ACL 200

IPRAGUE \

ACL 2007

Proceedings of the Second Workshop
on Statistical Machine Translation

June 23, 2007
Prague, Czech Republic

The Association for Computational Linguistics u



Production and Manufacturing by
Omnipress

2600 Anderson Street

Madison, WI 53704

USA

(©2007 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ii



Preface

The ACL 2007 Workshop on Statistical Machine Translation (WMT-07) took place on Saturday, June
23 in Prague, Czech Republic, immediately preceding the annual meeting of the Association for
Computational Linguistics, which was hosted by Charles University. This was the second time this
workshop had been held, following the first workshop at the 2006 HLT-NAACL conference. But its
ancestry can be traced back farther to the ACL 2005 Workshop on Building and Using Parallel Texts
(when we started our evaluation campaign on European languages), and even the ACL 2001 Workshop
on Data-Driven Machine Translation (which was the first ACL workshop mostly directed at statistical
machine translation).

Over the last years, interest in statistical machine translation has been risen dramatically. We received
an overwhelming number of full paper submission for a one-day workshop, 38 in total. Given our
limited capacity, we were only able to accept 12 full papers for oral presentation and 9 papers for poster
presentation, an acceptance rate of 55%. In a second poster session, 16 additional shared task papers
were presented. The workshop also featured an invited talk by Jean Senellart of SYSTRAN Language
Translation Technology, Paris.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation
we conducted a shared task that brought together machine translation systems for an evaluation on
previously unseen data. This year’s task resembled the shared tasks of previous years in many ways.
Its focus was again the translation of European languages, using a relatively large training corpus.
This year, we included a variety of manual evaluations of the MT systems’ outputs, and a variety of
automated evaluation metrics. Also, as a special challenge this year, we posed the problem of domain
adaptation.

The results of the shared task were announced at the workshop, and these proceedings also include an
overview paper for the shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team that describe their underlying system in some detail.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task, the participants of the MT Marathon, which was
organized by the University of Edinburgh in March this year, and all the other volunteers who helped
with the manual evaluations. We also acknowledge financial support for the manual evaluation by the
EuroMatrix project (funded by the European Commission under the Framework Programme 6).

Chris Callison-Burch, Philipp Koehn, Christof Monz, and Cameron Shaw Fordyce

Co-Organizers
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Using Dependency Order Templatesto | mprove Generality in
Tranglation

Arul Menezes and Chris Quirk
Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
{arulm chrisq}@ricrosoft.com

Abstract

Today's statistical machine trandation
systems generalize poorly to new
domains. Even small shifts can cause
precipitous drops in trandation quality.
Phrasal systems rely heavily, for both
reordering and contextual translation, on
long phrases that simply fail to match out-
of-domain text. Hierarchica systems
attempt to generalize these phrases but
their learned rules are subject to severe
constraints. Syntactic systems can learn
|exicalized and unlexicalized rules, but the
joint modeling of lexica choice and
reordering can narrow the applicability of
learned rules. The treelet approach models
reordering separately from lexical choice,
using a discriminatively trained order
model, which alows treelets to apply
broadly, and has shown better
generalization to new domains, but suffers
a factorially large search space. We
introduce a new reordering model based
on dependency order templates, and show
that it outperforms both phrasal and treelet
systems on in-domain and out-of-domain
text, while limiting the search space.

1 Introduction

Modern phrasal SMT systems such as (Koehn et
al., 2003) derive much of their power from being
able to memorize and use long phrases. Phrases
alow for non-compositional trandation, loca
reordering and contextual lexica choice.
However the phrases are fully lexicalized, which
means they generalize poorly to even dlightly out-
of-domain text. In an open competition (Koehn &
Monz, 2006) systems trained on parliamentary
proceedings were tested on text from 'news

commentary' web sites, a very dlightly different
domain. The 9 phrasal systems in the English to
Spanish track suffered an absolute drop in BLEU
score of between 4.4% and 6.34% (14% to 27%
relative). The treelet system of Menezes et al.
(2006) fared somewhat better but still suffered an
absolute drop of 3.61%.

Clearly there is a need for approaches with
greater powers of generaization. There are
multiple facets to this issue, including handling of
unknown words, new senses of known words etc.
In this work, we will focus on the issue of
reordering, i.e. can we learn how to transform the
sentence structure of one language into the
sentence structure of another, in a way that is not
tied to a specific domain or sub-domains, or
indeed, sequences of individual words.

An early attempt at greater generality in a
purely phrasal setting was the alignment template
approach (Och & Ney 2004); newer approaches
include formally syntactic (Chiang 2005), and
linguistically syntactic approaches (Quirk et al.
2005), (Huang et al. 2006). In the next section, we
examine these representative approaches to the
reordering problem.

2 Redated Work

Our discussion of related work will be grounded
in the following tiny English to Spanish example,
where the training set includes:

a very ol d book
un libro mds antiguo
a book very old!

the old man
el honbre viejo
t he man ol d

it is very inportant
es nuy inportante
is very inmportant

! English gloss of Spanish sentencesin italics.

Proceedings of the Second Workshop on Statistical Machine Translation, pages 1-8,
Prague, June 2007. (©2007 Association for Computational Linguistics



and the test sentence and reference trand ation are

a very old man
un honbre nuy viejo
a mn very old

Note that while the first training pair has the
correct structure for the test sentence, most of the
contextually correct lexical choices come from
the other two pairs.

2.1 Phrasal trandation, Alignment templates

The relevant phrases (i.e. those that match the test
sentence) extracted from these training pairs are
shown in Table 2.1. Only phrases up to size 3 are
shown. The onesinitalics are 'correct’ in that they
can lead to the reference trandation. Note that
none of the multi-word phrases lead to the
reference, so the local reordering often captured
in the phrasal model is no help at al in ordering
this sentence. The system is unable to learn the
correct structure from the first sentence because
the words are wrong, and from the second
sentence even though the phrase old man has the
right words in the right order, it does not lead to
the reference translation because the translation of
very cannot be inserted in the right place.

directly from the pardlel corpus, with the
advantage of not requiring any additiona
knowledge source or tools, such as atreebank or a
parser. However this can lead to an explosion of
rules. In order to make the problem tractable and
avoid spurious ambiguity, Chiang restricts the
learned rules in severd ways. The most
problematic of these is that every rule must have
at least one pair of aligned words, and that
adjacent non-terminals are not permitted on the
source side. In Table 2.2 we show the additional
hierarchical phrases that would be learned from
our training pairs under these restrictions. Again
only those applicable to the test sentence are
shown and the 'correct’ rules, i.e. those that lead to
thereference, areitalicized.

X1 old X1 antiguo
very X1 més X1

very old X1 X1 més antiguo
X1old X2 X2 X1 antiguo
very X1 X2 X2 més X1

X1 man hombre X1

old X1 X1vigo

X1 old man X1 hombre vigjo
X1 very X1 muy

very X2 muy X2
X1very X2 X1 muy X2

a un

very mas

old antiguo

very old mas antiguo
old vigo

man hombre

old man hombre vigjo
very muy

Table 2.1: Relevant extracted phrases

Looking at this as a sparse data issue we might
suspect that generdization could solve the
problem. The alignment template approach (Och
& Ney, 2004) uses word classes rather than
lexical items to model phrase translation. Y et this
approach loses the advantage of context-sensitive
lexica selection: the word trandlation model
depends only on the word classes to subcategorize
for trandations, which leads to less accurate
lexical choicein practice (Zens & Ney, 2004).

2.2 Hierarchical trandation

Hierarchical systems (Chiang, 2005) induce a
context-free grammar with one non-terminal

Table 2.2: Additiona hierarchical phrases

Note that even though from the first pair, welearn
severa rules with the perfect reordering for the
test sentence, they do not lead to the reference
because they drag along the contextually incorrect
lexical choices. From the second pair, we learn a
rule (X1 old man) that has the right contextual
word choice, but does not lead to the reference,
because the paucity of the grammar's single non-
terminal causes this rule to incorrectly imply that
the tranglation of very be placed before hombre.

2.3 Constituency treetransduction

An adternate approach is to use linguistic
information from a parser. Transduction rules
between Spanish strings and English trees can be
learned from a word-aligned parallel corpus with
parse trees on one side (Graehl & Knight, 2004).
Such rules can be used to trandate from Spanish
to English by searching for the best English
language tree for a given Spanish language string
(Marcu et a., 2006). Alternately English trees
produced by a parser can be transduced to
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Spanish strings using the same rules (Huang et dl .,
2006). Trandation rules may reach beyond one
level in the syntax tree; this extended domain of
locality allows many phenomena including both
lexicalized and unlexicalized rules. However
reordering and translation are modeled jointly,
which may exacerbate data sparsity. Furthermore
it forces the system to pick between unlexicalized
rules that capture reordering and lexicalized rules
that model context-sensitive trandation.

For instance, the following rules can be
extracted from the first sentence of the corpus:

ri: un x1x2 -» NP(DT(a) ADJP:x2 NN:x1)
ro: X1 x2 - ADJP(RB:x1 JJ:x2)

Although together they capture the necessary
reordering for our test sentence pair, they do not
allow for context sensitive trandations of the
ambiguous terms very and old; each must be
selected independently. Disappointingly, no
single constituency tree transduction rule derived
from this corpus trandates old man as hombre
vigo in a single step on the test sentence: the
syntactic structures are dightly different, but the
difference is sufficient to prevent matching.
Again we note that phrases provide utility by
capturing both reordering and context. While xRS

2Marcu et a. (2006) and Zollmann et al. (2006) recognize
this problem and attempt to alleviate it by grafting surface
phrases into constituency trees by various methods.

rules provide an elegant and powerful model of
reordering, they come with a potential cost in
context-sensitive translation.

2.4 Dependency tredlet trandation

We previously described (Quirk et a, 2005) a
linguistically syntax-based system that parses the
source language, uses word-based alignments to
project a target dependency tree, and extracts
paired dependency tree fragments (treelets)
instead of surface phrases. In contrast to the xRS
approach, ordering is very loosely coupled with
tranglation via a separate discriminatively trained
dependency tree-based order model. The switch
to a dependency parse aso changes the
conditioning information available for tranglation:
related lexical items are generaly adjacent, rather
than separated by a path of unlexicalized non-
terminas. In effect, by using a looser matching
requirement, treelets retain the context-sensitive
lexical choice of phrases: treelets must only be a
connected subgraph of the input sentence to be
applicable; some children may remain uncovered.

Figure 2.2 shows source dependency parses
and projected target dependencies for our training
data; Figure 2.3 shows the treelet pairs that this
system would extract that match the input

/\NA

a very old book the old man

Sz '\\

.........

un libro més antlguo el hombre Vle_]O

v\/ AN
m/\

1s Very 1mportant

es muy lmportante

Figure 2.2: Dependency trees for training pairs

/X /N
very old old man

Tl

mas antiguo hombre viejo

A A

Figure 2.3: Relevant extracted treelets



sentence (treelets of size 1 are not shown). The
second treelet supplies the order of vigo with
respect to its head, and unlike the case with xRS
rules, we can use this to make the correct
contextual word choice. The difference is that
because xRS rules provide both reordering and
word choice, each rule must match al of the
children at any given tree node. On the other
hand, treelets are allowed to match more loosely.
The tranglations of the unmatched children (un
and muy in this case) are placed by exploring all
possible orderings and scoring them with both
order model and language model. Although this
effectively decouples lexica selection from
ordering, it comes at a huge cost in search space
and trandation quality may suffer due to search
error. However, as mentioned in Section 1, this
approach is able to generaize better to out-of-
domain data than phrasal approaches. Koehn and
Monz (2006) aso include a human evaluation, in
which this system ranked noticeably higher than
one might have predicted fromits BLEU score.

3 Dependency Order Templates

The Dependency Order Templates approach
leverages the power of the xR rule formalism,
while avoiding the problems mentioned in Section
2.3, by constructing the rules on the fly from two
separately matched components: (a) Dependency
treelet trandation pairs described in Section 2.4
that capture contextual lexical trandations but are
underspecified with respect to ordering, and (b)
Order templates, which are unlexicalized rules
(over dependency, rather than constituency trees)
that capture reordering phenomena.

Formally, an order template is an unlexicalized
transduction rule mapping dependency trees
containing only parts of speech to unlexicalized
target language trees (see Figure 4.1b).

Given an input sentence, we combine relevant
treelet trandation pairs and order templates to
construct lexicalized transduction rules for that
sentence, and then decode using standard
transduction approaches. By keeping lexical and
ordering information orthogonal until runtime, we
can produce novel transduction rules not seen in
the training corpus. This adlows greater
generalization capabilities than the constituency
tree transduction approaches of Section 2.3.

As compared to the tredet approach described
in Section 2.4, the generalization capability is
somewhat reduced. In the treelet system all
reorderings are exhaustively evaluated, but the
size of the search space necessitates tight pruning,
leading to significant search error. By contrast, in
the order template approach we consider only
reorderings that are captured in some order
template. The drastic reduction in search space
leads to an overal improvement, not only in
decoding speed, but also in trandation quality due
to reduced search error.

3.1 Extracting order templates

For each pair of parallel training sentences, we
parse the source sentence, obtain a source
dependency tree, and use GIZA++ word
alignments to project a target dependency tree as
described in Quirk et a. (2005).

Given this pair of aligned source and target
dependency trees, we recursively extract one
order template for each pair of aigned non-leaf
source and target nodes. In the case of multi-word
aignments, al contiguous® aligned nodes are
added to the template. Next we recursively add
child nodes as follows: For each node in the
template, add all its children. For each such child,
if it is aligned, stop recursing, if it is unaligned,
recursively add its children.

On each template node we remove the lexica
items; we retain the part of speech on the source
nodes (we do not use target linguistic features).
We also keep node alignment information®. The
resulting aligned source and target sub-graphs
comprise the order template. Figure 4.1b lists the
order templates extracted from the training pairs
in Figure 2.1 that capture all the patterns
necessary to correctly reorder the test sentence.

4  Decoding

Decoding is treated as a problem of syntax-
directed transduction. Input sentences are
segmented into a token stream, annotated with
part-of-speech information, and parsed into

3 If amulti-word alignment is not contiguous in either source
or target dependency tree no order template is extracted.

4 If asource or target node aligns to a tree node outside the
template, the template breaks phrasal cohesion and is
currently discarded. Weintend to address these 'structural
divergence' patternsin future work.



unlabeled dependency trees. At each node in the
input dependency tree we first find the set of
matching treelet pairs: A pair matchesif its source
side corresponds to a connected subgraph of the
input tree. Next we find matching order
templates. order templates must also match a
connected subgraph of the input tree, but in
addition, for each input node, the template must
match either al or none of its children>.
Compatible combinations of treelets and order
templates are merged to form xR rules. Finaly,
we search for the best transduction according to
the constructed xR rules as scored by a log-linear
combination of models (see Section 5).

4.1 Compatibility

A tredet and an order template are considered
compatible if the following conditions are met:
The treelet and the matching portions of the
template must be structuraly isomorphic. Every
treelet node must match an order template node.
Matching nodes must have the same part of
speech. Unaligned treelet nodes must match an
unaligned template node. Aligned treelet nodes
must match aligned template nodes. Nodes that
are digned to each other in the treelet pair must
match template nodes that are digned to each
other.

4.2 Creating transduction rules

Given a tredet, we can form a set of tree
transduction rules as follows. We iterate over
each source node n in the treelet pair; let s be the
corresponding node in the input tree (identified
during the matching). If, for al children of sthere
is a corresponding child of n, then this treelet
specifies the placement of all children and no
changes are necessary. Otherwise we pick a
template that matched at s and is compatible with
the treelet. The treelet and template are unified to
produce an updated rule with variables on the
source and target sides for each uncovered child
of s. When all treelet nodes have been visited, we
are left with a transduction rule that specifies the
translation of al nodes in the treelet and contains
variables that specify the placement of 4l

5 Thisis so the resulting rules fit within the xR formalism. At
each node, arule either fully specifiesits ordering, or
delegates the trand ation of the subtree to other rules.

0:NN 0

old man  1.pT 2.5 I 2
hon{l;re ‘‘‘‘‘ i éjo 0:1] 0
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/ /
~ 1:RB i

(a) Treelet (b) Compatible order templates

man hombre

/ /\
x1:DT old x1 viejo

/ /
x2:RB x2

(c) Merged transduction rule

Figure 4.1: Merging templates and treelets

uncovered nodes. Due to the independence of
ordering and lexical information, we may produce
novel transduction rules not seen in the training
corpus. Figure 4.1 shows this process as it applies
to the test sentence in Section 2.

If, a any node s, we cannot find a matching
template compatible with the current treelet, we
create an artificial source order template, which
simply preserves the source language order in the
target trandation. We add a feature function that
counts the number of such templates and train its
weight during minimum error rate training.

4.3 Transduction using xR rules

In the absence of a language model or other
contextually dependent features, finding the
highest scoring derivation would be a simple
dynamic program (Huang et a. 2006) ®.However
exact search using an n-gram language model
leads to split states for each n-gram context.
Instead we use an approximate beam search
moving bottom-up in the tree, much like a CKY
parser. Candidates in this search are derivations
with respect to the transducer.

Each transduction rule r has a vector of
variables v,4, ... v, . Each variable is associated
with an input node S(v). For each input nodes,
we keep a beam of derivations b[s]. Derivations
are represented as a par (r,e) where r is a
transduction rule and e € N¥ is a vector with one
integer for each of the k variables in r. The
interpretation is that the complete candidate can
be constructed by recursively substituting for each

® Like Chiang (2005) we only search for the yield of the most
likely derivation, rather than the most likely yield.



GetTrandationBeam(s) // memoized
prioq« @
beam < @
for r € R(s)
Enqueue(prioq, (r, 1), EarlyScore({r, 1)))
while Size(priog) > 0
(r, e) « PopBest(prioq)
AddToBeam(beam, (r, e), TrueScore({r, e})))
foriini..|e|
Enqueue(priog, (r,e + 1;),
EarlyScore((r, e + 1;)))
return beam

EarlyScore((r, e))
¢ < RuleScore(r)
foriinl..|e|
s « InputNode(GetVariable (r, i))
beam « GetTrandationBeam(s)
¢ < ¢ +TrueScore(GetNthEntry(beam, e;))
returnc

Figure 4.2: Beam tree transduction

Uy € Vpq ... Uy the candidate constructed from

the ;" entry in the beam b[S (v,;)].

Figure 4.2 describes the transduction process.
Since we approach decoding as xR transduction,
the process is identical to that of constituency-
based algorithms (e.g. Huang and Chiang, 2007).
There are severa free parameters to tune:

e Beam size — Maximum number of candidates
per input node (in this paper we use 100)

e Beam threshold — maximum range of scores
between top and bottom scoring candidate
(we use alogprob difference of 30)

e Maximum combinations considered — To
bound search time, we can stop after a
specified number of elements are popped off
the priority queue (we use 5000)

5 Modds

We use al of the Treelet models we described in

Quirk et a. (2005) namely:

o Tredet table with trandation probabilities
estimated using maximum likelihood, with
absolute discounting.

o Discriminative tree-based order model.

e Forward and backward lexical weighting,
using Model-1 trand ation probabilities.

e Trigram language model using modified
Kneser-Ney smoothing.

o Word and phrase count feature functions.

In addition, we introduce the following:

o Order template table, with template
probabilities estimated using maximum
likelihood, with absol ute discounting.

e A feature function that counts the number of
artificial source order templates (see below)
used in acandidate.

The models are combined in a log-linear

framework, with weights trained using minimum

error rate training to optimize the BLEU score.

6 Experiments

We evaluated the trand ation quality of the system
using the BLEU metric (Papineni et a., 2002).
We compared our system to Pharaoh, a leading
phrasal SMT decoder (Koehn et a., 2003), and
our treelet system. We report numbers for English
to Spanish.

6.1 Data

We used the Europarl corpus provided by the
NAACL 2006 Statistical Machine Trandation
workshop. The target language model was trained
using only the target side of the parallel corpus.
The larger monolingual corpus was not utilized.
The corpus consists of European Parliament
proceedings, 730,740 parallel sentence pairs of
English-Spanish, amounting to about 15M words
in each language. The test data consists of 2000
sentences each of development  (dev),
development-test (devtest) and test data (test)
from the same domain. Thereis also a separate set
of 1064 test sentences (NC-test) gathered from
"news commentary" web sites.

6.2 Training

We parsed the source (English) side of the corpus
using NLPWIN, a broad-coverage rule-based
parser able to produce syntactic anayses at
varying levels of depth (Heidorn, 2002). For the
purposes of these experiments we used a
dependency tree output with part-of-speech tags
and unstemmed, case-normalized surface words.
For word alignment we used GIZA++, under a
training regimen of five iterations of Model 1,
five iterations of HMM, and five iterations of
Mode 4, in both directions. The forward and
backward alignments were symmetrized using a
tree-based heuristic combination. The word



alignments and English dependency tree were
used to project atarget tree. From the aligned tree
pairs we extracted a treelet table and an order
template table.

The comparison treelet system was identical
except that no order template model was used.

The comparison phrasal system was
constructed using the same GIZA++ alignments
and the heuristic combination described in (Och
& Ney, 2003). Except for the order models
(Pharaoh uses a penaty on the deviance from
monotone), the same models were used.

All systems used a treelet or phrase size of 7
and a trigram language model. Model weights
were trained separately for al 3 systems using
minimum error rate training to maximize BLEU
(Och, 2003) on the development set (dev). Some
decoder pruning parameters were tuned on the
development test (devtest). The test and NC-test
data sets were not used until final tests.

7 Results

We present the results of our system comparisons
in Table 7.1 and Figure 7.1 using three different
test sets: The in-domain development test data
(devtest), the in-domain blind test data (test) and
the out-of-domain news commentary test data
(NC-test). All differences (except phrasal vs.
template on devtest), are satistically significant at
the p>=0.99 level under the bootstrap resampling
test. Note that while the systems are quite
comparable on the in-domain data, on the out-of-
domain data the phrasa system's performance
drops precipitoudy, whereas the performance of
the treelet and order template systems drops much
less, outperforming the phrasal system by 2.7%
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Figure 7.1: In-domain vs. Out-of-domain BLEU

systems, indicating that latter show improved
generality in reordering.

Igm| 2gm | 3gm | 4gm

Test Phrasal 061| 035| 023] 0.15

treelet 062 036 | 023] 0.15

template 062| 036| 024 | 0.16

NC-test phrasal 058 | 030| 017 ] 0.10

treelet 060| 033| 020] 0.12

template 061| 034 | 020] 0.13

Table 7.2: n-gram recall across domains
7.1 Treelet vs. Template systems

As described in Section 3.1, the order templates
restrict the broad reordering space of the treelet
system. Although in theory this might exclude
reorderings necessary for some trandations, Table
7.3 shows that in practice, the drastic search space
reduction allows the decoder to explore a wider
beam and more rules, leading to reduced search
error and increased translation speed. (The topK
parameter is the number of phrases explored for

each span, or rules/treelets for each input node.)

and 3.46% absolute BLEU.

devtest test NC-test
Phrasal 0.2910 0.2935 0.2354
Tredet 0.2819 0.2981 0.2624
Template 0.2896 0.3045 0.2700

Table 7.1: System Comparisons across domains

Further insight may be had by comparing the
recal’ for different n-gram orders (Table 7.2).
The phrasal system suffers a greater decline in the
higher order n-grams than the treelet and template

" n-gram precision cannot be directly compared across output
from different systems due to different levels of 'brevity'

Devtest Sents.

BLEU per sec

Pharaoh, beam=100, topK=20 0.2910 | 0.94
Treelet, beam=12, topK=5 0.2819 0.21
Template, beam=100, topK=20 | 0.2896 0.56

Table 7.3: Performance comparisons

Besides the search space restriction, the other
significant change in the template system is to
include MLE template probabilities as an




additional feature function. Given that the
template system operates over rules where the
ordering is fully specified, and that most tree
transduction systems use MLE rule probabilities
to model both lexical selection and reordering,
one might ask if the tredet system's
discriminatively trained order model is now
redundant. In Table 7.4 we see that thisis not the
case.? (Differences are significant at p>=0.99.)

devtest test | NC-test
MLE model only 0.2769 | 0.2922 | 0.2512
Discriminative and 0.2896 | 0.3045 | 0.2700

MLE models

Table 7.4: Templates and discriminative order model

Finaly we examine the role of frequency
thresholds in gathering templates. In Table 7.5 it
may be seen that discarding singletons reduces
the table size by a factor of 5 and improves
tranglation speed with negligible degradation in
quality.

devtest | Number of | Sentences
BLEU templates per sec.

No threshold 0.2898 752,165 0.40

Threshold=1 0.2896 137,584 0.56

Table 7.5: Effect of template count cutoffs
8 Conclusions and Future Work

We introduced a new model of Dependency Order
Templates that provides for separation of lexica
choice and reordering knowledge, thus alowing
for greater generaity than the phrasal and xRS
approaches, while dratically limiting the search
space as compared to the treelet approach. We
showed BLEU improvements over phrasal of over
1% in-domain and nearly 3.5% out-of-domain. As
compared to the tredet approach we showed an
improvement of about 0.5%, but a speedup of
nearly 3x, despite loosening pruning parameters.
Extraposition and long distance movement still
pose a serious challenge to syntax-based machine
trandation systems. Most of the today's search
algorithms assume phrasal cohesion. Even if our
search algorithms could accommodate such
movement, we don't have appropriate models to

8 We speculate that other systems using transducers with
MLE probabilities may also benefit from additional
reordering models.

account for such phenomena. Our system already
extracts extraposition templates, which are a step
in the right direction, but may prove too sparse
and brittle to account for the range of phenomena.
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Abstract

Combinatorial Categorial Grammar (CCG)
supertags present phrase-based machine
translation with an opportunity to access
rich syntactic information at a word level.
The challenge is incorporating this informa-
tion into the translation process. Factored
translation models allow the inclusion of su-
pertags as a factor in the source or target lan-
guage. We show that this results in an im-
provement in the quality of translation and
that the value of syntactic supertags in flat
structured phrase-based models is largely
due to better local reorderings.

1 Introduction

In large-scale machine translation evaluations,
phrase-based models generally outperform syntax-
based models'. Phrase-based models are effective
because they capture the lexical dependencies be-
tween languages. However, these models, which
are equivalent to finite-state machines (Kumar and
Byrne, 2003), are unable to model long range word
order differences. Phrase-based models also lack the
ability to incorporate the generalisations implicit in
syntactic knowledge and they do not respect linguis-
tic phrase boundaries. This makes it difficult to im-
prove reordering in phrase-based models.
Syntax-based models can overcome some of the
problems associated with phrase-based models be-
cause they are able to capture the long range struc-
tural mappings that occur in translation. Recently

there have been a few syntax-based models that
show performance comparable to the phrase-based
models (Chiang, 2005; Marcu et al., 2006). How-
ever, reliably learning powerful rules from parallel
data is very difficult and prone to problems with
sparsity and noise in the data. These models also
suffer from a large search space when decoding with
an integrated language model, which can lead to
search errors (Chiang, 2005).

In this paper we investigate the idea of incorporat-
ing syntax into phrase-based models, thereby lever-
aging the strengths of both the phrase-based models
and syntactic structures. This is done using CCG
supertags, which provide a rich source of syntactic
information. CCG contains most of the structure of
the grammar in the lexicon, which makes it possi-
ble to introduce CCG supertags as a factor in a fac-
tored translation model (Koehn et al., 2006). Fac-
tored models allow words to be vectors of features:
one factor could be the surface form and other fac-
tors could contain linguistic information.

Factored models allow for the easy inclusion of
supertags in different ways. The first approach is to
generate CCG supertags as a factor in the target and
then apply an n-gram model over them, increasing
the probability of more frequently seen sequences
of supertags. This is a simple way of including syn-
tactic information in a phrase-based model, and has
also been suggested by Hassan et al. (2007). For
both Arabic-English (Hassan et al., 2007) and our
experiments in Dutch-English, n-gram models over
CCG supertags improve the quality of translation.
By preferring more likely sequences of supertags,

'www.nist.gov/speech/tests/mt/mtO6eval_official_results.html it is conceivable that the output of the decoder is

9

Proceedings of the Second Workshop on Statistical Machine Translation, pages 9-16,
Prague, June 2007. (©2007 Association for Computational Linguistics



more grammatical. However, its not clear exactly
how syntactic information can benefit a flat struc-
tured model: the constraints contained within su-
pertags are not enforced and relationships between
supertags are not linear. We perform experiments to
explore the nature and limits of the contribution of
supertags, using different orders of n-gram models,
reordering models and focussed manual evaluation.
It seems that the benefit of using n-gram supertag
sequence models is largely from improving reorder-
ing, as much of the gain is eroded by using a lexi-
calised reordering model. This is supported by the
manual evaluation which shows a 44% improvement
in reordering Dutch-English verb final sentences.

The second and novel way we use supertags is
to direct the translation process. Supertags on the
source sentence allows the decoder to make deci-
sions based on the structure of the input. The sub-
categorisation of a verb, for instance, might help se-
lect the correct translation. Using multiple depen-
dencies on factors in the source, we need a strat-
egy for dealing with sparse data. We propose using
a logarithmic opinion pool (Smith et al., 2005) to
combine the more specific models (which depend on
both words and supertags) with more general mod-
els (which only depends on words). This paper is the
first to suggest this approach for combining multiple
information sources in machine translation.

Although the addition of supertags to phrase-
based translation does show some improvement,
their overall impact is limited. Sequence models
over supertags clearly result in some improvements
in local reordering but syntactic information con-
tains long distance dependencies which are simply
not utilised in phrase-based models.

2 Factored Models

Inspired by work on factored language models,
Koehn et al. (2006) extend phrase-based models to
incorporate multiple levels of linguistic knowledge
as factors. Phrase-based models are limited to se-
quences of words as their units with no access to
additional linguistic knowledge. Factors allow for
richer translation models, for example, the gender or
tense of a word can be expressed. Factors also allow
the model to generalise, for example, the lemma of a
word could be used to generalise to unseen inflected
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forms.

The factored translation model combines features
in a log-linear fashion (Och, 2003). The most likely
target sentence # is calculated using the decision rule
in Equation 1:

M
{ = argmax Am P, st,tFt 1
o { £ nct) o
M
t Z)\mhm(sfs,tft) 2)

m=1

where M is the number of features, A, (st*, 1)
are the feature functions over the factors, and \ are
the weights which combine the features which are
optimised using minimum error rate training (Venu-
gopal and Vogel, 2005). Each function depends on a
vector s1* of source factors and a vector tI* of tar-
get factors. An example of a factored model used in
upcoming experiments is:

M
t Z)\mhm(sw,twc)

m=1

3)

where s,, means the model depends on (s)ource
(w)ords, and t,,. means the model generates (t)arget
(w)ords and (c)cg supertags. The model is shown
graphically in Figure 1.

SOURCE TARGET

Word Word

CCG

Figure 1. Factored translation with source words deter-
mining target words and CCG supertags

For our experiments we used the following fea-
tures: the translation probabilities Pr(s*|t{*) and
Pr(tfts'), the lexical weights (Koehn et al., 2003)
lex(sT=[t5*) and lex(tI*|s1*), and a phrase penalty
e, which allows the model to learn a preference for
longer or shorter phrases. Added to these features



is the word penalty e~! which allows the model to
learn a preference for longer or shorter sentences,
the distortion model d that prefers monotone word
order, and the language model probability Pr(t).
All these features are logged when combined in the
log-linear model in order to retain the impact of very
unlikely translations or sequences.

One of the strengths of the factored model is it
allows for n-gram distributions over factors on the
target. We call these distributions sequence models.
By analogy with language models, for example, we
can construct a bigram sequence model as follows:

p(f1s fos - fu) = p(f) T [ p(Fil Flimny)

=2

where f is a factor (eg. CCG supertags) and n is
the length of the string. Sequence models over POS
tags or supertags are smaller than language models
because they have restricted lexicons. Higher or-
der, more powerful sequence models can therefore
be used.

Applying multiple factors in the source can lead to
sparse data problems. One solution is to break down
the translation into smaller steps and translate each
factor separately like in the following model where
source words are translated separately to the source
supertags:

M N
Eooc D Amhm(sw,tw) + > Anhn(se, tw)
m=1 n=1

However, in many cases multiple dependencies
are desirable. For instance translating CCG su-
pertags independently of words could introduce er-
rors. Multiple dependencies require some form of
backing off to simpler models in order to cover the
cases where, for instance, the word has been seen in
training, but not with that particular supertag. Dif-
ferent backoff paths are possible, and it would be
interesting but prohibitively slow to apply a strat-
egy similar to generalised parallel backoff (Bilmes
and Kirchhoff, 2003) which is used in factored lan-
guage models. Backoff in factored language mod-
els is made more difficult because there is no ob-
vious backoff path. This is compounded for fac-
tored phrase-based translation models where one has
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to consider backoff in terms of factors and n-gram
lengths in both source and target languages. Fur-
thermore, the surface form of a word is probably the
most valuable factor and so its contribution must al-
ways be taken into account. We therefore did not use
backoff and chose to use a log-linear combination of
features and models instead.
Our solution is to extract two translation models:

M N
tAOC Z )\mhm(swm tw) + Z )\nhn(sun tw) (4)
m=1 n=1

One model consists of more specific features m
and would return log probabilities, for example
loga Pr(ty|Swe), if the particular word and supertag
had been seen before in training. Otherwise it re-
turns —C, a negative constant emulating logz(0).
The other model consist of more general features
n and always returns log probabilities, for example
loga Pr(ty|Sw)-

3 CCG and Supertags

CCGs have syntactically rich lexicons and a small
set of combinatory operators which assemble the
parse-trees. Each word in the sentence is assigned a
category from the lexicon. A category may either be
atomic (S, NP etc.) or complex (S\S, (S\NP)/NP
etc.). Complex categories have the general form
a/fB or o\ where o and 3 are themselves cate-
gories. An example of a CCG parse is given:

Peter eats apples
NP (S\NP)/NP NP
SN
S

where the derivation proceeds as follows: “eats”
is combined with “apples” under the operation of
forward application. “eats” can be thought of as a
function that takes a NP to the right and returns a
S\NP. Similarly the phrase “eats apples” can be
thought of as a function which takes a noun phrase
NP to the left and returns a sentence S. This opera-
tion is called backward application.

A sentence together with its CCG categories al-
ready contains most of the information present in a
full parse. Because these categories are lexicalised,



they can easily be included into factored phrase-
based translation. CCG supertags are categories that
have been provided by a supertagger. Supertags
were introduced by Bangalore (1999) as a way of in-
creasing parsing efficiency by reducing the number
of structures assigned to each word. Clark (2002)
developed a suppertagger for CCG which uses a
conditional maximum entropy model to estimate the
probability of words being assigned particular cat-
egories. Here is an example of a sentence that has
been supertagged in the training corpus:

We all agree that .

NP NP\NP (S[dcl]\NP)/PP PP/NP NP .
The verb “agree” has been assigned a complex su-
pertag (S[dcl]\NP)/PP which determines the type

and direction of its arguments. This information can
be used to improve the quality of translation.

on

4 Experiments

The first set of experiments explores the effect of
CCG supertags on the target, translating from Dutch
into English. The last experiment shows the effect
of CCG supertags on the source, translating from
German into English. These language pairs present
a considerable reordering challenge. For example,
Dutch and German have SOV word order in subordi-
nate clauses. This means that the verb often appears
at the end of the clause, far from the position of the
English verb.

4.1 Experimental Setup

The experiments were run using Moses”, an open

source factored statistical machine translation sys-
tem. The SRILM language modelling toolkit (Stol-
cke, 2002) was used with modified Kneser-Ney dis-
counting and interpolation. The CCG supertag-
ger (Clark, 2002; Clark and Curran, 2004) was pro-
vided with the C&C Language Processing Tools?>.
The supertagger was trained on the CCGBank in
English (Hockenmaier and Steedman, 2005) and in
German (Hockenmaier, 2006).

