioms. Pre-translation might be 1 1= = et
viewed as a kind of preventive medicine; that is, a Phrase Difficulty

system might produce an overall better output if it
were not thwarted by some small portion of the
input. By identifying DTPs and passing those cases a a ﬁ a
off to an expensive translation resource (e.g. 1d2.4. 6 ... Gkel.. En
humans) first, we might avoid problems further !
down the MT pipeline. Moreover, pre-translation Human
might not always have to be performed by humans. Translation
What is considered difficult for one system might
not be difficult for another system; thus, pre- €j... em|
translation might also be conducted using multiple i

MT systems.

Classifier

MT System
3 Our Approach I

Figure 1 presents the overall dataflow of our €1 92-----Ep

system. The input is a source sentenae.(am), . . ; ; }
from which DTP candidates are proposed. Becau Figure 1: An overview of our translation frame

the DTPs will have to be translated by humans as

independent units, we limit the set of possible The chosen phrase;(a. a) is translated by a
phrases to be syntactically meaningful unitS, ,man .. en). We cbnstrain the underlying

Therefore, the framework requires a sourc Jhrase-based MT system (Koehn, 2088)hat its
language syntactic parser or chunker. In this pap coding of the source sentence must contain the

we parse the source sentence with an off-the-sh man translation for the DTP. In the following

syntactic parsefBikel, 2002). From the parse trees bsections, we describe how we develop the DTP

produced for the source sentence, every constitu Ussifier with machine learnina techniques and
whose string span is between 25% and 75% of t% . 'Ng q .
full sentence length is considered a DTP candidatﬁ%w we constrain the underlying MT system with

Additionally we have a tree node depth constrain uman translated DTPs.

that requires the constituent to be at least twog 4 Training the DTP Classifier

levels above the tree’s yield and two levels below

the root. These two constraints ensure that ﬂ@ven a phrase in the source |anguage’ the DTP

extracted phrases have balanced lengths. classifier extracts a set of features from it arel p
We apply the classifier on each candidate anglcts whether it igifficult or not based on its fea-

select the one labeled as difficult with the highesure values. We use an SVM classsifier in this work.

classification score. Depending on the underlying/e train the SVM-Light implementation of the
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algorithm (Joachims 1999). To train the classjfiematches with references, assigning a score of zero
we need to tackle two challenges. First, we needto an entire phrase if no higher-ordered n-gram
develop some appropriate training data becauswtches were found against the references. How-
there is no corpus with annotated DTPs. Seconelver, some phrases with a score of 0 might have
we need to determine a set of predictive featuresore matches in the lower-ordered n-grams than

for the classifier. other phrases (and thus ought to be considered
“easier”). A comparison of the relative changes in
Development of the Gold Standard BLEU scores while holding out a phrase from the

) ) o ] COrpus gives us a more sensitive measurement than
Unlike the typical SVM training scenario, labeledyjrectly computing BLEU for each phrase.
training examples of DTPs do not exist. Manual

