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Abstract

Attempts to estimate phrase translation
probablities for statistical machine transla-
tion using iteratively-trained models have
repeatedly failed to produce translations as
good as those obtained by estimating phrase
translation probablities from surface statis-
tics of bilingual word alignments as de-
scribed by Koehn, et al. (2003). We pro-
pose a new iteratively-trained phrase trans-
lation model that produces translations of
quality equal to or better than those pro-
duced by Koehn, et al.’s model. Moreover,
with the new model, translation quality de-
grades much more slowly as pruning is tigh-
tend to reduce translation time.

1 Introduction

Estimates of conditional phrase translation probabil-
ities provide a major source of translation knowl-
edge in phrase-based statistical machine translation
(SMT) systems. The most widely used method for
estimating these probabilities is that of Koehn, et
al. (2003), in which phrase pairs are extracted from
word-aligned bilingual sentence pairs, and their
translation probabilities estimated heuristically from
surface statistics of the extracted phrase pairs. We
will refer to this approach as “the standard model”.

There have been several attempts to estimate
phrase translation probabilities directly, using gen-
erative models trained iteratively on a parallel cor-
pus using the Expectation Maximization (EM) algo-
rithm. The first of these models, that of Marcu and

Wong (2002), was found by Koehn, et al. (2003),
to produce translations not quite as good as their
method. Recently, Birch et al. (2006) tried the
Marcu and Wong model constrained by a word
alignment and also found that Koehn, et al.’s model
worked better, with the advantage of the standard
model increasing as more features were added to the
overall translation model. DeNero et al. (2006) tried
a different generative phrase translation model anal-
ogous to IBM word-translation Model 3 (Brown et
al., 1993), and again found that the standard model
outperformed their generative model.

DeNero et al. (2006) attribute the inferiority of
their model and the Marcu and Wong model to a hid-
den segmentation variable, which enables the EM
algorithm to maximize the probability of the train-
ing data without really improving the quality of the
model. We propose an iteratively-trained phrase
translation model that does not require different seg-
mentations to compete against one another, and we
show that this produces translations of quality equal
to or better than those produced by the standard
model. We find, moreover, that with the new model,
translation quality degrades much more slowly as
pruning is tightend to reduce translation time.

Decoding efficiency is usually considered only in
the design and implementation of decoding algo-
rithms, or the choice of model structures to support
faster decoding algorithms. We are not aware of any
attention previously having been paid to the effect of
different methods of parameter estimation on trans-
lation efficiency for a given model structure.

The time required for decoding is of great im-
portance in the practical application of SMT tech-
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nology. One of the criticisms of SMT often made
by adherents of rule-based machine translation is
that SMT is too slow for practical application. The
rapidly falling price of computer hardware has ame-
liorated this problem to a great extent, but the fact re-
mains that every factor of 2 improvement in transla-
tion efficiency means a factor of 2 decrease in hard-
ware cost for intensive applications of SMT, such
as a web-based translation service (“Translate this
page”). SMT surely needs all the help in can get in
this regard.

2 Previous Approaches

Koehn, et al.’s (2003) method of estimating phrase-
translation probabilities is very simple. They start
with an automatically word-aligned corpus of bilin-
gual sentence pairs, in which certain words are
linked, indicating that they are translations of each
other, or that they are parts of phrases that are trans-
lations of each other. They extract every possi-
ble phrase pair (up to a given length limit) that (a)
contains at least one pair of linked words, and (b)
does not contain any words that have links to other
words not included in the phrase pair.1 In other
words, word alignment links cannot cross phrase
pair boundaries. Phrase translation probabilities are
estimated simply by marginalizing the counts of
phrase instances:

p(x|y) =
C(x, y)∑
x′ C(x′, y)

This method is used to estimate the conditional
probabilities of both target phrases give source
phrases and source phrases given target phrases.

In contrast to the standard model, DeNero, et al.
(2006) estimate phrase translation probabilities ac-
cording to the following generative model:

1. Begin with a source sentencea.

2. Stochastically segmenta into some number of
phrases.

3. For each selected phrase ina, stochastically
choose a phrase position in the target sentence
b that is being generated.

