
Proceedings of the Second Workshop on Statistical Machine Translation, pages 72–79,
Prague, June 2007. c©2007 Association for Computational Linguistics

Training Non-Parametric Features for Statistical MachineTranslation

Patrick Nguyen, Milind Mahajan and Xiaodong He
Microsoft Corporation

1 Microsoft Way,
Redmond, WA 98052

{panguyen,milindm,xiaohe}@microsoft.com

Abstract

Modern statistical machine translation sys-
tems may be seen as using two components:
feature extraction, that summarizes informa-
tion about the translation, and a log-linear
framework to combine features. In this pa-
per, we propose to relax the linearity con-
straints on the combination, and hence relax-
ing constraints of monotonicity and indepen-
dence of feature functions. We expand fea-
tures into a non-parametric, non-linear, and
high-dimensional space. We extend empir-
ical Bayes reward training of model param-
eters to meta parameters of feature genera-
tion. In effect, this allows us to trade away
some human expert feature design for data.
Preliminary results on a standard task show
an encouraging improvement.

1 Introduction

In recent years, statistical machine translation have
experienced a quantum leap in quality thanks to au-
tomatic evaluation (Papineni et al., 2002) and error-
based optimization (Och, 2003). The conditional
log-linear feature combination framework (Berger,
Della Pietra and Della Pietra, 1996) is remarkably
simple and effective in practice. Therefore, re-
cent efforts (Och et al., 2004) have concentrated on
feature design – wherein more intelligent features
may be added. Because of their simplicity, how-
ever, log-linear models impose some constraints on
how new information may be inserted into the sys-
tem to achieve the best results. In other words,

new information needs to beparameterizedcare-
fully into one or more real valued feature functions.
Therefore, that requires some human knowledge and
understanding. When not readily available, this
is typically replaced with painstaking experimenta-
tion. We propose to replace that step with automatic
training of non-parametric agnostic features instead,
hopefully relieving the burden of finding the optimal
parameterization.

First, we define the model and the objective func-
tion training framework, then we describe our new
non-parametric features.

2 Model

In this section, we describe the general log-linear
model used for statistical machine translation, as
well as a training objective function and algorithm.

The goal is to translate a French (source) sentence
indexed byt, with surface stringft. Among a set of
Kt outcomes, we denote an English (target) a hy-
pothesis with surface stringe(t)k indexed byk.

2.1 Log-linear Model

The prevalent translation model in modern systems
is a conditional log-linear model (Och and Ney,
2002). From a hypothesise(t)k , we extract features

h
(t)
k , abbreviatedhk, as a function ofe(t)k andft. The

conditional probability of a hypothesise(t)k given a
source sentenceft is:

pk , p(e
(t)
k |ft) ,

exp[λ · hk]

Zft;λ
,

72

where thepartition functionZft;λ is given by:

Zft;λ =
∑

j

exp[λ · hj].

The vector of parameters of the modelλ, gives a
relative importance to each feature function compo-
nent.

2.2 Training Criteria

In this section, we quickly review how to adjustλ
to get better translation results. First, let us define
the figure of merit used for evaluation of translation
quality.

2.2.1 BLEU Evaluation

The BLEU score (Papineni et al., 2002) was de-
fined to measure overlap between a hypothesized
translation and a set of human references.n-gram
overlap counts{cn}4

n=1 are computed over the test
set sentences, and compared to the total counts of
n-grams in the hypothesis:

c
n,(t)
k , max. # of matchingn-grams for hyp.e(t)k ,

a
n,(t)
k , # of n-grams in hypothesise(t)k .

Those quantities are abbreviatedck andak to sim-
plify the notation. The precision ratioPn for ann-
gram ordern is:

Pn ,

∑

t c
n,(t)
k

∑

t a
n,(t)
k

.

A brevity penaltyBP is also taken into account, to
avoid favoring overly short sentences:

BP , min{1; exp(1−
r

a
)},

wherer is the average length of the shortest sen-
tence1, anda is the average length of hypotheses.
The BLEU score the set of hypotheses{e(t)k } is:

B({e
(t)
k }) , BP · exp

(4
∑

n=1

1

4
logPn

)

.

1As implemented by NISTmteval-v11b.pl.

Oracle BLEU hypothesis: There is no easy way
to pick the set hypotheses from ann-best list that
will maximize the overall BLEU score. Instead, to
compute oracle BLEU hypotheses, we chose, for
each sentence independently, the hypothesis with the
highest BLEU score computed for a sentence itself.
We believe that it is a relatively tight lower bound
and equal for practical purposes to the true oracle
BLEU.