creation of such data requires deep understandipgatures
of the linguistics differences of source and target
languages and also deep knowledge about the NBy analyzing the training corpus, we have found
system and its training data. Such resources d@ features that are indicative of DTPs. Some
not accessible to us. Instead, we construct thee ghrase-level feature values are computed as an av-
standard automatically. We make the strong asrage of the feature values of the individual words
sumption that difficulty is directly correlated toThe following first four features use some prob-
translation quality and that translation qualityn caabilities that are collected from a parallel data a
be approximately measured by automatic metriagord alignments. Such a resource does not exist at
such as BLEU. We have two resource requiréhe time of testing. Instead we use the history of
ments — a sentence-aligned parallel corpus (diffeihe source words (estimated from the large parallel
ent from the data used to train the underlying M€orpus) to predict the feature value.
system), and a syntactic parser for the source land) Average probability of word alignment
guage. The procedure for creating the gold staorossings: word alignment crossings are indicative
dard data is as follows: of word order differences and generally structural
1. Each source sentence is parsed. difference across two languages. We collect word
2. Phrase translations are extracted from the palgnment crossing statistics from the training-cor
allel corpus. Specifically, we generate wordpus to estimate the crossing probability for each
alignments using GIZA++ (Och 2001) in bothword in a new source phrase. For example the
directions and combine them using the refinedrabic wordrhl has 67% probability of alignment
methodology (Och and Ney 2003), and thenrossing (word movement across English). These
we applied Koehn’s toolkit (2004) to extractprobabilities are then averaged into one value for
parallel phrases. We have relaxed the lengthe entire phrase.
constraints of the toolkit to ensure the extrac- (Il) Average probability of translation ambi-
tion of long phrases (as long as 16 words).  guity: words that have multiple equally-likely
3. Parallel phrases whose source parts are rteanslations contribute to translation ambiguity.
well-formed constituents are filtered out. For example a word that has 4 different transla-
4. The source phrases are translated by the undéons with similar frequencies tends to be more
lying MT system, and a baseline BLEU scoreambiguous than a word that has one dominant
is computed over this set of MT outputs. translation. We collect statistics about the lelica
5. To label each source phrase, we remove th@anslational ambiguities from the training corpus
phrase and its translation from the MT outpuand lexical translation tables and use them to pre-
and calculate the set's new BLEU score. lflict the ambiguity of each word in a new source
new-score is greater than the baseline score plirase. The score for the phrase is the average of
some threshold value (a tunable parameter), vilee scores for the individual words.
label the phrase afifficult, otherwise we label  (lll) Average probability of POS tag changes:
it asnot difficult Change of a word’'s POS tagging is an indication
Rather than directly calculating the BLEU scoref deep structural differences between the source
for each phrase, we performed the round-robiphrase and the target phrase. Using the POS tag-
procedure described in steps 4 and 5 becaugieg information for both sides of the training cor
BLEU is not reliable for short phrases. BLEU igus, we learn the probability that each source
calculated as a geometric mean over n-gramord’'s POS gets changed after the translation. To
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overcome data sparseness, we only look at the cslan indication of the level of error that is intro
lapsed version of POS tags on both sides of tleiced in the early parts of the phrase translation.
corpus. The phrase’s score is the average the indi
vidual word probabilities. 3.2 ConstrainingtheMT System

(IV) Average praobability of null alignments: _ )
In many cases null alignments of the source wordhce human translations have been obtalne(_j for
are indicative of the weakness of information abodf€ DTPs, we want the MT system to only consider
the word. This feature is similar to average ambfutput candidates that contain the human transla-
guity probability. The difference is that we uke t tions. The additional knoyvledge can be used b_y_the
probability of null alignments instead of lexicalPhrase-based system without any code modifica-
probabilities. tion. Figure 2 shows the data-flow for this process

(V-IX) Normalized number of unknown First, we append the pre-trained phrase-translation
words, content words, numbers, punctuations: table with the DTPs and their human translations
For each of these features we normalize the couth @ probability of 1.0. We also include the hu-
(e.g.. unknown words) with the length of thehan translations for the DTPs as training data for
phrase. The normalization of the features helps th€ language model to ensure that the phrase vo-
classifier to not have length preference for theabulary is familiar to the decoder and relax the
phrases. phrase distortion parameter that the decoder can

(X) Number of proper nouns; Named entities include all phrase translations with any length in
tend to create translation difficulty, due to theith€ decoding. Thus, candidates that contain the
diversity of spellings and also domain differenceduman translations for the DTPs will score higher
We use the number of proper nouns to estimate tABd be chosen by the decoder.
occurrence of the named entities in the phrase.

(XI Depth of the subtree: The feature is used as ~rm
a measure of syntactic complexity of the phrase. a1 az... @i... kst 9

For example continuous right branching of the

y

parse tree which adds to the depth of the subtree Human
can be indicative of a complex or ambiguous struc- Translation
ture that might be difficult to translate.

(XIl) Constituency type of the phrase. We
observe that the different types of constituents
have varied effects on the translations of the Pparallel
phrase. For example prepositional phrases tend to  Corpus
belong to difficult phrases.

(X111) Constituency type of the parent phrase
(XIV) Constituency types of the children
nodes of the phrase: We form a set from the chil-

dren nodes of the phrase (on the parse tree).
(XV) Length of the phrase: The feature is
based on the number of the words in the phrase.
(XVI) Proportional length of the phrase: The etez..[ei... em|.. &
proportion of the length of the phrase to the lBngtFigure 2: Human translations for the DTPs can be
of the sentence. As this proportion gets lardes, tincorporated into the MT system’s phrase table and
contextual effect on the translation of the phradanguage model.
becomes less.
(XVIl) Distancefrom the start of thesentence 4  Experiments
and: Phrases that are further away from the start of _ _ _
the sentence tend to not be translated as weliaduelhe goal of these four experiments is to gain a bet
compounding translational errors. ter understanding of the DTPs and their impact on
(XVIIl) Distance from a learned trandation the translation process. All our studies are con-
phrase: The feature measure the number of wordducted for Arabic-to-English MT. We formed a

before reaching a learned phrase. In other waordsPne-million word parallel text out of two corpora
released by the Linguistic Data Consortium: Ara-