The Dutch-English parallel training data comes
from the Europarl corpus (Koehn, 2005) and ex-
cludes the proceedings from the last quarter of 2000.

Zsee http://www.statmt.org/moses/
3see http://svn.ask.it.usyd.edu.au/trac/candc/wiki
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This consists of 855,677 sentences with a maximum
of 50 words per sentence. 500 sentences of tuning
data and the 2000 sentences of test data are taken
from the ACL Workshop on Building and Using Par-
allel Texts*.

The German-English experiments use data from
the NAACL 2006 Workshop on Statistical Machine
Translation’. The data consists of 751,088 sentences
of training data, 500 sentences of tuning data and
3064 sentences of test data. The English and Ger-
man training sets were POS tagged and supertagged
before lowercasing. The language models and the
sequence models were trained on the Europarl train-
ing data. Where not otherwise specified, the POS
tag and supertag sequence models are 5-gram mod-
els and the language model is a 3-gram model.

4.2 Sequence Models Over Supertags

Our first Dutch-English experiment seeks to estab-
lish what effect sequence models have on machine
translation. We show that supertags improve trans-
lation quality. Together with Shen et al. (2006) it is
one of the first results to confirm the potential of the
factored model.

Model | BLEU
Swytw | 23.97
Swytwp | 24.11
Sws twe | 24.42
Sw, twpe | 24.43

Table 1. The effect of sequence models on Dutch-English
BLEU score. Factors are (w)ords, (p)os tags, (c)cg su-
pertags on the source s or the target ¢

Table 1 shows that sequence models over CCG su-
pertags in the target (model s, t,,c) improves over
the baseline (model s,,, t,,) which has no supertags.
Supertag sequence models also outperform models
which apply POS tag sequence models (s, twp)
and, interestingly do just as well as models which
apply both POS tag and supertag sequence mod-
els (sw, twps). Supertags are more informative than
POS tags as they contain the syntactic context of a
word.

These experiments were run with the distortion
limit set to 6. This means that at most 6 words in

4see http://www.statmt.org/wpt05/
3see http://www.statmt.org/wpt06/



the source sentence can be skipped. We tried setting
the distortion limit to 15 to see if allowing longer
distance reorderings with CCG supertag sequence
models could further improve performance, however
it resulted in a decrease in performance to a BLEU
score of 23.84.

4.3 Manual Analysis

The BLEU score improvement in Table 1 does not
explain how the supertag sequence models affect the
translation process. As suggested by Callison-Burch
et al.(2006) we perform a focussed manual analysis
of the output to see what changes have occurred.

From the test set, we randomly selected 100
sentences which required reordering of verbs: the
Dutch sentences ended with a verb which had to be
moved forward in the English translation. We record
whether or not the verb was correctly translated and
whether it was reordered to the correct position in
the target sentence.

Model | Translated | Reordered
Sw; tw 81 36
Sws twe 87 52

Table 2. Analysis of % correct translation and reordering
of verbs for Dutch-English translation

In Table 2 we can see that the addition of the CCG
supertag sequence model improved both the transla-
tion of the verbs and their reordering. However, the
improvement is much more pronounced for reorder-
ing. The difference in the reordering results is signif-
icant at p < 0.05 using the x? significance test. This
shows that the syntactic information in the CCG su-
pertags is used by the model to prefer better word
order for the target sentence.

In Figure 2 we can see two examples of Dutch-
English translations that have improved with the ap-
plication of CCG supertag sequence models. In the
first example the verb “heeft” occurs at the end of the
source sentence. The baseline model (s,,, t,,) does
not manage to translate “heeft”. The model with the
CCQG supertag sequence model (s, ty) translates it
correctly as “has” and reorders it correctly 4 places
to the left. The second example also shows the se-
quence model correctly translating the Dutch verb at
the end of the sentence “nodig”. One can see that it
is still not entirely grammatical.
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The improvements in reordering shown here are
reorderings over a relatively short distance, two or
three positions. This is well within the 5-gram order
of the CCG supertag sequence model and we there-
fore consider this to be local reordering.

4.4 Order of the Sequence Model

The CCG supertags describe the syntactic context
of the word they are attached to. Therefore they
have an influence that is greater in scope than sur-
face words or POS tags. Increasing the order of
the CCG supertag sequence model should also in-
crease the ability to perform longer distance reorder-
ing. However, at some point the reliability of the
predictions of the sequence models is impaired due
to sparse counts.

Model | None | 1gram | 3gram | Sgram | 7gram
Switwe | 24.18 | 23.96 | 24.19 | 24.42 | 24.32
Sw,twpe | 24.34 | 23.86 | 24.09 | 2443 | 24.14

Table 3. BLUE scores for Dutch-English models which
apply CCG supertag sequence models of varying orders

In Table 3 we can see that the optimal order for
the CCG supertag sequence models is 5.

4.5 Language Model vs. Supertags

The language model makes a great contribution to
the correct order of the words in the target sentence.
In this experiment we investigate whether by using a
stronger language model the contribution of the se-
quence model will no longer be relevant. The rel-
ative contribution of the language mode and differ-
ent sequence models is investigated for different lan-
guage model n-gram lengths.

Model | None | lgram | 3gram | Sgram | 7gram

Sws tw - 21.22 | 23.97 | 24.05 | 24.13
Switwp | 21.87 | 21.83 | 24.11 | 24.25 | 24.06
Swytwe | 2175 21.70 | 24.42 | 24.67 | 24.60
Swytwpe | 21.99 | 22.07 | 24.43 | 24.48 | 24.42

Table 4. BLEU scores for Dutch-English models which use
language models of increasing n-gram length. Column
None does not apply any language model. Model s, t.,
does not apply any sequence models, and model s.,, twpc
applies both POS tag and supertag sequence models.

In Table 4 we can see that if no language model
is present(None), the system benefits slightly from



source:hij kan toch niet beweren dat hij daar geen exacte informatie over heeft !
reference: how can he say he does not have any precise information ?

sw, tw:he cannot say that he is not an exact information about .

sw, twe: he cannot say that he has no precise information on this !

source: wij moeten hun verwachtingen niet beschamen . meer dan ooit hebben al die landen thans onze bijstand nodig
reference: we must not disappoint them in their expectations , and now more than ever these countries need our help
sw, tw:wWe must not fail to their expectations , more than ever to have all these countries now our assistance necessary
sw, twe: We must not fail to their expectations , more than ever , those countries now need our assistance

Figure 2. Examples where the CCG supertag sequence model improves Dutch-English translation

having access to all the other sequence models.
However, the language model contribution is very
strong and in isolation contributes more to transla-
tion performance than any other sequence model.
Even with a high order language model, applying
the CCG supertag sequence model still seems to im-
prove performance. This means that even if we use
a more powerful language model, the structural in-
formation contained in the supertags continues to be
beneficial.

4.6 Lexicalised Reordering vs. Supertags

In this experiment we investigate using a stronger
reordering model to see how it compares to the con-
tribution that CCG supertag sequence models make.
Moses implements the lexicalised reordering model
described by Tillman (2004), which learns whether
phrases prefer monotone, inverse or disjoint orienta-
tions with regard to adjacent phrases. We apply this
reordering models to the following experiments.

Model | None | Lex. Reord.
Sw,tw | 23.97 24.72
Sw,twe | 24.42 24.78

Table 5. Dutch-English models with and without a lexi-
calised reordering model.

In Table 5 we can see that lexicalised reorder-
ing improves translation performance for both mod-
els. However, the improvement that was seen us-
ing CCG supertags without lexicalised reordering,
almost disappears when using a stronger reordering
model. This suggests that CCG supertags’ contribu-
tion is similar to that of a reordering model. The lex-
icalised reordering model only learns the orientation
of a phrase with relation to its adjacent phrase, so its
influence is very limited in range. If it can replace
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CCG supertags, it suggests that supertags’ influence
is also within a local range.

4.7 CCG Supertags on Source

Sequence models over supertags improve the perfor-
mance of phrase-based machine translation. How-
ever, this is a limited way of leveraging the rich syn-
tactic information available in the CCG categories.
We explore the potential of letting supertags direct
translation by including them as a factor on the
source. This is similar to syntax-directed translation
originally proposed for compiling (Aho and Ullman,
1969), and also used in machine translation (Quirk et
al., 2005; Huang et al., 2006). Information about the
source words’ syntactic function and subcategori-
sation can directly influence the hypotheses being
searched in decoding. These experiments were per-
formed on the German to English translation task,
in contrast to the Dutch to English results given in
previous experiments.

We use a model which combines more specific
dependencies on source words and source CCG su-
pertags, with a more general model which only has
dependancies on the source word, see Equation 4.
We explore two different ways of balancing the sta-
tistical evidence from these multiple sources. The
first way to combine the general and specific sources
of information is by considering features from both
models as part of one large log-linear model. How-
ever, by including more and less informative fea-
tures in one model, we may transfer too much ex-
planatory power to the more specific features. To
overcome this problem, Smith et al. (2006) demon-
strated that using ensembles of separately trained
models and combining them in a logarithmic opin-
ion pool (LOP) leads to better parameter values.
This approach was used as the second way in which



we combined our models. An ensemble of log-linear
models was combined using a multiplicative con-
stant v which we train manually using held out data.

M N
f X Z )\mhm(swcv tw) + (Z )\nhn(sw’ tw))
m=1 n=1

Typically, the two models would need to be nor-
malised before being combined, but here the multi-
plicative constant fulfils this role by balancing their
separate contributions. This is the first work sug-
gesting the application of LOPs to decoding in ma-
chine translation. In the future more sophisticated
translation models and ensembles of models will
need methods such as LOPs in order to balance sta-
tistical evidence from multiple sources.

Model | BLEU
Swytw | 23.30
Swestw | 19.73
single | 23.29

LOP | 23.46

Table 6. German-English: CCG supertags are used as a
factor on the source. The simple models are combined in
two ways: either as a single log-linear model or as a LOP
of log-linear models

Table 6 shows that the simple, general model
(model s,,t,) performs considerably better than
the simple specific model, where there are multi-
ple dependencies on both words and CCG supertags
(model Sy, ty). This is because there are words in
the test sentence that have been seen before but not
with the CCG supertag. Statistical evidence from
multiple sources must be combined. The first way
to combine them is to join them in one single log-
linear model, which is trained over many features.
This makes finding good weights difficult as the in-
fluence of the general model is greater, and its dif-
ficult for the more specific model to discover good
weights. The second method for combining the in-
formation is to use the weights from the separately
trained simple models and then combine them in a
LOP. Held out data is used to set the multiplicative
constant needed to balance the contribution of the
two models. We can see that this second approach is
more successful and this suggests that it is important
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to carefully consider the best ways of combining dif-
ferent sources of information when using ensembles
of models. However, the results of this experiment
are not very conclusive. There is no uncertainty in
the source sentence and the value of modelling it us-
ing CCG supertags is still to be demonstrated.

5 Conclusion

The factored translation model allows for the inclu-
sion of valuable sources of information in many dif-
ferent ways. We have shown that the syntactically
rich CCG supertags do improve the translation pro-
cess and we investigate the best way of including
them in the factored model. Using CCG supertags
over the target shows the most improvement, espe-
cially when using targeted manual evaluation. How-
ever, this effect seems to be largely due to improved
local reordering. Reordering improvements can per-
haps be more reliably made using better reordering
models or larger, more powerful language models.
A further consideration is that supertags will always
be limited to the few languages for which there are
treebanks.

Syntactic information represents embedded
structures which are naturally incorporated into
grammar-based models. The ability of a flat struc-
tured model to leverage this information seems to be
limited. CCG supertags’ ability to guide translation
would be enhanced if the constraints encoded in
the tags were to be enforced using combinatory
operators.

6 Acknowledgements

We thank Hieu Hoang for assistance with Moses, Ju-
lia Hockenmaier for access to CCGbank lexicons in
German and English, and Stephen Clark and James
Curran for providing the supertagger. This work was
supported in part under the GALE program of the
Defense Advanced Research Projects Agency, Con-
tract No. HR0011-06-C-0022 and in part under the
EuroMatrix project funded by the European Com-
mission (6th Framework Programme).



References

Alfred V. Aho and Jeffrey D. Ullman. 1969. Properties of syn-
tax directed translations. Journal of Computer and System
Sciences, 3(3):319-334.

Srinivas Bangalore and Aravind Joshi. 1999. Supertagging:
An approach to almost parsing. Computational Linguistics,
25(2):237-265.

Jeff Bilmes and Katrin Kirchhoff. 2003. Factored language
models and generalized parallel backoff. In Proceedings of
the North American Association for Computational Linguis-
tics Conference, Edmonton, Canada.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn.
2006. Re-evaluating the role of Bleu in machine transla-
tion research. In Proceedings of the European Chapter of
the Association for Computational Linguistics, Trento, Italy.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of the Asso-
ciation for Computational Linguistics, pages 263-270, Ann
Arbor, Michigan.

Stephen Clark and James R. Curran. 2004. Parsing the wsj
using ccg and log-linear models. In Proceedings of the
Association for Computational Linguistics, pages 103-110,
Barcelona, Spain.

Stephen Clark. 2002. Supertagging for combinatory categorial
grammar. In Proceedings of the International Workshop on
Tree Adjoining Grammars, pages 19-24, Venice, Italy.

Hany Hassan, Khalil Sima’an, and Andy Way. 2007. Su-
pertagged phrase-based statistical machine translation. In
Proceedings of the Association for Computational Linguis-
tics, Prague, Czech Republic. (to appear).

Julia Hockenmaier and Mark Steedman. 2005. Ccgbank man-
ual. Technical Report MS-CIS-05-09, Department of Com-
puter and Information Science, University of Pennsylvania.

Julia Hockenmaier. 2006. Creating a ccgbank and a wide-
coverage ccg lexicon for german. In Proceedings of the In-
ternational Conference on Computational Linguistics and of
the Association for Computational Linguistics, Sydney, Aus-
tralia.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006. A
syntax-directed translator with extended domain of locality.
In Proceedings of the Workshop on Computationally Hard
Problems and Joint Inference in Speech and Language Pro-
cessing, pages 1-8, New York City, New York. Association
for Computational Linguistics.

Philipp Koehn, Franz Och, and Daniel Marcu. 2003. Statisti-
cal phrase-based translation. In Proceedings of the Human
Language Technology and North American Association for
Computational Linguistics Conference, pages 127-133, Ed-
monton, Canada. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Richard Zens, Chris Dyer, Brooke
Cowan, Wade Shen, Christine Moran, Ondrej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2006. Open source toolkit

16

for statistical machine translation. In Summer Workshop on
Language Engineering, John Hopkins University Center for
Language and Speech Processing.

Philipp Koehn. 2005. Europarl: A parallel corpus for statistical
machine translation. In MT Summit.

Shankar Kumar and William Byrne. 2003. A weighted finite
state transducer implementation of the alignment template
model for statistical machine translation. In Proceedings of
the Human Language Technology and North American As-
sociation for Computational Linguistics Conference, pages
63-70, Edmonton, Canada.

Daniel Marcu, Wei Wang, Abdessamad Echihabi, and Kevin
Knight. 2006. SPMT: Statistical machine translation with
syntactified target language phrases. In Proceedings of the
Conference on Empirical Methods in Natural Language Pro-
cessing, pages 44-52, Sydney, Australia.

Franz Josef Och. 2003. Minimum error rate training in sta-
tistical machine translation. In Proceedings of the Associ-
ation for Computational Linguistics, pages 160-167, Sap-
poro, Japan.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed phrasal
SMT. In Proceedings of the Association for Computational
Linguistics, pages 271-279, Ann Arbor, Michigan.

Wade Shen, Richard Zens, Nicola Bertoldi, and Marcello Fed-
erico. 2006. The JHU workshop 2006 IWSLT system. In
Proceedings of the International Workshop on Spoken Lan-
guage Translation (IWSLT), pages 59-63, Kyoto, Japan.

Andrew Smith and Miles Osborne. 2006. Using gazetteers in
discriminative information extraction. In The Conference on
Natural Language Learning, New York City, USA.

Andrew Smith, Trevor Cohn, and Miles Osborne. 2005. Loga-
rithmic opinion pools for conditional random fields. In Pro-
ceedings of the Association for Computational Linguistics,
pages 18-25, Ann Arbor, Michigan.

Andreas Stolcke. 2002. SRILM - an extensible language mod-
eling toolkit. In Proceedings of Spoken Language Process-
ing, pages 901-904.

Christoph Tillman. 2004. A unigram orientation model for
statistical machine translation. In Proceedings of the Hu-
man Language Technology and North American Association
for Computational Linguistics Conference, pages 101-104,
Boston, USA. Association for Computational Linguistics.

Ashish Venugopal and Stephan Vogel. 2005. Considerations
in MCE and MMI training for statistical machine transla-
tion. In Proceedings of the European Association for Ma-
chine Translation, Budapest, Hungary.



Integration of an Arabic Transliteration Module into a Statistical
Machine Translation System

Mehdi M. Kashani', Eric Joanis™", Roland Kuhn"", George Foster' ', Fred Popowich"

" School of Computing Science
Simon Fraser University
8888 University Drive
Burnaby, BC V5A 1S6, Canada
mmostafa@sfu.ca

popowich@sfu.ca

Abstract

We provide an in-depth analysis of the in-
tegration of an Arabic-to-English translit-
eration system into a general-purpose
phrase-based statistical machine translation
system. We study the integration from dif-
ferent aspects and evaluate the improve-
ment that can be attributed to the integra-
tion using the BLEU metric. Our experi-
ments show that a transliteration module
can help significantly in the situation where
the test data is rich with previously unseen
named entities. We obtain 70% and 53% of
the theoretical maximum improvement we
could achieve, as measured by an oracle on
development and test sets respectively for
OOV words (out of vocabulary source
words not appearing in the phrase table).

1 Introduction

Transliteration is the practice of transcribing a
word or text written in one writing system into an-
other writing system. The most frequent candidates
for transliteration are person names, locations, or-
ganizations and imported words. The lack of a
fully comprehensive bilingual dictionary including
the entries for all named entities (NEs) renders the
task of transliteration necessary for certain natural
language processing applications dealing with
named entities. Two applications where translitera-
tion can be particularly useful are machine transla-
tion (MT) and cross lingual information retrieval.
While transliteration itself is a relatively well-
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studied problem, its effect on the aforementioned
applications is still under investigation.

Transliteration as a self-contained task has its
own challenges, but applying it to a real applica-
tion introduces new challenges. In this paper we
analyze the efficacy of integrating a transliteration
module into a real MT system and evaluate the
performance.

When working on a limited domain, given a suf-
ficiently large amount of training data, almost all
of the words in the unseen data (in the same do-
main) will have appeared in the training corpus.
But this argument does not hold for NEs, because
no matter how big the training corpus is, there will
always be unseen names of people and locations.
Current MT systems either leave such unknown
names as they are in the final target text or remove
them in order to obtain a better evaluation score.
None of these methods can give the reader who is
not familiar with the source language any informa-
tion about those out-of-vocabulary (OOV) words,
especially when the source and target languages
use different scripts. If these words are not names,
one can usually guess what they are, by using the
partial information of other parts of speech. But, in
the case of names, there is no way to determine the
individual or location the sentence is talking about.
So, to improve the usability of a translation, it is
particularly important to handle NEs well.

The importance of NEs is not yet reflected in the
evaluation methods used in the MT community,
the most common of which is the BLEU metric.
BLEU (Papineni et al, 2002) was devised to pro-
vide automatic evaluation of MT output. In this
metric n-gram similarity of the MT output is com-
puted with one or more references made by human

Proceedings of the Second Workshop on Statistical Machine Translation, pages 17-24,
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translators. BLEU does not distinguish between
different words and gives equal weight to all. In
this paper, we base our evaluation on the BLEU
metric and show that using transliteration has im-
pact on it (and in some cases significant impact).
However, we believe that such integration is more
important for practical uses of MT than BLEU in-
dicates.

Other than improving readability and raising the
BLEU score, another advantage of using a translit-
eration system is that having the right translation
for a name helps the language model select a better
ordering for other words. For example, our phrase
table' does not have any entry for “u4l5” (Dulles)
and when running MT system on the plain Arabic
text we get

and this trip was cancelled [...] by the american
authorities responsible for security at the airport
ol

We ran our MT system twice, once by suggest-
ing “dallas” and another time “dulles” as English
equivalents for “wal2” and the decoder generated
the following sentences, respectively:

and this trip was cancelled [...] by the american
authorities responsible for security at the airport
at dallas .

and this trip was cancelled [...] by the american

authorities responsible for security at dulles air-
2

port .

Every statistical MT (SMT) system assigns a
probability distribution to the words that are seen
in its parallel training data, including proper names.
The richer the training data, the higher the chance
for a given name in the test data to be found in the
translation tables. In other words, an MT system
with a relatively rich phrase table is able to trans-
late many of the common names in the test data,
with all the remaining words being rare and foreign.
So unlike a self-contained transliteration module,
which typically deals with a mix of ‘easy’ and

! A table where the conditional probabilities of target
phrases given source phrases (and vice versa) is kept.

* Note that the language model can be trained on more
text, and hence can know more NEs than the translation
model does.
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‘hard’ names, the primary use for a transliteration
module embedded in an SMT system will be to
deal with the ‘hard’ names left over after the
phrase tables have provided translations for the
‘easy’ ones. That means that when measuring the
performance improvements caused by embedding
a transliteration module in an MT system, one
must keep in mind that such improvements are dif-
ficult to attain: they are won mainly by correctly
transliterating ‘hard’ names.

Another issue with OOV words is that some of
them remained untranslated due to misspellings in
the source text. For example, we encountered
“s 8 (“Hthearow”) instead of  “sJiw”
(“Heathrow”) or “,n.” (“Brezer”) instead of
“ 17" (“Bremer”) in our development test set.

Also, evaluation by BLEU (or a similar auto-
matic metric) is problematic. Almost all of the MT
evaluations use one or more reference translations
as the gold standard and, using some metrics, they
give a score to the MT output. The problem with
NEs is that they usually have more than a single
equivalent in the target language (especially if they
don't originally come from the target language)
which may or may not have been captured in the
gold standard. So even if the transliteration module
comes up with a correct interpretation of a name it
might not receive credit as far as the limited num-
ber of correct names in the references are con-
cerned.

Our first impression was that having more inter-
pretations for a name in the references would raise
the transliteration module’s chance to generate at
least one of them, hence improving the perform-
ance. But, in practice, when references do not
agree on a name’s transliteration that is the sign of
an ambiguity. In these cases, the transliteration
module often suggests a correct transliteration that
the decoder outputs correctly, but which fails to
receive credit from the BLEU metric because this
transliteration is not found in the references. As an
example, for the name “U«s s, four references
came up with four different interpretations:
swerios, swiriyus, severius, sweires. A quick query
in Google showed us another four acceptable in-
terpretations (severios, sewerios, sweirios, saw-
erios).

Machine transliteration has been an active re-
search field for quite a while (Al-Onaizan and
Knight, 2002; Abdullaleel and Larkey, 2003; Kle-
mentiev and Roth, 2006; Sproat et al, 2006) but to



our knowledge there is little published work on
evaluating transliteration within a real MT system.

The closest work to ours is described in (Hassan
and Sorensen, 2005) where they have a list of
names in Arabic and feed this list as the input text
to their MT system. They evaluate their system in
three different cases: as a word-based NE transla-
tion, phrase-based NE translation and in presence
of a transliteration module. Then, they report the
BLEU score on the final output. Since their text is
comprised of only NEs, the BLEU increase is quite
high. Combining all three models, they get a 24.9
BLEU point increase over the naive baseline. The
difference they report between their best method
without transliteration and the one including trans-
literation is 8.12 BLEU points for person names
(their best increase).

In section 2, we introduce different methods for
incorporating a transliteration module into an MT
system and justify our choice. In section 3, the
transliteration module is briefly introduced and we
explain how we prepared its output for use by the
MT system. In section 4, an evaluation of the inte-
gration is provided. Finally, section 5 concludes
the paper.

2 Our Approach

Before going into details of our approach, an
overview of Portage (Sadat et al, 2005), the
machine translation system that we used for our
experiments and some of its properties should be
provided.

Portage is a statistical phrase-based SMT system
similar to Pharaoh (Koehn et al, 2003). Given a
source sentence, it tries to find the target sentence
that maximizes the joint probability of a target sen-
tence and a phrase alignment according to a loglin-
ear model. Features in the loglinear model consist
of a phrase-based translation model with relative-
frequency and lexical probability estimates; a 4-
gram language model using Kneser-Ney smooth-
ing, trained with the SRILM toolkit; a single-
parameter distortion penalty on phrase reordering;
and a word-length penalty. Weights on the loglin-
ear features are set using Och's algorithm (Och,
2003) to maximize the system's BLEU score on a
development corpus. To generate phrase pairs from
a parallel corpus, we use the "diag-and" phrase
induction algorithm described in (Koehn et al,
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2003), with symmetrized word alignments gener-
ated using IBM model 2 (Brown et al, 1993).

Portage allows the use of SGML-like markup
for arbitrary entities within the input text. The
markup can be used to specify translations
provided by external sources for the entities, such
as rule-based translations of numbers and dates, or
a transliteration module for OOVs in our work.
Many SMT systems have this capability, so
although the details given here pertain to Portage,
the techniques described can be used in many
different SMT systems.

As an example, suppose we already have two
different transliterations with their probabilities for
the Arabic name “xss”. We can replace every
occurrence of the “as” in the Arabic input text
with the following:

<NAME target="mohammed|/mohamed"
prob=".7/.3"> eaa </NAME>

By running Portage on this marked up text, the
decoder chooses between entries in its own phrase
table and the marked-up text. One thing that is
important for our task is that if the entry cannot be
found in Portage’s phrase tables, it is guaranteed
that one of the candidates inside the markup will
be chosen. Even if none of the candidates exist in
the language model, the decoder still picks one of
them, because the system assigns a small arbitrary
probability (we typically use e'®) as unigram
probability of each unseen word.

We considered four different methods for
incorporating the transliteration module into the
MT system. The first and second methods need an
NE tagger and the other two do not require any
external tools.

Method 1: use an NE tagger to extract the
names in the Arabic input text. Then, run the
transliteration module on them and assign
probabilities to top candidates. Use the markup
capability of Portage and replace each name in the
Arabic text with the SGML-like tag including
different probabilities for different candidates.
Feed the marked-up text to Portage to translate.

Method 2: similar to method 1 but instead of
using the marked-up text, a new phrase table, only
containing entries for the names in the Arabic input
text is built and added to Portage’s existing phrase
tables. A weight is given to this phrase table and



then the decoder uses this phrase table as well as
its own phrase tables to decide which translation to
choose when encountering the names in the
text. The main difference between methods 1 and
2 is that in our system, method 2 allows for a bleu-
optimal weight to be learned for the NE phrase
table, whereas the weight on the rules for method 1
has to be set by hand.

Method 3: run Portage on the plain Arabic text.
Extract all untranslated Arabic OOVs and run the
transliteration module on them. Replace them with
the top candidate.

Method 4: run Portage on the plain Arabic text.
Extract all untranslated Arabic OOVs and run the
transliteration module on them. Replace them with
SGML-like tags including different probabilities
for different candidates, as described previously.
Feed the marked-up text to Portage to translate.

The first two methods need a powerful NE
tagger with a high recall value. We computed the
recall value on the development set OOVs using
two different NE taggers, Tagger A and Tagger B
(each from a different research group). Taggers A
and B showed a recall of 33% and 53% respec-
tively, both being low for our purposes. Another
issue with these two methods is that for many of
the names the transliteration module will compete
with the internal phrase table. Our observations
show that if a name exists in the phrase table, it is
likely to be translated correctly. In general,
observed parallel data (i.e. training data) should be
a more reliable source of information than
transliteration, encouraging us to use transliteration
most appropriately as a ‘back-off” method. In a
few cases, the Arabic name is ambiguous with a
common word and is mistakenly translated as such.
For example, “d~3 s Ja” is an Arabic name that
should be transliterated as “Hani Abu Nahl” but
since “da¥ also means “solve”, the MT system
outputs “Hani Abu Solve”. The advantage of the
first two methods is that they can deal with such
cases. But considering the noise in the NE
detectors, handling them increases the risk of
losing already correct translations of other names.

The third method is simple and easy to use but
not optimal: it does not take advantage of the
decoder’s internal features (notably the language
models) and only picks up the highest scoring
candidate from the transliteration module.
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The fourth method only deals with those words
that the MT system was unable to deal with and
had to leave untranslated in the final text.
Therefore whatever suggestions the transliteration
module makes do not need to compete with the
internal phrase tables, which is good because we
expect the phrase tables to be a more reliable
source of information. It is guaranteed that the
translation quality will be improved (in the worst
case, a bad transliteration is still more informative
than the original word in Arabic script). Moreover,
unlike the third method, we take advantage of all
internal decoder features on the second pass. We
adopt the fourth method for our experiment. The
following example better illustrates how this
approach works:

Example: Suppose we have the following sentence
in the Arabic input text:

el s 8T ikl

Portage is run on the Arabic plain text and yields
the following output:

blair accepts usis» report in full .

The Arabic word “05” (Hutton) is extracted and
fed to the transliteration module. The
transliteration module comes up with some English
candidates, each with different probabilities as
estimated by the HMM. They are rescaled (as will
be explained in section 3) and the following
markup text will be generated to replace the
untranslated “0s%” in the first plain Arabic
sentence:

<NAME target="hoton|hutton|authon"
prob="0.1|0.00028|4.64e-05">0 5 »</NAME>

Portage is then run on this newly marked up text
(second pass). From now on, with the additional
guidance of the language models, it is the
decoder’s task to decide between different markup
suggestions. For the above example, the following
output will be generated:

blair accepts hutton report in full .



3 Transliteration System

In this section we provide a brief overview of the
embedded transliteration system we used for our
experiment. For the full description refer to
(Kashani et al, 2007).

3.1

The transliteration module follows the noisy
channel framework. The adapted spelling-based
generative model is similar to (Al-Onaizan and
Knight, 2002). It consists of three consecutive
phases, the first two using HMMs and the Viterbi
algorithm, and the third using a number of
monolingual dictionaries to match the close entries
or to filter out some invalid candidates from the
first two phases.

Since in Arabic, the diacritics are usually
omitted in writing, a name like “xs<” (Mohamed)
would have an equivalent like “mhmd” if we only
take into account the written letters. To address
this issue, we run Viterbi in two different passes
(each called a phase), using HMMs trained on data
prepared in different ways.

In phase 1, the system tries to find the best
transliterations of the written word, without caring
about what the hidden diacritics would be (in our
example, mhmd).

In phase 2, given the Arabic input and the output
candidates from phase 1, the system fills in the
possible blanks in between using the character-
based language model (yielding “mohamed” as a
possible output, among others).

To prepare the character-level translation model
for both phases we adopted an approach similar to
(AbdulJaleel and Larkey, 2003).

In phase 3, the Google unigram model
(LDC2006T13 from the LDC catalog) is first used
to filter out the noise (i.e. those candidates that do
not exist in the Google unigram are removed from
the candidate list). Then a combination of some
monolingual dictionaries of person names is used
to find close matches between their entries and the
HMM output candidates based on the Levenshtein
distance metric.

3.2

Due to the nature of the task at hand and by
observing the development test set and its

Three Phase Transliteration

Task-specific Changes to the Module
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references, the following major changes became
necessary:

Removing Part of Phase Three: By observing the
OOV words in the development test set, we
realized that having the monolingual dictionary in
the pipeline and using the Levensthtein distance as
a metric for adding the closest dictionary entries to
the final output, does not help much, mainly
because OOVs are rarely in the dictionary. So, the
dictionary part not only slows down the execution
but would also add noise to the final output (by
adding some entries that probably are not the
desired outputs). However, we kept the Google
unigram filtering in the pipeline.

Rescaling HMM Probabilities: Although the
transliteration module outputs HMM probability
score for each candidate, and the MT system also
uses probability scores, in practice the translitera-
tion scores have to be adjusted. For example, if
three consecutive candidates have log probabilities
-40, -42 and -50, the decoder should be given val-
ues with similar differences in scale, comparable
with the typical differences in its internal features
(eg. Language Models). Knowing that the entries
in the internal features usually have exponential
differences, we adopted the following conversion
formula:

pvi =0.1 *(pi/pmax)OL
Equation 1

— 10(0utput of HMM for candidate i) and max is the

where pj
best candidate.

We rescale the HMM probability so that the top
candidate is (arbitrarily) given a probability of p'yax
= 0.1. It immediately follows that the rescaled
score would be 0.1 * p; / pmax- Since the decoder
combines its models in a log-linear fashion, we
apply an exponent o to the HMM probabilities be-
fore scaling them, as way to control the weight of
those probabilities in decoding. This yields equa-
tion 1. Ideally, we would like the weight a to be
optimized the same way other decoder weights are
optimized, but our decoder does not support this
yet, so for this work we arbitrarily set the weight to
a = 0.2, which seems to work well. For the above
example, the distribution would be 0.1, 0.039 and 0.001.



Prefix Detachment: Arabic is a morphologically
rich language. Even after performing tokenization,
some words still remain untokenized. If the
composite word is frequent, there is a chance that it
exists in the phrase table but many times it does
not, especially if the main part of that word is a
named entity. We did not want to delve into the
details of morphology: we only considered two
frequent prefixes: “s” (“va” meaning “and”) and
“J” (“al” determiner in Arabic). If a word starts
with either of these two prefixes, we detach them
and run the transliteration module once on the
detached name and a second time on the whole
word. The output candidates are merged
automatically based on their scores, and the
decoder decides which one to choose.

Keeping the Top 5 HMM Candidates: The
transliteration module uses the Google unigram
model to filter out the candidate words that do not
appear above a certain threshold (200 times) on the
Internet. This helps eliminate hundreds of
unwanted sequences of letters. But, we decided to
keep top-5 candidates on the output list, even if
they are rejected by the Google unigram model
because sometimes the transliteration module is
unable to suggest the correct equivalent or in other
cases the OOV should actually be translated rather
than transliterated®. In these cases, the closest
literal transliteration will still provide the end user
more information about the entity than the word in
Arabic script would.

4  Evaluation

Although there are metrics that directly address NE
translation performance’, we chose to use BLEU
because our purpose is to assess NE translation
within MT, and BLEU is currently the standard
metric for MT.

* This would happen especially for ancient names or
some names that underwent sophisticated morphologi-
cal transformations (For example, Abraham in English
and a2 (Ibrahim) in Arabic).

* NIST’s NE translation task
(http://www.nist.gov/speech/tests/ace/index.htm) is an
example.
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4.1 Training Data

We used the data made available for the 2006
NIST Machine Translation Evaluation. Our bilin-
gual training corpus consisted of 4M sentence pairs
drawn mostly from newswire and UN domains.
We trained one language model on the English half
of this corpus (137M running words), and another
on the English Gigaword corpus (2.3G running
words). For tuning feature weights, we used LDC's
"multiple translation part 1" corpus, which contains
1,043 sentence pairs.

4.2 Test Data

We used the NIST MT04 evaluation set and the
NIST MTO5 evaluation set as our development and
blind test sets. The development test set consists of
1353 sentences, 233 of which contain OOVs.
Among them 100 sentences have OOVs that are
actually named entities. The blind test set consists
of 1056 sentences, 189 of them having OOVs and
131 of them having OOV named entities. The
number of sentences for each experiment is
summarized in table 1.

Whole Text (0]0)Y OOV-NE

Sentences Sentences
Dev test set 1353 233 100
Blind test set 1056 189 131

Table 1: Distribution of sentences in test sets.

4.3

As the baseline, we ran the Portage without the
transliteration module on development and blind
test sets. The second column of table 2 shows
baseline BLEU scores. We applied method 4 as
outlined in section 2 and computed the BLEU
score, also in order to compare the results we
implemented method 3 on the same test sets. The
BLEU scores obtained from methods 3 and 4 are
shown in columns 3 and 4 of table 2.

