
Proceedings of the Second Workshop on Statistical Machine Translation, pages 88–95,
Prague, June 2007. c©2007 Association for Computational Linguistics

Efficient Handling of N -gram Language Models
for Statistical Machine Translation

Marcello Federico
Fondazione Bruno Kessler - IRST

I-38050 Trento, Italy
federico@itc.it

Mauro Cettolo
Fondazione Bruno Kessler - IRST

I-38050 Trento, Italy
cettolo@itc.it

Abstract

Statistical machine translation, as well as
other areas of human language processing,
have recently pushed toward the use of large
scalen-gram language models. This paper
presents efficient algorithmic and architec-
tural solutions which have been tested within
the Moses decoder, an open source toolkit
for statistical machine translation. Exper-
iments are reported with a high perform-
ing baseline, trained on the Chinese-English
NIST 2006 Evaluation task and running on
a standard Linux 64-bit PC architecture.
Comparative tests show that our representa-
tion halves the memory required by SRI LM
Toolkit, at the cost of 44% slower translation
speed. However, as it can take advantage
of memory mapping on disk, the proposed
implementation seems to scale-up much bet-
ter to very large language models: decoding
with a 289-million 5-gram language model
runs in 2.1Gb of RAM.

1 Introduction

In recent years, we have seen an increasing interest
toward the application ofn-gram Language Mod-
els (LMs) in several areas of computational lin-
guistics (Lapata and Keller, 2006), such as ma-
chine translation, word sense disambiguation, text
tagging, named entity recognition, etc. The origi-
nal framework ofn-gram LMs was principally au-
tomatic speech recognition, under which most of
the standard LM estimation techniques (Chen and

Goodman, 1999) were developed. Nowadays, the
availability of larger and larger text corpora is stress-
ing the need for efficient data structures and algo-
rithms to estimate, store and access LMs. Unfortu-
nately, the rate of progress in computer technology
seems for the moment below the space requirements
of such huge LMs, at least by considering standard
lab equipment.

Statistical machine translation (SMT) is today
one of the research areas that, together with speech
recognition, is pushing mostly toward the use of
huge n-gram LMs. In the 2006 NIST Machine
Translation Workshop (NIST, 2006), best perform-
ing systems employed 5-grams LMs estimated on at
least 1.3 billion-word texts. In particular, Google
Inc. presented SMT results with LMs trained on
8 trillion-word texts, and announced the availabil-
ity of n-gram statistics extracted from one trillion
of words. Then-gram Google collection is now
publicly available through LDC, but their effective
use requires either to significantly expand computer
memory, in order to use existing tools (Stolcke,
2002), or to develop new ones.

This work presents novel algorithms and data
structures suitable to estimate, store, and access
very large LMs. The software has been integrated
into a popular open source SMT decoder called
Moses.1 Experimental results are reported on the
Chinese-English NIST task, starting from a quite
well-performing baseline, that exploits a large 5-
gram LM.

This paper is organized as follows. Section 2
presents techniques for the estimation and represen-

1http://www.statmt.org/moses/

88

tation in memory ofn-gram LMs that try to optimize
space requirements. Section 3 describes methods
implemented in order to efficiently access the LM
at run time, namely by theMoses SMT decoder.
Section 4 presents a list of experiments addressing
specific questions on the presented implementation.

2 Language Model Estimation

LM estimation starts with the collection ofn-grams
and their frequency counters. Then, smoothing pa-
rameters are estimated (Chen and Goodman, 1999)
for eachn-gram level; infrequentn-grams are possi-
bly pruned and, finally, a LM file is created contain-
ingn-grams with probabilities and back-off weights.