8j ... ak=>€j ... ém /
Phrase Table/ -
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bic News Translation Text Part 1 and Arabic Eng- 4.2 Evaluation of the DTP Classifier
lish Parallel News Part 1. The majority of theadat
was used to train the underlying phrase-based M¥e now perform a local evaluation of the trained
system. We reserve 2000 sentences for develdpIP classifier for its classification accuracy. €Th
ment and experimentation. Half of these are usétgssifier is trained as an SVM using a linear ker-
for the training and evaluation of the DTP classit€l. The “gold standard” phrases from the section
fier (Sections 4.1 and 4.2); the other half is usetil are split into three groups: 2013 instances are
for translation experiments on the rest of th&sed as training data for the classifier; 100 in-
framework (Sections 4.3 and 4.4). stances are used for development (e.g., parameter
In both cases, translation phrases are extractétning and feature engineering); and 200 instances
from the sentences and assigned “gold standar@re used as test instances. The test set hasiah eq
labels according to the procedure described in Segumber of difficult and non-difficult phrases (50%
tion 3.1. It is necessary to keep two separate- dafaseline accuracy).
sets because the later experiments make use of thén order to optimize the accuracy of classifica-
trained DTP classifier. tion, we used a development set for feature engi-
For the two translation experiments, we also fadkeering and trying various SVM kernels and asso-
a practical obstacle: we do not have an army 6fated parameters. For the feature engineering
human translators at our disposal to translate tR@rt, we used the all-but-one heuristic to test the
identified phrases. To make the studies possib@(,)ntribution of each individual feature. Table 2
we rely on a pre-translated parallel corpus to sim@resents the most and least contributing four fea-
late the process of asking a human to translatetwges that we used in our classification. Among
phrase. That is, we use the phrase extractionitoolkarious features, we observed that the syntactic
to find translation phrases corresponding to eadfatures are the most contributing sources of in-
DTP candidate (note that the data used for this efermation for our classification.
periment is separate from the main parallel corpus
used to train the MT system, so the system hag h&ast Useful Features | Most Useful Features

knowledge about these translations). Ft1: Align Crossing Ft 2: Lexical Ambiguity
Ft 8: Count of Nums Ft 11: Depth of subtree
4.1 Automatic Labeling of DTP Ft:9: Count of Puncs Ft 12: Const type of Rhr

L _ _ Ft 10: Count of NNPs Ft 13: Const type of Rar
In this first experiment, we verify whether ouUrTapie2: The most and least useful features
method for creating positive and negative labeled

examples of DTPs (as described in Section 3.1) isThe DTP classifier achieves an average accu-
sound. Out of 2013 extracted phrases, we found racy of 71.5%, using 10 fold cross validation on
949 positive instances (DTPs) and 1064 negatiYge test set.

instances. The difficult phrases have an average

length of 8.8 words while the other phrases have a3 Study on the effect of DTPs

average length of 7.8 words We measured the

BLEU scores for the MT outputs for both groupd his experiment concentrates on the second half of

of phrases (Table 1). the framework: that of constraining the MT system
to use human-translations for the DTPs. Our objec-
\ Experiment BLEU Score tive is to assess to what degree do the DTPs nega-
\ DTPs 14.34 tively impact the MT process. We compare the MT
| Non-DTPs 61.22 outputs of two groups of sentences. Group | is
Table 1: Isolated Translation of the selected ingin made up of 242 sentences that contain the most
phrases difficult to translate phrases in the 1000 sentence

) __we reserved for this study. Group Il is a control
The large gap between the translation qualitiegoup made up of 242 sentences with the least dif-
of the two phrase groups suggests that the DTRgult to translate phrases. The DTPs make up
are indeed much more “difficult” than the otherphout 9% of word counts in the above 484 sen-
phrases. tences. We follow the procedure described in Sec-
tion 3.1 to identify and score all the phrasessthu

! Arabic words are tokenized and lemmatized by Riskra-
bic Toolset (Diab 2004).
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this experiment can be considered an oracle stuaynsistent with our conjecture that pre-translating

We compare four scenarios: difficult phrases may be helpful.