Results

baseline | Method 3 Method 4 | Oracle
Dev 44.67 44.71 44.83 44.90
Blind | 48.56 48.62 48.80 49.01

Table 2: BLEU score on different test sets.

Considering the fact that only a small portion of
the test set has out-of-vocabulary named entities,



we computed the BLEU score on two different
sub-portions of the test set: first, on the sentences
with OOVs; second, only on the sentences
containing OOV named entities. The BLEU
increase on different portions of the test set is
shown in table 3.

baseline | Method 4
Dev | OOV sentences 39.17 40.02
OOV-NE Sentences | 44.56 46.31
blind | OOV sentences 43.93 45.07
OOV-NE Sentences | 42.32 44 .87

Table 3: BLEU score on different
portions of the test sets.

To set an upper bound on how much applying
any transliteration module can contribute to the
overall results, we developed an oracle-like
dictionary for the OOVs in the test sets, which was
then used to create a markup Arabic text. By
feeding this markup input to the MT system we
obtained the result shown in column 5 of table 2.
This is the performance our system would achieve
if it had perfect accuracy in transliteration,
including correctly guessing what errors the human
translators made in the references. Method 4
achieves 70% of this maximum gain on dev, and
53% on blind.

5 Conclusion

This paper has described the integration of a trans-
literation module into a state-of-the-art statistical
machine translation (SMT) system for the Arabic
to English task. The final version of the translitera-
tion module operates in three phases. First, it gen-
erates English letter sequences corresponding to
the Arabic letter sequence; for the typical case
where the Arabic omits diacritics, this often means
that the English letter sequence is incomplete (e.g.,
vowels are often missing). In the next phase, the
module tries to guess the missing English letters.
In the third phase, the module uses a huge collec-
tion of English unigrams to filter out improbable or
impossible English words and names. We de-
scribed four possible methods for integrating this
module in an SMT system. Two of these methods
require NE taggers of higher quality than those
available to us, and were not explored experimen-
tally. Method 3 inserts the top-scoring candidate
from the transliteration module in the translation
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wherever there was an Arabic OOV in the source.
Method 4 outputs multiple candidates from the
transliteration module, each with a score; the SMT
system combines these scores with language model
scores to decide which candidate will be chosen. In
our experiments, Method 4 consistently outper-
formed Model 3. Note that although we used
BLEU as the metric for all experiments in this pa-
per, BLEU greatly understates the importance of
accurate transliteration for many practical SMT
applications.
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Abstract

We investigate different representational
granularities for sub-lexical representation
in statistical machine translation work from
English to Turkish. We find that (i) rep-
resenting both Turkish and English at the
morpheme-level but with some selective
morpheme-grouping on the Turkish side of
the training data, (ii) augmenting the train-
ing data with “sentences” comprising only
the content words of the original training
data to bias root word alignment, (iii) re-
ranking the n-best morpheme-sequence out-
puts of the decoder with a word-based lan-
guage model, and (iv) using model iteration
all provide a non-trivial improvement over
a fully word-based baseline. Despite our
very limited training data, we improve from
20.22 BLEU points for our simplest model
to 25.08 BLEU points for an improvement
of 4.86 points or 24% relative.

1 Introduction

Statistical machine translation (SMT) from English-
to-Turkish poses a number of difficulties. Typo-
logically English and Turkish are rather distant lan-
guages: while English has very limited morphology
and rather fixed SVO constituent order, Turkish is an
agglutinative language with a very rich and produc-
tive derivational and inflectional morphology, and a
very flexible (but SOV dominant) constituent order.
Another issue of practical significance is the lack of
large scale parallel text resources, with no substan-
tial improvement expected in the near future.

In this paper, we investigate different represen-
tational granularities for sub-lexical representation
of parallel data for English-to-Turkish phrase-based
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SMT and compare them with a word-based base-
line. We also employ two-levels of language mod-
els: the decoder uses a morpheme based LM while it
is generating an n-best list. The n-best lists are then
rescored using a word-based LM.

The paper is structured as follows: We first briefly
discuss issues in SMT and Turkish, and review re-
lated work. We then outline how we exploit mor-
phology, and present results from our baseline and
morphologically segmented models, followed by
some sample outputs. We then describe discuss
model iteration. Finally, we present a comprehen-
sive discussion of our approach and results, and
briefly discuss word-repair — fixing morphologicaly
malformed words — and offer a few ideas about the
adaptation of BLEU to morphologically complex
languages like Turkish.

2 Turkish and SMT

Our previous experience with SMT into Turkish
(Durgar El-Kahlout and Oflazer, 2006) hinted that
exploiting sub-lexical structure would be a fruitful
avenue to pursue. This was based on the observation
that a Turkish word would have to align with a com-
plete phrase on the English side, and that sometimes
these phrases on the English side could be discontin-
uous. Figure 1 shows a pair of English and Turkish
sentences that are aligned at the word (top) and mor-
pheme (bottom) levels. At the morpheme level, we
have split the Turkish words into their lexical mor-
phemes while English words with overt morphemes
have been stemmed, and such morphemes have been
marked with a tag.

The productive morphology of Turkish implies
potentially a very large vocabulary size. Thus,
sparseness which is more acute when very modest

Proceedings of the Second Workshop on Statistical Machine Translation, pages 25-32,
Prague, June 2007. (©2007 Association for Computational Linguistics



an accession partnership will be drawn up on the basis of previous european council conclusions

daha dnceki avrupa zirve sonuglarina dayanilarak bir katilim ortaklidi olusturulacaktir

an accession partnership will be draw +vvn up on the basis of previous european council conclusion +nns

daha &nce +ki avrupa zirve sonug Far 45h Tna daya+hnhl +;/ara|< bir katilim ortaklik @olug, S ﬁ/écak_;dhr

Figure 1: Word and morpheme alignments for a pair of English-Turkish sentences

parallel resources are available becomes an impor-
tant issue. However, Turkish employs about 30,000
root words and about 150 distinct suffixes, so when
morphemes are used as the units in the parallel texts,
the sparseness problem can be alleviated to some ex-
tent.

Our approach in this paper is to represent Turk-
ish words with their morphological segmentation.
We use lexical morphemes instead of surface mor-
phemes, as most surface distinctions are man-
ifestations of word-internal phenomena such as
vowel harmony, and morphotactics. With lexi-
cal morpheme representation, we can abstract away
such word-internal details and conflate statistics for
seemingly different suffixes, as at this level of repre-
sentation words that look very different on the sur-
face, look very similar.! For instance, although the
words evinde ’in his house’ and masasinda ’on his
table’ look quite different, the lexical morphemes
except for the root are the same: ev+sH+ndA Vs.
masa+sH+ndA.

We should however note that although employ-
ing a morpheme based representations dramatically
reduces the vocabulary size on the Turkish side, it
also runs the risk of overloading distortion mecha-
nisms to account for both word-internal morpheme
sequencing and sentence level word ordering.

The segmentation of a word in general is not
unique. We first generate a representation that con-
tains both the lexical segments and the morpho-
logical features encoded for all possible segmenta-

!This is in a sense very similar to the more general problem
of lexical redundancy addressed by Talbot and Osborne (2006)
but our approach does not require the more sophisticated solu-
tion there.
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tions and interpretations of the word. For the word
emeli for instance, our morphological analyzer gen-
erates the following with lexical morphemes brack-
eted with (..):

(em) em+Verb+Pos (+yAlH) "DB+Adverb+Since

since (someone) sucked (something)

(emel) emel+Noun+A3sg (+sH) +tP3sg+Nom

his/her ambition

(emel) emel+Noun+A3sg+Pnon (+yH) +Acc

ambition (as object of a transitive verb)

These analyses are then disambiguated with a sta-
tistical disambiguator (Yiiret and Tiire, 2006) which
operates on the morphological features.? Finally, the
morphological features are removed from each parse
leaving the lexical morphemes.

Using morphology in SMT has been recently ad-
dressed by researchers translation from or into mor-
phologically rich(er) languages. Niessen and Ney
(2004) have used morphological decomposition to
improve alignment quality. Yang and Kirchhoff
(2006) use phrase-based backoff models to translate
words that are unknown to the decoder, by morpho-
logically decomposing the unknown source word.
They particularly apply their method to translating
from Finnish — another language with very similar
structural characteristics to Turkish. Corston-Oliver
and Gamon (2004) normalize inflectional morphol-
ogy by stemming the word for German-English
word alignment. Lee (2004) uses a morphologically
analyzed and tagged parallel corpus for Arabic-
English SMT. Zolmann et al. (2006) also exploit
morphology in Arabic-English SMT. Popovic and
Ney (2004) investigate improving translation qual-

>This disambiguator has about 94% accuracy.



ity from inflected languages by using stems, suffixes
and part-of-speech tags. Goldwater and McClosky
(2005) use morphological analysis on Czech text to
get improvements in Czech to English SMT. Re-
cently, Minkov et al. (2007) have used morphologi-
cal postprocessing on the output side using structural
information and information from the source side, to
improve SMT quality.

3 Exploiting Morphology

Our parallel data consists mainly of documents in
international relations and legal documents from
sources such as the Turkish Ministry of Foreign Af-
fairs, EU, etc. We process these as follows: (i) We
segment the words in our Turkish corpus into lex-
ical morphemes whereby differences in the surface
representations of morphemes due to word-internal
phenomena are abstracted out to improve statistics
during alignment.? (ii) We tag the English side us-
ing TreeTagger (Schmid, 1994), which provides a
lemma and a part-of-speech for each word. We then
remove any tags which do not imply an explicit mor-
pheme or an exceptional form. So for instance, if
the word book gets tagged as +NN, we keep book
in the text, but remove +NN. For books tagged as
+NNS or booking tagged as +VVG, we keep book
and +NNS, and book and +VVG. A word like went is
replaced by go +VVD.# (iii) From these morpholog-
ically segmented corpora, we also extract for each
sentence, the sequence of roots for open class con-
tent words (nouns, adjectives, adverbs, and verbs).
For Turkish, this corresponds to removing all mor-
phemes and any roots for closed classes. For En-
glish, this corresponds to removing all words tagged
as closed class words along with the tags such as
+VVG above that signal a morpheme on an open
class content word. We use this to augment the train-
ing corpus and bias content word alignments, with
the hope that such roots may get a chance to align
without any additional “noise” from morphemes and
other function words.

From such processed data, we compile the data
sets whose statistics are listed in Table 1. One can
note that Turkish has many more distinct word forms
(about twice as many as English), but has much less

3So for example, the surface plural morphemes +ler and
+lar get conflated to +/Ar and their statistics are hence com-
bined.

“Ideally, it would have been very desirable to actually do
derivational morphological analysis on the English side, so that
one could for example analyze accession into access plus a
marker indicating nominalization.
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[ Turkish [ Sent. [ Words (UNK) [ Uniq. Words |
Train 45,709 557,530 52,897
Train-Content | 56,609 436,762 13,767
Tune 200 3,258 1,442
Test 649 10,334 (545) 4,355

[ English [ [ [ ]
Train 45,709 723,399 26,747
Train-Content | 56,609 403,162 19,791
Test 649 13,484 (231) 3,220

Morph- Uniq. | Morp./ | Uniq. | Unigq.
Turkishl emes Morp. | Word Roots | Suff.
Train | 1,005,045 | 15,081 1.80 | 14,976 105
Tune 6,240 859 1.92 810 49
Test 18,713 2,297 1.81 2,220 77

Table 1: Statistics on Turkish and English training
and test data, and Turkish morphological structure

number of distinct content words than English.> For
language models in decoding and n-best list rescor-
ing, we use, in addition to the training data, a mono-
lingual Turkish text of about 100,000 sentences (in

a segmented and disambiguated form).
A typical sentence pair in our data looks like
the following, where we have highlighted the con-

tent root words with bold font, coindexed them to
show their alignments and bracketed the “words”

that evaluation on test would consider.

e T: [kat; +hl +ma] [ortakliks +sh +nhn]

[uygulas +hn +ma +sh] [,] [ortakliky]
[anlasmas; +sh] [gergeveg +sh +nda]
[izle7; +hn +yacak +dhr] [.]

o E: the implementations of the acces-
sion; partnership; will be monitor;
+vvn in the frameworkg of the
associationy agreements

Note that when the morphemes/tags (starting with
a +) are concatenated, we get the “word-based”
version of the corpus, since surface words are di-
rectly recoverable from the concatenated represen-
tation. We use this word-based representation also
for word-based language models used for rescoring.

We employ the phrase-based SMT framework
(Koehn et al., 2003), and use the Moses toolkit
(Koehn et al., 2007), and the SRILM language mod-
elling toolkit (Stolcke, 2002), and evaluate our de-
coded translations using the BLEU measure (Pap-
ineni et al., 2002), using a single reference transla-
tion.

3The training set in the first row of 1 was limited to sen-
tences on the Turkish side which had at most 90 tokens (roots
and bound morphemes) in total in order to comply with require-
ments of the GIZA++ alignment tool. However when only the
content words are included, we have more sentences to include
since much less number of sentences violate the length restric-
tion when morphemes/function word are removed.



Moses Dec. Parms. BLEU | BLEU-c
Default 16.29 16.13
dl = -1, -weight-d = 0.1 20.16 19.77

Table 2: BLEU results for baseline experiments.
BLEU is for the model trained on the training set

BLEU-C is for the model trained on training set augmented with
the content words.

3.1 The Baseline System

As a baseline system, we trained a model using
default Moses parameters (e.g., maximum phrase
length = 7), using the word-based training corpus.
The English test set was decoded with both default
decoder parameters and with the distortion limit (-dl
in Moses) set to unlimited (-1 in Moses) and distor-
tion weight (-weight-d in Moses) set to a very low
value of 0.1 to allow for long distance distortions.®
We also augmented the training set with the con-
tent word data and trained a second baseline model.
Minimum error rate training with the tune set did not
provide any tangible improvements.” Table 2 shows
the BLEU results for baseline performance. It can
be seen that adding the content word training data
actually hampers the baseline performance.

3.2 Fully Morphologically Segmented Model

We now trained a model using the fully morpho-
logically segmented training corpus with and with-
out content word parallel corpus augmentation. For
decoding, we used a 5-gram morpheme-based lan-
guage model with the hope of capturing local mor-
photactic ordering constraints, and perhaps some
sentence level ordering of words.® We then decoded
and obtained 1000-best lists. The 1000-best sen-
tences were then converted to “words” (by concate-
nating the morphemes) and then rescored with a 4-
gram word-based language model with the hope of
enforcing more distant word sequencing constraints.
For this, we followed the following procedure: We

SWe arrived at this combination by experimenting with the
decoder to avoid the almost monotonic translation we were get-
ting with the default parameters.

"We ran MERT on the baseline model and the morphologi-
cally segmented models forcing -weight-d to range a very small
around 0.1, but letting the other parameters range in their sug-
gested ranges. Even though the procedure came back claiming
that it achieved a better BLEU score on the tune set, running
the new model on the test set did not show any improvement at
all. This may have been due to the fact that the initial choice
of -weight-d along with -dl set to 1 provides such a drastic
improvement that perturbations in the other parameters do not
have much impact.

8Given that on the average we have almost two bound mor-
phemes per “word” (for inflecting word classes), a morpheme
5-gram would cover about 2 “words”.

28

tried various linear combinations of the word-based
language model and the translation model scores on
the tune corpus, and used the combination that per-
formed best to evaluate the fest corpus. We also ex-
perimented with both the default decoding parame-
ters, and the modified parameters used in the base-
line model decoding above.

The results in Table 3 indicate that the default de-
coding parameters used by the Moses decoder pro-
vide a very dismal results — much below the baseline
scores. We can speculate that as the constituent or-
ders of Turkish and English are very different, (root)
words may have to be scrambled to rather long dis-
tances along with the translations of functions words
and tags on the English side, to morphemes on the
Turkish side. Thus limiting maximum distortion
and penalizing distortions with the default higher
weight, result in these low BLEU results. Allowing
the decoder to consider longer range distortions and
penalizing such distortions much less with the mod-
ified decoding parameters, seem to make an enor-
mous difference in this case, providing close to al-
most 7 BLEU points improvement.’

We can also see that, contrary to the case with
the baseline word-based experiments, using the ad-
ditional content word corpus for training actually
provides a tangible improvement (about 6.2% rel-
ative (w/o rescoring)), most likely due to slightly
better alignments when content words are used.!®
Rescoring the 1000-best sentence output with a 4-
gram word-based language model provides an addi-
tional 0.79 BLEU points (about 4% relative) — from
20.22 to 21.01 — for the model with the basic train-
ing set, and an additional 0.71 BLEU points (about
3% relative) — from 21.47 to 22.18- for the model
with the augmented training set. The cumulative im-
provement is 1.96 BLEU points or about 9.4% rela-
tive.

3.3 Selectively Segmented Model

A systematic analysis of the alignment files pro-
duced by GIZA++ for a small subset of the train-
ing sentences showed that certain morphemes on the

°The “morpheme” BLEU scores are much higher (34.43
on the test set) where we measure BLEU using decoded mor-
phemes as tokens. This is just indicative and but correlates with
word-level BLEU which we report in Table 3, and can be used
to gauge relative improvements to the models.

0We also constructed phrase tables only from the actual
training set (w/o the content word section) after the alignment
phase. The resulting models fared slightly worse though we do
not yet understand why.



Moses Dec. Parms. BLEU | BLEU-c
Default 13.55 NA
dl =-1, -weight-d = 0.1 20.22 21.47
dl = -1, -weight-d = 0.1
+ word-level LM rescoring 21.01 22.18

Table 3: BLEU results for experiments with fully
morphologically segmented training set

Turkish side were almost consistently never aligned
with anything on the English side: e.g., the com-
pound noun marker morpheme in Turkish (+sh) does
not have a corresponding unit on the English side
since English noun-noun compounds do not carry
any overt markers. Such markers were never aligned
to anything or were aligned almost randomly to to-
kens on the English side. Since we perform deriva-
tional morphological analysis on the Turkish side
but not on the English side, we noted that most ver-
bal nominalizations on the English side were just
aligned to the verb roots on the Turkish side and
the additional markers on the Turkish side indicat-
ing the nominalization and agreement markers etc.,
were mostly unaligned.

For just these cases, we selectively attached such
morphemes (and in the case of verbs, the interven-
ing morphemes) to the root, but otherwise kept other
morphemes, especially any case morphemes, still by
themselves, as they almost often align with preposi-
tions on the English side quite accurately.'!

This time, we trained a model on just the content-
word augmented training corpus, with the better per-
forming parameters for the decoder and again did
1000-best rescoring.!?> The results for this experi-
ment are shown in Table 4. The resulting BLEU
represents 2.43 points (11% relative) improvement
over the best fully segmented model (and 4.39 points
21.7% compared to the very initial morphologically
segmented model). This is a very encouraging result
that indicates we should perhaps consider a much
more detailed analysis of morpheme alignments to
uncover additional morphemes with similar status.
Table 5 provides additional details on the BLEU

"It should be noted that what to selectively attach to the root
should be considered on a per-language basis; if Turkish were
to be aligned with a language with similar morphological mark-
ers, this perhaps would not have been needed. Again one per-
haps can use methods similar to those suggested by Talbot and
Osborne (2006).

2Decoders for the fully-segmented model and selectively
segmented model use different 5-gram language models, since
the language model corpus should have the same selectively
segmented units as those in the training set. However, the word-
level language models used in rescoring are the same.
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Moses Dec. Parms. BLEU-c
dl =-1, -weight-d = 0.1
+ word-level LM rescoring 22.18
(Full Segmentation (from Table 3))
dl =-1, -weight-d = 0.1 23.47
dl =-1, -weight-d = 0.1
+ word-level LM rescoring 24.61

Table 4: BLEU results for experiments with selec-
tively segmented and content-word augmented train-
ing set

Range | Sent. | BLEU-c
1-10 172 44.36
1-15 276 34.63
5-15 217 33.00
1-20 369 28.84
1-30 517 27.88
1-40 589 24.90

All 649 24.61

Table 5: BLEU Scores for different ranges of
(source) sentence length for the result in Table 4

scores for this model, for different ranges of (En-
glish source) sentence length.

4 Sample Rules and Translations

We have extracted some additional statistics from
the translations produced from English test set. Of
the 10,563 words in the decoded test set, a total of
957 words (9.0 %) were not seen in the training cor-
pus. However, interestingly, of these 957 words, 432
(45%) were actually morphologically well-formed
(some as complex as having 4-5 morphemes!) This
indicates that the phrase-based translation model
is able to synthesize novel complex words.'> In
fact, some phrase table entries seem to capture
morphologically marked subcategorization patterns.
An example is the phrase translation pair
after examine +vvg =
+acc incele+dhk +abl sonra
which very much resembles a typical structural
transfer rule one would find in a symbolic machine
translation system
PP (after examine +vvg NPepng) =
PP (NP¢yrk+tacc incele+dhk +abl sonra)

in that the accusative marker is tacked to the
translation of the English NP.

Figure 2 shows how segments are translated to
Turkish for a sample sentence. Figure 3 shows the
translations of three sentences from the test data

B Though whether such words are actually correct in their
context is not necessarily clear.



cocuk [[ child 1]

hak+lar+sh +nhn [[ +nns +pos right 1]
koruthn+ma+sh [[ protection ]]

+nhn [[ of 1]

tesvik et+hl+ma+sh [[ promote ]]
+loc [[ +nns in ]] ab [[ eu 1]

ve ulus+lararasi standart +lar
[[ and international standard +nns ]]
+dat uygun [[ line with ]] +dhr . [r .11

Figure 2: Phrasal translations selected for a sample
sentence

Inp.: 1. everyone’s right to life shall be protected by law .
Trans.: 1 . herkesin yasama hakki kanunla korunur.

Lit.: everyone’s living right is protected with law .

Ref.: 1. herkesin yasam hakki yasanin korumasi altindadir .
Lit.: everyone’s life right is under the protection of the law.

Inp.: promote protection of children’s rights in line with eu and
international standards .

Trans.: cocuk haklarinin korunmasinin ab ve uluslararasi
standartlara uygun sekilde gelistirilmesi.

Lit.: develop protection of children’s rights in accordance with
eu and international standards .

Ref.: ab ve uluslararas1 standartlar dogrultusunda ¢ocuk
haklarinin korunmasinin tegvik edilmesi.

Lit.. in line with eu and international standards pro-
mote/motivate protection of children’s rights .

Inp.: as a key feature of such a strategy, an accession partner-
ship will be drawn up on the basis of previous european council
conclusions.

Trans.: bu stratejinin kilit unsuru bir katilim ortaklig1 bel-
gesi hazirlanacak kadarin temelinde , bir 6nceki avrupa konseyi
sonuglaridir .

Lit.: as a key feature of this strategy, accession partnership doc-
ument will be prepared ??? based are previous european council
resolutions .

Ref.: bu stratejinin kilit unsuru olarak , daha onceki ab zirve
sonuglarina dayanilarak bir katilim ortaklig: olusturulacaktir.
Lit.: as a key feature of this strategy an accession partnership
based on earlier eu summit resolutions will be formed .

Figure 3: Some sample translations

along with the literal paraphrases of the translation
and the reference versions. The first two are quite
accurate and acceptable translations while the third
clearly has missing and incorrect parts.

5 Model Iteration

We have also experimented with an iterative ap-
proach to use multiple models to see if further im-
provements are possible. This is akin to post-editing
(though definitely not akin to the much more so-
phisticated approach in described in Simard et al.
(2007)). We proceeded as follows: We used the
selective segmentation based model above and de-
coded our English training data Er,.,;, and English
test data Ep.q to obtain T1p,.qsn and Tlpes re-
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Step BLEU
From Table 4 24.61
Iter. 1 24.77
Iter. 2 25.08

Table 6: BLEU results for two model iterations

spectively. We then trained the next model using
T17rain a0d TTpqin, to build a model that hopefully
will improve upon the output of the previous model,
T 17est, to bring it closer to Tres;. This model when
applied to T1 7,44y and T1pes produce T2, 4, and
T27est rEspectively.

We have not included the content word corpus
in these experiments, as (i) our few very prelimi-
nary experiments indicated that using a morpheme-
based models in subsequent iterations would per-
form worse than word-based models, and (ii) that for
word-based models adding the content word training
data was not helpful as our baseline experiments in-
dicated. The models were tested by decoding the
output of the previous model for original test data.
For word-based decoding in the additional iterations
we used a 3-gram word-based language model but
reranked the 1000-best outputs using a 4-gram lan-
guage model. Table 6 provides the BLEU results for
these experiments corresponding to two additional
model iterations.

The BLEU result for the second iteration, 25.08,
represents a cumulative 4.86 points (24% relative)
improvement over the initial fully morphologically
segmented model using only the basic training set
and no rescoring.

6 Discussion

Translation into Turkish seems to involve processes
that are somewhat more complex than standard sta-
tistical translation models: sometimes words on the
Turkish side are synthesized from the translations
of two or more (SMT) phrases, and errors in any
translated morpheme or its morphotactic position
render the synthesized word incorrect, even though
the rest of the word can be quite fine. If we just
extract the root words (not just for content words
but all words) in the decoded test set and the ref-
erence set, and compute root word BLEU, we ob-
tain 30.62, [64.6/35.7/23.4/16.3]. The unigram pre-
cision score shows that we are getting almost 65% of
the root words correct. However, the unigram pre-
cision score with full words is about 52% for our
best model. Thus we are missing about 13% of the
words although we seem to be getting their roots



correct. With a tool that we have developed, BLEU+
(Tantug et al., 2007), we have investigated such mis-
matches and have found that most of these are ac-
tually morphologically bogus, in that, although they
have the root word right, the morphemes are either
not the applicable ones or are in a morphotactically
wrong position. These can easily be identified with
the morphological generator that we have. In many
cases, such morphologically bogus words are one
morpheme edit distance away from the correct form
in the reference file. Another avenue that could be
pursued is the use of skip language models (sup-
ported by the SRILM toolkit) so that the content
word order could directly be used by the decoder.'*

At this point it is very hard to compare how our re-
sults fare in the grand scheme of things, since there
is not much prior results for English to Turkish SMT.
Koehn (2005) reports on translation from English to
Finnish, another language that is morphologically as
complex as Turkish, with the added complexity of
compounding and stricter agreement between mod-
ifiers and head nouns. A standard phrase-based sys-
tem trained with 941,890 pairs of sentences (about
20 times the data that we have!) gives a BLEU score
of 13.00. However, in this study, nothing specific for
Finnish was employed, and one can certainly em-
ploy techniques similar to presented here to improve
upon this.

6.1 Word Repair

The fact that there are quite many erroneous words
which are actually easy to fix suggests some ideas to
improve unigram precision. One can utilize a mor-
pheme level “spelling corrector” that operates on
segmented representations, and corrects such forms
to possible morphologically correct words in or-
der to form a lattice which can again be rescored
to select the contextually correct one.'> With the
BLEU+ tool, we have done one experiment that
shows that if we could recover all morphologically
bogus words that are 1 and 2 morpheme edit dis-
tance from the correct form, the word BLEU score
could rise to 29.86, [60.0/34.9/23.3/16.] and 30.48
[63.3/35.6/23.4/16.4] respectively. Obviously, these
are upper-bound oracle scores, as subsequent candi-
date generation and lattice rescoring could make er-

14This was suggested by one of the reviewers.

15Tt would however perhaps be much better if the decoder
could be augmented with a filter that could be invoked at much
earlier stages of sentence generation to check if certain gener-
ated segments violate hard-constraints (such as morphotactic
constraints) regardless of what the statistics say.
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rors, but nevertheless they are very close to the root
word BLEU scores above.

Another path to pursue in repairing words is to
identify morphologically correct words which are
either OOVs in the language model or for which
the language model has low confidence. One can
perhaps identify these using posterior probabilities
(e.g., using techniques in Zens and Ney (2006)) and
generate additional morphologically valid words
that are “close” and construct a lattice that can be
rescored.

6.2 Some Thoughts on BLEU

BLEU is particularly harsh for Turkish and the mor-
pheme based-approach, because of the all-or-none
nature of token comparison, as discussed above.
There are also cases where words with different
morphemes have very close morphosemantics, con-
vey the relevant meaning and are almost inter-
changeable:

e gel+hyor (geliyor - he is coming) vs. gel+makta
(gelmekte - he is (in a state of) coming) are essentially
the same. On a scale of O to 1, one could rate these at
about 0.95 in similarity.

e gel+yacak (gelecek - he will come) vs. gel+yacak+dhr
(gelecektir - he will come) in a sentence final position.
Such pairs could be rated perhaps at 0.90 in similarity.

o gel+dh (geldi - he came (past tense)) vs. gel+mhs (gelmis
- he came (hearsay past tense)). These essentially mark
past tense but differ in how the speaker relates to the event
and could be rated at perhaps 0.70 similarity.

Note that using stems and their synonyms as used
in METEOR (Banerjee and Lavie, 2005) could also
be considered for word similarity.

Again using the BLEU+ tool and a slightly dif-
ferent formulation of token similarity in BLEU com-
putation, we find that using morphological similar-
ity our best score above, 25.08 BLEU increases to
25.14 BLEU, while using only root word synonymy
and very close hypernymy from Wordnet, gives us
25.45 BLEU. The combination of rules and Wordnet
match gives 25.46 BLEU. Note that these increases
are much less than what can (potentially) be gained
from solving the word-repair problem above.

7 Conclusions

We have presented results from our investigation
into using different granularity of sub-lexical rep-
resentations for English to Turkish SMT. We have
found that employing a language-pair specific rep-
resentation somewhere in between using full word-
forms and fully morphologically segmented repre-
sentations and using content words as additional



data provide a significant boost in BLEU scores,
in addition to contributions of word-level rescoring
of 1000-best outputs and model iteration, to give a
BLEU score of 25.08 points with very modest par-
allel text resources. Detailed analysis of the errors
point at a few directions such as word-repair, to im-
prove word accuracy. This also suggests perhaps
hooking into the decoder, a mechanism for imposing
hard constraints (such as morphotactic constraints)
during decoding to avoid generating morphologi-
cally bogus words. Another direction is to introduce
exploitation of limited structures such as bracketed
noun phrases before considering full-fledged syntac-
tic structure.
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Abstract Of Speech tags (Popdvand Ney, 2005), using addi-
tional information about stems and suffixes (Popovi
and Ney, 2004) or to reduce the morphological vari-
ability of the words (de Gispert, 2006). State of the
art decoders provide the ability of handling different
word forms directly in what has been called factored
translation models (Shen et al., 2006).

In this work, we try to go a step further and treat
the words (and thus whole sentences) as sequences
of letters, which have to be translated into a new se-
guence of letters. We try to find out if the trans-
lation models can generalize and generate correct
words out of the stream of letters. For this approach
to work we need to translate between two related

cope with the problem and whether it is ca- languages, in which a correspondence between the

pable to further generalize translation rules, Structure of the words can be found.

for example at the level of word suffixes and For this experiment we chose a Catalan-Spanish
translation of unseen words. Experiments corpus. Catalan is aromance language spoken in the
are carried out for the translation of Catalan  north-east of Spain and Andorra and is considered
to Spanish. by some authors as a transitional language between
the Iberian Romance languages (e.g. Spanish) and
Gallo-Romance languages (e.g. French). Acommon

Most current statistical machine translation systen@figin and geographic proximity result in a similar-
handle the translation process as a “blind” transfoity between Spanish and Catalan, albeit with enough
mation of a sequence of symbols, which represefiifferences to be considered different languages. In
the words in a source language, to another sequen@@rticular, the sentence structure is quite similar in
of symbols, which represent words in a target lanPoth languages and many times a nearly monotoni-
guage. This approach allows for a relative simpliccal word to word correspondence between sentences
ity of the models, but also has drawbacks, as re&an be found. An example of Catalan and Spanish
lated word forms, like different verb tenses or pluralsentences is given in Figure 1.
singular word pairs, are treated as completely differ- The structure of the paper is as follows: In Sec-
ent entities. tion 2 we review the statistical approach to machine
Some efforts have been made e.g. to integrateanslation and consider how the usual techniques
more information about the words in the form of Partan be adapted to the letter translation task. In Sec-

Current statistical machine translation sys-
tems handle the translation process as the
transformation of a string of symbols into
another string of symbols. Normally the
symbols dealt with are the words in differ-
ent languages, sometimes with some addi-
tional information included, like morpho-
logical data. In this work we try to push
the approach to the limit, working not on the
level of words, but treating both the source
and target sentences as a string of letters.
We try to find out if a nearly unmodified
state-of-the-art translation system is able to

1 Introduction
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Catalan | Perq@ a mi m’'agradaria estar-hi dues, una o dues setmaresomrmenys, depenent del
preu i cada hotel.
Spanish | Porque a mme gustdia quedarme dos, una o dos semanas mmenos, dependiendo del
precio y cada hotel.
English | Because | would like to be there two, one or two weeks, more or less, diegeon the
price of each hotel.

Catalan | Si baixa aqutenim una guia de la ciutat que li podem facilitar en la que surt inforinaci
sobre els llocs s interessants de la ciutat.
Spanish | Si baja agutenemos una da de la ciudad que le podemos facilitar en la que sale infor-
macbn sobre los sitios &s interesantes de la ciudad.

English | If you come down here we have a guide book of the city that you can ugbeim is
information about the most interesting places in the city.

Figure 1: Example Spanish and Catalan sentences (the English translatiovideg for clarity).

tion 3 we present the results of the letter-based tranignored in the maximization process. Thg, are
lation and show how to use it for improving transla-usually chosen by optimizing a performance mea-
tion quality. Although the interest of this work is sure over a development corpus using a numerical
more academical, in Section 4 we discuss possibtgtimization algorithm like the downhill simplex al-
practical applications for this approach. The papegorithm (Press et al., 2002).

concludes in Section 5. The most widely used models in the log lin-
ear combination are phrase-based models in source-
2 From Words To Letters to-target and target-to-source directions, ibm1-like

In the standard approach to statistical machine trang¢ores computed at phrase level, also in source-to-
lation we are given a sentence (sequence of Wordtsa)rget and target-to-source directions, a target lan-
f{ = fi...fsin a source language which is to beguage model and different penalties, like phrase
translated into a sentenéé = ¢, ...¢; in a target Penalty and word penalty.

language. Bayes decision rule states that we should This same approach can be directly adapted to the
choose the sentence which maximizes the posteri@,tter-based translation framework. In this case we

probability are given a sequence of lettey corresponding
to a source (word) string;, which is to be trans-
é{ = argmaxp(ef|f{), (1) lated into a sequence of lettef§ corresponding to

el a stringe! in a target language. Note that in this case

where theargmax operator denotes the search prowhitespaces are also part of the vocabulary and have
cess. In the original work (Brown et al., 1993) thel® be generated as any other letter. It is also impor-
posterior probabilityp(e!|f{) is decomposed fol- tant to remark that, without any further restrictions,
lowing a noisy-channel approach, but current statébe word sequenceg corresponding to a generated
of-the-art systems model the translation probabiletter sequencé{ are not even composed of actual
ity directly using a log-linear model(Och and Ney,words.