2.1 N -gram Collection

Clearly, a first bottleneck of the process might occur
if all n-grams have to be loaded in memory. This
problem is overcome by splitting the collection ofn-
grams statistics into independent steps and by mak-
ing use of an efficient data-structure to collect and
storen-grams. Hence, first the dictionary of the cor-
pus is extracted and split intoK word lists, balanced
with respect to the frequency of the words. Then,
for each list, onlyn-grams whose first word belongs
to the list are extracted from the corpus. The value
of K is determined empirically and should be suffi-
ciently large to permit to fit the partialn-grams into
memory. The collection of each subset ofn-grams
exploits a dynamic prefix-tree data structure shown
in Figure 1. It features a table with all collected 1-
grams, each of which points to its 2-gram succes-
sors, namely the 2-grams sharing the same 1-gram
prefix. All 2-gram entries point to all their 3-gram
successors, and so on. Successor lists are stored
in memory blocks allocated on demand through a
memory pool. Blocks might contain different num-
ber of entries and use 1 to 6 bytes to encode fre-
quencies. In this way, a minimal encoding is used
in order to represent the highest frequency entry of
each block. This strategy permits to cope well with
the high sparseness ofn-grams and with the pres-
ence of relatively few highly-frequentn-grams, that
require counters encoded with 6 bytes.

The proposed data structure differs from other im-
plementations mainly in the use of dynamic alloca-
tion of memory required to store frequencies ofn-

3
w | fr | succ | ptr | flags

6 3 8 1

3
w | fr

1

1-gr 2-gr 3-gr

Figure 1: Dynamic data structure for storingn-
grams. Blocks of successors are allocated on de-
mand and might vary in the number of entries
(depth) and bytes used to store counters (width).
Size in bytes is shown to encode words (w), frequen-
cies (fr), and number of (succ), pointer to (ptr) and
table type of (flags) successors.

grams. In the structure proposed by (Wessel et al.,
1997) counters ofn-grams occurring more than once
are stored into 4-byte integers, while singletonn-
grams are stored in a special table with no counters.
This solution permits to save memory at the cost of
computational overhead during the collection ofn-
grams. Moreover, for historical reasons, this work
ignores the issue with huge counts. In the SRILM
toolkit (Stolcke, 2002),n-gram counts are accessed
through a special class type. Counts are all repre-
sented as 4-byte integers by applying the following
trick: counts below a given threshold are represented
as unsigned integers, while those above the thresh-
old, which are typically very sparse, correspond in-
deed to indexes of a table storing their actual value.
To our opinion, this solution is ingenious but less
general than ours, which does not make any assump-
tion about the number of different high order counts.

2.2 LM Smoothing

For the estimation of the LM, a standard interpo-
lation scheme (Chen and Goodman, 1999) is ap-
plied in combination with a well-established and
simple smoothing technique, namely the Witten-
Bell linear discounting method (Witten and Bell,
1991). Smoothing of probabilities up from 2-grams
is performed separately on each subset ofn-grams.

89

For example, smoothing statistics for a 5-gram
(v, w, x, y, z) are computed by means of statistics
that are local to the subset ofn-grams starting with
v. Namely, they are the countersN(v, w, x, y, z),
N(v, w, x, y), and the numberD(v, w, x, y) of dif-
ferent words observed in context(v, w, x, y).

Finally, K LM files are created, by just read-
ing through then-gram files, which are indeed not
loaded in memory. During this phase pruning of in-
frequentn-grams is also permitted. Finally, all LM
files are joined, global 1-gram probabilities are com-
puted and added, and a single large LM file, in the
standard ARPA format (Stolcke, 2002), is generated.

We are well aware that the implemented smooth-
ing method is below the state-of-the-art. However,
from one side, experience tells that the gap in per-
formance between simple and sophisticated smooth-
ing techniques shrinks when very large corpora are
used; from the other, the chosen smoothing method
is very suited to the kind of decomposition we are
applying to then-gram statistics. In the future, we
will nevertheless address the impact of more sophis-
ticated LM smoothing on translation performance.

2.3 LM Compilation

The final textual LM can be compiled into a binary
format to be efficiently loaded and accessed at run-
time. Our implementation follows the one adopted
by the CMU-Cambridge LM Toolkit (Clarkson and
Rosenfeld, 1997) and well analyzed in (Whittaker
and Raj, 2001). Briefly,n-grams are stored in
a data structure which privileges memory saving
rather than access time. In particular, single com-
ponents of eachn-gram are searched, via binary
search, into blocks of successors stored contigu-
ously (Figure 2). Further improvements in mem-
ory savings are obtained by quantizing both back-off
weights and probabilities.