1. Addingphrasetrandationsfor Group I: MT A more interesting question is whether the hu-
system is constrained using the method desan translations still provide any benefit once we
scribed in Section 3.2 to incorporate humafactor out their direct contributions to the in@gea
translations of the pre-identified DTPs inin BLEU scores. To answer this question, we com-
Group |2 pute the BLEU scores for the outputs again, this

2. Adding phrase translations for Group Il: time filtering out all 484 identified phrases from
MT system is constrained to use human tranfhe evaluation. In other words in this experiment
lations for the identified (non-difficult) phraseswe focus on the part of the sentence that is rot la
in Group Il beled and does include any human translations.

3. Adding trandations for random phrases. Table 4 presents the results.
randomly replace 242 phrases from either

Group | or Group 1l. Experiment BLEU
4. Adding trandations for classifier labeled Baseline (no human trans) 23.0
DTPs. human translations for phrases that our w/ translated DTPs (Group I) 25.4
trained classifier has identified as DTPs from w/ translated non-DTPs (Group II) 23.9
both Group | and Group II. w/ translated phrases (random) 24|5
w/ translated phrases (classifier) 25.1

All of the above scenarios are evaluated on Teable 4: BLEU scores for the translation outputs ex
combined set of 484 sentences (group 1 + group 2jding the 484 (DTP and non-DTP) phrases.

This set up normalizes the relative difficulty of . _
each grouping. The largest gain (2.4 BLEU increment from

If the DTPs negatively impact the MT processt,)aseline) occurs when all and only the DTPs were
we would expect to see a greater improvemeHlanSlated-_ In contrast, replacing phrases from
when Group | phrases are translated by humafoup 1l did not improve the BLEU score very
than when Group Il phrases are translated uch. These results suggest that better handling of
humans. TPs will have a positive effec.t on the overall MT

The baseline for the comparisons is to evalual¥0ocess. We also note that using our SVM-trained
the outputs of the MT system without using anglassmer to identify the_ DTPs, the constrained MT
human translations. This results in a BLEU scorgyStém’s outputs obtained a BLEU score that is
of 24.0. When human translations are used, tfearly as high as if a perfect classifier was used.

BLEU score of the dataset increases, as shown in )
Table 3. 4.4  Full evaluation of the framework

This final experiment evaluates the complete

Experiment BLEU ) framework as described in Section 3. The setup of

Ev?frilhnnsela(tg?j %uTrgzn(g?ng)) ) :fg E this stud_y is_similar to that of the previous sewti

W/ translated non-DTPs (Group I 33' =S The main d|fferer_1ce is _that now, we rely on the

Wl translated phrases (random) 35' 1 classmt'ar' to predict which phrase would be the
- ' most difficult to translate and use human transla-

w/ translated phrases (classifier) 37.0

tions for those phrases.

Out of 1000 sentences, 356 have been identified
to contain DTPs (that are in the phrase extraction
list). In other words, only 356 sentences hold DTPs
While it is unsurprising that the inclusion ofthat we can find their human translations through

human translations increases the overall BLEBNrase projection. For the remaining sentences, we

score, this comparison shows that the boost §9 NOtuse any human translation.
sharper when more DTPs are translated. This is

Table 3: A comparison of BLEU scores for the ensieé
of sentences under the constraints of using huraas-t
lations for different types of phrases.

2 In this study, because the sentences are frormatming
parallel corpus, we can extract human translatibrectly
from the corpus.
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Table 5 presents the increase in BLEU scordsss dependency to the whole sentence structure
when human translations for the 356 DTPs amnd can be translated independently. Our classifi-
used. As expected the BLEU score increases, ladtion relies on syntactic features that are impor-
the improvement is less dramatic than in the previant source of information about the MT difficulty
ous experiment because most sentences are and also are useful for further error tracking {rea

changed. sons behind the difficulty). Our classification is
performed as a pre-translation step, so it does not
Experiment BLEU rely on the output of the MT system for a test sen-
Baseline (no human trans) 24.9  tence; instead, it uses a parallel training cogmas
w/ human translations 29.0 the characteristics of the underlying MT system
Table 5: Entire Corpus level evaluation (1000 sen- (e.g: p_hrase translations, lexical probabilities).
tences) when replacing DTPs in the hit list Confidence measures have been used for error

correction and interactive MT systems. Ueffing

_ _ and Ney (2005) employed confidence measures
Table 6 summarizes the experimental results fjthin a trans-type-style interactive MT system. |