2002): 2.1 Details of the Letter-Based System
exp (Z%zl b (el £ )) The vocabulary of the letter-based translation sys-
pletlfi) = " —— -~ temis some orders of magnitude smaller than the
Zg{ exp (Zm=1 Amhan (€1, f1 )) vocabulary of a full word-based translation system,

(2) at least for European languages. A typical vocabu-
with h,, different models,)\,, scaling factors and lary size for a letter-based system would be around
the denominator a normalization factor that can b@0, considering upper- and lowercase letter, digits,
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whitespace and punctuation marks, while the vocalery footprint, at least not without a dedicated pro-
ulary size of a word-based system like the ones usgglam optimization. As in a sensible implementa-
in current evaluation campaigns is in the range dions of nearly all natural language processing tools,
tens or hundreds of thousands words. In a norm#he words are mapped to integers and handled as
situation there are no unknowns when carrying owtuch. A typical implementation of a phrase table is
the actual translation of a given test corpus. The sithen a prefix-tree, which is accessed through these
uation can be very different if we consider languageword indices. In the case of the letter-based transla-
like Chinese or Japanese. tion, the phrases extracted are much larger than the

This small vocabulary size allows us to deal withword-based ones, in terms of elements. Thus the to-
a larger context in the models used. For the phrastal size of the phrase table increases.
based models we extract all phrases that can be used’he size of the search graph is also larger for
when translating a given test corpus, without anthe letter-based system. In most current systems
restriction on the length of the source or the tarthe generation algorithm is a beam search algorithm
get part. For the language model we were able tavith a “source synchronous” search organization.
use a high-orden-gram model. In fact in our ex- As the length of the source sentence is dramatically
periments a 16-gram letter-based language modelircreased when considering letters instead of words,
used, while state-of-the-art translation systems nothe total size of the search graph is also increased, as
mally use 3 or 4-grams (word-based). is the running time of the translation process.

In order to better try to generate “actual words” The memory usage for the letter system can ac-
in the letter-based system, a new model was addédhlly be optimized, in the sense that the letters can
in the log-linear combination, namely the count ofact as “indices” themselves for addressing the phrase
words generated that have been seen in the trainitaple and the auxiliary mapping structure is not nec-
corpus, normalized with the length of the input senessary any more. Furthermore the characters can be
tence. Note however that this models enters as an a&tered in only one byte, which provides a signifi-
ditional feature function in the model and it does notant memory gain over the word based system where
constitute a restriction of the generalization capabilRormally four bytes are used for storing the indices.
ities the model can have in creating “new words”These gains however are not expected to counteract
Somehow surprisingly, an additional word languagéhe other issues presented in this section.
model did not help.

While the vocabulary size is reduced, the averagé EXperimental Results
sentence length increases, as we consider each

ter to be a unit by itself. This has a negative impa ramework of the LC-STAR project (Conejero et al.,

in the running time of the actual implementation o : . .
. . : 2003). It consists of spontaneous dialogues in Span-
the algorithms, specially for the alignment process, o .
. . . ish, Catalan and Englighin the tourism and travel-
In order to alleviate this, the alignment process wag

o . . Ting domain. The test corpus (and an additional de-
split into two passes. In the first part, a word align- Lo
: . velopment corpus for parameter optimization) was
ment was computed (using the GIZA++ toolkit (Och
. randomly extracted, the rest of the sentences were
and Ney, 2003)). Then the training sentences were . -
. . o . o used as training data. Statistics for the corpus can
split according to this alignment (in a similar way to : . )
the standard phrase extraction algorithm), so that tf?ee seen in Table 1. Details of the translation system
P 9 ' used can be found in (Mauser et al., 2006).

length of the source and target part is around thirty The results of the word-based and letter-based

letters. Then, a letter-based alignment is computed. . )
g P approaches can be seen in Table 2 (rows with la-

bel “Full Corpus”). The high BLEU scores (up to

o nearly 80%) denote that the quality of the trans-
Somewhat counter-intuitively, the reduced vocabUziion is quite good for both systems. The word-
lary size does not necessarily imply a reduced mem-

- 2The English part of the corpus was not used in our experi-
For the word-based system this is also the case. ments.

Ffe corpus used for our experiment was built in the

2.2 Efficiency Issues
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Spanish| Catalan| based system for the translation of unknown words.
Training Sentences 40574 The results of this combined approach can be found
Running Words| 482290| 485514 in Table 2 under the label “Combined System”. The
Vocabulary 14327 12772 combination of both approaches leads to a 0.5% in-
Singletons 6743 5930 crease in BLEU using the full corpus as training ma-
Test Sentences 972 terial. This increase is not very big, but is it over a
Running Words| 12771] 12973| Quite strong baseline and the percentage of out-of-
OOVs [%] 14 13 vocabulary words in this corpus is around 1% of the

total words (see Table 1). When the corpus size is
reduced, the gain in BLEU score becomes more im-
portant, and for the small corpus size of 1000 sen-
tences the gain is 2.5% BLEU. Table 2 and Figure 3
based system outperforms the letter-based one, €sow more details.
expected, but the letter-based system also achieves
quite a good translation quality. Example translag Practical Applications
tions for both systems can be found in Figure 2. It
can be observed that most of the words generatddhe approach described in this paper is mainly of
by the letter based system are correct words, and #tademical interest. We have shown that letter-
many cases the “false” words that the system gefpased translation is in principle possible between
erates are very close to actual words (e.g. “elos” irsimilar languages, in our case between Catalan and
stead of “los” in the second example of Figure 2). Spanish, but can be applied to other closely related
We also investigated the generalization capabillanguage pairs like Spanish and Portuguese or Ger-
ties of both systems under scarce training data coman and Dutch. The approach can be interesting for
ditions. It was expected that the greater flexibilitjanguages where very few parallel training data is
of the letter-based system would provide an advar@vailable.
tage of the approach when compared to the word- The idea of translating unknown words in a letter-
based approach. We randomly selected subsetsl@sed fashion can also have applications to state-of-
the training corpus of different sizes ranging fronthe-art translation systems. Nowadays most auto-
1000 sentences to 40000 (i.e. the full corpus) anahatic translation projects and evaluations deal with
computed the translation quality on the same testanslation from Chinese or Arabic to English. For
corpus as before. Contrary to our hopes, howevehese language pairs the translation of named en-
the difference in BLEU score between the wordiities poses an additional problem, as many times
based and the letter-based system remained faitlyey were not previously seen in the training data
constant, as can be seen in Figure 3, and Tableald they are actually one of the most informative
for representative training corpus sizes. words in the texts. The “translation” of these enti-
Nevertheless, the second example in Figure 2 préies is in most cases actually a (more or less pho-
vides an interesting insight into one of the possinetic) transliteration, see for example (Al-Onaizan
ble practical applications of this approach. In thénd Knight, 2002). Using the proposed approach for
example translation of the word-based system, tiHbe translation of these words can provide a tighter
word “centreamericans” was not known to the sysintegration in the translation process and hopefully
tem (and has been explicitly marked as unknown iimcrease the translation performance, in the same
Figure 2). The letter-based system, however, wakay as it helps for the case of the Catalan-Spanish
able to correctly learn the translation from “centre-"translation for unseen words.
to “centro-" and that the ending “-ans” in Catalan Somewhat related to this problem, we can find an
is often translated as “-anos” in Spanish, and thuadditional application in the field of speech recog-
a correct translation has been found. We thus choséion. The task of grapheme-to-phoneme conver-
to combine both systems, the word-based system deion aims at increasing the vocabulary an ASR sys-
ing most of the translation work, but using the lettertem can recognize, without the need for additional

Table 1: Corpus Statistics
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BLEU | WER | PER

Word-Based System  Full Corpus 78.9| 11.4| 10.6
10k 74.0| 13.9| 13.2

1k 60.0| 21.3| 20.1

Letter-Based System Full Corpus 72.9| 14.7| 13.5
10k 69.8| 16.5| 15.1

1k 55.8| 24.3| 22.8

Combined System Full Corpus 79.4| 11.2| 10.4
10k 75.2| 13.4] 126

1k 62.5| 20.2| 19.0

Table 2: Translation results for selected corpus sizes. All measurpsi@entages.

Source (Cat)

Bé, en principi seria per a les vacances de Setmana Sant@lesssegents que tenin
ara, entrant a juliol.

Word-Based

Bueno, en principio sé para las vacaciones de Semana Santa que son las siguientes que

tenemos ahora, entrando en julio.

Letter-Based

Bueno, en principio sé para las vacaciones de Semana Santa que son las siguientes que

tenemos ahora, entrando bamos en julio .

Reference

Bueno, en principio sé para las vacaciones de Semana Santa que son las siguientes que

tenemos ahora, entrando julio.

Source (Cat)

Jo li recomanaria per exemple que in&napropar-se a algunipad tamke com poden se
els pdsos centreamericans, una micasal nord Panam

Word-Based

Yo le recomendaa por ejemplo que intentase acercarse arafggs vecino tamt#n como
pueden ser los figes UNKNOWNCcentreamericans, un pocasial norte Panam

Letter-Based

Yo le recomendaa por ejemplo que intentaseo acercarse arafggs vd tambén como
pueden ser elos fees centroamericanos, un pocasal norte Panam

Combined Yo le recomendaa por ejemplo que intentase acercarse arafggs vecino tamk#n como
pueden ser los fises centroamericanos, un pocaswal norte Panam
Reference Yo le recomendaa por ejemplo que intentase acercarse arafggas vecino tamt#n como

pueden ser los figes centroamericanos, un pocaswal norte Panain

Figure 2. Example translations of the different approaches. For thé-based system an unknown word
has been explicitly marked.
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Figure 3: Translation quality depending of the corpus size.

acoustic data. The problem can be formulated ass&veral practical applications has been discussed and
translation from graphemes (“letters”) to a sequenowill be the object of future work.

of graphones (“pronunciations”), see for example

(Bisani and Ney, 2002). The proposed letter-baseficknowledgements

approach can alsq be. adapted to this task. This work was partly funded by the Deutsche
Lastly, a combination of both, word-based ang-q q.hngsgemeinschaft (DFG) under the project

letter-based models, working in parallel and perhapgtistische Testbersetzung” (NE 572/5-3).

taking into account additional information like base

forms, can be helpful when translating from or into

rich inflexional languages, like for example SpanishReferences

: Yaser Al-Onaizan and Kevin Knight. 2002. Machine
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Abstract

This paper describes a novel model using
dependency structures on the source side
for syntax-based statistical machine transla-
tion: Dependency Treelet String Correspon-
dence Model (DTSC). The DTSC model
maps source dependency structures to tar-
get strings. In this model translation pairs of
source treelets and target strings with their
word alignments are learned automatically
from the parsed and aligned corpus. The
DTSC model allows source treelets and tar-
get strings with variables so that the model
can generalize to handle dependency struc-
tures with the same head word but with dif-
ferent modifiers and arguments. Addition-
ally, target strings can be also discontinuous
by using gaps which are corresponding to
the uncovered nodes which are not included
in the source treelets. A chart-style decod-
ing algorithm with two basic operations—
substituting and attaching—is designed for
the DTSC model. We argue that the DTSC
model proposed here is capable of lexical-
ization, generalization, and handling discon-
tinuous phrases which are very desirable for
machine translation. We finally evaluate our
current implementation of a simplified ver-
sion of DTSC for statistical machine trans-
lation.

Introduction

}@ict.ac.cn

word/phrase based models in statistical machine
translation (SMT) (Lin, 2004; Chiang, 2005; Ding
et al., 2005; Quirk et al., 2005; Marcu et al., 2006;
Liu et al., 2006). It is believed that these models
can improve the quality of SMT significantly. Com-
pared with phrase-based models, syntax-based mod-
els lead to better reordering and higher flexibility
by introducing hierarchical structures and variables
which make syntax-based models capable of hierar-
chical reordering and generalization. Due to these
advantages, syntax-based approaches are becoming
an active area of research in machine translation.

In this paper, we propose a novel model based on
dependency structures: Dependency Treelet String
Correspondence Model (DTSC). The DTSC model
maps source dependency structures to target strings.
It just needs a source language parser. In contrast to
the work by Lin (2004) and by Quirk et al. (2005),
the DTSC model does not need to generate target
language dependency structures using source struc-
tures and word alignments. On the source side, we
extract treelets which are any connected subgraphs
and consistent with word alignments. While on the
target side, we allow the aligned target sequences
to be generalized and discontinuous by introducing
variables and gaps. The variables on the target side
are aligned to the corresponding variables of treelets,
while gaps between words or variables are corre-
sponding to the uncovered nodes which are not in-
cluded by treelets. To complete the translation pro-
cess, we design two basic operations for the decod-
ing: substituting and attaching. Substituting is used

Over the last several years, various statistical syntaie replace variable nodes which have been already
based models were proposed to extend traditionnslated, while attaching is used to attach uncov-
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e o1k

ered nodes to.treelets. _ ' 5 =

In the remainder of the paper, we first define de- Btk | ity -
pendency treelet string correspondence in section : | ﬂ
2 and describe an algorithm for extracting DTSCS o conference  cooperation of  the
from the parsed and word-aligned corpus in section
3. Then we build our model based on DTSC in sec- TR
tion 4. The decoding algorithm and related pruning 1 57 O
strategies are introduced in section 5. We also spec- A /’\\*2 L

ify the strategy to integrate phrases into our model
in section 6. In section 7 we evaluate our current
implementation of a simplified version of DTSC forFigure 1: DTSC examples. Note thatrepresents
statistical machine translation. And finally, we disvariable and’ represents gap.

cuss related work and conclude.

s - ~ — —
*1 keep a G with the %9

2 Dependency Treelet String Gap can be considered as a special kind of vari-
Correspondence able whose counterpart on the source side is not

A dependency treelet string correspondencis a present. This m'akes the model more flexible to
triple < D, S, A > which describes a translation match more partial dependency structures on the
pair < D, S > and their alignmenti, whereD is  Source side. If only variables can be used, the model

the dependency treelet on the source side s has to match subtrees rather than treelets on the
the translation string on the target side. D, S > source side. Furthermore, the positions of variables

must be consistent with the word alignmeht of  ©N the target side are fixed so that some reorderings

the corresponding sentence pair rgl_ated with them can be recorQed in DTSC. The po-
o » » sitions of gaps on the target side, however, are not
v(i,j)e Mie D= jes fixed until decoding. The presence of one gap and

A treeletis defined to be any connected subgraptits position can not be finalized until attaching op-
which is similar to the definition in (Quirk et al., eration is performed. The introduction of gaps and
2005). Treelet is more representatively flexible thathe related attaching operation in decoding is the
subtree which is widely used in models based omost important distinction between our model and
phrase structures (Marcu et al., 2006; Liu et althe previous syntax-based models.

2006). The most important distinction between the Figure 1 shows several different DTSCs automat-
treelet in (Quirk et al., 2005) and ours is that we alically extracted from our training corpus. The top
low variables at positions of subnodes. In our definileft DTSC is totally lexicalized, while the top right
tion, the root node must be lexicalized but the subrPTSC has one variable and the bottom has two vari-
odes can be replaced with a wild card. The targeétbles and one gap. In the bottom DTSC, note that
counterpart of a wildcard node iiis also replaced the node(O which is aligned to the gag: of the
with a wild card. The wildcards introduced in thistarget string is an uncovered node and therefore not
way generalize DTSC to match dependency strudacluded in the treelet actually. Here we just want
tures with the same head word but with differento show there is an uncovered node aligned with the
modifiers or arguments. gapG.

Another unique feature of our DTSC is that we al- Each node at the source treelet has three attributes
low target strings with gaps between words or wild-
cards. Since source treelets may not cover all subn-1 The head word
odes, the uncovered subnodes will generate agap as The category, i.e. the part of speech of the head
its counterpart on the target side. A sequence of con- 44
tinuous gaps will be merged to be one gap and gaps
at the beginning and the end Sfwill be removed 3. The node order which specifies the local order
automatically. of the current node relative to its parent node.
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ALV of its siblings, thecrossedindicator ofn is 1 and
Wim NN n is therefore a crossed node, otherwisediussed
ll\\\ ?WL@N& . )'HEQW indicator is 0 andn is a non-crossed node. Only
N N N non-crossed nodes can generate DTSCs because the
g'o on pro\llidingfina/n(;al %id " to Palestinéarget word sequence aligned with the whole subtree
1 5 3 4 5 6 - rooted at it does not overlap any other sequences and
therefore can be extracted independently.
Figure 2: An example dependency tree and its align- For the dependency tree and its alignments shown
ments in Figure 2, only the nodé/ I is a crossed node
since its node span ([4,5]) overlaps the word span

Note that the node order is defined at the context (SFS’SD of its parent nodeZ ).

the extracted treelets but not the context of the orig3.2 DTSCs extraction

?nalhtrebe. For examplef, the attributes for the néde The DTSC extraction algorithm (shown in Figure 3)
in the bottom DTSC of Figure 1 afe’y, P, -1}. For ¢ recursively. For each non-crossed node, the al-

two treelets, if and only if their structures are 'den'gorithm generates all possible DTSCs rooted at it by

tical and each corresponding nodes share the sailiyhining DTSCs from some subsets of its direct
attributes, we say they areatched subnodes. If one subnodeselected in the com-
3 Extracting DTSCs bination is a crossed node, all other nodes whose
word/node spans overlap the node span ofust be
To extract DTSCs from the training corpus, firstlyalso selected in this combination. This kind of com-
the corpus must be parsed on the source side ahthation is defined to be consistent with the word
aligned at the word level. The source structures pralignment because the DTSC generated by this com-
duced by the parser are unlabelled, ordered depdbpination is consistent with the word alignment. All
dency trees with each word annotated with a part-oPTSCs generated in this way will be returned to the
speech. Figure 2 shows an example of dependeniast call and outputted. For each crossed node, the
tree really used in our extractor. algorithm generates pseudo DTSGsing DTSCs
When the source language dependency trees aftidm all of its subnodes. These pseudo DTSCs will
word alignments between source and target larfpe returned to the last call but not outputted.
guages are obtained, the DTSC extraction algorithm During the combination of DTSCs from subnodes
runs in two phases along the dependency trees aimdo larger DTSCs, there are two major tasks. One
alignments. In the first step, the extractor annotatdssk is to generate the treelet using treelets from
each node with specific attributes defined in sectiosubnodes and the current node. This is a basic tree
3.1. These attributes are used in the second stgpneration operation. It is worth mentioning that
which extracts all possible DTSCs rooted at eachome non-crossed nodes are to be replaced with a

node recursively. wild card so the algorithm can learn generalized
_ DTSCs described in section 2. Currently, we re-
3.1 Node annotation place any non-crossed node alone or together with

For each source dependency nadeve define three their sibling non-crossed nodes. The second task
attributes: word span, node spanand crossed is to combine target strings. The word sequences
Word spanis defined to be the target word sequencéligned with uncovered nodes will be replaced with
aligned with the head word ef, while node spanis @ gap. The word sequences aligned with wildcard
defined to be the closure of the union of node spari@des will be replaced with a wild card.

of all subnodes of. and its word span. These two at- If a non-crossed node hasm direct subnodes,
tributes are similar to those introduced by Lin (Lin,all 2™ combinations will be considered. This will
2004). The third attributerosseds an indicator that generate a very large number of DTSCs, which is

has binary values: If the node spanofoverlaps 1Some words in the target string are aligned with nodes
the word span of its parent node or the node spathich are not included in the source treelet.
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DTSCExtractor(Dnode n) [ Treelet | String
R := () (DTSC container of n) @REEIVVIO)
k2 goon
for each subnodk of n do (ELE U /NR/O) Palestine
R := DT SCEuxtractor(k) (W/P/O)# o
et UR (FI/PI0 CHIIHI/NR/T)) | to Palestine
if n.crossed! = 1 and there are no subnodes whose span (@/P/O (*/1))ﬂ tox
overlaps the word span afthen (%EJJ/NN/O (FBUNN/-1)) | financial aid
Create a DTSGr =< D, S, A > where the dependency (FEFEVVI0) providing
treeletD only contains the node (not including any chil- (FIEVVIO (+/1)) providing *
dren of it) FRAEIVVIO (+/-1)) providing G *
outputm (Feft/VVI0 (88 4:/VVI-1)) | go on providing
for each combination of n's subnodeslo (FEAEVVIO (+/-1)) * providing
if c is consistent with the word alignmetften (FETEIVVIO (%1/-1) (x2/1)) | providing s 1
Generate all DTSCsR by combining DTSCs [) (FEPENVIO (+17-1) (+2/1)) | *1 providing 2

from the selected subnodes with the current nede

enﬁ it RUR Table 1: Examples of DTSCs extracted from Figure
end for 2. Alignments are not shown here because they are
?;Lﬁﬁtg self-evident.
else ifn.crossed == 1 then

Create pseudo DTSCB by combining all DTSCs from

n’s all subnodes. algorithm with parameterg ary-limit = 2, depth-

R:=RUP limit = 2, len-limit = 3, gap-limit = 1, comb-limit
en:je};;m&e =20} are shown in the table 1.

Figure 3: DTSC Extraction Algorithm. 4 The Model

Given an input dependency tree, the decoder gen-
rates translations for each dependency node in
ottom-up order. For each node, our algorithm will
search allmatched DTSCs automatically learned
1. If the number of direct subnodes of nodes ~from the training corpus by the way mentioned in
larger than 6, we only consider combining onés€ction 3. When the root node is traversed, the trans-
single subnode with each time because in thisating is finished. This complicated procedure in-

case reorderings of subnodes are always mon¥olves a large number of sequences of applications
tone. of DTSC rules. Each sequence of applications of

DTSC rules can derive a translation.

2. On the source side, the number of direct subn- We define a derivatiod as a sequence of appli-
odes of each node is limited to be no greatetations of DTSC rules, and lefd) ande(d) be the
thanary-limit; the height of treeleD is limited source dependency tree and the target yield of-
to be no greater thagepth-limit spectively. The score dfis defined to be the prod-

_ . ) uct of the score of the DTSC rules used in the trans-
3. On the target side, the length 6f (including  |ation, and timed by other feature functions:

gaps and variables) is limited to be no greater
§(0) = [18() - Pum()ian - exp(=AapA(8)) (1)

undesirable for training and decoding. Therefore WE
filter DTSCs according to the following restrictions

thanlen-limit; the number of gaps i is lim-
ited to be no greater thagap-limit

4. During DTSC combination, the DTSCs fromWhere§() is the score of theth application of
each subnode are sorted by size (in descendiff SC rules,pim (¢) is the language model score,

order). Only the togomb-limitDTSCs willbe and ezp(—AqpA(0)) is the attachment penalty,
selected to generate larger DTSCs. where A(0) calculates the total number of attach-

ments occurring in the derivatiof. The attach-
As an example, for the dependency tree and itment penalty gives some control over the selection
alignments in Figure 2, all DTSCs extracted by th@f DTSC rules which makes the model prefer rules
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: for each node: of the input tre€l’, in bottom-up ordedo
with more nodes covered and therefore less attach Got allmatched DTSCs rooted ah

ing operations involved. for eachmatchedDTSC do
For the score of DTSC rule, we define it as fol- for each wildcard node” inwdo
lows: Substitute the corresponding wildcard on the target
: side with translations from the stack of

_ . A end for
§(m) = H fi(m)™ ) for each uncovered node® by 7 do
J Attach the translations from the stack of® to the

where thef; are feature functions defined on DTSC entg ;gft side at the atizching point

rules. Currently, we used features proved to be ef- end for

fective in phrase-based SMT, which are: end for
1. The translation probability(D|S). Figure 4: Chart-style Decoding Algorithm for the
DTSC Model.

2. The inverse translation probabilip{S|D).

3. Th? Ie?<|cal translation probabilitye.(D|S) Melamed (2004) also used a similar way to integrate
which is computed over the words that ocCUk o language model

on the source and target sides of a DTSC rule

4. The inverse lexical translation probability oy decoding algorithm is similar to the bottom-up
Piex(S|D) which is computed over the words chart parsing. The distinction is that the input is a
that occur on the source and target sides of @ae rather than a string and therefore the chart is in-
DTSC rule by the IBM model 1. dexed by nodes of the tree rather than spans of the

5. The word penaltywp. string. AI_so, several othe_r tree-based decpding al-

gorithms introduced by Eisner (2003), Quirk et al.

6. The DTSC penaltylp which allows the model (2005) and Liu et al. (2006) can be classified as the
to favor longer or shorter derivations. chart-style parsing algorithm too.

It is worth mentioning how to integrate the N- Our decoding algorithm is shown in Figure 4.
gram language mode into our DTSC model. Durin&ive” an input dependency tree, firstly we generate
decoding, we have to encounter many partial trans|#€ bottom-up order by postorder transversal. This
tions with gaps and variables. For these translation@/der guarantees that any subnodes of nediave
firstly we only calculate the language model score@€en translated before nodeis done. For each
for word sequences in the translations. Later we uptoden in the bottom-up order, athatched DTSCs
date the scores when gaps are removed or Speciﬁ@d)ted at are found, and a stack is also built for it to
by attachments or variables are substituted. Each upfore the candidate translations. A DTS said to
dating involves merging two neighbor substrings Match the input dependency subtréeooted atn if
(left) andss,. (right) into one bigger string. Letthe @nd only if there is a treelet rootedrathatmatches
sequence of. — 1 (n is the order of N-gram lan- - the treelet ofr on the source side. . _
guage model used) rightmost wordssphbe s and For each match_ed DTS@, two op_erathns_wnl
the sequence of — 1 leftmost words o, besi. we be performed on it. The first one ®ubstituting

have: which replaces a wildcard node with the correspond-
o ing translated node. The second onaitaching
LM(s) = LM(s;) + LM (s;) + LM(s] s,.) which attaches an uncovered nodertarhe two op-

—LM(s) — LM(sl) (3) erations are shown in Figure 5. For each wildcard
noden*, translations from the stack of it will be se-

where LM is the logarithm of the language modelI ted t | th i iidcard on th
probability. We only need to compute the increment C 0 [0 feplace he corresponding wildeard on the

of the language model score: 2The words, categories and orders of each corresponding
nodes are matched. Please refer to the definitiomatched

Apy = LM(s7st) — LM(sT) — LM(s.)  (4) insection 2.
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@ A very large, therefore some pruning techniques have

/\

B * + D to be used. To speed up the decoder, the following
C O D, pruning strategies are adopted.
*e Ae B. Ce 1. Stack pruning. We use three pruning ways.

The first one is recombination which converts

Substitute |}
the search to dynamic programming. When

(b) A two translations in the same stack have the
/\ -
B D + E samew leftmost/rightmost words, where de-
C/ O B, pends on the order of the language model, they

will be recombined by discarding the transla-
tion with lower score. The second one is the

Attach |} threshold pruning which discards translations
that have a score worse thatack-threshold
© 4 times the best score in the same stack. The
B D last one is the histogram pruning which only
C/\E keeps the togstack-limit best translations for
D. A, B. B, c. each stack.
Figure 5: Substituting and attaching operations for 2. Node pruning. For each node, we only keep
decoding.X. is the translation of{. Node that« is the top node-limit matched DTSCs rooted at
a wildcard node to be substituted and ngdés an that node, as ranked by the size of source
uncovered node to be attached. treelets.

3. Operation pruning. For each operation, sub-

target side and the scores of new translations will be ~ Stituting and attaching, the decoding will gen-
calculated according to our model. For each uncov-  €rate a large number of partial translatidns
ered noden®, firstly we determine where transla- for the current node. We only keep the top
tions from the stack of® should be attached on the operation-limit partial translations each time
target side. There are several different mechanisms &ccording to their scores.
for choosing attaching points. Currently, we imple-6
ment a heuristic way: on the source side, we find the
nodenf? which is the nearest neighbor af® from  Although syntax-based models are good at dealing
its parent and sibling nodes, then the attaching poimtith hierarchical reordering, but at the local level,
is the left/right of the counterpart@f on the target translating idioms and similar complicated expres-
side according to their relative order. As an examplesions can be a problem. However, phrase-based
see the uncovered node in Figure 5. The nearest models are good at dealing with these translations.
node to it is nodeB. Since nod€)) is at the right Therefore, integrating phrases into the syntax-based
of node B, the attaching point is the right aB.. models can improve the performance (Marcu et al.,
One can search all possible points using an orderir2P06; Liu et al., 2006). Since our DTSC model is
model. And this ordering model can also use inforbased on dependency structures and lexicalized nat-
mation from gaps on the target side. We believe thigrally, DTSCs are more similar to phrases than other
ordering model can improve the performance and Ié¢tanslation units based on phrase structures. This
it be one of directions for our future research. means that phrases will be easier to be integrated
Note that the gaps on the target side are not necesto our model.
sarily attaching points in our current attaching mech- The way to integrate phrases is quite straightfor-
anism. If they are not attaching point, they will beward: if there is a treelet rooted at the current node,

removed automatically. ) ) ~ *There are wildcard nodes or uncovered nodes to be han-
The search space of the decoding algorithm igled.

Integrating Phrases
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of which the word sequence is continuous and iden- Systems | BLEU-4

tical to the source of some phrase, then a phrase- PB 20.88+ 0.87
style DTSC will be generated which uses the target DTSC 20.20+0.81
string of the phrase as its own target. The procedure DTSC + phrases 21.46+ 0.83

is finished during decoding. In our experiments, in-

tegrating phrases improves the performance greatlyable 2: BLEU-4 scores for our system and a
phrase-based system.

7 Current Implementation

To test our idea, we implemented the dependend)9 ON the 31, 149 English sentences. We selected
treelet string correspondence model in a Chines 80 short sentences of length at_ most 50 characters
English machine translation system. The current inff0mM the 2002 NIST MT Evaluation test set as our
plementation in this system is actually a simplifiedl€velopment corpus and used it to tureby max-
version of the DTSC model introduced above. [dMizing the BLEU score (Och, 2003), and used the
this version, we used a simple heuristic way for th€005 NIST MT Evaluation test set as our test corpus.
operation of attaching rather than a sophisticated sta-From the training corpus, we learned 2, 729,
tistical model which can learn ordering information964 distinct DTSCs with the configuratioh ary-
from the training corpus. Since dependency strudiMit = 4, depth-limit= 4, len-limit = 15, gap-limit
tures are more“flattened compared with phrasal = 2, comb-limit= 20 }.  Among them, 160,694
structures, there are many subnodes which will n&TSCs are used for the test set. To run our de-
be covered even by generalized matched DTScgoder on the development and test set, westsik-
This means the attaching operation is very commdfirshold = 0.0001,stack-limit= 100, node-limit=
during decoding. Therefore better attaching modéi00,0peration-limit= 20.
which calculates the best point for attaching , we be- We also ran a phrase-based system (PB) with a
lieve, will improve the performance greatly and is glistortion reordering model (Xiong et al., 2006) on
major goal for our future research. the same corpus. The results are shown in table 2.
To obtain the dependency structures of the sourd@" all BLEU scores, we also show the 95% confi-
side, one can parse the source sentences with a §€Nnce intervals computed using Zhang's significant
pendency parser or parse them with a phrasal str€Ster (Zhang et al., 2004) which was modified to
ture parser and then convert the phrasal structur€8nform to NIST's definition of the BLEU brevity
into dependency structures. In our experiments weenalty. The BLEU score of our current system with
used a Chinese parser implemented by Xiong dhe DTSC model is lower fthan that of_ the phrase-
al. (2005) which generates phrasal structures. THR#sed system. However, with phrases integrated, the
parser was trained on articles 1-270 of Penn Chine8&rformance is improved greatly, and the new BLEU
Treebank version 1.0 and achieved 79.4% (F1 me§COre is higher than that of the phrase-based SMT.
sure). We then converted the phrasal structure tre&8iS difference is significant according to Zhang's

into dependency trees using the way introduced HiFSter- This resuilt can be improved further using a
Xia (1999). better parser (Quirk et al., 2006) or using a statisti-

To obtain the word alignments, we use the wa)9a| attaching model.

of Koehn et al. (2005). After running GIZA++

(Och and Ney, 2000) in both directions, we apply8 Related Work

the “grow-diag-final’ refinement rule on the in- The DTSC model is different from previous work

tersection alignments for each sentence pair. based on dependency grammars by Eisner (2003),
The training corpus consists of 31, 149 sentendein (2004), Quirk et al. (2005), Ding et al. (2005)

pairs with 823K Chinese words and 927K Englistsince they all deduce dependency structures on the

words. For the language model, we used SRI Lararget side. Among them, the most similar work is

guage Modeling Toolkit (Stolcke, 2002) to train a(Quirk et al., 2005). But there are still several major

trigram model with modified Kneser-Ney smooth-differences beyond the one mentioned above. Our
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treelets allow variables at any non-crossed nodes aRdilipp Koehn, Amittai Axelrod, Alexandra Birch Mayne, Chris

target strings allow gaps, which are not available in Callison-Burch, Miles Osborne and David Talbot. 2005.
9 9 gap Edinburgh System Description for the 2005 IWSLT Speech

(Quirk et. al., 2005_)- Our_langu_age model is calcu- Transiation Evaluation. linternational Workshop on Spo-
lated during decoding while Quirk’s language model ken Language Translation

!S compgted afte_r decoding because of the CompleEaniel Marcu, Wei Wang, Abdessamad Echihabi, and Kevin
ity of their decoding. Knight. 2006. SPMT: Statistical Machine Translation with
The DTSC model is also quite distinct from pre- Syntactified Target Language Phraases.Ptaceedings of

. . EMNLP.
vious tree-string models by Marcu et al. (2006)
and Liu et al. (2006). Firstly, their models arel. Dan Melamed. 2004. Algorithms for Syntax-Aware Statisti-

cal Machine Translation. I®roceedings of the Conference
based on phrase structure grammars. Secondly, SUbon Theoretical and Methodological Issues in Machine Trans-

trees instead of treelets are extracted in their mod- jation (TM1), Baltimore, MD.

els. Thirdly, it seems to be more difficult to integrate ) _
. . . Dekang Lin. 2004. A path-based transfer model for machine
phrases into their models. And finally, our model al-"";5ngjation. InProceedings of COLING

low gaps on the target side, which is an advantage

; Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-String
shared by (Melamed, 2004) and (Simard, 2005). Alignment Template for Statistical Machine Translation. In

. Proceedings of ACL
9 Conclusions and Future Work
Franz Josef Och. 2003. Minimum error rate training in statisti-

We presented a novel Syntax_based model usingC&' machine translation. IRroceedings of ACL

dependency trees on the source side-dependentynz josef Och and Hermann Ney. 2000. Improved statistical
treelet string correspondence model—for statistical alignment models. IProceedings of ACL

machine translation. We described an_a‘_lgomhm tehris Quirk, Arul Menezes and Colin Cherry. 2005. Depen-
learn DTSCs automatically from the training corpus dency Treelet Translation: Syntactically Informed Phrasal
and a chart-style algorithm for decoding. SMT. InProceedings of ACL

Currently, we implemented a simple version ofchyis Quirk and Simon Corston-Oliver. 2006. The impact of
the DTSC model. We believe that our performance parse quality on syntactically-informed statistical machine

can be improved greatly using a more sophisticated translation. InProceedings of EMNLPSydney, Australia.
mechanism for determining attaching points. Therevichel Simard, Nicola Cancedda, Bruno Cavestro, Marc

fore the most important future work should be to de- Dymetman, Eric Gaussier, Cyril Goutte, Kenji Yamada.
. . 2005. Translating with non-contiguous phrasesPloceed-
sign a better attaching model. Furthermore, we plan jqgs of HLT-EMNLP

to use larger corpora for training and n-best depen-

; ; ndreas Stolcke. 2002. SRILM - an extensible language mod-
dency trees for decoding, which both are helpful fOP\ eling toolkit. InProceedings of International Conference on

the improvement of translation quality. Spoken Language Processimglume 2, pages 901-904.
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Evaluation of machine translation output is a ver;%\r/l
important but difficult task. Human evaluation is
expensive and time consuming. Therefore a varietZ Related Work
of automatic evaluation measures have been studied

Word Error Rates: Decomposition over Pos Classes and Applications for

Error Analysis
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Abstract

Evaluation and error analysis of machine
translation output are important but difficult
tasks. In this work, we propose a novel
method for obtaining more details about ac-
tual translation errors in the generated output
by introducing the decomposition of Word
Error Rate (WER) and Position independent
word Error Rate (BR) over different Part-
of-Speech (Ps) classes. Furthermore, we
investigate two possible aspects of the use
of these decompositions for automatic er-
ror analysis: estimation of inflectional errors
and distribution of missing words oveioB
classes. The obtained results are shown to
correspond to the results of a human error
analysis. The results obtained on the Euro-
pean Parliament Plenary Session corpus in
Spanish and English give a better overview
of the nature of translation errors as well as
ideas of where to put efforts for possible im-
provements of the translation system.