2.2.2 Maximum Likelihood

Used in earlier models (Och and Ney, 2002), the
likelihood criterion is defined as the likelihood of an
oracle hypothesise(t)k∗ , typically a single reference
translation, or alternatively the closest match which
was decoded. When the model is correct and infi-
nite amounts of data are available, this method will
converge to the Bayes error (minimum achievable
error), where we define a classification task of se-
lectingk∗ against all others.

2.2.3 Regularization Schemes

One can convert a maximum likelihood problem
into maximuma posterioriusing Bayes’ rule:

arg max
λ

∏

t

p(λ|{e
(t)
k , ft}) = arg max

λ

∏

t

pkp0(λ),

where p0(·) is the prior distribution ofλ. The
most frequently used prior in practice is the normal
prior (Chen and Rosenfeld, 2000):

log p0(λ) , −
||λ||2

2σ2
− log |σ|,

whereσ2 > 0 is the variance. It can be thought of
as the inverse of a Lagrange multiplier when work-
ing with constrained optimization on the Euclidean
norm of λ. When not interpolated with the likeli-
hood, the prior can be thought of as a penalty term.
The entropy penalty may also be used:

H , −
1

T

T
∑

t=1

Kt
∑

k=1

pk log pk.

Unlike the Gaussian prior, the entropy is indepen-
dent of parameterization (i.e., it does not depend on
how features are expressed).

73

2.2.4 Minimum Error Rate Training

A good way of trainingλ is to minimize empirical
top-1 error on training data (Och, 2003). Compared
to maximum-likelihood, we now give partial credit
for sentences which are only partially correct. The
criterion is:

arg max
λ

∑

t

B({e
(t)

k̂
}) : e

(t)

k̂
= arg max

e
(t)
j

pj.

We optimize theλ so that the BLEU score of the
most likely hypotheses is improved. For that reason,
we call this criterionBLEU max. This function is
not convex and there is no known exact efficient op-
timization for it. However, there exists a linear-time
algorithm for exact line search against that objec-
tive. The method is often used in conjunction with
coordinate projection to great success.

2.2.5 Maximum Empirical Bayes Reward

The algorithm may be improved by giving partial
credit for confidencepk of the model to partially cor-
rect hypotheses outside of the most likely hypothe-
sis (Smith and Eisner, 2006):

1

T

T
∑

t=1

Kt
∑

k=1

pk logB({ek(t)}).

Instead of the BLEU score, we use its logrithm, be-
cause we think it is exponentially hard to improve
BLEU. This model is equivalent to the previous
model whenpk give all the probability mass to the
top-1. That can be reached, for instance, whenλ
has a very large norm. There is no known method
to train against this objective directly, however, ef-
ficient approximations have been developed. Again,
it is not convex.

It is hoped that this criterion is better suited for
high-dimensional feature spaces. That is our main
motivation for using this objective function through-
out this paper. With baseline features and on our
data set, this criterion also seemed to lead to results
similar to Minimum Error Rate Training.

We can normalizeB to a probability measure
b({e

(t)
k }). The empirical Bayes reward also coin-

cides with a divergenceD(p||b).

2.3 Training Algorithm

We train our model using a gradient ascent method
over an approximation of the empirical Bayes re-
ward function.

2.3.1 Approximation

Because the empirical Bayes reward is defined
over a set of sentences, it may not be decomposed
sentence by sentence. This is computationally bur-
densome. Its sufficient statistics arer,

∑

t ck and
∑

t ak. The function may be reconstructed in a first-
order approximation with respect to each of these
statistics. In practice this has the effect of commut-
ing the expectation inside of the functional, and for
that reason we call this criterionBLEU soft. This ap-
proximation is calledlinearization (Smith and Eis-
ner, 2006). We used a first-order approximation for
speed, and ease of interpretation of the derivations.
The new objective function is:

J , log B̄P +

4
∑

n=1

1

4
log

∑

t Ecn,(t)
k

∑

t Ean,(t)
k

,

where the average bleu penalty is:

log B̄P , min{0; 1 −
r

Ek,ta
1,(t)
k

}.