2.4 LM Quantization

Quantization provides an effective way of reducing
the number of bits needed to store floating point
variables. (Federico and Bertoldi, 2006) showed that
best results were achieved with the so-calledbinning
method. This method partitions data points into uni-
formly populated intervals or bins. Bins are filled in
in a greedy manner, starting from the lowest value.
The center of each bin corresponds to the mean value

1-gr 2-gr 3-gr

3
w | bo | pr | idx

1 1 4

w | pr
3 1

Figure 2: Static data structure for LMs. Number of
bytes are shown used to encode single words (w),
quantized back-off weights (bo) and probabilities
(pr), and start index of successors (idx).

of all its points. Quantization is applied separately
at eachn-gram level and distinctly to probabilities
or back-off weights. The chosen level of quantiza-
tion is 8 bits (1 byte), that experimentally showed to
introduce negligible loss in translation performance.

The quantization algorithm can be applied to any
LM represented with the ARPA format. Quantized
LMs can also be converted into a binary format that
can be efficiently uploaded at decoding time.

3 Language Model Access

One motivation of this work is the assumption that
efficiency, both in time and space, can be gained by
exploiting peculiarities of the way the LM is used
by the hosting program, i.e. the SMT decoder. An
analysis of the interaction between the decoder and
the LM was carried out, that revealed some impor-
tant properties. The main result is shown in Figure 3,
which plots all calls to a 3-gram LM byMoses dur-
ing the translation from German to English of the
following text, taken from the Europarl task:

ich bin kein christdemokrat und
glaube daher nicht an wunder .
doch ich m öchte dem europ äischen
parlament , so wie es gegenw ürtig
beschaffen ist , f ür seinen
grossen beitrag zu diesen arbeiten
danken.

Translation of the above text requires about 1.7 mil-
lion calls of LM probabilities, that however involve
only 120,000 different 3-grams. The plot shows typ-
ical locality phenomena, that is the decoder tends to

90

Figure 3: LM calls during translation of a German
text: each point corresponds to a specific 3-gram.

access the LMn-grams in nonuniform, highly local-
ized patterns. Locality is mainly temporal, namely
the first call of ann-gram is easily followed by
other calls of the samen-gram. This property sug-
gests that gains in access speed can be achieved by
exploiting a cache memory in which to store al-
ready calledn-grams. Moreover, the relatively small
amount of involvedn-grams makes viable the access
of the LM from disk on demand. Both techniques
are briefly described.

3.1 Caching of probabilities

In order to speed-up access time of LM probabilities
different cache memories have been implemented
through the use of hash tables. Cache memories are
used to store all finaln-gram probabilities requested
by the decoder, LM states used to recombine theo-
ries, as well as all partialn-gram statistics computed
by accessing the LM structure. In this way, the need
of performing binary searches, at every level of the
LM tables, is reduced at a minimum.

All cache memories are reset before decoding
each single input set.

3.2 Memory Mapping

Since a limited collection of alln-grams is needed
to decode an input sentence, the LM is loaded on
demand from disk. The data structure shown in Fig-
ure 2 permits indeed to efficiently exploit the so-
calledmemory mappedfile access.2 Memory map-
ping basically permits to include a file in the address

2POSIX-compliant operating systems and Windows support
some form of memory-mapped file access.

Memory

1-gr 2-gr 3-gr
Disk file

Figure 4: Memory mapping of the LM on disk.
Only the memory pages (grey blocks) of the LM that
are accessed while decoding the input sentence are
loaded in memory.

space of a process, whose access is managed as vir-
tual memory (see Figure 4).

During decoding of a sentence, only thosen-
grams, or better memory pages, of the LM that are
actually accessed are loaded into memory, which re-
sults in a significant reduction of the resident mem-
ory space required by the process. Once the decod-
ing of the input sentence is completed, all loaded
pages are released, so that resident memory is avail-
able for then-gram probabilities of the following
sentence. A remarkable feature is that memory-
mapping also permits to share the same address
space among multiple processes, so that the same
LM can be accessed by several decoding processes
(running on the same machine).