Introduction

Hermann Ney
Lehrstuhl fir Informatik 6
RWTH Aachen University

Aachen, Germany
ney@s. rwt h- aachen. de

different systems as well as for evaluating improve-
ments within one system. However, these measures
do not give any details about the nature of translation
errors. Therefore some more detailed analysis of the
generated output is needed in order to identify the
main problems and to focus the research efforts. A
framework for human error analysis has been pro-
posed in (Vilar et al., 2006), but as every human
evaluation, this is also a time consuming task.

This article presents a framework for calculating
the decomposition of \WR and FeR over different
Pos classes, i.e. for estimating the contribution of
each Ps class to the overall word error rate. Al-
though this work focuses ond3 classes, the method
can be easily extended to other types of linguis-
tic information. In addition, two methods for error
analysis using the \BR and Rer decompositons to-
gether with base forms are proposed: estimation of
inflectional errors and distribution of missing words
over Ros classes. The translation corpus used for
our error analysis is built in the framework of the
Tc-STAR project (tcs, 2005) and contains the tran-
scriptions of the European Parliament Plenary Ses-
sions (BP9 in Spanish and English. The translation
system used is the phrase-based statistical machine
anslation system described in (Vilar et al., 2005;
atusov et al., 2006).

over the last years. The most widely used are Wordutomatic evaluation measures for machine trans-
Error Rate (WER), Position independent word Error lation output are receiving more and more atten-

Rate (FER), the BLEU score (Papineni et al., 2002)tion in the last years.

The IBU metric (Pap-

and the NsT score (Doddington, 2002). These meaineni et al., 2002) and the closely relatedsN met-
sures have shown to be valuable tools for comparimic (Doddington, 2002) along with R and FER
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have been widely used by many machine translatidiaken into account. In this work, the standardRv
researchers. An extended version afe® which and FER are decomposed and analysed.
usesn-grams weighted according to their frequency .

estimated from a monolingual corpus is proposed D€composition of Wer and PER over

in (Babych and Hartley, 2004). (Leusch et al., 2005) POS classes

investigate preprocessing and normalisation methne standard procedure for evaluating machine
ods for improving the evaluation using the standarg ssjation output is done by comparing the hypoth-
measures WR, PER, BLEU and NST. The same Set g documentyp with given reference translations
of measures is examined in (Matusov et al., 2005/)ef, each one consisting ok sentences (or seg-

in combination with automatic sentence segmentq.hems)_ The reference documentf consists of
tion in order to enable evaluation of translation outy eference translations for each sentence. Let the
put without sentence boundaries (e.g. translation ?éngth of the hypothesis sentenkgp, be denoted
speech recognition output). A new automatic Mel3s Ny, » and the reference lengths of each sentence
ric METEOR (Banerjee and Lavie, 2005) uses stemwmfm_ Then, the total hypothesis length of the doc-

and synonyms of the words. This measure countsyent iSNhyp = 34 Ny, and the total reference
the number of exact word matches between the O%'ngth SNyes = 3, iy WhereN?,, is defined
ef 1 ref i

t and the ref | d st tch 3 :
put and the reference. In a second step, unmatchgd ihe |ength of the reference sentence with the low-

words are converted into stems or synonyms ang; sentence-level error rate as shown to be optimal
then matched. TheHR metric (Snover et al., 2006) ;, (Leusch et al., 2005).

measures the amount of editing that a human would
have to perform to change the system output so thdtl Standard word error rates (overview)

it exactly matches the reference. The &Dmea- The word error rate (WR) is based on the Lev-
sure (Leusch et al., 2006) is based on edit distancgyshtein distance (Levenshtein, 1966) - the mini-
such as the well-known &R, but allows reordering mum number of substitutions, deletions and inser-
of blocks. Nevertheless, none of these measures s that have to be performed to convert the gen-
extensions takes into account linguistic knowledggrated textiyp into the reference textef. A short-
about actual translation errors, for example what i§oming of the WER is the fact that it does not allow
the contribution of verbs in the overall error ratereorderings of words, whereas the word order of the
how many full forms are wrong whereas their bas@ynothesis can be different from word order of the
forms are correct, etc. A framework for human errofeference even though it is correct translation. In
analysis has been proposed in (Vilar et al., 200&rder to overcome this problem, the position inde-
and a detailed analysis of the obtained results h%%ndent word error rate éR) compares the words
been carried out. However, human error analysig the two sentences without taking the word order
like any human evaluation, is a time consuming tasknto account. The Eris always lower than or equal
Whereas the use of linguistic knowledge for im+g the Wer. On the other hand, shortcoming of the
proving the performance of a statistical machinggr js the fact that the word order can be impor-
translation system is investigated in many publitant in some cases. Therefore the best solution is to
cations for various language pairs (like for examgglculate both word error rates.
ple (NieRen and Ney, 2000), (Goldwater and Mc- Calculation of WER: The WER of the hypothe-

Closky, 2005)), its use for the analysis of translatioRjs ., with respect to the refereneef is calculated
errors is still a rather unexplored area. Some aut@:

matic methods for error analysis using base forms
and Postags are proposed in (Pop6wt al., 2006;
Popovt and Ney, 2006). These measures are based
on differences between ¥®& and FER which are cal-
culated separately for eactoBclass using subsets  where dy (refy ., hyp,) is the Levenshtein dis-
extracted from the original texts. Standard overaliance between the reference sentenge , and the
WER and FER of the original texts are not at all hypothesis sentendeyp,.. The calculation of VER

K
1 .
WER = N Zmrm dL(Tefk,ra hypy,)
ref =1
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is performed using a dynamic programming algo- reference:

rithm. Mister#N Commissioner#N ,#M
Calculation of PER: The FeR can be calcu- twenty-four#Num hours#N

lated using the counta(e, hyp,) and n(e, refy.,.) sometimes#Av can#V be#V too#Av

of a worde in the hypothesis sentenégp,, and the much#MRoON time#N #RIN

reference sentencef  ,. respectively: hypothesis:

Mrs#N Commissioner#N ,#N

1 & . twenty-four#Num hours#N is#V
PER = N* Zmﬁn dper(7ef ks hypy) sometimes#Av too#ADv
ol k=1 much#MRoN time#N #RIN
where

Table 1: Example for illustration of actual errors: a

1 Postagged reference sentence and a corresponding
dper(ref 1 hypr) = 5 <‘N”3fkw = Niwp, [+ hypothesis sentence
> In(e,ref ) = nle, hypk)’) reference errors| hypothesis errors error type
‘ Mister#N Mrs#N substitution
3.2 WER decomposition over RS classes sometimes#Av | is#V substitution
The dynamic programming algorithm for &% en- | Can#V _ deletion
ables a simple and straightforward identification of P€#V sometimes#Av | substitution

each erroneous word which actually contributes Qable 2: Wererrors: actual words which are partici-
WER. Let err; denote the set of erroneous Word%

. . ating in the word error rate and their corresponding
in sentence: with respect to the best reference an 05 classes

p be a PBsclass. Them(p, erry) is the number of

errors inerr;, produced by words with &s classp.

It should be noted that for the substitution errors, thgyer(N) = 1/12 = 8.3%, of verbs WER(V) =
Pos class of the involved reference word is takem/12 = 16.7% and of adverbs WR(ADV) =
into account. Pstags of the reference words are1 /12 = 8.3%

also used for the deletion errors, and for the inser-

tion errors the Bs class of the hypothesis word is3-3 PER decomposition over Ps classes

taken. The V¥R for the word clasg can be calcu- In contrast to V¥R, standard efficient algorithms for

lated as: the calculation of BR do not give precise informa-
K tion about contributing words. However, it is pos-
WER(p) = -~ >_n(p, erry) sible to identify all words in the hypothesis which
Nref 1 do not have a counterpart in the reference, and vice

_ versa. These words will be referred to a_rerrors.
The sum over all classes is equal to the standard

overall WER.
An example of a reference sentence and hypothe- reference errors hypothesis errors
sis sentence along with the correspondirmsPags Mister#N Mrs#N
is shown in Table 1. The WR errors, i.e. actual be#V Is#V
words participating in V¥R together with their Bs can#V

classes can be seen in Table 2. The reference wor. asble 3- RR errors: actual words which are partic
involved in WER are denoted as reference errors, ' : P

and hypothesis errors refer to the hypothesis wordgadt'?r? n the pos'“gf‘ w;j;plendent word error rate
participating in VER. and their correspondingd® classes

Standard V¥R of the whole sentence is equal
to 4/12 = 33.3%. The contribution of nouns is  An illustration of FER errors is given in Table 3.
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The number of errors contributing to the standardV,.; = 12 thus being equal to 25%. The ERis the
PER according to the algorithm described in 3.1 is 3um of hypothesis and reference errors divided by
- there are two substitutions and one deletion. Thilne sum of hypothesis and reference lengthe R
problem with standard #R is that it is not possible (2 4 3)/(11 + 12) = 5/23 = 21.7%. The contribu-

to detect which words are the deletion errors, whiction of nouns is FBR(N) = 2/23 = 8.7% and the
are the insertion errors, and which words are the subentribution of verbs is FER(V) = 3/23 = 13%.
stitution errors. Therefore we introduce an alterna-

tive PER based measure which corresponds to thé Applications for error analysis

F-measure. Leterr, refer to the set of words in the
hypothesis sentence which do not appear in the
reference sentende (referred to as hypothesis er-
rors). Analogously, leterr;, denote the set of words

The decomposed error rates described in Section 3.2
and Section 3.3 contain more details than the stan-
dard error rates. However, for more precise informa-
tion about certain phenomena some kind of further

It?] thﬁ refte;]reqce se?tegem?lch got not ap?ear n analysis is required. In this work, we investigate two
e hypothesis sentende(referred to as reference possible aspects for error analysis:

errors). Then the following measures can be calcu-

lated: e estimation of inflectional errors by the use of

e reference BR (RPER) (similar to recall): FPER errors and base forms

K e extracting the distribution of missing words
RPER(p) = 1* Z”(p’ rerry,) over Pos classes using AR errors, FRER er-
ref —1 rors and base forms.

¢ hypothesis BR (HPER) (similar to precision): 4.1 Inflectional errors

Inflectional errors can be estimated using ERP
errors and base forms. From each reference-
HPER(p) = Niup Z”m herry) hypothesis sentence pair, only erroneous words
which have the common base forms are taken
o F-based BR (FPER): into account. The inflectiqnal error rate of eaahsP
class is then calculated in the same way ag®&P
1 For example, from the R errors presented in Ta-
Nyop + Nigp ' ble 3, the words “is” and “be” are candidates for an
K inflectional error because they are sharing the same
'Z("(p’ rerri) + n(p, herry)) base form “be”. Inflectional error rate in this exam-
1 ple is present only for the verbs, and is calculated in
the same way as R, i.e. IFPER(V) = 2/23 =
Since we are basically interested in all words with8.7%.
out a counterpart, both in the reference and in the o
hypothesis, this work will be focused on ER The 4-2 Missing words
sum of FRER over all Ros classes is equal to the Distribution of missing words overds classes can
overall FRER, and the latter is always less or equabe extracted from the ¥R and FRER errors in the
to the standard Br. following way: the words considered as missing are
For the example sentence presented in Table 1, ttieose which occur as deletions inBX errors and
number of hypothesis errorge, herry) is 2 and the at the same time occur only as referen@rrrors
number of reference errorge, rerry) is 3 wheree  without sharing the base form with any hypothesis
denotes the word. The number of errors contributingrror. The use of both WR and FER errors is much
to the standard BR is 3, since|N,.s — Ny,,| = 1 more reliable than using only the &% deletion er-
andy__|n(e, ref)) — n(e, hyp,)| = 5. The stan- ros because not all deletion errors are produced by
dard FER is normalised over the reference lengthmissing words: a number of ¥ deletions appears

FPER(p) =
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due to reordering errors. The information about thé Error analysis
base form is used in order to eliminate inflectiona.ll_
errors. The number of missing words is extracted fo . . . .
. ISSING WOrds 1S ex §panlsh to English and English to Spanish) and the
each word class and then normalised over the sum o .
error analysis is done on both the English and the

all classes. For the example sentence pair presenied . . .
in Table 1, from the VR errors in Table 2 and the t§panlsh output. Morpho-syntactic annotation of the

PER errors in Table 3 the word “can” will be identi- _Enghsh referenpes and hypotheses is perform_ed us-
. - ing the constraint grammar parseN&CaG (Vouti-
fied as missing.

lainen, 1995), and the Spanish texts are annotated

he translation is performed in both directions

5 Experimental settings using the FreelLing analyser (Carreras et al., 2004).
_ In this way, all references and hypotheses are pro-
5.1 Translation System vided with Pos tags and base forms. The decom-

The machine translation system used in this worRosition of WER and FFER is done over the ten

is based on the statistical aproach. It is built ag1ain Fos classes: nouns (N), verbs (V), adjectives
a log-linear combination of seven different statisti{A), adverbs (AV), pronouns (RON), determiners
cal models: phrase based models in both directiond)ET), prepositions (REP), conjunctions (©N),
IBM1 models at the phrase level in both directiongjumerals (N'm) and punctuation marks (R). In-

as well as target language model, phrase penalty afigctional error rates are also estimated for eaos P
length penalty are used. A detailed description of thelass using FBR counts and base forms. Addition-
system can be found in (Vilar et al., 2005; Matusolly, details about the verb tense and person inflec-

et al., 2006). tions for both languages as well as about the adjec-
tive gender and person inflections for the Spanish
5.2 Task and corpus output are extracted. Apart from that, the distribu-

The corpus analysed in this work is built in thetion of missing words over the tend classes is
framework of the E-STAR project. The training estimated using the ¥R and FRER errors.

corpus contains more than one million sentences aréd1
about 35 million running words of the European Par-"
liament Plenary Sessions¥ES in Spanish and En- Figure 1 presents the decompositions ofRVand
glish. The test corpus contains about 1 000 sentenceEER over the ten basic &s classes for both lan-
and 28 000 running words. The OOV rates are lowguages. The largest part of both word error rates
about 0.5% of the running words for Spanish angomes from the two most important word classes,
0.2% for English. The corpus statistics can be sedimely nouns and verbs, and that the least critical
in Table 4. More details about theeBsdata can be classes are punctuations, conjunctions and numbers.
found in (Vilar et al., 2005).

WER and PeR (FPER) decompositions

Adjectives, determiners and prepositions are sig-
nificantly worse in the Spanish output. This is partly

’ TRAIN ‘ Spanish ‘ English ‘ due to the richer morphol f the Spanish |

Sentences 1167627 phology of the Spanish 1an-
. guage. Furthermore, the histograms indicate that the

Running words 35320646 33945468 number of erroneus nouns and pronouns is higher
Vocabulary 159080 110636 in the English output. As for verbs, ¥R is higher
TEST for English and FBR for Spanish. This indicates
Sentences 894 1117 that there are more problems with word order in the
Running words| 28591 28492 English output, and more problems with the correct
OOVs 0.52% 0.25% verb or verb form in the Spanish outpuit.

In addition, the decomposed error rates give an
ea of where to put efforts for possible improve-

ments of the system. For example, working on im-
provements of verb translations could reduce up to
about 10% V¥R and 7% FIR, working on nouns

Table 4: Statistics of the training and test corporg,
of the Tc-STAR EPPS Spanish-English task. Test
corpus is provided with two references.
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WER over POS classes [%)] inflectional errors [%)]

[N
[

English ——— 25 English ———
10+ — Spanish: i Spanish:
9t Pan
-
T 15+
6 -
5F N
_ 1L
4 -
3r i 4
2F 4 0.5
1r 4
0 L L H H L L L ’—\‘ = H 0 L L e o] m e L —— o L
N \% A ADV PRON DET PREP CON NUM PUN N \% A ADV PRON DET PREP CON NUM PUN
FPER over POS classes [%)]
9 ; ; ; ; ; ; ; —masn— ] Figure 2: Inflectional error rates [%] for English and
Spanish: .
sl 1 Spanish output
7r P
er 1 Nouns have a higher error rate for English than
st [ ] 1 for Spanish. The reason for this difference is not
at 1 clear, since the noun morphology of neither of the
sl | languages is particularly rich - there is only distinc-
L | tion between singular and plural. One possible ex-
planation might be the numerous occurences of dif-
t ﬂ ﬂ N ] | ferent variants of the same word, like for example
° NV A ADV PRON DET PREP CON NUM PUN “Mr” and “Mister”.

In the Spanish output, two additionabBclasses
Figure 1: Decomposition of WR and FRR [%] are showing significant error rate: determiners and
over the ten basic®s classes for English and Span-adjectives. This is due to the gender and number in-
ish output flections of those classes which do not exist in the
English language - for each determiner or adjective,
) there are four variants in Spanish and only one in En-
up to 8% WER and 5% FIBR, whereas there is no glish. Working on inflections of Spanish verbs might
reason to put too much efforts on e.g. adverbs SINGB 4y ce approximately 2% of FER, on English verbs
this could iead only to about 2% of ¥k and FEER 55, 106, Improvements of Spanish determiners
reduction. could lead up to about 2% of improvements.

6.2 Inflectional errors 6.2.1 Comparison with human error analysis

Inflectional error rates for the teno® classes are  The results obtained for inflectional errors are
presented in Figure 2. For the English languageomparable with the results of a human error anal-
these errors are significant only for tw@®classes: ysis carried out in (Vilar et al., 2006). Although it
nouns and verbs. The verbs are the most problers difficult to compare all the numbers directly, the
atic category in both languages, for Spanish havingverall tendencies are the same: the largest num-
almost two times higher error rate than for Englishber of translation errors are caused by Spanish verbs,
This is due to the very rich morphology of Spaniskand much less but still a large number of errors by
verbs - one base form might have up to about fourtiznglish verbs. A much smaller but still significant

different inflections. number of errors is due to Spanish adjectives, and
only a few errors of English adjectives are present.
'Reduction of FRR leads to a similar reduction ofeR. Human analysis was done also for the tense and
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person of verbs, as well as for the number and gen- missing words [%]
der of adjectives. We use more detailedsRagsin > T “eng
order to extract this additional information and cal- ! =
culate inflectional error rates for such tags. It should 2t
be noted that in contrast to all previous error rates, iz
these error rates are not disjunct but overlapping: 18 o
many words are contributing to both. o -
The results are shown in Figure 3, and the tenden- 12+
cies are again the same as those reported in (Vilarlg: ]
et al., 2006). As for verbs, tense errors are much ¢}
more frequent than person errors for both languages. ‘2‘: ﬂ H H
Adjective inflections cause certain amount of errors ‘ ‘ ‘ 1.
only in the Spanish output. Contributions of gender .

and of number are aproximately equal.

L L L
ADV PRON DET PREP CON NUM PUN

Figure 4: Distribution of missing words overoR
classes [%] for English and Spanish output

inflectional errors of verbs and adjectives [%]

énglish —2
Spanisht

Prepositions are more often missing in Spanish

15 1 than in English, as well as determiners. A probable

reason is the disproportion of the number of occur-
rences for those classes between two languages.

7 Conclusions

05

| This work presents a framework for extraction of lin-
guistic details from standard word error rate€&V
and FER and their use for an automatic error analy-
sis. We presented a method for the decomposition of

Figure 3: More details about inflections: verb tensgandard word error rates kit a_md FER Over te_n ba-
¢ Posclasses. We also carried out a detailed anal-

and person error rates and adjective gender and nuR\- _ _ .
ber e?rror rates [%] J g ysis of inflectional errors which has shown that the

results obtained by our method correspond to those
o obtained by a human error analysis. In addition, we
6.3 Missing words proposed a method for analysing missing word er-
Figure 4 presents the distribution of missing wordsors.

over Ros classes. This distribution has a same be- We plan to extend the proposed methods in order
haviour as the one obtained by human error analysi® carry out a more detailed error analysis, for ex-
Most missing words for both languages are verbaimple examining different types of verb inflections.
For English, the percentage of missing verbs is sigAe also plan to examine other types of translation
nificantly higher than for Spanish. The same thingrrors like for example errors caused by word order.
happens for pronouns. The probable reason for this

is the nature of Spanish verbs. Since person amicknowledgements

tense are contained in the suffix, Spanish pronouns

are often omitted, and auxiliary verbs do not exist his work was partly funded by the European Union
for all tenses. This could be problematic for a transunder the integrated projectc¥STAR— Technology
lation system, because it processes only one Spanihd Corpora for Speech to Speech Translation (IST-
word which actually contains two (or more) English2002-FP6-506738).

words.

L L L L
V tense V person A gender A number
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Abstract

In order to simultaneously translate speech
into multiple languages an extension of
stochastic finite-state transducers is pro-
posed. In this approach the speech trans-
lation model consists of a single network
where acoustic models (in the input) and the
multilingual model (in the output) are em-
bedded.

The multi-target model has been evaluated
in a practical situation, and the results have
been compared with those obtained using
several mono-target models. Experimental
results show that the multi-target one re-
quires less amount of memory. In addition, a
single decoding is enough to get the speech
translated into multiple languages.

1 Introduction

In this work we deal with finite-state models which
constitute an important framework in syntactic pat-
tern recognition for language and speech processing
applications (Mohri et al., 2002; Pereira and Riley,
1997). One of their outstanding characteristics is the
availability of efficient algorithms for both optimiza-
tion and decoding purposes.

Specifically, stochastic finite-state transducers
(SFSTs) have proved to be useful for machine trans-
lation tasks within restricted domains. There are
several approaches implemented over SFSTs which
range from word-based systems (Knight and Al-
Onaizan, 1998) to phrase-based systems (Pérez et
al., 2007). SFSTs usually offer high speed during
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the decoding step and they provide competitive re-
sults in terms of error rates. In addition, SFSTs have
proved to be versatile models, which can be easily
integrated with other finite-state models, such as a
speech recognition system for speech-input transla-
tion purposes (Vidal, 1997). In fact, the integrated
architecture has proved to work better than the de-
coupled one. Our main goal is, hence, to extend
and assess these methodologies to accomplish spo-
ken language multi-target translation.

As far as multilingual translation is concerned,
there are two main trends in machine translation de-
voted to translate an input string simultaneously into
m languages (Hutchins and Somers, 1992): inter-
lingua and parallel transfer. The former has his-
torically been a knowledge-based technique that re-
quires a deep-analysis effort, and the latter consists
on m decoupled translators in a parallel architec-
ture. These translators can be either knowledge or
example-based. On the other hand, in (Gonzélez
and Casacuberta, 2006) an example based technique
consisting of a single SFST that cope with multiple
target languages was presented. In that approach,
when translating an input sentence, only one search
through the multi-target SFST is required, instead of
the m independent decoding processes required by
the mono-target translators.

The classical layout for speech-input multi-target
translation includes a speech recognition system in
a serial architecture with m decoupled text-to-text
translators. Thus, this architecture entails a decod-
ing stage of the speech signal into the source lan-
guage text, and m further decoding stages to trans-
late the source text into each of the m target lan-

Proceedings of the Second Workshop on Statistical Machine Translation, pages 56—63,
Prague, June 2007. (©2007 Association for Computational Linguistics



guages. If we supplant the m translators with the
multi-target SFST, the problem would be reduced to
2 searching stages. Nevertheless, in this paper we
propose a natural way for acoustic models to be in-
tegrated in the multilingual network itself, in such
a way that the input speech signal can be simulta-
neously decoded and translated into m target lan-
guages. As a result, due to the fact that there is just
a single searching stage, this novel approach entails
less computational cost.

The remainder of the present paper is structured
as follows: section 2 describes both multi-target SF-
STs and the inference algorithm from training ex-
amples; in section 3 a novel integrated architecture
for speech-input multi-target translation is proposed;
section 4 presents a practical application of these
methods, including the experimental setup and the
results they produced; finally, section 5 summarizes
the main conclusions of this work.

2 Multi-target stochastic finite-state
transducers

A multi-target SFST is a generalization of standard
SESTs, in such a way that every input string in the
source language results in a tuple of output strings
each being associated to a different target language.

2.1 Definition

A multi-target stochastic finite-state transducer is a

tuple T = <27 Al s Amv Q7 q0, Ra F7 P>’ where:
3. is a finite set of input symbols (source vocabu-

lary);

A1 ...A,, are m finite sets of output symbols (tar-
get vocabularies);

(Q is a finite set of states;
go € (@ is the initial state;

R CQxXxA]... Ay x(Q is aset of transitions
such as (¢, w,p1, ..., Pm,q ), which is a tran-
sition from the state ¢ to the state ¢/, with the
source symbol w and producing the substrings

(ﬁla e 7]5m);

P : R — [0,1] is the transition probability distri-
bution;
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F : @ — [0,1] is the final state probability distri-
bution;

The probability distributions satisfy the stochastic
constraint:

Vg e Q
F(q)+

(D
7ﬁm7q/) =1

2

w7ﬁ15"'7ﬁm7ql

P(q7w7ﬁ17 DRI

2.2 Training the multilingual translation model

Both topology and parameters of an SFST can
be learned fully automatically from bilingual ex-
amples making use of underlying alignment mod-
els (Casacuberta and Vidal, 2004). Furthermore,
a multi-target SFST can be inferred from a multi-
lingual set of samples (Gonzédlez and Casacuberta,
2006). Even though in realistic situations multilin-
gual corpora are too scarce, recent works (Popovic
et al., 2005) show that bilingual corpora covering the
same domain are sufficient to obtain generalized cor-
pora based on which one can subsequently create the
required collections of aligned tuples.

The inference algorithm, GIAMTI (grammatical
inference and alignments for multi-target transducer
inference), requires a multilingual corpus, that is, a
finite set of multilingual samples (s,t1,...,tm) €
Y*x A x---x A}, where t; denotes the translation
of the source sentence s into the ¢-th target language;
3} denotes the source language vocabulary, and A;
the i-th target language vocabulary; the algorithm
can be outlined as follows:

1. Each multilingual sample is transformed into
a single string from an extended vocabulary
I € ¥ x A} x --- x A¥)) using a labeling
Sfunction (L™). This transformation searches an
adequate monotonic segmentation for each of
the m source-target language pairs on the basis
of bilingual alignments such as those given by
Gi1zA++ (Och, 2000). A monotonic segmen-
tation copes with monotonic alignments, that
is, j < k = a; < ay, following the notation
of (Brown et al., 1993). Each source token,
which can be either a word or a phrase (Pérez
et al., 2007), is then joined with a target phrase
of each language as the corresponding segmen-
tation suggests. Each extended symbol consists
of a token from the source language plus zero



3:da -
2:jeitsiko -

" -
- AN

l:minimoa -

0:tenperatura |

minimas
2:en
descenso

1:

0:temperaturas
3

(a) Spanish-Basque
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(b) Spanish-English

en | NIL | NIL descenso | jaitsiko da | falling

minimas | minimoak | low temperatures

> 2 > 3 5

ascenso | igoko da | rising

(c) Multi-target SFST from Spanish into English and Basque.

Figure 1: Example of a trilingual alignment over a trilingual sentence extracted from the task under consid-
eration;the related multi-target SFST (with Spanish as input, and English and Basque as output).

or more words from each target language in
their turn.

2. Once the set of multilingual samples has been
converted into a set of single extended strings
(z € T'"), a stochastic regular grammar can be
inferred. Specifically, in this work we deal with
k-testable in the string-sense grammars (Garcia
and Vidal, 1990), which are considered to be
a syntactic approach of the n-gram models. In
addition, they allow the integration of several
order models in a single smoothed automa-
ton (Torres and Varona, 2001).

3. The extended symbols associated with the
transitions of the automaton are transformed
into one input token and m output phrases
(w/p1] - .. |pm) by the inverse labeling function
(L™™), leading to the required transducer.

Example An illustration of the inference of the
multi-target SFST can be shown over a couple of
simple trilingual sentences from the corpus (where
“B” stands for Basque, “S” for Spanish and “E” for
English):
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1-B tenperatura maximoa jaitsiko da
1-S temperaturas maximas en descenso

1-E high temperatures falling

2-B tenperatura minimoa igoko da
2-S temperaturas minimas en ascenso
2-E low temperatures rising

From the alignments, depicted in Figures 1(a)
and  1(b), an  input-language-synchronized
monotonous segmentation can be built (bear in
mind that we are considering Spanish as the input
language). The corresponding extended strings with
the following constituents for the first and second
samples respectively are the following ones:

1 temperaturas|tenperatura| A
minimas|minimoal|low_temperatures
en|A| A
descensoljaitsiko_da|falling



2 temperaturas|tenperatura|\
méximas|maximoalhigh_temperatures
en|A| A
ascenso|igoko_da|rising

Finally, from this representation of the data, the
multi-target SFST can be built as shown in Fig-
ure 1(c).

2.3 Decoding

Given an input string s (a sentence in the source lan-
guage), the decoding module has to search the opti-
mal m output strings t™ € A} x --- x A} (a sen-
tence in each of the target language) according to the
underlying translation model (7):

2

t™m = arg max
tmeA] XX A%,

Pr(s,t™)
Solving equation (2) is a hard computational prob-
lem, however, it can be efficiently computed under
the so called maximum approach as follows:

Pr(s,t™) ~ max P, s, t"
r(s.47) & max Pr(o(s.t")

3)
where ¢(s,t™) is a translation form, that is, a se-
quence of transitions in the multi-target SFST com-
patible with both the input and the m output strings.

¢(S7tm) : (q07w17ﬁ71na ql) o (QJ—lvaaﬁgl7QJ)

The input string (s) is a sequence of J input sym-
bols, s = wl‘] , and each of the m output strings
consists of J phrases in its corresponding language
t™ = (t1, -+ ,tm) = (P1)7, -, (bm)7. Thus, the
probability supplied by the multi-target SEST to the
translation form is given by:

J
Pr(¢(s,t™) = F(a) [ [ Plgj-1,w;, 7] 45)
j=1
“
In this context, the Viterbi algorithm can be used
to obtain the optimal sequence of states through the
multi-target SFST for a given input string. As a
result, the established m translations are built con-
catenating the (J) output phrases for each language
through the optimal path.
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3 An embedded architecture for
speech-input multi-target translation

3.1 Statistical framework

Given the acoustic representation (x) of a speech
signal, the goal of multi-target speech translation
is to find the most likely m target strings (t™);
that is, one string (t;) per target language involved
(t € {1,...,m}). This approach is summarized
in eq. (5), where the hidden variable s can be in-
terpreted as the transcription of the speech signal:

tm = P(t"|x) = P(t™
arg max P(t"|x) argrrtlgxzsz (t™,s|x)

&)
Making use of Bayes’ rule, the former expression
turns into:

t :argntl%XZS:P(t ,s)P(x[t™,s) (6)

Empirically, there is no loss of generality if we as-
sume that the acoustic signal representation depends
only on the source string, i.e. P(x|t™,s) is inde-
pendent of t"". In this sense, eq. (6) can be rewritten
as: .
t™ = arg max Z P(t™,s)P(x]s) 7
S

Equation (7) combines a standard acoustic model,
P(x|s), and a multi-target translation model,
P(t™,s), both of whom can be integrated on the fly
during the searching routine as shown in Figure 2.
That is, each acoustic sub-network is only expanded
at decoding time when it is required.

The outer sum is computationally very expensive
to search for the optimal tuple of target strings t"
in an effective way. Thus we make use of the so
called Viterbi approximation, which finds the best
path over the whole transducer.

3.2 Practical issues

The underlying recognizer used in this work is our
own continuous-speech recognition system, which
implements stochastic finite-state models at all lev-
els: acoustic-phonetic, lexical and syntactic, and
which allows to infer them based on samples.

The signal analysis was carried out in a stan-
dard way, based on the classical Mel-cepstrum
parametrization. Each phone-like unit was modeled
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Figure 2: Integration on the fly of acoustic models in one edge of the SFST shown in Figure 1(c)

by a typical left to right hidden Markov model. A
phonetically-balanced Spanish database, called Al-
bayzin (Moreno et al., 1993), was used to train these
models.

The lexical model consisted of the extended to-
kens of the multi-target SFST instead of running
words. The acoustic transcription for each extended
token was automatically obtained on the basis of the
input projection of each unit, that is, the Spanish vo-
cabulary in this case.

Instead of the usual language model, we make use
of the multi-target SFST itself, which had the syn-
tactic structure provided by a k-testable in the strict
sense model, with k=3, and Witten-Bell smoothing.
Note that the SFST implicitly involves both input
and output language models.

4 Experimental results

4.1 Task and corpus

The described general methodology has been put
into practice in a highly practical application that
aims to translate on-line TV weather forecasts into
several languages, taking the speech of the presen-
ter as the input and producing as output text-strings,
or sub-titles, in several languages. For this purpose,
we used the corpus METEUS which consists of a
set of trilingual sentences, in English, Spanish and
Basque, as extracted from weather forecast reports
that had been published on the Internet. Let us no-
tice that it is a real trilingual corpus, which they are
usually quite scarce.

Basque is a pre-Indoeuropean language of still
unknown origin. It is a minority language, spo-
ken in a small area of Europe and also within some
small American communities (such as that in Reno,
Nevada). In the Basque Country (located in the
north of Spain) it has an official status along with
Spanish. However, despite having coexisted for cen-
turies in the same area, they differ greatly both in
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syntax and in semantics. Hence, efforts are being
devoted nowadays to machine translation tools in-
volving these two languages (Alegria et al., 2004),
although they are still scarce. With regard to the or-
der of the phrases within a sentence, the most com-
mon one in Basque is Subject plus Objects plus Verb
(even though some alternative structures are also ac-
cepted), whereas in Spanish and English other con-
structions such as Subject plus Verb plus Objects are
more frequent (see Figures 1(a) and 1(b)). Another
difference between Basque and Spanish or English
is that Basque is an extremely inflected language.

In this experiment we intend to translate Span-
ish speech simultaneously into both Basque and En-
glish. Just by having a look at the main features of
the corpus in Table 1, we can realize that there are
substantial differences among these three languages,
in terms both of the size of the vocabulary and of the
amount of running words. These figures reveal the
agglutinant nature of the Basque language in com-
parison with English or Spanish.

Spanish | Basque | English
- Total sentences 14,615
£ Different sentences 7,225 7,523 6,634
£ Words 191,156 | 187,462 | 195,627
& Vocabulary 702 1,147 498
Average Length 13.0 12.8 13.3
Sentences 500
2 Words 8,706 8,274 9,150
= Average Length 17.4 16.5 18.3
Perplexity (3grams) 4.8 6.7 5.8

Table 1: Main features of the METEUS corpus.

With regard to the speech test, the input consisted
of the speech signal recorded by 36 speakers, each
one reading out 50 sentences from the test-set in Ta-
ble 1. That is, each sentence was read out by at least
three speakers. The input speech resulted in approx-
imately 3.50 hours of audio signal. Needless to say,
the application that we envisage has to be speaker-



independent if it is to be realistic.

4.2 System evaluation

The performance obtained by the acoustic integra-
tion has been experimentally tested for both multi-
target and mono-target devices. As a matter of com-
parison, text-input translation results are also re-
ported.

The multi-target SEST was learned from the train-
ing set described in Table 1 using the previously de-
scribed GIAMTT algorithm. The 500 test sentences
were then translated by the multi-target SFST. The
translation provided by the system in each language
was compared to the corresponding reference sen-
tence. Additionally, two mono-target SFSTs were
inferred with their outputs for the aforementioned
test to be taken as baseline. The evaluation includes
both computational cost and performance of the sys-
tem.

4.2.1 Computational cost

The expected searching time and the amount of
memory that needs to be allocated for a given model
are two key parameters to bear in mind in speech-
input machine translation applications. These val-
ues can be objectively measured in terms of the size
and on the average branching factor of the model
displayed in Table 2.