The expectation is understood to be under the cur-
rent estimate of our log-linear model. BecauseB̄P is
not differentiable, we replace the hard min function
with a sigmoid, yielding:

log B̄P ≈ u(r − Ek,ta
1,(t)
k)

(

1−
r

Ek,ta
1,(t)
k

)

,

with the sigmoid functionu(x) defines a soft step
function:

u(x) ,
1

1 + e−τx
,

with a parameterτ ≫ 1.

2.3.2 Gradients and Sufficient Statistics

We can obtain the gradients of the objective func-
tion using the chain rule by first differentiating with
respect to the probability. First, let us decompose
the log-precision of the expected counts:

log P̃n = log Ecn,(t)
k − log Ean,(t)

k .

74

Eachn-gram precision may be treated separately.
For eachn-gram order, let us define sufficient statis-
ticsψ for the precision:

ψc
λ ,

∑

t,k

(∇λpk)ck; ψa
λ ,

∑

t,k

(∇λpk)ak,

where the gradient of the probabilities is given by:

∇λpk = pk(hk − h̄),

with:

h̄ ,

Kt
∑

j=1

pjhj .

The derivative of the precisioñPn is:

∇λlog P̃n =
1

T

[

ψc
λ

Eck
−

ψa
λ

Eak

]

For the length, the derivative oflog B̄P is:

u(r−Ea)
[

(
r

a
− 1)[1 − u(r − Ea)]τ +

r

(Ea)2

]

ψa1
λ ,

whereψa1
λ is the1-gram component ofψa

λ. Finally,
the derivative of the entropy is:

∇λH =
∑

k,t

(1 + log pk)∇λpk.

2.3.3 RProp

For all our experiments, we chose RProp (Ried-
miller and Braun, 1992) as the gradient ascent al-
gorithm. Unlike other gradient algorithms, it is only
based on the sign of the gradient components at each
iteration. It is relatively robust to the objective func-
tion, requires little memory, does not require meta
parameters to be tuned, and is simple to implement.
On the other hand, it typically requires more iter-
ations than stochastic gradient (Kushner and Yin,
1997) or L-BFGS (Nocedal and Wright, 1999).

Using fairly conservative stopping criteria, we ob-
served that RProp was about 6 times faster than Min-
imum Error Rate Training.

3 Adding Features

The log-linear model is relatively simple, and is usu-
ally found to yield good performance in practice.
With these considerations in mind, feature engineer-
ing is an active area of research (Och et al., 2004).

Because the model is fairly simple, some of the in-
telligence must be shifted to feature design. After
having decided what new information should go in
the overall score, there is an extra effort involved
in expressing orparameterizingfeatures in a way
which will be easiest for the model learn. Experi-
mentation is usually required to find the best config-
uration.

By adding non-parametric features, we propose
to mitigate the parameterization problem. We will
not add new information, but rather, propose a way
to insulate research from the parameterization. The
system should perform equivalently invariant of any
continuous invertible transformation of the original
input.

3.1 Existing Features

The baseline system is a syntax based machine
translation system as described in (Quirk, Menezes
and Cherry, 2005). Our existing feature set includes
11 features, among which the following:

• Target hypothesis word count.

• Treelet count used to construct the candidate.

• Target language models, based on the Giga-
word corpus (5-gram) and target side of parallel
training data (3-gram).

• Order models, which assign a probability to the
position of each target node relative to its head.

• Treelet translation model.

• Dependency-based bigram language models.

3.2 Re-ranking Framework

Our algorithm works in a re-ranking framework.
In particular, we are adding features which are not
causal or additive. Features for a hypothesis may
not be accumulating by looking at the English (tar-
get) surface string words from the left to the right
and adding a contribution per word. Word count,
for instance, is causal and additive. This property
is typically required for efficient first-pass decod-
ing. Instead, we look at a hypothesis sentence as a
whole. Furthermore, we assume that theKt-best list
provided to us contains the entire probability space.

75

In particular, the computation of the partition func-
tion is performed over allKt-best hypotheses. This
is clearly not correct, and is the subject of further
study. We use then-best generation scheme inter-
leaved withλ optimization as described in (Och,
2003).