4 Experiments

In order to assess the quality of our implementa-
tion, henceforth named IRSTLM, we have designed
a suite of experiments with a twofold goal: from
one side the comparison of IRSTLM against a pop-
ular LM library, namely the SRILM toolkit (Stol-
cke, 2002); from the other, to measure the actual
impact of the implementation solution discussed in
previous sections. Experiments were performed on a
common statistical MT platform, namelyMoses, in
which both the IRSTLM and SRILM toolkits have
been integrated.

The following subsection lists the questions

91

set type |W|
source target

large parallel 83.1M 87.6M
giga monolingual - 1.76G

NIST 02 dev 23.7K 26.4K
NIST 03 test 25.6K 28.5K
NIST 04 test 51.0K 58.9K
NIST 05 test 31.2K 34.6K
NIST 06 nw test 18.5K 22.8K
NIST 06 ng test 9.4K 11.1K
NIST 06 bn test 12.0K 13.3K

Table 1: Statistics of training, dev. and test sets.
Evaluation sets of NIST campaigns include 4 ref-
erences: in table, average lenghts are provided.

which our experiments aim to answer.

Assessing Questions
1. Is LM estimation feasible for large amounts of

data?

2. How does IRSTLM compare with SRILM
w.r.t.:
(a) decoding speed?
(b) memory requirements?
(c) translation performance?

3. How does LM quantization impact in terms of

(a) memory consumption?
(b) decoding speed?
(c) translation performance?
(d) tuning of decoding parameters?

4. What is the impact of caching on decoding
speed?

5. What are the advantages of memory mapping?

Task and Experimental Setup

The task chosen for our experiments is the transla-
tion of news from Chinese to English, as proposed
by the NIST MT Evaluation Workshop of 2006.3

A translation system was trained according to the
large-datacondition. In particular, all the allowed
bilingual corpora have been used for estimating the
phrase-table. The target side of these texts was also
employed for the estimation of three 5-gram LMs,
henceforth namedlarge. In particular, two LMs

3www.nist.gov/speech/tests/mt/

were estimated with the SRILM toolkit by prun-
ing singletons events and by employing the Witten-
Bell and the absolute discounting (Kneser and Ney,
1995) smoothing methods; the shorthand for these
two LMs will be “lrg-sri-wb” and “lrg-sri-kn”, re-
spectively. Another large LM was estimated with the
IRSTLM toolkit, by employing the only smoothing
method available in the package (Witten-Bell) and
by pruning singletonsn-grams; its shorthand will be
“lrg”. An additional, much larger, 5-gram LM was
instead trained with the IRSTLM toolkit on the so-
called English Gigaword corpus, one of the allowed
monolingual resources for this task.

Automatic translation was performed by means of
Moses which, among other things, permits the con-
temporary use of more LMs, feature we exploited in
our experiments as specified later.

Optimal interpolation weights for the log-linear
model were estimated by running a minimum error
training algorithm, available in theMoses toolkit,
on the evaluation set of the NIST 2002 campaign.
Tests were performed on the evaluation sets of the
successive campaigns (2003 to 2006). Concern-
ing the NIST 2006 evaluation set, results are given
separately for three different types of texts, namely
newswire (nw) and newsgroup (ng) texts, and broad-
cast news transcripts (bn).

Table 1 gives figures about training, development
and test corpora, while Table 2 provides main statis-
tics of the estimated LMs.

LM millions of
1-gr 2-gr 3-gr 4-gr 5-gr

lrg-sri-kn 0.3 5.2 5.9 7.1 6.8
lrg-sri-wb 0.3 5.2 6.4 7.8 6.8

lrg 0.3 5.3 6.6 8.4 8.0
giga 4.5 64.4 127.5 228.8 288.6

Table 2: Statistics of LMs.

MT performance are provided in terms of case-
insensitive BLEU and NIST scores, as computed
with the NIST scoring tool. For time reasons,
the decoder run with monotone search; prelimi-
nary experiments showed that this choice does not
affect comparison of LMs. Reported decoding
speed is the elapsed real time measured with the
Linux/UNIX time command divided by the num-
ber of source words to be translated. dual Intel/Xeon

92

CPU 3.20GHz with 8Gb RAM. Experiments run on
dual Intel/Xeon CPUs 3.20GHz/8Gb RAM.