. mono-target
multi-target 3B SIE
Nodes 52,074 35,034 | 20,148
Edges 163,146 115,526 | 69,690
Branching factor 3.30 3.13 3.46

Table 2: Features of multi-target model and the two
decoupled mono-target models (one for Spanish to
Basque translation, referred to as S2B, and the sec-
ond for Spanish to English, S2E).

Adding the edges up for the two mono-target SF-
STs that take part in the decoupled architecture (see
Table 2), we conclude that the decoupled model
needs a total of 185,216 edges to be allocated in
memory, which represents an increment of 13%
in memory-space with respect to the multi-target
model.

On the other hand, the multi-target approach of-
fers a slightly smaller branching factor than each
mono-target approach. As a result, fewer paths have
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to be explored with the multi-target approach than
with the decoupled one, which suggests that search-
ing for a translation might be faster. As a matter of
fact, experimental results in Table 3 show that the
mono-target architecture works 11% more slowly
than the multi-target one for speech-input machine
translation and decoding, and 30% for text to text
translation.

Time (s)
multi-target mst);l(s);tg;%et
Text-input 0.36 0.47
Speech-input 16.9 18.9

Table 3: Average time needed to translate each input
sentence into two languages.

Summarizing, in terms of computational cost
(space and time), a multi-target SFST performs bet-
ter than the mono-target decoupled system.

4.2.2 Performance

So far, the capability of the systems has been as-
sessed in terms of time and spatial costs. However,
the quality of the translations they provide is, doubt-
less, the most relevant evaluation criterion. In or-
der to determine the performance of the system in
a quantitative manner, the following evaluation pa-
rameters were computed for each scenario: bilingual
evaluation under study (BLEU), position indepen-
dent error rate (PER) and word error rate (WER).
Both text and speech-input translation results pro-
vided by the multi-target and the mono-target mod-
els respectively are shown in Table 4.

As can be derived from the translation results,
for text-input translation the classical approach per-
forms slightly better than the multi-target one, but
for speech-input translation from Spanish into En-
glish is the other way around. In any case, the dif-
ferences in performance are marginal.

Comparing the text-input with the speech-input
results we realize that, as could be expected, the pro-
cess of speech signal decoding is itself introducing
some errors. In an attempt to measure these errors,
the text transcription of the recognized input signal
was extracted and compared to the input reference
in terms of WER as shown in the last row of the Ta-
ble 4. Note that even though the input sentences are
the same the three results differ due to the fact that



we are making use of different SFST models that de-
code and translate at the same time.

multi-target || mono-target
S2B  S2E || S2B | S2E
o BLEU 427 66.7 || 434 | 678
& PER 399 199 || 382 | 19.0
WER 48.0 27.5 | 46.2 | 26.6
= | BLEU 395 59.0 || 39.2 | 61.1
§ PER 422 253 | 415 | 23.6
= WER 51.5 339 || 50.5 | 319
recognition WER 10.7 9.3 9.1

Table 4: Text-input and speech-input translation re-
sults for Spanish into Basque (S2B) and Spanish into
English (S2E) using a multi-target SFST (columns
on the left) or two mono-target SFSTs (columns on
the right). The last row shows Spanish speech de-
coding results using each of the three devices.

In these series of experiments the same task has
been compared with two extremely different lan-
guage pairs under the same conditions. There is a
noticeable difference in terms of quality between the
English and the Basque translations. The underlying
reason might be due to the fact that SFST models
do not capture properly the rich morphology of the
Basque as they have to face long-distance reordering
issues. These differences in the performance of the
system when translating into English or into Basque
have been previously detected in other works (Or-
tiz et al., 2003). In our case, a manual review of the
models and the obtained translations encourage us to
make use of reordering models in future work, since
they have proved to report good results in a similar
framework (Kanthak et al., 2005).

5 Concluding remarks and further work

The main contribution of this paper is the proposal
of a fully embedded architecture for multiple speech
translation. Thus, acoustic models are integrated on
the fly into a multi-target translation model. The
most significant feature of this approach is its abil-
ity to carry out both the recognition and the transla-
tion into multiple languages integrated in a unique
model. Due to the finite-state nature of this model,
the speech translation engine is based on a Viterbi-
like algorithm.

In contrast to the mono-target systems, multi-
target SFSTs enable the translation from one source
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language simultaneously into several target lan-
guages with lower computational costs (in terms
of space and time) and comparable qualitative re-
sults. Moreover, the integration of several languages
and acoustic models is straightforward on means of
finite-state devices.

Nevertheless, the integrated architecture needs
more parameters to be estimated. In fact, as the
amount of targets increase the data sparseness might
become a difficult problem to cope with. In future
work we intend to make a deeper study on the per-
formance of the multi-target system with regard to
the amount of parameters to be estimated. In ad-
dition, as the first step of the learning algorithm is
decisive, we are planning to make use of reordering
models in an attempt to face up to with long dis-
tance reordering and in order to homogenize all the
languages involved.
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Abstract

We propose a novel syntax-based model
for statistical machine translation in which
meta-structure (MS) and meta-structure se-
guence (SMS) of a parse tree are defined.
In this framework, a parse tree is decom-
posed into SMS to deal with the structure
divergence and the alignment can be recon-
structed at different levels of recombination
of MS (RM). RM pairs extracted can per-
form the mapping between the sub-
structures across languages. As a result,
we have got not only the translation for the
target language, but an SMS of its parse
tree at the same time. Experiments with
BLEU metric show that the model signifi-
cantly outperforms Pharaoh, a state-art-the-
art phrase-based system.

1 Introduction

The statistical approach has been widely used in
machine translation, which use the noisy-channel-
based model. A joint probability model, proposed
by Marcu and Wong (2002), is a kind of phrase-
based one. Och and Ney (2004) gave a framework
of alignment templates for this kind of models. All
of the phrase-based models outperformed the
word-based models, by automatically learning
word and phrase equivalents from bilingual corpus
and reordering at the phrase level. But it has been
found that phrases longer than three words have
little improvement in the performance (Koehn,
2003). Above the phrase level, these models have a
simple distortion model that reorders phrases inde-
pendently, without consideration of their contents
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and syntactic information.

In recent years, applying different statistical
learning methods to structured data has attracted
various researchers. Syntax-based MT approaches
began with Wu (1997), who introduced the Inver-
sion Transduction Grammars. Utilizing syntactic
structure as the channel input was introduced into
MT by Yamada (2001). Syntax-based models have
been presented in different grammar formalisms.
The model based on Head-transducer was pre-
sented by Alshawi (2000). Daniel Gildea (2003)
dealt with the problem of the parse tree isomor-
phism with a cloning operation to either tree-to-
string or tree-to-tree alignment models. Ding and
Palmer (2005) introduced a version of probabilistic
extension of Synchronous Dependency Insertion
Grammars (SDIG) to deal with the pervasive
structure divergence. All these approaches don’t
model the translation process, but formalize a
model that generates two languages at the same
time, which can be considered as some kind of tree
transducers. Graehl and Knight (2004) described
the use of tree transducers for natural language
processing and addressed the training problems for
this kind of transducers.

In this paper, we define a model based on the
MS decomposition of the parse trees for statistical
machine translation, which can capture structural
variations and has a proven generation capacity.
During the translation process of our model, the
parse tree of the source language is decomposed
into different levels of MS and then transformed
into the ones of the target language in the form of
RM. The source language can be reordered accord-
ing to the structure transformation. At last, the tar-
get translation string is generated in the scopes of
RM. In the framework of this model,

Proceedings of the Second Workshop on Statistical Machine Translation, pages 64-71,
Prague, June 2007. (©2007 Association for Computational Linguistics



the RM transformation can be regarded as produc-
tion rules and be extracted automatically from the
bilingual corpus. The overall translation probabil-
ity is thus decomposed.

In the rest of this paper, we first give the
definitions for MS, SMS, RM and the
decomposition of the parse tree in section 2.1, we
give a detailed description of our model in section
2.2, section 3 describes the training details and
section 4 describes the decoding algorithms, and
then the experiment (section 5) proves that our
model can outperform the baseline model,
pharaoh, under the same condition.

2  The model
2.1 MS for a parse tree

A source language sentence (s1 s2 s3 s4 s5 s6),

and its parse tree S-P, are given in Figure 1.We
also give the translation of the sentence, which is
illustrated as (t1 t2 t3).lts parse tree is T-P.
Definition 1
MS of a parse tree
We call a sub-tree a MS of a parse tree, if it sat-
isfies the following constraints:
1. An MS should be a sub-tree of a parse tree
2. Its direct sons of the leaf nodes in the sub-
tree are the words or punctuations of the sen-
tence
For example, each of the sub-trees in the right-

hand of Figure 1 is an MS for the parse tree of S-P.
The sub-tree of [I [G, D, H]] of S-P is not an MS,

because the direct sons of the leaf nodes, G, D, H,

* some examples for the RMs

Figure 1: MS and the SMS and RM for a given parser tree

are not words in the sentence of (s1 s2 s3 s4 s5
s6).

Definition 2 SMS and RM

A sequence of MS is called a meta-structure
sequence (SMS) of a parse tree if and only if,

1. Its elements are MS of the parse tree

2. The parse tree can be reconstructed with the

elements in the same order as in the sequence.

It is denoted as SMS [T(S)].' Two examples

for the concept of SMS can be found in Figurel.

RM(recombination of MS) is a sub-sequence
of SMS. We can express an SMS as differ-
entRM [[T (S)] .The parse tree of S-P in Figurel

is decomposed into SMS and expressed in the
framework of RM. The two RM, RM /[S - P],

are used to express its parse tree in Figurel.lt is
noted that there is structure divergence between
the two parse trees in Figurel. The corresponding
node of Node I in the tree S-P cannot be found in
the tree T-P. But under the conception of RM, the
structure alignments can be achieved at the level
of RM, which is illustrated in Figure2.

S-P RM

1
' P T
| & B [l :l 5] H ' ]I
e o e e e e e e e e e e
[ | [T~~~
' AA BB ! co |
[ | [
T-P RM

Figure2.The RM alignments for S-P and T-P

1 T[S] denotes the parse tree of a given sentence
fand e denote the foreign and target sentences
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In Figure2, both of the parse trees are decom-
posed and reconstructed in the forms of RM. The
alignments based on RM are illustrated at the
same time.

2.2 Description of the model

In the framework of Statistical machine transla-
tion, the task is to find the sentence e for the given
foreign language f, which can be described in the
following formulation.

e = argmax{ P(e| )} (1)

To make the model have the ability to model
the structure transformation, some hidden vari-
ables are introduced into the probability equation.
To make the equations simple to read, we take
some denotations different from the above defini-
tions. SMS[T(S)] is denoted as SM[T(S)].

The first variable is the SM[T(S)], we induce
the equation as follows,

P(e| f)= ZP(e,SM [T(F)]] )
)

SM (T ( f

= 2 PSMIT()]] F)Pe|SMIT ()] )

SMIT ()]

(2)
P(e|SM[T(f)], f)=
L2 Pl SMIT@IISMIT(F)L.f )
= Y P(SM[T(e)]|SM [T (f)], f)x
R sMT @ SMIT(DL ) 3)

In order to simplify this model we have two as-
sumptions:

An assumption is that the generation of SMS [T

(e)] is only related with SMS[T()]:

PSMIT @1 SMIT ()], f)
= P(SM [T (e)][ SM [T (f)])

(4)

Here we do all segmentations for any SMS
of [T ()] to get different RM, [T (f)].

P(SMIT (@) SM[T(f)D) =
2y TTPRMIT @11 RMT(F)])
()
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The use of RM is to decompose bi-lingual
parse trees and get the alignments in different
hierarchical levels of the structure.

Now we have another assumption that all
P(SM[T (f)]| f)should have the same prob-
ability « . A simplified form for this model is
derived:

P(e|f)=

ax
SM(T(f)) SM(T (e))

Kk
Y. TIPRMIT@IIRMT(F)])
RM [T(f)] i=1
xP(e| RM;[T ()], RM; [T()], f)
(6)
, Where P(e|RM,[T(e)], RM,[T(f)], f) can be re-
garded as a lexical transformation process, which
will be further decomposed.

In order to model the direct translation process
better by extending the feature functions, the di-
rect translation probability is obtained in the
framework of maximum entropy model:

Pl f)
_ eeb AhyesMTEISMI(NL)
Z,SM T@IsM F(f)]expE:ﬂﬂ'm hm(e’ SMTE1SM[T()], f)
)

We can achieve the translation according to
the function below:

& —argmaxexe>", 4. h, (& SMIT @)1, SMIT(F)], )|
(8)
A detailed list of the feature functions for the
model and some explanations are given as below:
® Just as the derivation in the model, we take
into consideration of the structure trans-
formation when selecting the features. The
MS are combined in the forms of RM and
transformed as a whole structure.

h, (e, f)=log [T PRM T E1IRM [T (1)
k 9
h,(e. f)=log [TPRM [T(F)IRM [T (e))

(10)

® Features to model lexical transformation
processes, and its inverted version, where

the symbol L (RM; [T(S)]) denotes the



words belonging to this sub-structure in the
sentence. In Figurel, L (RMy) denotes the
words, s1 s2 s3, in the source language.
This part of transformation happens in the
scope of each RM, which means that all
the words in any RM can be transformed
into the target language words just in the
way of phrase-based model, serving as an-
other reordering factor at a different level:

h,.f)= |09H P(L(RMIT ()])) | L(RM;[T(F)])

(11)
h.(e f)= log ] [ P(L(RM,[T ()D)) | L(RM,[T (e)])
(12)

® \We define a 3-gram model for the RM of
the target language, which is called a struc-
ture model according to the function of it
in this model.

hyle. f)=Tog] [PRMIT@1 RM,_.[T ©1.RM,,TE)])

(13)

This feature can model the recombination of
the parse structure of the target sentences. For
example in Figure3, pcc|AABB) is used to de-

scribe the probability of the RM sequence, (AA,
BB) should be followed by RM (CC) in the
translation process. This function can ensure
that a more reasonable sub-tree can be generated
for the target language. That would be explained
further in section 3.

[y T T
! D E F ,
B ey E_F
RM1 RM2 RM3
—_— = | e —
] ] [}

Figure3. The 3-gram structure model

® The 3-gram language model is also used

h (e, f)=log P(e)
(14)
The phrase-based model (Koehn, 2003) is a
special case of this framework, if we take the
whole structure of the parse tree as the only MS of
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the parse tree of the sentence, and set some special
feature weights to zero.

From the description above, we know the
framework of this model. When transformed to
target languages, the source language is reordered
at the RM level first. In this process, only the
knowledge of the structure is taken into
consideration. It is obvious that a lot of sentences
in the source language can have the same RM. So
this model has better generative ability. At the
same time, RM is a subsequence of SMS, which
consists of different hierarchical MS. So RM is a
structure, which can model the structure mapping
across the sub-tree structure. By decomposing the
source parse tree, the isomorphic between the
parse trees can be obtained, at the level of RM.

When reordering at the RM level, this model
just takes an RM as a symbol, and it can perform a
long distance reordering job according to the
knowledge of RM alignments.

3 Training

For training the model, a parallel tree corpus is
needed. The methods and details are described as
follows:

3.1 Decomposition of the parse tree

To reduce the amount of MS used in decoding
and training, we take some constrains for the MS.
(1) .The height of the sub-tree shouldn’t be
greater than a fixed value o ;
(2) N (Leaf _ nodes) > B
N (height)
Given a parse tree, we get the initial SMS in
such a top -down and left- to —right way.
Any node is deleted if the sub-tree can’t satisfy
the constrains (1), (2).

A
B
ra
/ T
D
F G 01
B

E

E P G H i
c
~
D
E F G v 1

Figure3. Decomposition of a parse tree



RMS for Ch-Parse Tree RMS for EN-Parse Tree Pro for transformation
AP[AP[AP[a-a]-usde]-m] NPB [DT-JJ-NN-PUNC.] | 0.000155497
AP[AP[AP[r-a]-usde]-m] NPB[PDT-DT-JJ-NN] 0.0151515
AP[AP[BMP[m-q]-a]-usde] wj | ADVP [RB-RB-PUNC.] | 0.00344828
AP[AP[BMP[m-q]-a]-usde] wj | DT CD JJ NNS PUNC 0.0833333
AP[AP[BMP[m-q]-a]-usde] wj | DT JJ NN NNS PUNC. 0.015625

Table 1 some examples of the RM transformation

RM1 RM2 RM3 | P(RM3RM1,RM?2)
IN_ | NP-A[NPB[PRP-NN] | IN 0.2479237

NPB | NP-A[NPB[PRP-NN] | VBZ | 0.2479235

IN__ | NP-A[NPB[PRP-NN] | MD 0.6458637

<s> | NP-A[NPB[PRP-NN] | VBD | 0.904308

Table 2 Examples for the 3-gram structure model of RM

Generate all of the SMS by deleting a node in
any Ms to generate new SMS, applying the same
operation to any SMS

3.2 Parallel SMS and Estimation of the pa-
rameters for RM transformations

We can get bi-lingual SMS by recombining all
the possible SMS obtained from the parallel
parse trees. m=*n Parallel SMS can be obtained
if m is the number of SMS for a parse tree in the
source language, n for the target one.

The alignments of the parallel MS and extrac-
tion can be performed in such a simple way.
Given the parallel tree corpus, we first get the
alignments based on the level of words, for which
we used GIZA++ in both of the directions. Ac-
cording to the knowledge of the word alignments,
we derived the alignments of leave nodes of the
given parse trees, which are the direct root nodes
of the words. Then all the knowledge of the words
is discarded for the RM extraction. The next step
for the extraction of the RM is based on the popu-
lar phrase-extraction algorithm of the phrase-
based statistical machine translation model. The
present alignment and phrase extraction methods

can be applied to the extraction of the MS and RM
[T
P(RM El | RM Fi) = Count(R|\/| Fi? RM El )

> Count(RM;,RM ;)

RMg;
Count(A, B) is the expected number of times A
is aligned with B in the training corpus.Tablel

shows some parameters for this part in the model.
Training n-gram model for the monolingual
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structure model is based on the English RM of
each parse tree, selected from the parallel tree cor-
pus. The 3-gram structure model is defined as fol-
lows:
P(RM, [T()]| RM,,[T(e)],RM, 4,[T(e)])=
Count(RM, ,,RM, ;,RM,)
> Count(RM,_,,RM,_,;,RM)
]

Count(A, B,C) is the times of the situation, in

which the RM is consecutive sub-trees of the
parse trees in the training set. Some 3-gram pa-
rameters in the training task are given in Table2.
We didn’t meet with the serious data sparseness
problem in this part of work, because most of the
MS structures have occurred enough times for
parameters estimation. But we still set some
fixed value for the unseen parameters in the
training set.

4  Decoding

A beam search algorithm is applied to this
model for decoding, which is based on the frame
of the beam search for phrase-based statistical
machine translation (Koehn et al, 03).

Here the process of the hypothesis generation is
presented. Given a sentence and its parse tree, all
the possible candidate RM are collected, which
can cover a part of the parse tree at the bottom.
With the candidates, the hypotheses can be
formed and extended.

For example, all the parse tree’s leaf nodes of a
Chinese sentence in Figure4, are covered by [r],
[ pron]and VP[vg-BNP[pron-n]] in the order of
choosing candidate RM{ (1), (2), (3)}.



e
- L /\BNP

L ! BNP
5 | =1
| pron [ r | Vg pron nl
., :
i
C n i ES ==
| WRE \'m.)_: _PRP_|lVB DT NN
I : NPE
.-f’fr |
| VP J
| _i |__r_| e S
wif] o[ mE omE g
vl —1 .__7_|._____|____|
! [
- — . _ '__.____!____.I
‘ How did | | vl I find the infromation |

|

Figure4. Process of translation based on RM

(r,WRB VBD) €)

414 — how did

(pron, PRP) (2)
ik — you

(VP[vg — BNP[ pron —n]],
VP[VB — NPB[DT — NN1])
3)

5.3 x4 {% H — find the information

Before the next expansion of a hypothesis, the
words in the scope of the present RM are trans-
lated into the target language and the correspond-

ing RM; [T (e)] is generated. For example, when

(r,WRB VBD), is used to expand the hypothe-
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sis , the words in the sub-tree are translated into
the target language, %17 — how did.

We also need to calculate the cost for the hy-
potheses according to the parameters in the model
to perform the beam search. The task for the beam
search is to find the hypothesis with the least cost.
When the expansion of a hypothesis comes to the
final state, the target language is generated. All of
the leave nodes of the parse tree for the source
language are covered. The parser for the target
language isn’t used for decoding. But a target
SMS is generated during the process of decoding
to achieve better reordering performance.

5 Experiments

The experiment was conducted for the task of
Chinese-to-English translation. A corpus, which
consists of 602,701 sentence pairs, was used as
the training set. We took CLDC 863 test set as our
test set (http://www.chineseldc.org/resourse.asp),
which consists of 467 sentences with an average
length of 14.287 Chinese words and 4 references.
To evaluate the result of the translation, the BLEU
metric (Papineni et al. 2002) was used.

5.1 The baseline

System used for comparison was Pharach
(Koehn et al., 2003; Koehn, 2004), which uses a
beam search algorithm for decoding. In its model,
it takes the following features: language model,
phrase translation probability in the two directions,
distortion model, word penalty and phrase penalty,
all of which can be achieved with the training
toolKits distributed by Koehn. The training set and
development set mentioned above were used to
perform the training task and to tune the feature
weights by the minimum error training algorithm.
All the other settings were the same as the default
ones. SRI Language Modeling Toolkit was used
to train a 3-gram language model. After training,
164 MB language model were obtained.

5.2  Our model

All the common features shared with Pharaoh
were trained with the same toolkits and the same
corpus. Besides those features, we need to train
the structure transformation model and the mono-
lingual structure model for our model. First,
10,000 sentence pairs were selected to achieve the



BLEU-n n-gram precisions
System 4 1 2 3 4 5 6 7 8
Pharaoh 0.2053 0.6449 | 0.4270 | 0.2919 | 0.2053 | 0.1480 | 0.1061 | 0.0752 | 0.0534
Ms sys- 0.2232 0.6917 | 0.4605 | 0.3160 | 0.2232 | 0.1615 | 0.1163 | 0.0826 | 0.0587
tem
Table3. Comparison of Pharach and our system
Features
System | Pim(e) | P(RT) [ P(IRT) [ Py(fle) Pu(elf) [ Word [ Phr [ Ph(RM)
Pharaoh | 0.151 e s 0.08 0.14 -029 | 026 | -----
MS sys- | 0.157 0.16 0.23 0.06 0.11 -0.20 | 0.22 0.36
tem
Table4.Feature weights obtained by minimum error rate training on development set
training set for this part of task. The Collins parser
and a Chinese parser of our own lab were used. References
After processing this corpus, we get a parallel tree A.P.Dempster,N.M.Laird, and D.B.Rubin

corpus. SRI Language Modeling Toolkits were
used again to train this part of parameters. In this
experiment, we set ¢ =3,and f=15. 149MB
RMS [T (s)] pairs and a 25 MB 3-gram mono-
lingual structure model were obtained.

6. Conclusion and Future work

A framework for statistical machine translation
is created in this paper. The results of the experi-
ments show that this model gives better perform-
ance, compared with the baseline system.

This model can incorporate the syntactic infor-
mation into the process of translation and model
the sub-structure projections across the parallel
parse trees.

The advantage of this frame work lies in that
the reordering operations can be performed at the
different levels according to the hierarchical RM
of the parse tree.

But we should notice that some independent as-
sumptions were made in the decomposition of the
parse tree. In the future, a proper method should
be introduced into this model to achieve the most
possible decomposition of the parse tree. In fact,
we can incorporate some other feature functions
into the model to model the structure transforma-
tion more effectively.
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Abstract new information needs to bparameterizedcare-
fully into one or more real valued feature functions.
Modern statistical machine translation sys-  Therefore, that requires some human knowledge and
tems may be seen as using two components: understanding. When not readily available, this
feature extraction, that summarizes informa- s typically replaced with painstaking experimenta-
tion about the translation, and a log-linear  tion. We propose to replace that step with automatic
framework to combine features. In this pa-  training of non-parametric agnostic features instead,
per, we propose to relax the linearity con-  hopefully relieving the burden of finding the optimal
straints on the combination, and hence relax-  parameterization.
ing constraints of monotonicity and indepen- First, we define the model and the objective func-

dence of feature functions. We expand fea-  tion training framework, then we describe our new
tures into a non-parametric, non-linear, and  on-parametric features.

high-dimensional space. We extend empir-
ical Bayes reward training of model param- 2 Model
eters to meta parameters of feature genera-

tion. In effect, this allows us to trade away | this section, we describe the general log-linear
some human expert feature design for data. ode| used for statistical machine translation, as
Preliminary results on a standard task show ye|| as a training objective function and algorithm.
an encouraging improvement. The goal is to translate a French (source) sentence
indexed byt, with surface stringf;. Among a set of

K, outcomes, we denote an English (target) a hy-

In recent years, statistical machine translation hayeothesis with surface strimjf) indexed byk.
experienced a quantum leap in quality thanks to au-
tomatic evaluation (Papineni et al., 2002) and erro2.1 Log-linear Model

based optimization (Och, 2003). The condition . .
log-linear feature combination framework (Bergear\‘il;hij1 pcrg;\/:ilteiga;rlalr:)Sglji?r?:a:n?nd:c:el? Enoiieg]nzyﬁiys

Della Pietra and Della Pietra, 1996) is remarkably (1)
2002). From a hypothesl%C , We extract features

simple and effective in practice. Therefore, re” © _ _ 0
cent efforts (Och et al., 2004) have concentrated diy,”, abbreviatedy, as a function o¢;” andf;. The

feature design — wherein more intelligent featuresonditional probability of a hypothesiéf) given a
may be added. Because of their simplicity, howsource sentencg is:
ever, log-linear models impose some constraints on

1 Introduction

how new information may be inserted into the sys- 2 (t)|f) » €xp[A-hy]
tem to achieve the best results. In other words, Pr=PAe ) =
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where thepartition functionZy,., is given by: Oracle BLEU hypothesis: There is no easy way
to pick the set hypotheses from anbest list that
Zin = Zexpp\ “hy]. will maximize the overall BLEU score. Instead, to
J compute oracle BLEU hypotheses, we chose, for
each sentence independently, the hypothesis with the
The vector of parameters of the model gives a highest BLEU score computed for a sentence itself.
relative importance to each feature function compoa/e believe that it is a relatively tight lower bound
nent. and equal for practical purposes to the true oracle

BLEU.
2.2 Training Criteria

. . . . . 2.2.2 Maximum Likelihood
In this section, we quickly review how to adjust _ _
to get better translation results. First, let us define Used in earlier models (Och and Ney, 2002), the
the figure Of merit used for evaluation Of translatior{ike”hOOd Critel’ion iS deﬁned as the |Ike|IhOOd Of an

quality. oracle hypothesisae,(f,?, typically a single reference
translation, or alternatively the closest match which
2.2.1 BLEU Evaluation was decoded. When the model is correct and infi-

The BLEU score (Papineni et al., 2002) was delité amounts of data are available, this method will
fined to measure overlap between a hypothesiz&nverge to the Bayes error (minimum achievable
translation and a set of human referencesgram error), where we define a classification task of se-
overlap counts{c, }_, are computed over the test/eCting%™ against all others.
set sentences, and compared to the total counts

n-grams in the hypothesis: £t23 Regularization Schemes

One can convert a maximum likelihood problem

@ 2 max. # of matching:-grams for hype!?, into maximuma posterioriusing Bayes’ rule:
n,(t) & ; i)
a, £ # of n-grams in hypothesis;.” . arg mleHP(A|{€§f)> £)) = arg mleHpkpo(A),
t t

Those quantities are abbreviatedanday to sim-

plify the notation. The precision ratif,, for ann- where py(-) is the prior distribution of\. The

gram ordem is: most frequently used prior in practice is the normal
prior (Chen and Rosenfeld, 2000):

A ZtCZ’(t) ||)\||2
- n,(t) A
3, af log po(A) = — 952

n

- log |U|7

A brevity penaltyBP is also taken into account, to

k ; wheres? > 0 is the variance. It can be thought of
avoid favoring overly short sentences:

as the inverse of a Lagrange multiplier when work-
. r ing with constrained optimization on the Euclidean
BP = min{1;exp(l — E)}’ norm of A. When not interpolated with the likeli-
hood, the prior can be thought of as a penalty term.
wherer is the average length of the shortest seriFhe entropy penalty may also be used:
tence, anda is the average length of hypotheses.

The BLEU score the set of hypothesmhé,f)} is: oA 1 & 1
£—= ;;pk 08 P-

Unlike the Gaussian prior, the entropy is indepen-
dent of parameterization (i.e., it does not depend on
'As implemented by NISTit eval - viilb. pl . how features are expressed).

1
B({e,(f)}) £ BP-exp <Z 1 log Pn>.

n=1
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2.2.4 Minimum Error Rate Training 2.3 Training Algorithm

A good way of training\ is to minimize empirical We train our model using a gradient ascent method
top-1 error on training data (Och, 2003). Compare@Vver an approximation of the empirical Bayes re-
to maximum-likelihood, we now give partial credit ward function.
for sentences which are only partially correct. Th(=2_3.1 Approximation

criterion is: . ) i
Because the empirical Bayes reward is defined

¢ " over a set of sentences, it may not be decomposed
argmaxZB({e(A)}) s e = argmaxp; o :
N BTk RORE sentence by sentence. This is computationally bur-
! densome. Its sufficient statistics are) -, ¢, and
We optimize the) so that the BLEU score of the 2 @k The fL{nctic_Jn may be reconstructed in a first-
most likely hypotheses is improved. For that reasonO rdgr _approxmatlpn W'.t h respect to each of these
we call this criterionBLEU max This function is statistics. In practice this has the effect of commut-

. . ing the expectation inside of the functional, and for
not convex and there is no known exact efficient op- g P ’

L . . . . "that reason we call this criteriddLEU soft This ap-
timization for it. However, there exists a linear-time

algorithm for exact line search against that Ob.ecproximation is calledinearization (Smith and Eis-
9 9 ) ner, 2006). We used a first-order approximation for

tive. The method is often used in conjunction with . . .
. o speed, and ease of interpretation of the derivations.
coordinate projection to great success. - T
The new objective function is:
2.2.5 Maximum Empirical Bayes Reward 4 n,(t)
. . .. . J A2 1 BP + Z 1 1 Z:ti
The algorithm may be improved by giving partial =08 198 S Eq™0’
credit for confidencey, of the model to partially cor- n=l ETk
rect hypotheses outside of the most likely hypothexhere the average bleu penalty is:
sis (Smith and Eisner, 2006):
log BP = min{0; 1 — — )
T K Ek 1a 7( )
b k
> prlog B({ex(t)}).

t=1 k=1

Nl =

The expectation is understood to be under the cur-
rent estimate of our log-linear model. Becagsds

Instead of the BLEU score, we use its logrithm, beDot differentiable, we replace the hard min function
cause we think it is exponentially hard to improvewith a sigmoid, yielding:
BLEU. This model is equivalent to the previous
model whenp,, give all the probability mass to the 5, gp ~ u(r — Ey ta;i’(t)) (1 _ 7”1 ) 7
top-1. That can be reached, for instance, when ’ Ek,tak’(t)
has a very large norm. There is no known method
to train against this objective directly, however, efWith the sigmoid functionu(z) defines a soft step
ficient approximations have been developed. Agaifunction: )
it is not convex. u(r) & ———,
. L . 14e ™
It is hoped that this criterion is better suited for .
high-dimensional feature spaces. That is our maiWIth a parameter > 1.
motivation for using this objective function through-2.3.2 Gradients and Sufficient Statistics

out this paper. With baseline features and on our \ye can obtain the gradients of the objective func-

data set, this criterion also seemed to lead to resulfgy, ysing the chain rule by first differentiating with

similar to Minimum Error Rate Training. respect to the probability. First, let us decompose
We can normalizeB to a probability measure the |og-precision of the expected counts:

b({e,(f)}). The empirical Bayes reward also coin-

cides with a divergenc® (p||b). log P, = log Ec;"")

(t)
— log EaZ .
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Eachn-gram precision may be treated separatel\Because the model is fairly simple, some of the in-
For eachn-gram order, let us define sufficient statistelligence must be shifted to feature design. After

tics ¢ for the precision: having decided what new information should go in
the overall score, there is an extra effort involved
USED (Vamkers Y82 (Vapk)as, in expressing oparameterizingfeatures in a way
tk tk which will be easiest for the model learn. Experi-
where the gradient of the probabilities is given by: men_tation is usually required to find the best config-
uration.

Vapr = pr(hy — h), By adding non-parametric features, we propose

_ to mitigate the parameterization problem. We will
with: K, not add new information, but rather, propose a way
h2 Z pih;. to insulate research from the parameterization. The

system should perform equivalently invariant of any
continuous invertible transformation of the original
input.

J=1

The derivative of the precisioR, is:

Vilog P, = Livh 9 3.1 Existing Features
T |Ec, Eayg
The baseline system is a syntax based machine

For the length, the derivative &g BP is: translation system as described in (Quirk, Menezes
, } and Cherry, 2005). Our existing feature set includes
ay

u(r—Ea) [(f — [l —u(r—Ea)]r + \, 11 features, among which the following:

a (Ea)?

wherey$ is the 1-gram component of¢. Finally, * Target hypothesis word count.
the derivative of the entropy is:

VaH =) (1 +1ogpi)Vaps-
kot

e Treelet count used to construct the candidate.

e Target language models, based on the Giga-
word corpus (5-gram) and target side of parallel
2.3.3 RProp training data (3-gram).

For all our experiments, we chose RProp (Ried-
miller and Braun, 1992) as the gradient ascent al- ¢
gorithm. Unlike other gradient algorithms, it is only
based on the sign of the gradient components at each,
iteration. It is relatively robust to the objective func-
tion, requires littte memory, does not require meta ¢ Dependency-based bigram language models.
parameters to be tuned, and is simple to implement.

On the other hand, it typically requires more iter3.2 Re-ranking Framework

ations than stochastic gradient (Kushner and Yirg) algorithm works in a re-ranking framework.
1997) or L-BFGS (Nocedal and Wright, 1999). | particular, we are adding features which are not
Using fairly conservative stopping criteria, we 0b-caysal or additive. Features for a hypothesis may
served that RProp was about 6 times faster than Mgt pe accumulating by looking at the English (tar-
imum Error Rate Training. get) surface string words from the left to the right
and adding a contribution per word. Word count,
for instance, is causal and additive. This property
The log-linear model is relatively simple, and is usuis typically required for efficient first-pass decod-
ally found to yield good performance in practice.ing. Instead, we look at a hypothesis sentence as a
With these considerations in mind, feature engineewhole. Furthermore, we assume that fiigbest list
ing is an active area of research (Och et al., 2004provided to us contains the entire probability space.

Order models, which assign a probability to the
position of each target node relative to its head.

Treelet translation model.

3 Adding Features
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In particular, the computation of the partition func-assuming®(-) is a density function. Parzen win-
tion is performed over alk;-best hypotheses. This dows converge to the true density estimate, albeit
is clearly not correct, and is the subject of furtheslowly, under weak assumptions.

study. We use the-best generation scheme inter-

leaved with A optimization as described in (Och,3'4'2 Bin Features

2003). Or_1e popular way of using contin.uous featgres in
log-linear models is to convert a single continuous
3.3 Issues with Parameterization feature into multiple “bin” features. Each bin feature

As alluded to earlier, when designing a new featurts defined as the indicator function of whether the
in the log-linear model, one has to be careful to fin@riginal continuous feature was in a certain range.
the best embodiment. In general, a set of featurdd1e bins were selected so that each bin collects an

must satisfy the following properties, ranked fromequal share of the probability mass. This is equiva-
strict to lax: lent to the maximum likelihood estimate of the den-

sity function subject to a fixed number of rectangular
density kernels. Since that mapping is not differen-
e Monotonicity tiable with respect to the original features, one may
use sigmoids to soften the boundaries.