3.3 Issues with Parameterization

As alluded to earlier, when designing a new feature
in the log-linear model, one has to be careful to find
the best embodiment. In general, a set of features
must satisfy the following properties, ranked from
strict to lax:

• Linearity (warping)

• Monotonicity

• Independence (conjunction)

Firstly, a feature should be linearly correlated with
performance. There should be no region were it
matters less than other regions. For instance, in-
stead of a word count, one might consider adding
its logarithm instead. Secondly, the “goodness” of a
hypothesis associated with a feature must be mono-
tonic. For instance, using the signed difference be-
tween word count in the French (source) and En-
glish (target) does not satisfy this. (In that case, one
would use the absolute value instead.) Lastly, there
should be no inter-dependence between features. As
an example, we can consider adding multiple lan-
guage model scores. Whether we should consider
ratios those of, globally linearly or log-linearly in-
terpolating them, is open to debate. When features
interact across dimensions, it becomes unclear what
the best embodiment should be.

3.4 Non-parametric Features

A generic solution may be sought in non-parametric
processing. Our method can be derived from a quan-
tized Parzen estimate of the feature density function.

3.4.1 Parzen Window

The Parzen window is an early empirical kernel
method (Duda and Hart, 1973). For an observation
hm, we extrapolate probability mass around it with
a smoothing windowΦ(·). The density function is:

p(h) =
1

M

K
∑

m=1

Φ(h− hm),

assumingΦ(·) is a density function. Parzen win-
dows converge to the true density estimate, albeit
slowly, under weak assumptions.

3.4.2 Bin Features

One popular way of using continuous features in
log-linear models is to convert a single continuous
feature into multiple “bin” features. Each bin feature
is defined as the indicator function of whether the
original continuous feature was in a certain range.
The bins were selected so that each bin collects an
equal share of the probability mass. This is equiva-
lent to the maximum likelihood estimate of the den-
sity function subject to a fixed number of rectangular
density kernels. Since that mapping is not differen-
tiable with respect to the original features, one may
use sigmoids to soften the boundaries.

Bin features are useful to relax the requirements
of linearity and monotonicity. However, because
they work on each feature individually, they do not
address the problem of inter-dependence between
features.

3.4.3 Gaussian Mixture Model Features

Bin features may be generalized to multi-
dimensional kernels by using a Gaussian smoothing
window instead of a rectangular window. The direct
analogy is vector quantization. The idea is to weight
specific regions of the feature space differently. As-
suming that we haveM Gaussians each with mean
vectorµm and diagonal covariance matrixCm, and
prior weightwm. We will addm new features, each
defined as the posterior in the mixture model:

hm ,
wmN (h;µm, Cm)
∑

r wrN (h;µr, Cr)
.

It is believed that any reasonable choice of kernels
will yield roughly equivalent results (Povey et al.,
2004), if the amount of training data and the number
of kernels are both sufficiently large. We show two
methods for obtaining clusters. In contrast with bins,
lossless representation becomes rapidly impossible.

ML kernels: The canonical way of obtaining clus-
ter is to use the standard Gaussian mixture training.
First, a single Gaussian is trained on the whole data
set. Then, the Gaussian is split into two Gaussians,
with each mean vector perturbed, and the Gaus-
sians are retrained using maximum-likelihood in an

76

expectation-maximization framework (Rabiner and
Huang, 1993). The number of Gaussians is typically
increased exponentially.

Perceptron kernels: We also experimented with
another quicker way of obtaining kernels. We
chose an equal prior and a global covariance matrix.
Means were obtained as follows: for each sentence
in the training set, if the top-1 candidate was differ-
ent from the approximate maximum oracle BLEU
hypothesis, both were inserted. It is a quick way
to bootstrap and may reach the oracle BLEU score
quickly.

In the limit, GMMs will converge to the oracle
BLEU. In the next section, we show how to re-
estimate these kernels if needed.

3.5 Re-estimation Formulæ

Features may also be trained using the same empir-
ical maximum Bayes reward. Letθ be the hyper-
parameter vector used to generate features. In the
case of language models, for instance, this could be
backoff weights. Let us further assume that the fea-
ture values are differentiable with respect toθ. Gra-
dient ascent may be applied again but this time with
respect toθ. Using the chain rule:

∇θJ = (∇θh)(∇hpk)(∇pk
J),

with ∇hpk = pk(1− pk)λ. Let us take the example
of re-estimating the mean of a Gaussian kernelµm:

∇µmhm = −wmhm(1− hm)C−1
m (µm − h),

for its own feature, and for other posteriorsr 6= m:

∇µmhr = −wrhrhmC
−1
m (µm − h),

which is typically close to zero if no two Gaussians
fire simultaneously.

4 Experimental Results

For our experiments, we used the standard NIST
MT-02 data set to evaluate our system.