1This method of phrase pair extraction was originally de-
scribed by Och et al. (1999).

4. For each selected phrase ina and the corre-
sponding phrase position inb, stochastically
choose a target phrase.

5. Read off the target sentenceb from the se-
quence of target phrases.

DeNero et al.’s analysis of why their model per-
forms relatively poorly hinges on the fact that the
segmentation probabilities used in step 2 are, in
fact, not trained, but simply assumed to be uniform.
Given complete freedom to select whatever segmen-
tation maximizes the likelihood of any given sen-
tence pair, EM tends to favor segmentations that
yield source phrases with as few occurrences as pos-
sible, since more of the associated conditional prob-
ability mass can be concentrated on the target phrase
alignments that are possible in the sentence at hand.
Thus EM tends to maximize the probability of the
training data by concentrating probability mass on
the rarest source phrases it can construct to cover
the training data. The resulting probability estimates
thus have less generalizability to unseen data than
if probability mass were concentrated on more fre-
quently occurring source phrases.

3 A Segmentation-Free Model

To avoid the problem identified by DeNero et al.,
we propose an iteratively-trained model that does
not assume a segmentation of the training data into
non-overlapping phrase pairs. We refer to our model
as “iteratively-trained” rather than “generative” be-
cause we have not proved any of the mathematical
properties usually associated with generative mod-
els; e.g., that the training procedure maximizes the
likelihood of the training data. We will motivate
the model, however, with a generative story as to
how phrase alignments are produced, given a pair of
source and target sentences. Our model extends to
phrase alignment the concept of a sentence pair gen-
erating a word alignment developed by Cherry and
Lin (2003).

Our model is defined in terms of two stochastic
processes,selectionandalignment, as follows:

1. For each word-aligned sentence pair, we iden-
tify all the possible phrase pair instances ac-
cording to the criteria used by Koehn et al.
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2. Each source phrase instance that is included in
any of the possible phrase pair instances inde-
pendently selects one of the target phrase in-
stances that it forms a possible phrase pair in-
stance with.

3. Each target phrase instance that is included in
any of the possible phrase pair instances inde-
pendently selects one of the source phrase in-
stances that it forms a possible phrase pair in-
stance with.

4. A source phrase instance is aligned to a target
phrase instance, if and only if each selects the
other.

Given a set of selection probability distributions
and a word-aligned parallel corpus, we can eas-
ily compute the expected number of alignment in-
stances for a given phrase pair type. The probability
of a pair of phrase instancesx andy being aligned is
simply ps(x|y) × ps(y|x), whereps is the applica-
ble selection probability distribution. The expected
number of instances of alignment,E(x, y), for the
pair of phrasesx andy, is just the sum of the align-
ment probabilities of all the possible instances of
that phrase pair type.

From the expected number of alignments and the
total number of occurrences of each source and tar-
get phrase type in the corpus (whether or not they
particpate in possible phrase pairs), we estimate the
conditional phrase translation probabilities as

pt(y|x) =
E(x, y)
C(x)

, pt(x|y) =
E(x, y)
C(y)

,

whereE denotes expected counts, andC denotes
observed counts.

The use of the total observed counts of particu-
lar source and target phrases (instead of marginal-
ized expected joint counts) in estimating the condi-
tional phrase translation probabilities, together with
the multiplication of selection probabilities in com-
puting the alignment probability of particular phrase
pair instances, causes the conditional phrase transla-
tion probability distributions generally to sum to less
than1.0. We interpret the missing probability mass
as the probability that a given word sequence does
not translate as any contiguous word sequence in the
other language.

We have seen how to derive phrase translation
probabilities from the selection probabilities, but
where do the latter come from? We answer this
question by adding the following constraint to the
model:

The probabilty of a phrasey selecting a
phrasex is proportional to the probability
of x translating asy, normalized over the
possible non-null choices forx presented
by the word-aligned sentence pair.

Symbolically, we can express this as

ps(x|y) =
pt(y|x)∑
x′ pt(y|x′)

whereps denotes selection probability,pt denotes
translation probability, andx′ ranges over the phrase
instances that could possibly align toy. We are, in
effect, inverting and renormalizing translation prob-
abilities to get selection probabilities. The reason
for the inversion may not be immediately apparent,
but it in fact simply generalizes the e-step formula
in the EM training for IBM Model 1 from words to
phrases.