Bin features are useful to relax the requirements
Firstly, a feature should be linearly correlated withof linearity and monotonicity. However, because
performance. There should be no region were they work on each feature individually, they do not
matters less than other regions. For instance, imddress the problem of inter-dependence between
stead of a word count, one might consider addinfgatures.
its logarithm instead. Secondly, the “goodness” of a . .
hypothesis associated with a feature must be mong'-a"3 Gaussian Mixture Mode! Features
tonic. For instance, using the signed difference be- Bin features may be generalized to multi-
tween word count in the French (source) and erfdimensional kernels by using a Gaussian smoothing
glish (target) does not satisfy this. (In that case, onwindow instead of a rectangular window. The direct
would use the absolute value instead.) Lastly, the@@logy is vector quantization. The idea is to weight
should be no inter-dependence between features. ARecific regions of the feature space differently. As-
an example, we can consider adding multiple larSUming that we havé/ Gaussians each with mean
guage model scores. Whether we should consid¥fctor u, and diagonal covariance matri%,,, and
ratios those of, globally linearly or log-linearly in- Prior weightw,,. We will add:m new features, each
terpolating them, is open to debate. When featurétéfined as the posterior in the mixture model:
interact across dimensions, it becomes unclear what L Wi N (B fin, C)
the best embodiment should be. S o N 1y, Cr )

e Linearity (warping)

¢ Independence (conjunction)

3.4 Non-parametric Features It is believed that any reasonable choice of kernels

A generic solution may be sought in non-parametriwill yield roughly equivalent results (Povey et al.,
processing. Our method can be derived from a qua2004), if the amount of training data and the number
tized Parzen estimate of the feature density functiof kernels are both sufficiently large. We show two

. methods for obtaining clusters. In contrast with bins,
3.4.1 Parzen Window

_ _ . lossless representation becomes rapidly impossible.
The Parzen window is an early empirical kernel

method (Duda and Hart, 1973). For an observatioML kernels:  The canonical way of obtaining clus-
h,,, we extrapolate probability mass around it wither is to use the standard Gaussian mixture training.

a smoothing windowd(-). The density function is: First, a single Gaussian is trained on the whole data
set. Then, the Gaussian is split into two Gaussians,

K
p(h) = i Z ®(h — hy) with each mean vector perturbed, and the Gaus-
M " sians are retrained using maximume-likelihood in an

m=1
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expectation-maximization framework (Rabiner anan 175k sentences which were selected from the
Huang, 1993). The number of Gaussians is typicall}NIST training data (NIST, 2006) to cover words in
increased exponentially. source language sentences of the MT02 develop-
_ .. ment and evaluation sets. Tlegram target lan-
Perceptron _kernels: We also .e>.<per|mented with guage model was trained on the Gigaword mono-
another quicker way of obtaining kermels. qungual data using absolute discounting smoothing.

chose an equal prior and a global covariance matr% a single decoding, the system generated 1000 hy-
Means were obtained as follows: for each Senten(beotheses per senten’ce whenever possible

in the training set, if the top-1 candidate was differ-
ent from the approximate maximum oracle BLEU4.2 Leave-one-out Training
hypothesis, both were inserted. It is a quick WaY order to have enough data for training, we gen-
to bootstrap and may reach the oracle BLEU score ) .
uickl erated oum-best lists using 10-fold leave-one-out
g - . training: base feature extraction models were trained
In the limit, GMMs will converge to the oracle th .
BLEU. In the next section. we show how to re-2" 9/10™ of the data, then used for decoding the
o ! held-out set. The process was repeated for all 10
estimate these kernels if needed. . g
parts. A singlex was then optimized on the com-
3.5 Re-estimation Formulse bined lists of all systems. Thatwas used for an-

. . other round of 10 decodings. The process was re-
Features may also be trained using the same empir-

. . eated until it reached convergence after 7 iterations.
ical maximum Bayes reward. Létbe the hyper- P g

ach decoding generated about 100 hypotheses, and
parameter vector used to generate features. In the : : .
ere was relatively little overlap across decodings.

case of Ian_guage models, for instance, this could :I‘:herefore, there were about 1M hypotheses in total.
backoff weights. Let us further assume that the fea- . . . )
The combined list of all iterations was used for all

ture values are differentiable with respecttdGra- ubsequent experiments of feature expansion
dient ascent may be applied again but this time witﬁ q P P '

respect ta@. Using the chain rule: 4.3 BLEU Training Results

Vo = (Voh)(Vipe)(Vy, J), We tried training systems under the empirical Bayes
reward criterion, and appending either bin or GMM
with Vppr = pr(1 — pi) ). Let us take the example features. We will find that bin features are es-
of re-estimating the mean of a Gaussian kefngi sentially ineffective while GMM features show a
modest improvement. We did not retrain hyper-
Vi bim = —wWmhm (1 — by )Cot (1 — h), parameters.

for its own feature, and for other posteriorst m:  4.3.1 Convexity of the Empirical Bayes Reward
The first question to ask is how many local op-
Vi b = —wrhy B Gt (5 — ), tima does the cost surface have using the standard
features. A complex cost surface indicates that some
Sgain may be had with non-linear features, but it also
shows that special care should be taken during op-
timization. Non-convexity is revealed by sensitivity
to initialization points. Thus, we decided to initial-
For our experiments, we used the standard NISike from all vertices of the unit hypercube, and since
MT-02 data set to evaluate our system. we had 11 features, we rar! experiments. The
histogram of BLEU scores on dev data after conver-
4.1 NIST System gence is shown on Figure 1. We also plotted the his-
A relatively simple baseline was used for our expertogram of an example dimension in Figure 2. The
iments. The system is syntactically-driven (Quirkrange of BLEU scores and lambdas is reasonably
Menezes and Cherry, 2005). The system was train@@rrow. Even though seems to be bimodal, we see

which is typically close to zero if no two Gaussian
fire simultaneously.

4 Experimental Results
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that this does not seriously affect the BLEU scorebins and re-trained. On Figure 3, we show that relax-
This is not definitive evidence but we provisionallying the monotonicity constraint leads to rough val-
pretend that the cost surface is almost convex fares for A\. Surprisingly, the BLEU score and ob-

practical purposes. jective on theraining set only increases marginally.
Starting from\ = 0, we obtained nearly exactly the
800 , , , , , , same training objective value. By varying the num-
ber of bins (20-50), we observed similar behavior as
well.

600

400

200

number of trained models

value

0
248 249 25 251 252 253 254
BLEU score

original weights
trained weights

Figure 1. Histogram of BLEU scores after training : : . :
from 21! initializations. 0 10 20 30 40 50
bin id

Figure 3: Values before and after training bin fea-
tures. Monotonicity constraint has been relaxed.
BLEU score is virtually unchanged.

700

600
500

400 4.3.3 GMM Features

Experiments were carried out with GMM fea-
tures. The summary is shown on Table 1. The
baseline was the log-linear model trained with the
baseline features. The baseline features are included

oo 0 "0 5 in all systems. We trained GMM models using the
A value iterative mixture splitting interleaved with EM re-

estimation, split up to 1024 and 16384 Gaussians,

Figure 2: Histogram of on& parameter after train- Which we call GMM-ML-1k and GMM-ML-16k re-
ing from 2'! initializations. spectively. We also used the “perceptron” selec-
tion features on the training set to bootstrap quickly
_ to 300k Gaussians (GMM-PCP-300k), and ran the
4.3.2 Bin Features same algorithm on the development set (GMM-

A log-linear model can be converted into a binPCP-2k). Therefore, GMM-PCP-300k had 300k
feature model nearly exactly by setting values features, and was trained on 175k sentences (each
in such a way that scores will be equal. Equivawith about 700 hypotheses). For all experiments but
lent weights (marked as ‘original’ in Figure 3) have“unreg” (unregularized), we chose a prior Gaussian
the shape of an error function (erf): this is becausprior with variance empirically by looking at the de-
the input feature is a cummulative random variableyelopment set. For all but GMM-PCP-300k, regu-
which quickly converges to a Gaussian (by the cenrarization did not seem to have a noticeably positive
tral limit theorem). After training the. weights for effect on development BLEU scores. All systems
the log-linear model, weights may be converted intavere seeded with the baseline log-linear model, and
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number of trained models
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with about 50 iterations, but convergence in BLEWzation invariance, and evaluation on a more compet-
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Abstract

In this paper, we present a Bayesian Learn-
ing based method to train word dependent
transition models for HMM based word
alignment. We present word aignment re-
sults on the Canadian Hansards corpus as
compared to the conventiona HMM and
IBM model 4. We show that this method
gives consistent and significant alignment
error rate (AER) reduction. We aso con-
ducted machine translation (MT) experi-
ments on the Europarl corpus. MT results
show that word alignment based on this
method can be used in a phrase-based ma-
chine trangation system to yield up to 1%
absolute improvement in BLEU score,
compared to a conventiona HMM, and
0.8% compared to a IBM model 4 based
word alignment.

1 Introduction

Word dignment is an important step of most
modern approaches to statistica machine
tranglation (Koehn et a., 2003). The classica
approaches to word aignment are based on IBM
models 1-5 (Brown et d., 1994) and the HMM
based alignment model (Vogel et al., 1996) (Och
and Ney, 2000a 2000b), while recently
discriminative approaches (Moore, 2006) and
syntax based approaches (Zhang and Gildea, 2005)
for word alignment are also studied. In this paper,
we present improvements to the HMM based
alignment model originally proposed by (Vogel et
al., 1996, Och and Ney, 2000a).
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Although HMM based word aignment ap-
proaches give good performance, one weakness of
it is the coarse transition models. In the HMM
based alignment model (Vogel et d., 1996), it is
assumed that the HMM transition probabilities de-
pend only on the jump width from the last state to
the next state. Therefore, the knowledge of transi-
tion probabilities given a particular source word e
is not sufficiently model ed.

In order to improve transition models in the
HMM based alignment, Och and Ney (2000a) ex-
tended the transition models to be word-class de-
pendent. In that approach, words of the source lan-
guage are first clustered into a number of word
classes, and then a set of transition parameters is
estimated for each word class. In (2002), Toutano-
vaet a. modeled self-transition (i.e., jump width is
zero) probability separately from other transition
probabilities. A word dependent self-transition
model P(stayle) is introduced to decide whether to
stay at the current source word e at the next step, or
jump to a different word. It was also shown that
with the assumption that a source word with fertili-
ty greater than one generates consecutive words in
the target language, this probability approximates
fertility modeling. Deng and Byrne in (2005) im-
proved this idea. They proposed a word-to-phrase
HMM in which a source word dependent phrase
length model is used to model the approximate
fertility, i.e., the length of consecutive target words
generated by the source word. It provides more
powerful modeling of approximate fertility than
the single P(stay|e) parameter.

However, these methods only model the proba-
bility of state occupancy rather than a full set of
transition probabilities. Important knowledge of
jumping from e to another position, e.g., jumping
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forward (monotonic alignment) or jumping back-
ward (non-monotonic alignment), is not model ed.

In this paper, we present a method to further im-
prove the transition models for HMM dignment
model. For each source word e, we not only model
its self-transition probability, but also the probabil-
ity of jumping from word e to a different word. For
this purpose, we estimate a full transition model
for each source word.

A key problem for detailed word-dependent
transition modeling is data sparsity. In (Toutanova
et a., 2002), the word dependent self-transition
probability P(stayle) isinterpolated with the global
HMM sdf-transition probability to aleviate the
data sparsity problem, where an interpolation
weight is used for all words and that weight is
tuned on a hold-out set. In the proposed word de-
pendent transition model, because there are a large
number of parameters to estimate, the data sparsity
problem is even more severe. Moreover, since the
sparsity of different words are very different, it is
difficult to find a one-size-fits-al interpolation
weight, and therefore simple linear interpolation is
not optimal. In order to address this problem, we
use Bayesian learning so that the transition model
parameters are estimated by maximum a posteriori
(MAP) training. With the help of the prior distribu-
tion of the model, the training is regularized and
results in robust models.

In the next section we briefly review modeling
of transition probabilities in a conventional HMM
alignment model (Vogel et a., 1996, Och and Ney,
2000a). Then we describe the equations of MAP
training for word dependent transition models. In
section 5, we present word alignment results that
show significant alignment error rate reductions
compared to the baseline HMM and IBM model 4.
We aso conducted phrase-based machine tranda-
tion experiments on the Europarl corpus, English —
French track, and shown that the proposed method
can lead to significant BLEU score improvement
compared to the HMM and IBM model 4.

2 BasdineHMM alignment model

We briefly review the HMM based word alignment
models (Vogel, 1996, Och and Ney, 2000a). Let's

denote by f’ =(f,,..., f,) asthe French sentence,
e =(e,...e) as the English sentence, and
al =(a,,..,a,) as the alignment that specifies the
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position of the English word aligned to each
French word. In the HMM based word alignment,
aHMM isbuilt at English side, i.e., each (position,
word) pair, (aj,eaj), isaHMM state, which emits
the French word f;. In order to mitigate the sparse
data problem, it is assumed that the emission prob-
ability only depends on the English word, i.e,
p(f; |aj,eaj): p(f, |eaj), and the transition prob-
ability only depends on the position of the last
state and the length of the English sentence, i.e,
p(a, |aj_l,eaiil,l): p(a; |a;_y,1) . Then, Vogel et

al. (1996) give

(1 1e)= X1 [ P, 13, 1)p(1, le,)|

a) j=1

In the HMM of (Vogel et a., 1996), it is further
assumed these transition probabilities
p(a; =ila;, =i’,1) depend only on the jump

width (i - i), i.e,

pi i1y ==

D c(l-i)

)

Therefore, the transition probability
p(a; |a;4,1) depends on a;; but only through the
distortion set {c(i - i")}.

In (Och and Ney, 2000a), the word null is intro-
duced to generate the French words that don't align
to any English words. If we denote by j _ the posi-
tion of the last French word before j that dignsto a
non-null English word, the transition probabilities

p(a, =ila_ =i1) in (1) is computed as

p(a; =ila; =i"1)=p([i",I), where

fb(i|i',|):{p° N if i _.0

(I-py)- p(i]i',1) otherwise

state i=0 denotes the state of a null word at the

English side, and py is the probability of jumping

to state 0, which is estimated from hold-out data.
For convenience, we denote by

A={p(i",1),p(f, |g)]} the HMM parameter set.



In the training stage, A are usualy estimated
through maximum likelihood (ML) training, i.e.,

AML = arg/';nax p( flJ Ie_ll_ ’A) (3)

and the efficient Expectation-Maximization al-
gorithm can be used to optimize A iteratively until
convergence (Rabiner 1989).

For the interest of this paper, we elaborate tran-
sition parameter estimation with more details.
These transition probabilities { p(i |i’,1)} is amul-
tinomia distribution estimated according to (2),
where at each iteration the distortion set {c(i - i")}
is the fractional count of transitions with jump
widthd=i-i'i.e,

J-1 1

c(d)=>> Pr(a, =ia,=i+d]|f’,e,A)(4)

=1 i=1

where A" isthe model obtained from the immediate
previous iteration and these terms in (4) can be
efficiently computed by using the Forward-
Backward algorithm (Rabiner 1989). In practice,
we can bucket the distortion parameters { c(d)} into
a few buckets as implemented in (Liang et a.,
2006). In our implementation, 15 buckets are used
for ¢(<-7), ¢(-6), ... ¢(0), ..., c(>7). The probability
mass for transitions with jump width larger than 6
isuniformly divided. As suggested in (Liang et al.,
2006), we also use two separate sets of distortion
parameters for transitioning into the first state, and
for trangitioning out of the last state, respectively.
Finally, we further smooth transition probabilities
with a uniform distribution as described in (Och
and Ney, 2000a),

(3, Iai’l):a'%"'(l_a)' p(a;la;_,1).

After training, Viterbi decoding is used to find
the best alignment sequenced;’ . i.e,,

&2 =argmax[ [ pla, 12, (", le,)].

a

3 Word-dependent transition models in
HMM based alignment model

As discussed in the previous sections, conventional
transition models that only depend on source word
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positions are not accurate enough. There are only
limited distortion parameters to model the transi-
tion between HMM states for al English words,
and the knowledge of transition probabilities given
a particular source word is not represented. In or-
der to improve the transition model in HMM, we
extend the transition probabilities to be word de-
pendent so that the probability of jumping from
state a_to & not only depends on &, but also de-
pends on the English word at position & . This
gives
J
p(f’ €)=Y T]| p(a I3, e, .1)p(fle,)].
a) =1 N

Compared to (1), we need to estimate the transition
parameter p(a; |, e, ,I) which is e, depen-
dent. Correspondingly, the HMM parameters we
need to estimate are A ={p(i |i’.g.1), p(f,|&)},

which provides a much richer set of free parame-
tersto model transition probabilities.

4 Bayesian Learning for word-dependent
transition models

41

Using ML training, we can obtain the estimation
formula for word dependent transition probabilities
{p(@ii’,e1)} similaras(2),i.e,
- c(i—i%e
(116 1) =00
D c(l-i%e)
1=1

where at each training iteration the word dependent
distortion set {c(i - i';€)} iscomputed by
c(d;e) =

J-1 1

Z:Za(eai =e)Pr(a, =i,a,, =i+d|f’,&,A)

j=1 i=1
(6)
whered =i - i' is the jump width, and 5(eai =e)is

Maximum a posteriori training

)

the Kronecker delta function that equals one if
e, =e, and zero otherwise.

However, for many non-frequent words, the
data samples for c(d;e) is very limited and there-
fore may lead to a biased model that severely over-
fitsto the sparse data. In order to address thisissue,
maximum a posteriori (MAP) framework is ap-
plied (Gauvain and Lee, 1994). In MAP training,
an appropriate prior distribution is used to incorpo-



rate prior knowledge into the model parameter es-
timation,

AMAP = arginax p( f1J |e1| 1A)g(A |e1|) (7)

where the prior distribution g(A |e]) characterizes

the distribution of the model parameter set A giv-
en the English sentence. The relation between ML
and MAP estimation is through the Bayes' theorem
where the posterior distribution

p(A|f].€)e p(f |, A)g(Ale) .,  and
p(f,’ |e,A) isthelikelihood function.

In transition model estimation, the transition
model {p(i|i’,e., 1)} is a multinomial distribution.

Its conjugate prior distribution is a Dirichlet distri-
bution taking the following form (Bishop 2006),

a(p(ili%e.1)1el) =TT pl .10 @

where{v,; } is the set of hyper-parameters of the
prior distribution. Note that for mathematic tracta-
bility, v, needs to be greater than 1, which is
usually the casein practice.

Substitute (8) into (7) and using EM a gorithm,
we can obtain the iterative MAP training formula
for transition models (Gauvain and Lee, 1994)

- c(i—ie)+v,, -1
Puae (1 [1",€1) = ( ) N

Dl -ite)+> v, |

4.2  Setting hyper-parameters for the prior
distribution

In Bayesian learning, the hyper-parameter set

{v;} of the prior distribution is assumed known

based on a subjective knowledge about the model.
In our method, we set the prior with word-
independent transition probabilities.

(9)

Vi =7-p(i i 1)+1 (10)
where 7 is a positive parameter that needs to tune
on a hold-out data set. We will investigate the €f-
fect of T with experimental resultsin later sections.

Substituting (10) into (9), the MAP based transi-
tion model training formula becomes
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1) (11)
dc(l-ite)+r

By finel) =S —Ii'ie)+r- p(i

Note that for frequent words that have a large
amount of data samples for c(d;e), the sum of

Z|:1 YYYYY (I -i"e) is large, so that p,(i [i'e1)is

dominated by the data distribution. For rare words
that have low counts of c(d;e), p,.(i i",e1) will
approach to the word independent model. On the
other hand, for the same word, when a small 7 is
used, a weak prior is applied, and the transition
probability is more dependent on the training data
of that word. When z becomes larger and larger, a
stronger prior knowledge is applied, and the word
dependent transition model will approach to the
word-independent transition model. Therefore, we
can vary the parameter 7 to control the contribution
of prior distribution in model training and tune the
word alignment performance.

5 Experimental Results

51 Word alignment on the Canadian Han-
sards English-French corpus

We evaluated our word dependent transition mod-
els for HMM based word alignment on the Eng-
lish-French Hansards corpus. Only a subset of
500K sentence pairs was used in our experiments
including 447 test sentence-pairs. Tests sentence-
pairs were manually aligned and were marked with
both sure and possible alignments (Och and Ney
20004). Using this annotation, we report the word
alignment performance in terms of alignment error
rate (AER) as defined by Och and Ney (2000a):

|ANS|+|ANP|
|Al+1S]

AER=1-

(12)

where S denotes the set of sure gold alignments, P
denotes the set of possible gold alignments, A de-
notes the set of alignments generated by the word
alignment method under test.

We first trained the IBM model 1 and then a
baseline HMM model as described in section 2 on
the Hansards corpus. As the common practice, we
initialized the trandation probabilities of model 1
with uniform distribution over word pairs occur
together in a same sentence pair. HMM was initia-



lized with uniform transition probabilities and
model 1 translation probabilities. Both model 1 and
HMM were trained with 5 iterations. For the pro-
posed word dependent transition model based
HMM (WDHMM), we used the same settings as
the HMM basdline except that the transition prob-
ability is computed according to (11). We aso
trained IBM model 4 using GIZA++ provided by
Och and Ney (2000c), where 5 iterations of model
4 training was performed after 5 iterations of mod-
e 1 plus5iterations of HMM.

The effect of hyper-parameters in the prior dis-
tribution for WDHMM is shown in Figure 1. The
horizontal dot line represents the AER given by the
baseline HMM. The dash-line curve represents the
AERs of WDHMM given different 7's. We vary
the value of 7 in the range from 0 to 1E5 and
present that range in alog-scale in the figure. Since
7 =0isnot avalid value in the log domain, we ac-
tualy use the left-most point in the figure to
represent the case of = 0. From Fig. 1 it is shown
that when 7 is zero, we actually use the ML trained
word-dependent transition model. Due to the
sparse data problem, the model is poorly estimated
and lead to a high AER. When increase z to alarg-
er value, a stronger prior is applied to give a more
robuss model. Then in a large range
of 7€ [100,2000] , WDHMM outperforms baseline

HMM significantly. When 7 gets even larger, MAP
model training becomes being over-dominated by
the prior distribution, and that eventualy resultsin
a performance approaching to that of the baseline
HMM. Fig. 1 only presents AER results that are
calculated after combination of word alignments of
both E—F and F—E directions based on a set of
heuristics proposed by Och and Ney (2000b). We
have observed the smilar trend of AER change for
the E—F and F—E dignment directions, respec-
tively. However, due to the limit of the space, we
didn’t include them in this paper.

In table 1-3, we give a detailed comparison be-
tween baseline HMM, WDHMM (with z = 1000),
and IBM model 4. Compared to the baseline
HMM, the proposed WDHMM can reduce AER by
more than 13%. It even outperforms IBM model 4
after two direction word alignment combination.
Meanwhile we noticed that although IBM model 4
gives superior performance over the basdline
HMM on both of the two alignment directions, its
AER after combination is ailmost the same as that
of the baseline HMM. We hypothesize that it may
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due to the modeling mechanism difference be-
tween HMM and model 4.

Al mmmmmmmmmmeemeooooe-eooo o

| | |-~ WDHMM |

10.50ee - R L R HMM baseline !

e l l l l

N | | | |

10 - - - - L - Lo 1 ___ 1 4

' l l l |

=3 '\ | | | |

o 95 el e

< I e I e I

| v | y’ |

[o] S Lo _N\NL_o____ L,,,;G': ,,,,, J

O |

| RIS [y 1 | |

85 --———- Lo ____ Lo "B a

| | T | |

| | | | |

| | | | |

8 1 1 1 1 |

0 1 2 3 4 5
log10(tau)

Figure 1. The AER of HMM baseline and the AER
of WDHMM as the prior parameter z is varied from 0 to
1E5. Note that the x axisis in log scale and we use the
left-most point in the figure to represent the case of 7 =
0. These results are calculated after combination of
word alignments of both E—~F and F—E directions.

model E—-F F-E combined
basdine HMM 12.7 13.7 9.8
WDHMM 11.6 12.7 8.5

(t = 1000)

IBM model 4 11.3 12.1 9.7
(GIZA++)

Table 1: Comparison of test set AER between vari-
ous modelstrained on 500K sentence pairs. All numbers
arein percentage.

model E—-F F-E combined
basdine HMM 85.2 83.1 91.7
WDHMM 86.1 83.8 93.3

(t = 1000)

IBM model 4 87.2 86.2 91.6
(GIZA++)

Table 2: Comparison of test set Precision between
various models trained on 500K sentence pairs. All
numbers are in percentage.

model E—-F F-E combined
basdine HMM 90.6 914 88.3
WDHMM 919 92.6 89.1
(t = 1000)

IBM model 4 91.1 90.8 88.4
(GIZA++)

Table 3: Comparison of test set Recall between vari-
ous models trained on 500K sentence pairs. All numbers
arein percentage.




5.2 Machinetrandation on Europarl corpus

We further tested our WDHMM on a phrase-based
machine trandation system to see whether our im-
provement on word alignment can also improve
MT accuracy measured by BLEU score (Papineni
et a., 2002). The machine tranglation experiment
was conducted on the English-to-French track of
NAACL 2006 Europarl evaluation workshop. The
supplied training corpus contains 688K sentence
pairs. Text data are aready tokenized. In our expe-
riment, we first lower-cased al text, then word
clustering was performed to cluster words of Eng-
lish and French into 32 word classes respectively
using the tool provided by (J. Goodman). Then
word dignment was performed. Both basdine
HMM and IBM model 4 use word-class based
transition models, and in WDHMM the word-class
based transition model was used for prior distribu-
tion. The IBM model 4 is trained by GIZA++ with
aregimen of 5iterations of Modd 1, 5 iterations of
HMM, and 5 iterations of Model 4. Alignments of
both directions are generated and then are com-
bined by heuristic rules described in (Och and Ney
2000b). Then phrase table was extracted from the
word aligned bilingual texts. The maximum phrase
length was set to 7. In the phrase-based MT system,
there are four channel models. They are direct
maximum likelihood estimate of the probability of
target phrase given source phrase, and the same
estimate of source given target; we also compute
the lexicon weighting features for source given
target and target given source, respectively. Other
models include word count and phrase count, and a
3-gram language model provided by the workshop.
These models are combined in a log-linear frame-
work with different weights (Och and Ney, 2002).
The model weight vector is trained on a dev set
with 2000 English sentences, each of which has
one French trandation reference. In the experiment,
only the first 500 sentences were used to train the
log-linear model weight vector, where minimum
error rate (MER) training was used (Och, 2003).
After MER training, the weight vector that gives
the best accuracy on the development set was se-
lected. We then applied it to tests. There are 2000
sentences in the devel opment-test set devtest, 2000
sentences in atest set test, and 1064 out-of-domain
sentences called nc-test. The Pharaoh phrase-based
decoder (Koehn 2004b) was used for decoding.
The maximum re-ordering limit for decoding was
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set to 7. We used default settings for al other pa-
rameters.

We present BLEU scores of MT systems using
different word aignments on all three test sets,
where Fig 2 shows BLEU scores of the two in-
domain tests, and Fig 3 shows MT results on the
out-of-domain test set. In testing, the prior parame-
ter t of WDHMM was varied in the range of [20,
5000].

In Fig. 2, the horizontal dash line and the hori-
zontal dot line represent BLEU scores of the base-
line HMM on devtest set and test set, respectively.
The dash-line curve and dot-line curve represent
the BLEU scores of WDHMM on these two tests.
It is shown in the figure that WDHMM can
achieve the best BLEU scores on both devtest and
test when the prior parameter t is set to 100. Fur-
thermore, WDHMM dso gives considerable im-
provement on BLEU score over the baseline HMM
in a broad range of t from 50 to 1000, which indi-
cates that WDHMM works pretty stable within a
reasonabl e range of prior distributions.

In Fig. 3, the horizontal dash line represents the
BLEU score of baseline HMM on nc-test set and
the dash-line curve represents BLEU scores of
WDHMM on the out-of-domain test. The best
BLEU isabtained at t = 500. It is interesting to see
that the best 1 for the out-of-domain test is larger
than that of an in-domain test. One possible expla-
nation is that for out-of-domain data, we need
more robust modeling for outliers other than more
accurate (in-domain) modeling. However, since the
difference between t = 500 and t = 100 are very
small, further experiments are needed before we
can draw aconclusion.

We gives a detailed BL EU-wise comparison be-
tween basdine HMM and WDHMM in Table 4,
where for WDHMM, t =100 is used since it gives
the best performance on the development-test set
devtest. In the same table, we also provide BLEU
results of using IBM model 4. Compared to base-
line HMM aignment model, WDHMM can im-
prove the BLEU score nearly 1% on in-domain test
sets, and the improvement reduces to about 0.5%
on the out-of-domain test. When compared to IBM
model 4, WDHMM still gives higher BLEU
scores, and outperform model 4 by about 0.8% on
the test set. However the gain is reduced to 0.3%
on devtest and 0.5% on the out-of-domain nc-test.
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Figure 2: Machine trandation results on Europarl,
English to French track, devtest and test sets. The
BLEU score of HMM baseline and the BLEU score of
WDHMM as the prior parameter 7 is varied from 20 to
5000. Note that the x axisisin log scale.
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Figure 3: Machine trandation results on Europarl,
English to French track, out-of-domain test sets. The
BLEU score of HMM baseline and the BLEU score of
WDHMM as the prior parameter 7 is varied from 20 to
5000. Note that the x axisisin log scale.

model devtest test nc-test
basdine HMM 29.69 29.65 | 2051
WDHMM (t = 100) 3059 | 30.65 | 20.96
IBM model 4 30.29 29.86 | 2051

Table 4;: Comparison of BLEU scores on devtest, test,
and nc-test set between various word alignment models.
All numbers are in percentage.

In order to verify whether these gains from
WDHMM are datisticaly significant, we imple-
mented paired bootstrap resampling method pro-
posed by Koehn (2004b) to compute statistical sig-
nificance of the above test results. In table 5, it is
shown that BLEU gains of WDHMM over HMM
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and IBM-4 on different test sets, except the gain
over IBM model 4 on the devtest set, are statistical-
ly significant with a significance level > 95%.

significance level devtest test nc-test
WDHMM (t=100) | 99.9% | 99.9% | 99.5%
vs. HMM

WDHMM (t=100) | 93.7% | 99.9% | 99.3%
vs. IBM model 4

Table 5: Statistical significance test of the BLEU im-
provement of WDHMM (t = 100) vs. HMM baseline,
and WDHMM (t = 100) vs. IBM model 4 on devtest,
test, and nc-test sets.

5.3 Runtime performance of WDHMM

WDHMM runs as fast as a hormal HMM, and
the extra memory needed for the word dependent
transition model is proportiona to the vocabulary
size of the source language given that the distortion
sets of {c(d;e)} are bucketed. Runtime speed of
WDHMM and IBM-model 4 using GIZA++ is ta
bulated in table 6. The results are based on Euro-
parl English to French alignment and these tests
were conducted on a fast PC with 3.0GHz CPU
and 16GB memory. In Table 6, WDHMM includes
5 iterations of model 1 training followed by 5itera-
tions of WDHMM, while "IBM modedl 4" includes
5 iterations for model 1, 5 iterations for HMM, and
5 iterations for model 4. It is shown in Table 6 that
WDHMM is more than four times faster to pro-
duce the end-to-end word alignment.

model runtime
(min)
WDHMM 121
IBM model 4 537

Table 6: comparison of runtime performance bew-
teen WDHMM training and IBM model 4 training using
GIZA++.

6 Discussion

Other works have been done to improve transition
models in HMM based word alignment. Och and
Ney (2000a) have suggested estimating word-class
based transition models so as to provide more de-
tailed transition probabilities. However, due to the
sparse data problem, only a small nhumber of word
classes are usually used and the many words in the
same class still have to share the same transition
model. Toutanova et a. (2002) has proposed to




estimate a word-dependent self-transition model
P(stayle) so that each word can have its own prob-
ability to decide whether to stay or jump to a dif-
ferent word. Later Deng and Byrne (2005) pro-
posed a word dependent phrase length model to
better model state occupancy. However, these
model can only model the probability of self-
jumping. Important knowledge of jumping from e
to a different position should also be word depen-
dent but is not modeled.

Ancther interesting comparison is between
WDHMM and the fertility-based models, eg.,
IBM model 3-5. Compared to these models, a ma-
jor disadvantage of HMM is the absence of a mod-
e of source word fertility. However, as discussed
in (Toutanova et al. 2002),the word dependent self-
transition model can be viewed as an approxima-
tion of fertility model. i.e., it models the number of
consecutive target words generated by the source
word with a geometric distribution. Therefore, with
awell estimated word dependent transition model,
this weakness of HMM is dleviated.

In this work, we proposed estimating a full
word-dependent transition models in HMM  based
word adignment, and with Bayesian learning we
can achieve robust model estimation under the
gparse data condition. We have conducted a series
of experiments to evauate this method on word
alignment and machine translation tests, and show
significant improvement over baseline HMM in
terms of AER and BLEU. It also performs better
than the much more complicated IBM model 4
based word alignment model on various word
alignment and machine tranglation tasks.

Acknowledgments The author is grateful to Chris
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Efficient Handling of N-gram Language Models
for Statistical Machine Translation
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Abstract

Statistical machine translation, as well as
other areas of human language processing,
have recently pushed toward the use of large
scalen-gram language models. This paper
presents efficient algorithmic and architec-
tural solutions which have been tested within
the Moses decoder, an open source toolkit
for statistical machine translation. Exper-
iments are reported with a high perform-
ing baseline, trained on the Chinese-English
NIST 2006 Evaluation task and running on
a standard Linux 64-bit PC architecture.
Comparative tests show that our representa-
tion halves the memory required by SRI LM
Toolkit, at the cost of 44% slower translation
speed. However, as it can take advantage
of memory mapping on disk, the proposed
implementation seems to scale-up much bet-
ter to very large language models: decoding
with a 289-million 5-gram language model
runs in 2.1Gb of RAM.

Introduction

Mauro Cettolo
Fondazione Bruno Kessler - IRST
[-38050 Trento, Italy
cettolo@itc.it

Goodman, 1999) were developed. Nowadays, the
availability of larger and larger text corpora is stress-
ing the need for efficient data structures and algo-
rithms to estimate, store and access LMs. Unfortu-
nately, the rate of progress in computer technology
seems for the moment below the space requirements
of such huge LMs, at least by considering standard
lab equipment.

Statistical machine translation (SMT) is today
one of the research areas that, together with speech
recognition, is pushing mostly toward the use of
huge n-gram LMs. In the 2006 NIST Machine
Translation Workshop (NIST, 2006), best perform-
ing systems employed 5-grams LMs estimated on at
least 1.3 billion-word texts. In particular, Google
Inc. presented SMT results with LMs trained on
8 trillion-word texts, and announced the availabil-
ity of n-gram statistics extracted from one trillion
of words. Then-gram Google collection is now
publicly available through LDC, but their effective
use requires either to significantly expand computer
memory, in order to use existing tools (Stolcke,
2002), or to develop new ones.

This work presents novel algorithms and data
structures suitable to estimate, store, and access

In recent years, we have seen an increasing intereStY large LMs. The software has been integrated

toward the application ofi-gram Language Mod-
els (LMs) in several areas of computational lin-
guistics (Lapata and Keller, 2006), such as ma-

into a popular open source SMT decoder called
Moses.! Experimental results are reported on the
Chinese-English NIST task, starting from a quite

chine translation, word sense disambiguation, te)well—performlng baseline, that exploits a large 5-

tagging, named entity recognition, etc. The origi-
nal framework ofn-gram LMs was principally au-

tomatic speech recognition, under which most
the standard LM estimation techniques (Chen and ’http://www.statmt.org/moses/

88

gram LM.