4.1 LM estimation

First of all, let us answer the question (number 1)
on the feasibility of the procedure for the estima-
tion of huge LMs. Given the amount of training data
employed, it is worth to provide some details about
the estimation process of the “giga” LM. According
to the steps listed in Section 2.1, the whole dictio-
nary was split intoK = 14 frequency balanced lists.
Then, 5-grams beginning with words from each list
were extracted and stored. Table 3 shows some fig-
ures about these dictionaries and 5-gram collections.
Note that the dictionary size increases with the list
index: this means only that more frequent words
were used first. This stage run in few hours with
1-2Gb parallel processes.

list dictionary number of 5-grams:
index size observed distinct non-singletons

0 4 217M 44.9M 16.2M
1 11 164M 65.4M 20.7M
2 8 208M 85.1M 27.0M
3 44 191M 83.0M 26.0M
4 64 143M 56.6M 17.8M
5 137 142M 62.3M 19.1M
6 190 142M 64.0M 19.5M
7 548 142M 66.0M 20.1M
8 783 142M 63.3M 19.2M
9 1.3K 141M 67.4M 20.2M
10 2.5K 141M 69.7M 20.5M
11 6.1K 141M 71.8M 20.8M
12 25.4K 141M 74.5M 20.9M
13 4.51M 141M 77.4M 20.6M

total 4.55M 2.2G 951M 289M

Table 3: Estimation of the “giga” LM: dictionary
and 5-gram statistics (K = 14).

The actual estimation of the LM was performed
with the scheme presented in Section 2.2. For each
collection of non-singletons 5-grams, a sub-LM was
built by computing smoothedn-gram (n = 1 · · · 5)
probabilities and interpolation parameters. Again,
by exploiting parallel processing, this phase took
only few hours on standard HW resources. Finally,
sub-LMs were joined in a single LM, which can be
stored in two formats: (i) the standard textual ARPA

LM format quantization file size

lrg-sri-kn textual n 893Mb
lrg-sri-wb textual n 952Mb

lrg textual n 1088Mb
y 789Mb

binary n 368Mb
y 220Mb

giga textual n 28.0Gb
y 21.0Gb

binary n 8.5Gb
y 5.1Gb

Table 4: Figures of LM files.

format, and (ii) the binary format of Section 2.3. In
addition, LM probabilities can be quantized accord-
ing to the procedure of Section 2.4.

The estimation of the “lrg-sri” LMs, performed
by means of the SRILM toolkit, took about 15 min-
utes requiring 5Gb of memory. The “lrg” LM was
estimated as the “giga” LM in about half an hour
demanding only few hundreds of Mb of memory.

Table 4 lists the size of files storing various ver-
sions of the “large” and “giga” LMs which differ in
format and/or type.

4.2 LM run-time usage

Tables 5 and 6 shows BLEU and NIST scores, re-
spectively, measured on test sets for each specific
LM configuration. The first two rows of the two ta-
bles regards runs ofMoses with the SRILM, that
uses “lrg-sri” LMs. The other rows refer to runs of
Moses with IRSTLM, either using LM “lrg” only,
or both LMs, “lrg” and “giga”. LM quantization is
marked by a “q”.

Finally, in Table 7 figures about the decoding pro-
cesses are recorded. For each LM configuration, the
process size, both virtual and resident, is provided
together with the average time required for translat-
ing a source word with/without the activation of the
caching mechanism described in Section 3.1. It is
to worth noticing that the “giga” LM (both original
and quantized) is loaded through the memory map-
ping service presented in Section 3.2.

Table 7 includes most of the answers to question
number 2:

2.a Under the same conditions,Moses running
with SRILM permits almost double faster

93

LM NIST test set
03 04 05 06 06 06

nw ng bn

lrg-sri-kn 28.74 30.52 26.99 29.28 23.47 27.27
lrg-sri-wb 28.05 29.86 26.52 28.37 23.13 26.37

lrg 28.49 29.84 26.97 28.69 23.28 26.70
q-lrg 28.05 29.66 26.48 28.58 22.64 26.05

lrg+giga 30.77 31.93 29.09 29.74 24.39 28.50
q-lrg+q-giga30.42 31.47 28.62 29.76 24.28 28.23

Table 5: BLEU scores on NIST evaluation sets for
different LM configurations.