4.1 NIST System

A relatively simple baseline was used for our exper-
iments. The system is syntactically-driven (Quirk,
Menezes and Cherry, 2005). The system was trained

on 175k sentences which were selected from the
NIST training data (NIST, 2006) to cover words in
source language sentences of the MT02 develop-
ment and evaluation sets. The5-gram target lan-
guage model was trained on the Gigaword mono-
lingual data using absolute discounting smoothing.
In a single decoding, the system generated 1000 hy-
potheses per sentence whenever possible.

4.2 Leave-one-out Training

In order to have enough data for training, we gen-
erated ourn-best lists using 10-fold leave-one-out
training: base feature extraction models were trained
on 9/10th of the data, then used for decoding the
held-out set. The process was repeated for all 10
parts. A singleλ was then optimized on the com-
bined lists of all systems. Thatλ was used for an-
other round of 10 decodings. The process was re-
peated until it reached convergence after 7 iterations.
Each decoding generated about 100 hypotheses, and
there was relatively little overlap across decodings.
Therefore, there were about 1M hypotheses in total.

The combined list of all iterations was used for all
subsequent experiments of feature expansion.

4.3 BLEU Training Results

We tried training systems under the empirical Bayes
reward criterion, and appending either bin or GMM
features. We will find that bin features are es-
sentially ineffective while GMM features show a
modest improvement. We did not retrain hyper-
parameters.

4.3.1 Convexity of the Empirical Bayes Reward

The first question to ask is how many local op-
tima does the cost surface have using the standard
features. A complex cost surface indicates that some
gain may be had with non-linear features, but it also
shows that special care should be taken during op-
timization. Non-convexity is revealed by sensitivity
to initialization points. Thus, we decided to initial-
ize from all vertices of the unit hypercube, and since
we had 11 features, we ran211 experiments. The
histogram of BLEU scores on dev data after conver-
gence is shown on Figure 1. We also plotted the his-
togram of an example dimension in Figure 2. The
range of BLEU scores and lambdas is reasonably
narrow. Even thoughλ seems to be bimodal, we see

77

that this does not seriously affect the BLEU score.
This is not definitive evidence but we provisionally
pretend that the cost surface is almost convex for
practical purposes.

24.8 24.9 25 25.1 25.2 25.3 25.4
0

200

400

600

800

BLEU score

nu
m

be
r

of
 tr

ai
ne

d
m

od
el

s

Figure 1: Histogram of BLEU scores after training
from 211 initializations.

−60 −40 −20 0
0

100

200

300

400

500

600

700

λ value

nu
m

be
r

of
 tr

ai
ne

d
m

od
el

s

Figure 2: Histogram of oneλ parameter after train-
ing from211 initializations.

4.3.2 Bin Features

A log-linear model can be converted into a bin
feature model nearly exactly by settingλ values
in such a way that scores will be equal. Equiva-
lent weights (marked as ‘original’ in Figure 3) have
the shape of an error function (erf): this is because
the input feature is a cummulative random variable,
which quickly converges to a Gaussian (by the cen-
tral limit theorem). After training theλ weights for
the log-linear model, weights may be converted into

bins and re-trained. On Figure 3, we show that relax-
ing the monotonicity constraint leads to rough val-
ues forλ. Surprisingly, the BLEU score and ob-
jective on thetraining set only increases marginally.
Starting fromλ = 0, we obtained nearly exactly the
same training objective value. By varying the num-
ber of bins (20-50), we observed similar behavior as
well.

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

bin id
va

lu
e

original weights
trained weights

Figure 3: Values before and after training bin fea-
tures. Monotonicity constraint has been relaxed.
BLEU score is virtually unchanged.

4.3.3 GMM Features

Experiments were carried out with GMM fea-
tures. The summary is shown on Table 1. The
baseline was the log-linear model trained with the
baseline features. The baseline features are included
in all systems. We trained GMM models using the
iterative mixture splitting interleaved with EM re-
estimation, split up to 1024 and 16384 Gaussians,
which we call GMM-ML-1k and GMM-ML-16k re-
spectively. We also used the “perceptron” selec-
tion features on the training set to bootstrap quickly
to 300k Gaussians (GMM-PCP-300k), and ran the
same algorithm on the development set (GMM-
PCP-2k). Therefore, GMM-PCP-300k had 300k
features, and was trained on 175k sentences (each
with about 700 hypotheses). For all experiments but
“unreg” (unregularized), we chose a prior Gaussian
prior with variance empirically by looking at the de-
velopment set. For all but GMM-PCP-300k, regu-
larization did not seem to have a noticeably positive
effect on development BLEU scores. All systems
were seeded with the baseline log-linear model, and