the subset of the 356 sentences. The first twe roweir system, the MT system iteratively generates
compare the translation quality at the sentengge translation and the human translator accepts a
level (similar to Table 3); the next two rows COMpart of the proposed translation by typing one or
pare the translation quality of the non-DTP partgore prefix characters. The system regenerates a
(similar to Table 4). Rows 1 and 3 are conditionge\ translation based on the human prefix input
when we do not use human translation; and rowsad word level confidence measures. In contrast,
and 4 are conditions when we replace DTPs wift,r proposed usage of human knowledge is for
their associated human translations. ~The iMransiation at the phrase level. We use syntactic
provements of the BLEU score for the hit list arestrictions to make the extracted phrases meaning-
similar to the results we have previously seen.  fy| and easy to translate in isolation. In other

words, by the usage of our framework trans-type

Experiment on 356 sentences | BLEU systems can use human knowledge at the phrase
Baseline: full sent. 25.1 Jevel for the most difficult segments of a sentence
w/ human translation: full sent. 37.6  Additionally by the usage of our framework, the
Baseline: discount DTPs 26.0  MT system performs the decoding task only once.
w/ human translation: discount 27.8 The idea of isolated phrase translation has been
DTPs explored successfully in MT community. Koehn

Table 6: Evaluation of the subset of 356 senterimetht 5 Knight (2003) used isolated translation of NP
ot i rsahon epoomer o See, . and PP phrases and merge them wih the piase
P ' based MT system to translate the complete sen-
tence. In our work, instead of focusing on specifi
5 Related Work type of phrases (NP or PP), we focus on isolated

Our work is related to the problem of confidenc&anslation of difficult phrases with an aim to im-
estimation for MT (Blatz et. al. 2004; Zen and Neyprove the translation quality of non-difficult seg-
2006). The confidence me?ure is a score for fents too.

grams generated by a decodeFhe measure is .

based on the features like lexical probabilitie€ Conclusionand FutureWork

(word posterior), phrase translation probabilitie
N-best translation hypothesis, etc. Our DTP claséfve have presented an MT framework that makes

fication differs from the confidence measuring irﬁsi sl?':t eagg:}'r%gaér:p;ggatgﬂr?g%év\%ficﬂzﬁaes
several aspects: one of the main purposes of SVM-based phrase classifier that finds the seg-
classification of DTPS is to optimize the usage ent of a sentence that is most difficult to trans-

ide r rces. T we f n classifi- o . o
outside resources. To do so, we focus on class ate. Our classifier achieves a promising 71.5%

cation of phrases which are syntactically meaning- curacy. By asking external sources (such as hu-

ful, because those syntactic constituent units ha an translators) to pre-translate these DTPs and
using them to constrain the MT process, we im-

3 Most of the confidence estimation measures arar@grams
(word level measures).
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prove the system outputs for the other parts of the Chapter of the Association for Computational Lin-
sentences. guistics (EACL), Trento, Italy.

~ We plan to extend this work in several diréCyiona Diab, Kadri Hacioglu, and Daniel Jurafsky. 200
tions. First, our framework can be augmented to Automatic tagging of Arabic text: From raw text to

include multiple MT systems. We expect different base phrase chunkk Proceeding of NAACL-HLT
systems will have difficulties with different con- 2004 Boston, MA.

structs, anq thus they may support each other, a":'ﬁ]l)rsten Joachims, Making large-Scale SVM Learning
thus reducing the need to ask human translators fofpractical, Advances in Kernel Methods - Support
help with the difficult phrases. Second, our cutren vector Learning, B. Schélkopf and C. Burges and A.
metric for phrasal difficulty depends on BLEU. Smola (ed.), MIT-Press, 1999.

Considering the recent debates about the shortcom{. :
. . ilipp Koehn. 2004. Pharaoh: a beam search decoder
ings of the BLEU score (Callison-Burch et. al. for phrase-based statistical machine translatiod-mo

2006), we are interested in applying alternative o|s |n proceedings of the Sixth Conference of the As-
metrics such a Meteor (Banerjee and Lavie 2005). gqciation for Machine Translation in the Americas

Third, we believe that there is more room for im- pages 115-124
provement and extension of our classification fe Shilipp Koehn and Kevin Knight. 2003. Feature-rich

tures. Specifically, we believe that our syntacti statistical translation of noun phrasesPhoceedings

analysis of source sentences can be improved byof 41st the Annual Meeting on Association for Com-

including richer parsing features_,. Finally, the putational Linguistics (ACL-2003pages 311-318.
framework can also be used to diagnose recurrin

problems in the MT system. We are currently de='
veloping methods for improving the translation of
the difficult phrases for the phrase-based MT sy&ranz. Och and Hermann Ney. 2003. A systematic

anz Och, 2001, “Giza++: Training of statisticarts-
lation model”: http://www.fjoch.com/GIZA++.html

tem used in our experiments. comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51
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