LM NIST test set
03 04 05 06 06 06

nw ng bn

lrg-sri-kn 8.73 9.29 8.47 8.98 7.81 8.52
lrg-sri-wb 8.52 9.14 8.27 8.96 7.90 8.34

lrg 8.73 9.21 8.45 8.95 7.82 8.47
q-lrg 8.60 9.11 8.32 8.88 7.73 8.31

lrg+giga 9.08 9.49 8.80 8.92 7.86 8.66
q-lrg+q-giga 8.93 9.38 8.65 9.05 7.99 8.60

Table 6: NIST scores on NIST evaluation sets for
different LM configurations.

translation than IRSTLM (13.33 vs. 6.80
words/s). Anyway, IRSTLM can be sped-up to
7.52 words/s by applying caching.

2.b IRSTLM requires about half memory than
SRILM for storing an equivalent LM during
decoding. If the LM is quantized, the gain is
even larger. Concerning file sizes (Table 4), the
size of IRSTLM binary files is about 30% of
the corresponding textual versions. Quantiza-
tion further reduces the size to 20% of the orig-
inal textual format.

2.c Performance of IRSTLM and SRILM on the
large LMs smoothed with the same method are
comparable, as expected (see entries “lrg-sri-
wb” and “lrg” of Tables 5 and 6). The small
differences are due to different probability val-
ues assigned by the two libraries to out-of-
vocabulary words.

Concerning quantization, gains in terms of memory
space (question 3.a) have already been highlighted
(see answer 2.b). For the remaining points:

3.b comparing “lrg” vs. “q-lrg” rows and

LM process size cachingdec. speed
virtual resident (src w/s)

lrg-sri-kn/wb 1.2Gb 1.2Gb - 13.33
lrg 750Mb 690Mb n 6.80

y 7.42
q-lrg 600Mb 540Mb n 6.99

y 7.52
lrg+giga 9.9Gb 2.1Gb n 3.52

y 4.28
q-lrg+q-giga 6.8Gb 2.1Gb n 3.64

y 4.35

Table 7: Process size and decoding speed with/wo
caching for different LM configurations.

“lrg+giga” vs. “q-lrg+q-giga” rows of Ta-
ble 7, it results that quantization allows only a
marginal decoding time reduction (1-3%)

3.c comparing the same rows of Tables 5 and 6, it
can be claimed that quantization doesn’t affect
translation performance in a significant way

3.d no specific training of decoder weights is re-
quired since the original LM and its quan-
tized version are equivalent. For example,
by translating the NIST 05 test set with the
weights estimated on the “lrg+giga” configu-
ration, the following BLEU/NIST scores are
got: 28.99/8.79 with the “q-lrg+q-giga” LMs,
29.09/8.80 with the “lrg+giga” LMs (the latter
scores are also given in Tables 5 and 6). Em-
ploying weights estimated on “q-lrg+q-giga”
scores are: 28.58/8.66 with “lrg+giga” LMs,
28.62/8.65 with “q-lrg+q-giga” LMs (again
also in Tables 5 and 6). Also on other test sets
differences are negligible.

Table 7 answers the question number 4 on
caching, by reporting the decoding speed-up due to
this mechanism: a gain of 8-9% is observed on “lrg”
and “q-lrg” configurations, of 20-21% in case also
“giga/q-giga” LMs are employed.

The answer to the last question is that thanks to
the memory mapping mechanism it is possible run
Moses with huge LMs, which is expected to im-
prove performance. Tables 5 and 6 provide quan-
titative support to the statement. In fact, a gain of
1-2 absolute BLEU was measured on different test
sets when “giga” LM was employed in addition to

94

NIST test set
03 04 05 06 06 06

nw ng bn

BLEU
ci 33.62 35.04 31.92 32.74 26.18 32.43
cs 31.44 32.99 29.95 30.49 24.35 31.10

NIST
ci 9.27 9.75 9.00 9.24 8.00 8.97
cs 8.88 9.40 8.64 8.82 7.69 8.77

Table 8: Case insensitive (ci) and sensitive (cs)
scores of the best performing system.