This model immediately suggests (and, in fact,
was designed to suggest) the following EM-like
training procedure:

1. Initialize the translation probability distribu-
tions to be uniform. (It doesn’t matter at this
point whether the possibility of no translation
is included or not.)

2. E step: Compute the expected phrase alignment
counts according to the model, deriving the se-
lection probabilities from the current estimates
of the translation probabilities as described.

3. M step: Re-estimate the phrase translation
probabilities according to the expected phrase
alignment counts as described.

4. Repeat the E and M steps, until the desired de-
gree of convergence is obtained.

We view this training procedure as iteratively try-
ing to find a set of phrase translation probabilities
that satisfies all the constraints of the model, al-
though we have not proved that this training proce-
dure always converges. We also have not proved that
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the procedure maximizes the likelihood of anything,
although we find empirically that each iteration de-
creases the conditional entropy of the phrase trans-
lation model. In any case, the training procedure
seems to work well in practice. It is also very simi-
lar to the joint training procedure for HMM word-
alignment models in both directions described by
Liang et al. (2006), which was the original inspira-
tion for our training procedure.

4 Experimental Set-Up and Data

We evaluated our phrase translation model com-
pared to the standard model of Koehn et al. in the
context of a fairly typical end-to-end phrase-based
SMT system. The overall translation model score
consists of a weighted sum of the following eight ag-
gregated feature values for each translation hypoth-
esis:

• the sum of the log probabilities of each source
phrase in the hypothesis given the correspond-
ing target phrase, computed either by our
model or the standard model,

• the sum of the log probabilities of each tar-
get phrase in the hypothesis given the corre-
sponding source phrase, computed either by
our model or the standard model,

• the sum of lexical scores for each source phrase
given the corresponding target phrase,

• the sum of lexical scores for each target phrase
given the corresponding source phrase,

• the log of the target language model probability
for the sequence of target phrases in the hypoth-
esis,

• the total number of words in the target phrases
in the hypothesis,

• the total number of source/target phrase pairs
composing the hypothesis,

• the distortion penalty as implemented in the
Pharaoh decoder (Koehn, 2003).

The lexical scores are computed as the (unnor-
malized) log probability of the Viterbi alignment for
a phrase pair under IBM word-translation Model 1

(Brown et al., 1993). The feature weights for the
overall translation models were trained using Och’s
(2003) minimum-error-rate training procedure. The
weights were optimized separately for our model
and for the standard phrase translation model. Our
decoder is a reimplementation in Perl of the algo-
rithm used by the Pharaoh decoder as described by
Koehn (2003).2

The data we used comes from an English-French
bilingual corpus of Canadian Hansards parliamen-
tary proceedings supplied for the bilingual word
alignment workshop held at HLT-NAACL 2003
(Mihalcea and Pedersen, 2003). Automatic sentence
alignment of this data was provided by Ulrich Ger-
mann. We used 500,000 sentences pairs from this
corpus for training both the phrase translation mod-
els and IBM Model 1 lexical scores. These 500,000
sentence pairs were word-aligned using a state-of-
the-art word-alignment method (Moore et al., 2006).
A separate set of 500 sentence pairs was used to train
the translation model weights, and two additional
held-out sets of 2000 sentence pairs each were used
as test data.

The two phrase translation models were trained
using the same set of possible phrase pairs extracted
from the word-aligned 500,000 sentence pair cor-
pus, finding all possible phrase pairs permitted by
the criteria followed by Koehn et al., up to a phrase
length of seven words. This produced approximately
69 million distinct phrase pair types. No pruning of
the set of possible phrase pairs was done during or
before training the phrase translation models. Our
phrase translation model and IBM Model 1 were
both trained for five iterations. The training pro-
cedure for our phrase translation model trains mod-
els in both directions simultaneously, but for IBM
Model 1, models were trained separately in each di-
rection. The models were then pruned to include
only phrase pairs that matched the source sides of
the small training and test sets.