78

all additional weights set to zero, and then trained
with about 50 iterations, but convergence in BLEU
score, empirical reward, and development BLEU
score occurred after about 30 iterations. In that set-
ting, we found that regularized empirical Bayes re-
ward, BLEU score on training data, and BLEU score
on development and evaluation to be well corre-
lated. Cursory experiments revealed that using mul-
tiple initializations did not significantly alter the fi-
nal BLEU score.

System Train Dev Eval
Oracle 14.10 N/A N/A
Baseline 10.95 35.15 25.95
GMM-ML-1k 10.95 35.15 25.95
GMM-ML-16k 11.09 35.25 25.89
GMM-PCP-2k 10.95 35.15 25.95
GMM-PCP-300k-unreg 13.00 N/A N/A
GMM-PCP-300k 12.11 35.74 26.42

Table 1: BLEU scores for GMM features vs the lin-
ear baseline, using different selection methods and
number of kernels.

Perceptron kernels based on the training set im-
proved the baseline by 0.5 BLEU points. We mea-
sured significance with the Wilcoxon signed rank
test, by batching 10 sentences at a time to produce
an observation. The difference was found to be sig-
nificant at a 0.9-confidence level. The improvement
may be limited due to local optima or the fact that
original feature are well-suited for log-linear mod-
els.

5 Conclusion

In this paper, we have introduced a non-parametric
feature expansion, which guarantees invariance to
the specific embodiment of the original features.
Feature generation models, including feature ex-
pansion, may be trained using maximum regular-
ized empirical Bayes reward. This may be used as
an end-to-end framework to train all parameters of
the machine translation system. Experimentally, we
found that Gaussian mixture model (GMM) features
yielded a 0.5 BLEU improvement.

Although this is an encouraging result, further
study is required on hyper-parameter re-estimation,
presence of local optima, use of complex original

features to test the effectiveness of the parameteri-
zation invariance, and evaluation on a more compet-
itive baseline.

References
K. Papineni, S. Roukos, T. Ward, W.-J. Zhu. 2002.

BLEU: a method for automatic evaluation of machine
translation. ACL’02.

A. Berger, S. Della Pietra, and V. Della Pietra. 1996.
A Maximum Entropy Approach to Natural Language
Processing. Computational Linguistics, vol 22:1, pp.
39–71.

S. Chen and R. Rosenfeld. 2000.A survey of smoothing
techniques for ME models. IEEE Trans. on Speech and
Audio Processing, vol 8:2, pp. 37–50.

R. O. Duda and P. E. Hart. 1973.Pattern Classification
and Scene Analysis. Wiley & Sons, 1973.

H. J. Kushner and G. G. Yin. 1997.Stochastic Approxi-
mation Algorithms and Applications. Springer-Verlag,
1997.

National Institute of Standards and Technology. 2006.
The 2006 Machine Translation Evaluation Plan.

J. Nocedal and S. J. Wright. 1999.Numerical Optimiza-
tion. Springer-Verlag, 1999.

F. J. Och. 2003.Minimum Error Rate Training in Statis-
tical Machine Translation. ACL’03.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Ya-
mada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng,
V. Jain, Z. Jin, and D. Radev. 2004.A Smorgas-
bord of Features for Statistical Machine Translation.
HLT/NAACL’04.

F. J. Och and H. Ney. 2002.Discriminative Training
and Maximum Entropy Models for Statistical Machine
Translation. ACL’02.

D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau
and G. Zweig. 2004.fMPE: Discriminatively trained
features for speech recognition. RT’04 Meeting.

C. Quirk, A. Menezes and C. Cherry. 2005.De-
pendency Tree Translation: Syntactically Informed
Phrasal SMT. ACL’05.

L. R. Rabiner and B.-H. Huang. 1993.Fundamentals of
Speech Recognition. Prentice Hall.

M. Riedmiller and H. Braun. 1992.RPROP: A Fast
Adaptive Learning Algorithm. Proc. of ISCIS VII.

D. A. Smith and J. Eisner. 2006. Minimum-Risk
Annealing for Training Log-Linear Models. ACL-
COLING’06.

79