“lrg” LM. The SRILM-based decoder would require
a process of about 30Gb to load the “giga” LM; on
the contrary, the virtual size of the IRSTLM-based
decoder is 6.8Gb, while the actual resident memory
is only 2.1Gb.

4.3 Best Performing System

Experimental results discussed so far are not the best
we are able to get. In fact, the adopted setup fixed
the monotone search and the use of no reordering
model. Then, in order to allow a fair comparison
of the IRSTLM-basedMoses system with the ones
participating to the NIST MT evaluation campaigns,
we have (i) set the maximum reordering distance to
6 and (ii) estimated a lexicalized reordering model
on the large parallel data by means of the training
option “orientation-bidirectional-fe”.

Table 8 shows BLEU/NIST scores measured on
test sets by employing the IRSTLM-basedMoses
with this setting and employing “q-lrg+q-giga”
LMs. It ranks at the top 5 systems (out of 24) with
respect to the results of the NIST 06 evaluation cam-
paign.

5 Conclusions

We have presented a method for efficiently estimat-
ing and handling large scalen-gram LMs for the
sake of statistical machine translation. LM estima-
tion is performed by splitting the task with respect
to the initial word of then-grams, and by merging
the resulting sub-LMs. Estimated LMs can be quan-
tized and compiled in a compact data structure. Dur-
ing the search, LM probabilities are cached and only
the portion of effectively used LMn-grams is loaded
in memory from disk. This method permits indeed

to exploit locality phenomena shown by the search
algorithm when accessing LM probabilities. Results
show an halving of memory requirements, at the cost
of 44% slower decoding speed. In addition, loading
the LM on demand permits to keep the size of mem-
ory allocated to the decoder nicely under control.

Future work will investigate the way for includ-
ing more sophisticated LM smoothing methods in
our scheme and will compare IRSTLM and SRILM
toolkits on increasing size training corpora.

6 Acknowledgments

This work has been funded by the European Union
under the integrated project TC-STAR - Technol-
ogy and Corpora for Speech-to-Speech Translation
- (IST-2002-FP6-506738, http://www.tc-star.org).

References
S.F. Chen and J. Goodman. 1999. An empirical study of

smoothing techniques for language modeling.Computer
Speech and Language, 4(13):359–393.

P. Clarkson and R. Rosenfeld. 1997. Statistical language mod-
eling using the CMU–cambridge toolkit. InProc. of Eu-
rospeech, pages 2707–2710, Rhodes, Greece.

M. Federico and N. Bertoldi. 2006. How many bits are needed
to store probabilities for phrase-based translation? InProc.
of the Workshop on Statistical Machine Translation, pages
94–101, New York City, June. Association for Computa-
tional Linguistics.

R. Kneser and H. Ney. 1995. Improved backing-off for m-gram
language modeling. InProc. of ICASSP, volume 1, pages
181–184, Detroit, MI.

M. Lapata and F. Keller. 2006. Web-based models for natu-
ral language processing.ACM Transactions on Speech and
Language Processing, 1(2):1–31.

NIST. 2006. Proc. of the NIST MT Workshop. Washington,
DC. NIST.

A. Stolcke. 2002. SRILM - an extensible language modeling
toolkit. In Proc. of ICSLP, Denver, Colorado.

F. Wessel, S. Ortmanns, and H. Ney. 1997. Implementation
of word based statistical language models. InProc. SQEL
Workshop on Multi-Lingual Information Retrieval Dialogs,
pages 55–59, Pilsen, Czech Republic.

E. W. D. Whittaker and B. Raj. 2001. Quantization-based Lan-
guage Model Compression. InProc. of Eurospeech, pages
33–36, Aalborg.

I. H. Witten and T. C. Bell. 1991. The zero-frequency problem:
Estimating the probabilities of novel events in adaptive text
compression.IEEE Trans. Inform. Theory, IT-37(4):1085–
1094.

95