5 Entropy Measurements

To verify that our iterative training procedure was
behaving as expected, after each training iteration

2Since Perl is a byte-code interpreted language, absolute de-
coding times will be slower than with the standard machine-
language-compiled implementation of Pharaoh, but relative
times between models should be comparable.
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we measured the conditional entropy of the model
in predicting English phrases given French phrases,
according to the formula

H(E|F ) =
∑
f

p(f)
∑
e

pt(e|f) log2 pt(e|f),

wheree and f range over the English and French
phrases that occur in the extracted phrase pairs, and
p(f) was estimated according to the relative fre-
quency of these French phrases in a 2000 sentence
sample of the French sentences from the 500,000
word-aligned sentence pairs. Over the five train-
ing iterations, we obtained a monotonically decreas-
ing sequence of entropy measurements in bits per
phrase: 1.329, 1.177, 1.146, 1.140, 1.136.

We also compared the conditional entropy of the
standard model to the final iteration of our model,
estimatingp(f) using the first of our 2000 sentence
pair test sets. For this data, our model measured 1.38
bits per phrase, and the standard model measured
4.30 bits per phrase. DeNero et al. obtained corre-
sponding measurements of 1.55 bits per phrase and
3.76 bits per phrase, for their model and the stan-
dard model, using a different data set and a slightly
different estimation method.

6 Translation Experiments

We wanted to look at the trade-off between decod-
ing time and translation quality for our new phrase
translation model compared to the standard model.
Since this trade-off is also affected by the settings of
various pruning parameters, we compared decoding
time and translation quality, as measured by BLEU

score (Papineni et al, 2002), for the two models on
our first test set over a broad range of settings for the
decoder pruning parameters.

The Pharaoh decoding algorithm, has five pruning
parameters that affect decoding time:

• Distortion limit

• Translation table limit

• Translation table threshold

• Beam limit

• Beam threshold

The distortion limit is the maximum distance al-
lowed between two source phrases that produce ad-
jacent target phrases in the decoder output. The dis-
tortion limit can be viewed as a model parameter,
as well as a pruning paramter, because setting it to
an optimum value usually improves translation qual-
ity over leaving it unrestricted. We carried out ex-
periments with the distortion limit set to 1, which
seemed to produce the highest BLEU scores on our
data set with the standard model, and also set to 5,
which is perhaps a more typical value for phrase-
based SMT systems. Translation model weights
were trained separately for these two settings, be-
cause the greater the distortion limit, the higher the
distortion penalty weight needed for optimal trans-
lation quality.

The translation table limit and translation table
threshold are applied statically to the phrase trans-
lation table, which combines all components of the
overall translation model score that can be com-
puted for each phrase pair in isolation. This in-
cludes all information except the distortion penalty
score and the part of the language model score that
looks atn-grams that cross target phrase boundaries.
The translation table limit is the maximum number
of translations allowed in the table for any given
source phrase. The translation table threshold is
the maximum difference in combined translation ta-
ble score allowed between the highest scoring trans-
lation and lowest scoring translation for any given
source phrase. The beam limit and beam threshold
are defined similarly, but they apply dynamically to
the sets of competing partial hypotheses that cover
the same number of source words in the beam search
for the highest scoring translation.

For each of the two distortion limits we tried, we
carried out a systematic search for combinations of
settings of the other four pruning parameters that
gave the best trade-offs between decoding time and
BLEU score. Starting at a setting of 0.5 for the
threshold parameters3 and 5 for the limit parameters
we performed a hill-climbing search over step-wise
relaxations of all combinations of the four parame-

3We use difference in weighted linear scores directly for
our pruning thresholds, whereas the standard implementation of
Pharaoh expresses these as probability ratios. Hence the specific
values for these parameters are not comparable to published de-
scriptions of experiments using Pharaoh, although the effects of
pruning are exactly the same.
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ters, incrementing the threshold parameters by 0.5
and the limit parameters by 5 at each step. For each
resulting point that provided the best BLEU score yet
seen for the amount of decoding time used, we iter-
ated the search.

The resulting possible combinations of BLEU

score and decoding time for the two phrase trans-
lation models are displayed in Figure 1, for a distor-
tion limit of 1, and Figure 2, for a distortion limit
of 5. BLEU score is reported on a scale of 1–100
(BLEU[%]), and decoding time is measured in mil-
liseconds per word. Note that the decoding time axis
is presented on a log scale.

The points that represent pruning parameter set-
tings one might consider using in a practical system
are those on or near the upper convex hull of the
set of points for each model. These upper-convex-
hull points are highlighted in the figures. Points far
from these boundaries represent settings of one or
more of the parameters that are too restrictive to ob-
tain good translation quality, together with settings
of other parameters that are too permissive to obtain

good translation time.
Examining the results for a distortion limit of

1, we found that the BLEU score obtained with
the loosest pruning parameter settings (2.5 for both
threshold paramters, and 25 for both limit parame-
ters) were essentially identical for the two mod-
els: 30.42 BLEU[%]. As the pruning parameters
are tightened to reduce decoding time, however,
the new model performs much better. At a decod-
ing time almost 6 times faster than for the settings
that produced the highest BLEU score, the change
in score was only−0.07 BLEU[%] with the new
model. To obtain a slightly worse4 BLEU score
(−0.08 BLEU[%]) using the standard model took
90% more decoding time.

It does appear, however, that the best BLEU score
for the standard model is slightly better than the best
BLEU score for the new model: 30.43 vs. 30.42.
It is in fact currious that there seem to be numer-
ous points where the standard model gets a slightly

4Points on the convex hulls with exactly comparable BLEU
scores do not often occur.
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better BLEU score than it does with with the loos-
est pruning settings, which should have the lowest
search error.

We conjectured that this might be an artifact of
our test procedure. If a model is at all reasonable,
most search errors will reduce the ultimate objec-
tive function, in our case the BLEU score, but oc-
casionally a search error will increase the objective
function just by chance. The smaller the number of
search errors in a particular test, the greater the like-
lihood that, by chance, more search errors will in-
crease the objective function than decrease it. Since
we are sampling a fairly large number of combi-
nations of pruning parameter settings (179 for the
standard model with a distortion limit of 1), it is
possible that a small number of these have more
“good” search errors than “bad” search errors sim-
ply by chance, and that this accounts for the small
number of points (13) at which the BLEU score ex-
ceeds that of the point which should have the fewest
search errors. This effect may be more pronounced
with the standard model than with the new model,
simply because there is more noise in the standard
model.

To test the hypothesis that the BLEU scores
greater than the score for the loosest pruning set-
tings simply represent noise in the data, we col-
lected all the pruning settings that produced BLEU

scores greater than or equal to the the one for the
loosest pruning settings, and evaluated the standard
model at those settings on our second held-out test
set. We then looked at the correlation between the
BLEU scores for these settings on the two test sets,
and found that it was very small and negative, with
r = −0.099. The standard F-test for the significance
of a correlation yieldedp = 0.74; in other words,
completely insignificant. This strongly suggests that
the apparent improvement in BLEU score for certain
tighter pruning settings is illusory.

As a sanity check, we tested the BLEU score cor-
relation between the two test sets for the points on
the upper convex hull of the plot for the standard
model, between the point with the fastest decod-
ing time and the point with the highest BLEU score.
That correlation was very high, withr = 0.94,
which was significant at the levelp = 0.0004 ac-
cording to the F-test. Thus the BLEU score differ-
ences along most of the upper convex hull seem to

reflect reality, but not in the region where they equal
or exceed the score for the loosest pruning settings.

At a distortion limit of 5, there seems no question
that the new model performs better than the standard
model. The difference BLEU scores for the upper-
convex-hull points ranges from about 0.8 to 0.2
BLEU[%] for comparable decoding times. Again,
the advantage of the new model is greater at shorter
decoding times. Compared to the results with a dis-
tortion limit of 1, the standard model loses transla-
tion quality, with a change of about−0.2 BLEU[%]
for the loosest pruning settings, while the new model
gains very slightly (+0.04 BLEU[%]).

7 Conclusions

This study seems to confirm DeNero et al.’s diagno-
sis that the main reason for poor performance of pre-
vious iteratively-trained phrase translation models,
compared to Koehn et al.’s model, is the effect of the
hidden segmentation variable in these models. We
have developed an iteratively-trained phrase transla-
tion model that is segmentation free, and shown that,
at a minimum, it eliminates the shortfall in BLEU

score compared to the standard model. With a larger
distortion limit, the new model produced transla-
tions with a noticably better BLEU score.

From a practical point of view, the main result
is probably that BLEU score degrades much more
slowly with our model than with the standard model,
when the decoding search is tuned for speed. For
some settings that appear reasonable, this difference
is close to a factor of 2, even if there is no differ-
ence in the translation quality obtainable when prun-
ing is loosened. For high-demand applications like
web page translation, roughly half of the investment
in translation servers could be saved while provid-
ing this level of translation quality with the same re-
sponse time.

Acknowledgement

The authors would like to thank Mark Johnson for
many valuable discussions of how to analyze and
present the results obtained in this study.

References

Alexandra Birch, Chris Callison-Burch, Miles Os-
borne, and Philipp Koehn. 2006. Constrain-

118



ing the Phrase-Based, Joint Probability Statistical
Translation Model. InProceedings of the HLT-
NAACL 06 Workshop, Statistical Machine Trans-
lation, pp. 154–157, New York City, New York,
USA.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation:
Parameter Estimation.Computational Linguis-
tics, 19(2):263–311.

Colin Cherry and Dekang Lin. 2003. A Probabil-
ity Model to Improve Word Alignment. InPro-
ceedings of the 41st Annual Meeting of the ACL,
pp. 88–95, Sapporo, Japan.

John DeNero, Dan Gillick, James Zhang, and Dan
Klein. 2006. Why Generative Phrase Models
Underperform Surface Heuristics. InProceed-
ings of the HLT-NAACL 06 Workshop, Statistical
Machine Translation, pp. 31–38, New York City,
New York, USA.

Philipp Koehn. 2003. Noun Phrase Translation.
PhD Dissertation, Computer Science, University
of Southern California, Los Angeles, California,
USA.

Philipp Koehn, Franz Joseph Och, and Daniel
Marcu. 2003. Statistical Phrase-Based Trans-
lation. In Proceedings of the Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Linguistics, pp. 127–133, Edmonton, Alberta,
Canada.

Percy Liang, Ben Taskar, and Dan Klein. 2006.
Alignment by Agreement. InProceedings of
the Human Language Technology Conference of
the North American Chapter of the Association
for Computational Linguistics, pp. 104–111, New
York City, New York, USA.

Daniel Marcu and William Wong. 2002. A Phrase-
Based, Joint Probability Model for Statistical Ma-
chine Translation. InProceedings of the 2002
Conference on Empirical Methods in Natural
Language Processing, pp. 133–139, Philadelphia,
Pennsylvania, USA.

Rada Mihalcea and Ted Pedersen. 2003. An Evalu-
ation Exercise for Word Alignment. InProceed-
ings of the HLT-NAACL 2003 Workshop, Building
and Using Parallel Texts: Data Driven Machine
Translation and Beyond, pp. 1–6, Edmonton, Al-
berta, Canada.

Robert C. Moore, Wen-tau Yih, and Andreas Bode.
2006. Improved Discriminative Bilingual Word
Alignment. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics
and 44th Annual Meeting of the Association for
Computational Linguistics, pp. 513-520, Sydney,
Australia.

Franz Joseph Och, Christoff Tillmann, and Hermann
Ney. 1999. Improved Alignment Models for Sta-
tistical Machine Translation. InProceedings of
the 1999 Joint SIGDAT Conference on Empiri-
cal Methods in Natural Language Processing and
Very Large Corpora, pp. 20–28, College Park,
Maryland, USA.

Franz Joseph Och. 2003. Minimum Error Rate
Training in Statistical Machine Translation. In
Proceedings of the 41st Annual Meeting of the
ACL, pp. 160–167, Sapporo, Japan.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: a Method for Auto-
matic Evaluation of Machine Translation. InPro-
ceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 311–
318, Philadelphia, Pennsylvania, USA.

119