This paper is organized as follows. Section 2

Jpresents techniques for the estimation and represen-
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tation in memory of.-gram LMs that try to optimize 1-gr 2-gr 3-gr
space requirements. Section 3 describes methods
implemented in order to efficiently access the LM
at run time, namely by th#oses SMT decoder.

Section 4 presents a list of experiments addressing }1;:~ """"" Wl
specific questions on the presented implementation. R

2 Language Model Estimation

LM estimation starts with the collection afgrams .
and their frequency counters. Then, smoothing pa- 36 3 8 1~
rameters are estimated (Chen and Goodman, 1999) [ W/ frisucclptriflags |
for eachn-gram level; infrequent-grams are possi-

bly pruned and, finally, a LM file is created contain-,
ing n-grams with probabilities and back-off weights.

Figure 1: Dynamic data structure for storing
grams. Blocks of successors are allocated on de-
mand and might vary in the number of entries
(depth) and bytes used to store counters (width).
Clearly, a first bottleneck of the process might occusize in bytes is shown to encode words (w), frequen-

if all n-grams have to be loaded in memory. Thigies (fr), and number of (succ), pointer to (ptr) and
problem is overcome by splitting the collectionsf  table type of (flags) successors.

grams statistics into independent steps and by mak-
ing use of an efficient data-structure to collect andrams. In the structure proposed by (Wessel et al.,
storen-grams. Hence, first the dictionary of the cor-1997) counters af-grams occurring more than once
pus is extracted and split inig word lists, balanced are stored into 4-byte integers, while singleten
with respect to the frequency of the words. Thengrams are stored in a special table with no counters.
for each list, onlyn-grams whose first word belongs This solution permits to save memory at the cost of
to the list are extracted from the corpus. The valueomputational overhead during the collectionnef
of K is determined empirically and should be suffigrams. Moreover, for historical reasons, this work
ciently large to permit to fit the partiad-grams into ignores the issue with huge counts. In the SRILM
memory. The collection of each subsetrofjrams toolkit (Stolcke, 2002)n-gram counts are accessed
exploits a dynamic prefix-tree data structure showthrough a special class type. Counts are all repre-
in Figure 1. It features a table with all collected 1-sented as 4-byte integers by applying the following
grams, each of which points to its 2-gram succegrick: counts below a given threshold are represented
sors, namely the 2-grams sharing the same 1-graas unsigned integers, while those above the thresh-
prefix. All 2-gram entries point to all their 3-gram old, which are typically very sparse, correspond in-
successors, and so on. Successor lists are stodekd to indexes of a table storing their actual value.
in memory blocks allocated on demand through ao our opinion, this solution is ingenious but less
memory pool. Blocks might contain different num-general than ours, which does not make any assump-
ber of entries and use 1 to 6 bytes to encode fréion about the number of different high order counts.
guencies. In this way, a minimal encoding is used
in order to represent the highest frequency entry &2 LM Smoothing
each block. This strategy permits to cope well wittFor the estimation of the LM, a standard interpo-
the high sparseness afgrams and with the pres- lation scheme (Chen and Goodman, 1999) is ap-
ence of relatively few highly-frequemt-grams, that plied in combination with a well-established and
require counters encoded with 6 bytes. simple smoothing technique, namely the Witten-
The proposed data structure differs from other imBell linear discounting method (Witten and Bell,
plementations mainly in the use of dynamic alloca1991). Smoothing of probabilities up from 2-grams
tion of memory required to store frequenciesmaf is performed separately on each subset-gframs.

2.1 N-gram Collection

&9



For example, smoothing statistics for a 5-gram 1-gr 2-gr 3-gr
(v,w,x,y,z) are computed by means of statistics
that are local to the subset afgrams starting with
v. Namely, they are the countefé(v, w, z,v, 2), ,—|3 1
N(v,w,z,y), and the numbeD (v, w, z,y) of dif- . - B
ferent words observed in conteit, w, x, y). g :
Finally, K LM files are created, by just read-

ing through then-gram files, which are indeed not 3 11 4:'-..
loaded in memory. During this phase pruning of in- w_1bo | prlidx

frequentn-grams is also permitted. Finally, all LM
files are joined, global 1-gram probabilities are com-
puted and added, and a single large LM file, in thE

standard ARPA format (Stolcke, 2002), is generateé?.ytes_"’1re shown used_to encode single word_s_ _(W)’
We are well aware that the implemented smoothqu"’mt'zeOI back-off weights (bo) and probabilities

ing method is below the state-of-the-art. HOWEVGI(,pr)’ and start index of successors (idx).

from one side, experience tells that the gap in per- . . . .
) . Rf all its points. Quantization is applied separately
formance between simple and sophisticated smooth- - S
ing techniques shrinks when verv larae coroora araet eachn-gram level and distinctly to probabilities
g d y'arg P of back-off weights. The chosen level of quantiza-

_used, fro”.‘ the other, t.he chosen smoo‘Fhlng meth%on is 8 bits (1 byte), that experimentally showed to
is very suited to the kind of decomposition we are L . .

. - introduce negligible loss in translation performance.
applying to then-gram statistics. In the future, we

. . . The quantization algorithm can be applied to any
will nevertheless address the impact of more sophis- . .
. ) . M represented with the ARPA format. Quantized
ticated LM smoothing on translation performance.

LMs can also be converted into a binary format that
2.3 LM Compilation can be efficiently uploaded at decoding time.

igure 2: Static data structure for LMs. Number of

The final textual LM can be compiled into a binary

format to be efficiently loaded and accessed at rur?’— Language Model Access
time. Our implementation follows the one adoptedne motivation of this work is the assumption that
by the CMU-Cambridge LM Toolkit (Clarkson and efficiency, both in time and space, can be gained by
Rosenfeld, 1997) and well analyzed in (Whittakeexploiting peculiarities of the way the LM is used
and Raj, 2001). Brieflyn-grams are stored in by the hosting program, i.e. the SMT decoder. An
a data structure which privileges memory savinginalysis of the interaction between the decoder and
rather than access time. In particular, single comhe LM was carried out, that revealed some impor-
ponents of eactn-gram are searched, via binarytant properties. The main result is shown in Figure 3,
search, into blocks of successors stored contigwhich plots all calls to a 3-gram LM byloses dur-
ously (Figure 2). Further improvements in meming the translation from German to English of the

ory savings are obtained by quantizing both back-ofbllowing text, taken from the Europarl task:

weights and probabilities.
ich bin kein christdemokrat und

2.4 LM Quantization glaube daher nicht an wunder .
doch ich m ochte dem europ &ischen

Quantization provides an effective way of reducing parlament , so wie es gegenw  Urtig
the number of bits needed to store floating point ~ Peschaffen ist , f = ~ur seinen

. . . grossen beitrag zu diesen arbeiten
variables. (Federico and Bertoldi, 2006) showed that  ganken.
best results were achieved with the so-caligthing
method This method partitions data points into uni-Translation of the above text requires about 1.7 mil-
formly populated intervals or bins. Bins are filled inlion calls of LM probabilities, that however involve
in a greedy manner, starting from the lowest valueonly 120,000 different 3-grams. The plot shows typ-
The center of each bin corresponds to the mean valigl locality phenomena, that is the decoder tends to
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text: each point corresponds to a specific 3-gram.

access the LM-grams in nonuniform, highly local- Figure 4: Memory mapping of the LM on disk.
ized patterns. Locality is mainly temporal, namelyOnly the memory pages (grey blocks) of the LM that
the first call of ann-gram is easily followed by are accessed while decoding the input sentence are
other calls of the same-gram. This property sug- oaded in memory.

gests that gains in access speed can be achieved %y . .
exploiting a cache memory in which to store q1SPace ofa process,_whose access is managed as vir-
ready calledh-grams. Moreover, the relatively smalltu‘iljI mgmo(;y (sze Flgl;re 4). v th
amount of involved:-grams makes viable the access uring decoding of a sentence, only those

of the LM from disk on demand. Both techniquesgrams’ or better memory pages, of the LM that are
are briefly described actually accessed are loaded into memory, which re-

sults in a significant reduction of the resident mem-
3.1 Caching of probabilities ory space required by the process. Once the decod-

. . ing of the input sentence is completed, all loaded
In order to speed-up access time of LM probabilitieg ages are released, so that resident memory is avail-

different cache memories have been implementeghie for then-gram probabilities of the following
through the use of hash tables. Cache memories afgntence. A remarkable feature is that memory-
used to store all finat-gram probabilities req_uested mapping also permits to share the same address
by the decoder, LM states used to recombine the%pace among multiple processes, so that the same

ries, as well as all partial-gram statistics computed | p can be accessed by several decoding processes
by accessing the LM structure. In this way, the neeglynning on the same machine).

of performing binary searches, at every level of the

LM tables, is reduced at a minimum. 4 Experiments
All cache memories are reset before decoding _ _
each single input set. In order to assess the quality of our implementa-
tion, henceforth named IRSTLM, we have designed
3.2 Memory Mapping a suite of experiments with a twofold goal: from

i . i i one side the comparison of IRSTLM against a pop-
Since a I|m|teq collection of alh-grams is needed ular LM library, namely the SRILM toolkit (Stol-
to decode an input sentence, the LM is loaded ke, 2002); from the other, to measure the actual

demand from disk. The data structure shown in I:'q'mpact of the implementation solution discussed in

urT\I il permits indeed t:IO efﬁmer;tl;llwexplon the SO'previous sections. Experiments were performed on a
calledmemory mappedtie access. Viemory map- ., maon statistical MT platform, nameloses, in

ping basically permits to include a file in the addres%hiCh both the IRSTLM and SRILM toolkits have

2pPOSIX-compliant operating systems and Windows supportPeen 'ntegrat?d' ) ] ]
some form of memory-mapped file access. The following subsection lists the questions
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set type |W| were estimated with the SRILM toolkit by prun-
source targel ing singletons events and by employing the Witten-

large parallel |83.1M 87.6M Bell and the absolute discounting (Kneser and Ney,

giga monolingual -  1.76G 1995) smoothing methods; the shorthand for these
NIST 02 dev 237K 26.4K two LMs will be “Irg-sri-wb” and “Irg-sri-kn”, re-
NIST 03 test 256K 28.5K spectively. Another large LM was estimated with the
NIST 04 test 51.0K 58.9K IRSTLM toolkit, by employing the only smoothing
NIST 05 test 31.2K 34.6K method available in the package (Witten-Bell) and
NIST 06 nw test 18.5K 22.8K by pruning singletona-grams; its shorthand will be
NIST 06 ng test 04K 11.1K “Irg”. An additional, much larger, 5-gram LM was
NIST 06 bn test 12.0K 13.3K instead trained with the IRSTLM toolkit on the so-

called English Gigaword corpus, one of the allowed
Table 1: Statistics of training, dev. and test SetSnon0|ingua| resources for this task.

Evaluation sets of NIST campaigns include 4 ref- aytomatic translation was performed by means of
erences: in table, average lenghts are provided. \gses which, among other things, permits the con-
temporary use of more LMs, feature we exploited in
our experiments as specified later.

Assessing Questions Optimal interpolation weights for the log-linear

1. Is LM estimation feasible for large amounts oimo_d_el were e_st|mated 'by ruqnlng a m|n|mum_error
training algorithm, available in th®loses toolkit,

which our experiments aim to answer.

data?
: h luati f the NIST 2002 ign.
2. How does IRSTLM compare with SRILM on the evaluation set of the NIS 0.0 campaign
W.rt.: Tests were performed on the evaluation sets of the

successive campaigns (2003 to 2006). Concern-
ing the NIST 2006 evaluation set, results are given
separately for three different types of texts, namely

(a) decoding speed?
(b) memory requirements?

(c) translation performance? newswire (nw) and newsgroup (ng) texts, and broad-
3. How does LM quantization impact in terms of cast news transcripts (bn).
(@) memory consumption? Table 1 gives figures about training, development

and test corpora, while Table 2 provides main statis-

(b) decoding speed?
tics of the estimated LMs.

(c) translation performance?

(d) tuning of decoding parameters? LM millions of
4. What is the impact of caching on decoding 1-gr 2-gr 3-gr 4-gr 5-gr
speed? Irg-sri-kn| 0.3 52 59 7.1 6.8

Irg-sri-wb| 0.3 5.2 64 78 6.8
Irg 03 53 66 84 80

Task and Experimental Setup giga |45 644 1275 228.8 288|6
The task chosen for our experiments is the transla- Table 2: Statistics of LMs.

tion of news from Chinese to English, as proposed MT performance are provided in terms of case-
by the NIST MT Evaluation Workshop of 2006. insensitive BLEU and NIST scores, as computed

A translation system was trained according to the . . .
” : with the NIST scoring tool. For time reasons,
large-datacondition. In particular, all the allowed . ) L
. L the decoder run with monotone search; prelimi-
bilingual corpora have been used for estimating the . . .
. nary experiments showed that this choice does not
phrase-table. The target side of these texts was als ) .
A arfect comparison of LMs. Reported decoding

employed for the estimation of three 5-gram LMs . . .

. 5peed is the elapsed real time measured with the
henceforth namedarge. In particular, two LMs

Linux/UNIX time command divided by the num-
Swww.nist.gov/speech/tests/mt/ ber of source words to be translated. dual Intel/Xeon

5. What are the advantages of memory mapping?
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CPU 3.20GHz with 8Gb RAM. Experiments run on ] LM \ format \ quantization\ file size \

dual Intel/Xeon CPUs 3.20GHz/8Gb RAM. Irg-sri-kn | textual n 893Mb
41 LM estimation Irg-sri-wb | textual n 952Mb

_ _ Irg textual n 1088Mb
First of all, let us answer the question (number 1) y 789Mb
on the feasibility of the procedure for the estima- binary n 368Mb
tion of huge LMs. Given the amount of training data y 550Mb
employed, it is worth to provide some details about . oxiual 8 0GDh
the estimation process of the “giga” LM. According giga extua n -

. . ) - y 21.0Gb
to the steps listed in Section 2.1, the whole dictio- b 85GDb
nary was split intad’ = 14 frequency balanced lists. inary n 5lle
Then, 5-grams beginning with words from each list y -

were extracted and stored. Table 3 shows some fig- Table 4: Figures of LM files.

ures about these dictionaries and 5-gram collections.

Note that the dictionary size increases with the lisiormat, and (ii) the binary format of Section 2.3. In
index: this means only that more frequent word@ddition, LM probabilities can be quantized accord-
were used first. This stage run in few hours witing to the procedure of Section 2.4.

1-2Gb parallel processes. The estimation of the “Irg-sri” LMs, performed
by means of the SRILM toolkit, took about 15 min-
list |dictionary number of 5-grams: utes requiring 5Gb of memory. The “Irg” LM was
inde size |observed distinct non-singletans estimated as the “giga” LM in about half an hour
0 4 217M  44.9M 16.2M demanding only few hundreds of Mb of memory.
1 11 164M 65.4M 20.7M Table 4 lists the size of files storing various ver-
2 8 208M 85.1M 27.0M sions of the “large” and “giga” LMs which differ in
3 44 191M 83.0M 26.0M format and/or type.
4 64 143M 56.6M 17.8M _
5 | 137  142M 623M  19am | 42 LMrun-time usage
6 190 142M  64.0M 19.5M Tables 5 and 6 shows BLEU and NIST scores, re-
7 548 142M 66.0M 20.1M spectively, measured on test sets for each specific
8 783 142M 63.3M 19.2M LM configuration. The first two rows of the two ta-
9 1.3K 141IM  67.4M 20.2M bles regards runs dfloses with the SRILM, that
10 2.5K 141M 69.7M 20.5M uses “Irg-sri” LMs. The other rows refer to runs of
11 6.1K 141M 71.8M 20.8M Moses with IRSTLM, either using LM “Irg” only,
12 | 25.4K 141M  74.5M 20.9M or both LMs, “Irg” and “giga”. LM quantization is
13 | 451IM 141IM 77.4M  20.6M marked by a “q".
total| 4.55M 2.2G 951M 289M Finally, in Table 7 figures about the decoding pro-

- _ o cesses are recorded. For each LM configuration, the

Table 3: Estimation of the “giga” LM: dictionary process size, both virtual and resident, is provided

and 5-gram statisticg{( = 14). together with the average time required for translat-
The actual estimation of the LM was performedng a source word with/without the activation of the

with the scheme presented in Section 2.2. For ea8iching mechanism described in Section 3.1. It is
collection of non-singletons 5-grams, a sub-LM wad® Worth noticing that the “giga” LM (both original
built by computing smoothed-gram (o = 1-- - 5) aﬂd quan.tlzed) is Ioadgd throu_gh the memory map-
probabilities and interpolation parameters. AgairPiNg Service presented in Section 3.2. _
by exploiting parallel processing, this phase took Table 7 includes most of the answers to question
only few hours on standard HW resources. Finallyjumber 2:

sub-LMs were joined in a single LM, which can be 2.a Under the same condition§joses running
stored in two formats: (i) the standard textual ARPA  with SRILM permits almost double faster
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LM NIST test set LM process size |cachingdec. speed
03 04 05 06 06 06 virtual resident (src wis)

nw ng bn| [irg-sri-kn/wbl 1.2Gb 1.2Gh| - 13.33
Irg-sri-kn [28.74 30.52 26.99 29.28 23.47 2727 Irg 750Mb 690Mb n 6.80
Irg-sri-wb |28.05 29.86 26.52 28.37 23.13 26,37 y 7.42
Irg 28.49 29.84 26.97 28.69 23.28 26,70  g-lrg 600Mb 540Mb n 6.99
g-lrg 28.05 29.66 26.48 28.58 22.64 26,05 y 7.52
Irg+giga [30.77 31.93 29.09 29.74 24.39 28,50 Irg+giga |9.9Gb 2.1Gb| n 3.52
g-Irg+g-giga30.42 31.47 28.62 29.76 24.28 2823 y 4.28
. g-lrg+g-giga 6.8Gb 2.1Gb| n 3.64
Table 5: BLEU scores on NIST evaluation sets fo y 4.35

different LM configurations.

LM NIST test set
03 04 05 06 06 06
nw ng bn

Table 7: Process size and decoding speed with/wo
caching for different LM configurations.

: ] “Irg+giga” vs. “g-lrg+g-giga” rows of Ta-
Irg-sri-kn | 8.73 9.29 8.47 8.98 7.81 8.52 ble 7, it results that quantization allows only a

Irg 8.73 9.21 8.45 8.95 7.82 8'fw 3.c comparing the same rows of Tables 5 and 6, it
q—Irg 8.60 9.11 832 8.88 7.73 8'%1 can be claimed that quantization doesn't affect
Irg+g|g§1 9.08 9.49 8.80 8.92 7.86 8'636 translation performance in a significant way
g-Irg+g-gigal 8.93 9.38 8.65 9.05 7.99 8.60 . . . )
3.d no specific training of decoder weights is re-
Table 6: NIST scores on NIST evaluation sets for  quired since the original LM and its quan-
different LM configurations. tized version are equivalent. For example,
by translating the NIST 05 test set with the
translation than IRSTLM (13.33 vs. 6.80 weights estimated on the “Irg+giga’ configu-
words/s). Anyway, IRSTLM can be sped-upto  ratjon, the following BLEU/NIST scores are
7.52 words/s by applying caching. got: 28.99/8.79 with the “g-Irg+q-giga” LMs,
2.b IRSTLM requires about half memory than  29.09/8.80 with the “Irg+giga” LMs (the latter

SRILM for storing an equivalent LM during
decoding. If the LM is quantized, the gain is
even larger. Concerning file sizes (Table 4), the
size of IRSTLM binary files is about 30% of
the corresponding textual versions. Quantiza-
tion further reduces the size to 20% of the orig-
inal textual format.

scores are also given in Tables 5 and 6). Em-
ploying weights estimated on “g-lrg+g-giga”
scores are: 28.58/8.66 with “Irg+giga” LMs,
28.62/8.65 with “g-lrg+g-giga” LMs (again
also in Tables 5 and 6). Also on other test sets
differences are negligible.

2.c Performance of IRSTLM and SRILM on the Table 7 answers the question number 4 on
large LMs smoothed with the same method areaching, by reporting the decoding speed-up due to
comparable, as expected (see entries “Irg-srthis mechanism: a gain of 8-9% is observed on “Irg”
wb” and “Irg” of Tables 5 and 6). The small and “g-lrg” configurations, of 20-21% in case also
differences are due to different probability val-‘giga/g-giga” LMs are employed.
ues assigned by the two libraries to out-of- The answer to the last question is that thanks to
vocabulary words. the memory mapping mechanism it is possible run

_ L . Moses with huge LMs, which is expected to im-
Concerning quantization, gains in terms of MEemony ove performance. Tables 5 and 6 provide quan-

space (question 3.a) have already been high"ght‘?ﬁlative support to the statement. In fact, a gain of

(see answer 2.b). For the remaining points:

1-2 absolute BLEU was measured on different test

3.b comparing “lrg” vs. “g-Irg” rows and sets when “giga” LM was employed in addition to
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NIST test set to exploit locality phenomena shown by the search
03 04 05 06 06 06 algorithm when accessing LM probabilities. Results
nw  ng bn show an halving of memory requirements, at the cost
BLEU of 44% slower decoding speed. In addition, loading
Cci |33.62 35.04 31.92 32.74 26.18 32|43 the LM on demand permits to keep the size of mem-
cs |31.44 32.99 29.95 30.49 24.35 31/10 ory allocated to the decoder nicely under control.
NIST Future work will investigate the way for includ-
ci 1927 975 9.00 924 800 8.97 ing more sophisticated LM smoothing methods in
cs | 888 940 864 882 7.69 8.77 ourscheme and willcompare IRSTLM and SRILM

toolkits on increasing size training corpora.
Table 8: Case insensitive (ci) and sensitive (cs)

scores of the best performing system. 6 Acknowledgments
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Abstract

We introduce a novel evaluation scheme for
the human evaluation of different machine
translation systems. Our method is based
on direct comparison of two sentences at a
time by human judges. These binary judg-
ments are then used to decide between all
possible rankings of the systems. The ad-
vantages of this new method are the lower
dependency on extensive evaluation guide-
lines, and a tighter focus on a typical eval-
uation task, namely the ranking of systems.
Furthermore we argue that machine transla-
tion evaluations should be regarded as sta-
tistical processes, both for human and au-
tomatic evaluation. We show how confi-
dence ranges for state-of-the-art evaluation
measures such as WER and TER can be
computed accurately and efficiently without
having to resort to Monte Carlo estimates.
We give an example of our new evaluation
scheme, as well as a comparison with classi-
cal automatic and human evaluation on data
from a recent international evaluation cam-

paign.
1 Introduction

Evaluation of machine translation (MT) output is a
difficult and still open problem. As in other natu-
ral language processing tasks, automatic measures
which try to asses the quality of the translation
can be computed. The most widely known are the
Word Error Rate (WER), the Position independent
word Error Rate (PER), the NIST score (Dodding-
ton, 2002) and, especially in recent years, the BLEU
score (Papineni et al., 2002) and the Translation Er-
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ror Rate (TER) (Snover et al., 2005). All of the-
ses measures compare the system output with one
or more gold standard references and produce a nu-
merical value (score or error rate) which measures
the similarity between the machine translation and a
human produced one. Once such reference transla-
tions are available, the evaluation can be carried out
in a quick, efficient and reproducible manner.

However, automatic measures also have big dis-
advantages; (Callison-Burch et al., 2006) describes
some of them. A major problem is that a given sen-
tence in one language can have several correct trans-
lations in another language and thus, the measure of
similarity with one or even a small amount of ref-
erence translations will never be flexible enough to
truly reflect the wide range of correct possibilities of
a translation. ! This holds in particular for long sen-
tences and wide- or open-domain tasks like the ones
dealt with in current MT projects and evaluations.

If the actual quality of a translation in terms of
usefulness for human users is to be evaluated, human
evaluation needs to be carried out. This is however
a costly and very time-consuming process. In this
work we present a novel approach to human evalu-
ation that simplifies the task for human judges. In-
stead of having to assign numerical scores to each
sentence to be evaluated, as is done in current evalu-
ation procedures, human judges choose the best one
out of two candidate translations. We show how this
method can be used to rank an arbitrary number of
systems and present a detailed analysis of the statis-
tical significance of the method.

!Compare this with speech recognition, where apart from
orthographic variance there is only one correct reference.

Proceedings of the Second Workshop on Statistical Machine Translation, pages 96-103,
Prague, June 2007. (©2007 Association for Computational Linguistics



2 State-of-the-art

The standard procedure for carrying out a human
evaluation of machine translation output is based on
the manual scoring of each sentence with two nu-
merical values between 1 and 5. The first one mea-
sures the fluency of the sentence, that is its readabil-
ity and understandability. This is a monolingual fea-
ture which does not take the source sentence into
account. The second one reflects the adequacy, that
is whether the translated sentence is a correct trans-
lation of the original sentence in the sense that the
meaning is transferred. Since humans will be the
end users of the generated output,” it can be ex-
pected that these human-produced measures will re-
flect the usability and appropriateness of MT output
better than any automatic measure.

This kind of human evaluation has however addi-
tional problems. It is much more time consuming
than the automatic evaluation, and because it is sub-
jective, results are not reproducible, even from the
same group of evaluators. Furthermore, there can
be biases among the human judges. Large amounts
of sentences must therefore be evaluated and proce-
dures like evaluation normalization must be carried
out before significant conclusions from the evalua-
tion can be drawn. Another important drawback,
which is also one of the causes of the aforemen-
tioned problems, is that it is very difficult to define
the meaning of the numerical scores precisely. Even
if human judges have explicit evaluation guidelines
at hand, they still find it difficult to assign a numeri-
cal value which represents the quality of the transla-
tion for many sentences (Koehn and Monz, 2006).

In this paper we present an alternative to this eval-
uation scheme. Our method starts from the obser-
vation that normally the final objective of a human
evaluation is to find a “ranking” of different systems,
and the absolute score for each system is not relevant
(and it can even not be comparable between differ-
ent evaluations). We focus on a method that aims to
simplify the task of the judges and allows to rank the
systems according to their translation quality.

3 Binary System Comparisons

The main idea of our method relies in the fact
that a human evaluator, when presented two differ-
ent translations of the same sentence, can normally
choose the best one out of them in a more or less

2With the exception of cross-language information retrieval
and similar tasks.
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definite way. In social sciences, a similar method
has been proposed by (Thurstone, 1927).

3.1 Comparison of Two Systems

For the comparison of two MT systems, a set of
translated sentence pairs is selected. Each of these
pairs consists of the translations of a particular
source sentence from the two systems. The human
judge is then asked to select the “best” translation of
these two, or to mark the translations to be equally
good. We are aware that the definition of “best” here
is fuzzy. In our experiments, we made a point of not
giving the evaluators explicit guidelines on how to
decide between both translations. As a consequence,
the judges were not to make a distinction between
fluency and adequacy of the translation. This has a
two-fold purpose: on the one hand it simplifies the
decision procedure for the judges, as in most of the
cases the decision is quite natural and they do not
need to think explicitly in terms of fluency and ade-
quacy. On the other hand, one should keep in mind
that the final goal of an MT system is its usefulness
for a human user, which is why we do not want to
impose artificial constraints on the evaluation proce-
dure. If only certain quality aspects of the systems
are relevant for the ranking, for example if we want
to focus on the fluency of the translations, explicit
guidelines can be given to the judges. If the evalua-
tors are bilingual they can use the original sentences
to judge whether the information was preserved in
the translation.

After our experiment, the human judges provided
feedback on the evaluation process. We learned
that the evaluators normally selected the translation
which preserved most of the information from the
original sentence. Thus, we expect to have a slight
preference for adequacy over fluency in this evalu-
ation process. Note however that adequacy and flu-
ency have shown a high correlation® in previous ex-
periments. This can be explained by noting that a
low fluency renders the text incomprehensible and
thus the adequacy score will also be low.

The difference in the amount of selected sen-
tences of each system is an indicator of the differ-
ence in quality between the systems. Statistics can
be carried out in order to decide whether this differ-
ence is statistically significant; we will describe this
in more detail in Section 3.4.

3At least for “sensible” translation systems. Academic

counter-examples could easily be constructed.



3.2 Evaluation of Multiple Systems

We can generalize our method to find a ranking of
several systems as follows: In this setting, we have
a set of n systems. Furthermore, we have defined an
order relationship “is better than” between pairs of
these systems. Our goal now is to find an ordering
of the systems, such that each system is better than
its predecessor. In other words, this is just a sorting
problem — as widely known in computer science.

Several efficient sorting algorithms can be found
in the literature. Generally, the efficiency of sort-
ing algorithms is measured in terms of the number
of comparisons carried out. State-of-the-art sort-
ing algorithms have a worst-case running time of
O(nlogn), where n is the number of elements to
sort. In our case, because such binary comparisons
are very time consuming, we want to minimize the
absolute number of comparisons needed. This mini-
mization should be carried out in the strict sense, not
just in an asymptotic manner.

(Knuth, 1973) discusses this issue in detail. It is
relatively straightforward to show that, in the worst
case, the minimum number of comparisons to be
carried out to sort n elements is at least [logn!]
(for which nlogn is an approximation). It is not
always possible to reach this minimum, however, as
was proven e.g. for the case n = 12 in (Wells, 1971)
and for n = 13 in (Peczarski, 2002). (Ford Jr and
Johnson, 1959) propose an algorithm called merge
insertion which comes very close to the theoretical
limit. This algorithm is sketched in Figure 1. There
are also algorithms with a better asymptotic runtime
(Bui and Thanh, 1985), but they only take effect for
values of n too large for our purposes (e.g., more
than 100). Thus, using the algorithm from Figure 1
we can obtain the ordering of the systems with a
(nearly) optimal number of comparisons.

3.3 Further Considerations

In Section 3.1 we described how to carry out the
comparison between two systems when there is only
one human judge carrying out this comparison. The
comparison of systems is a very time consuming
task. Therefore it is hardly possible for one judge
to carry out the evaluation on a whole test corpus.
Usually, subsets of these test corpora are selected
for human evaluations instead. In order to obtain
a better coverage of the test corpus, but also to try
to alleviate the possible bias of a single evaluator, it
is advantageous to have several evaluators carrying
out the comparison between two systems. However,
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there are two points that must be considered.

The first one is the selection of sentences each hu-
man judge should evaluate. Assume that we have al-
ready decided the amount of sentences m each eval-
uator has to work with (in our case m = 100). One
possibility is that all human judges evaluate the same
set of sentences, which presumably will cancel pos-
sible biases of the evaluators. A second possibility is
to give each judge a disjunct set of sentences. In this
way we benefit from a higher coverage of the corpus,
but do not have an explicit bias compensation.

In our experiments, we decided for a middle
course: Each evaluator receives a randomly selected
set of sentences. There are no restrictions on the se-
lection process. This implicitly produces some over-
lap while at the same time allowing for a larger set
of sentences to be evaluated. To maintain the same
conditions for each comparison, we also decided
that each human judge should evaluate the same set
of sentences for each system pair.

The other point to consider is how the evaluation
results of each of the human judges should be com-
bined into a decision for the whole system. One
possibility would be to take only a “majority vote”
among the evaluators to decide which system is the
best. By doing this, however, possible quantitative
information on the quality difference of the systems
is not taken into account. Consequently, the output is
strongly influenced by statistical fluctuations of the
data and/or of the selected set of sentences to eval-
vate. Thus, in order to combine the evaluations we
just summed over all decisions to get a total count of
sentences for each system.

3.4 Statistical Significance

The evaluation of MT systems by evaluating trans-
lations of test sentences — be it automatic evaluation
or human evaluation — must always be regarded as
a statistical process: Whereas the outcome, or score
R, of an evaluation is considered to hold for “all”
possible sentences from a given domain, a test cor-
pus naturally consists of only a sample from all these
sentences. Consequently, R depends on that sam-
ple of test sentences. Furthermore, both a human
evaluation score and an automatic evaluation score
for a hypothesis sentence are by itself noisy: Hu-
man evaluation is subjective, and as such is subject
to “human noise”, as described in Section 2. Each
automatic score, on the other hand, depends heavily
on the ambiguous selection of reference translations.
Accordingly, evaluation scores underly a probability



1. Make pairwise comparisons of |n /2] disjoint pairs of elements. (If n is odd, leave one element out).

2. Sort the |n/2] larger elements found in step 1, recursively by merge insertion.

3. Name the [n/2] elements found in step 2 aj, ag, ..

5 Q2| and the rest by, bo, ..., b(n/Q]’ such that

a1 <ag <+ < apyp andb; <a;forl <i < [n/2]. Call by and the a’s the “main chain”.

4. Insert the remaining b’s into the main chain, using binary insertion, in the following order (ignore the

bj such that 57 > [n/ﬂ) b3, ba; b5, bg; b11, . ..

bes .30ty

2k+1+(71)k

with ¢, = 3

bt 415

Figure 1: The merge insertion algorithm as presented in (Knuth, 1973).

distribution, and each evaluation result we achieve
must be considered as a sample from that distribu-
tion. Consequently, both human and automatic eval-
uation results must undergo statistical analysis be-
fore conclusions can be drawn from them.

A typical application of MT evaluation — for ex-
ample in the method described in this paper — is to
decide whether a given MT system X, represented
by a set of translated sentences, is significantly better
than another system Y with respect to a given eval-
uation measure. This outcome is traditionally called
the alternative hypothesis. The opposite outcome,
namely that the two systems are equal, is known
as the null hypothesis. We say that certain values
of Rx, Ry confirm the alternative hypothesis if the
null hypothesis can be rejected with a given level
of certainty, e.g. 95%. In the case of comparing
two MT systems, the null hypothesis would be “both
systems are equal with regard to the evaluation mea-
sure; that is, both evaluation scores R, R’ come from
the same distribution Rg”.

As R is randomly distributed, it has an expecta-
tion E[R] and a standard error se[R]. Assuming a
normal distribution for R, we can reject the null hy-
pothesis with a confidence of 95% if the sampled
score R is more than 1.96 times the standard error
away from the null hypothesis expectation:

R significant < |E[Rg] — R| > 1.96 se[Ry] (1)

The question we have to solve is: How can we es-
timate E[Rp] and se[Rp]? The first step is that we
consider R and Ry to share the same standard error
se[Ro] = se[R]. This value can then be estimated
from the test data. In a second step, we give an es-
timate for F[Rp], either inherent in the evaluation
measure (see below), or from the estimate for the
comparison system R’.

A universal estimation method is the bootstrap
estimate: The core idea is to create replications of

99

R by random sampling from the data set (Bisani
and Ney, 2004). Bootstrapping is generally possi-
ble for all evaluation measures. With a high number
of replicates, se|R] and E[Ry| can be estimated with
satisfactory precision.

For a certain class of evaluation measures, these
parameters can be estimated more accurately and ef-
ficiently from the evaluation data without resorting
to Monte Carlo estimates. This is the class of er-
rors based on the arithmetic mean over a sentence-
wise score: In our binary comparison experiments,
each judge was given hypothesis translations e; x,
e;,y. She could then judge e; x to be better than,
equal to, or worse than e; y. All these judgments
were counted over the systems. We define a sentence
score r; xy for this evaluation method as follows:

+1  e; x is better than e; y
rixy ‘=40 e;, x isequal to e; y )
—1 e; x is worse than e; y

Then, the total evaluation score for a binary com-
parison of systems X and Y is

1 m
Rxy = — }; XY A3)
<

with m the number of evaluated sentences.

For this case, namely R being an arithmetic mean,
(Efron and Tibshirani, 1993) gives an explicit for-
mula for the estimated standard error of the score
Rxy. To simplify the notation, we will use I in-
stead of Rx y from now on, and r; instead of ; x y.

With x denoting the number of sentences where
r; = 1, and y denoting the number of sentences




where r; = —1,
R=""1 5)
m
and with basic algebra
1 x —y)?
se[R] = —— x—i—y—&. (6)
m—1 m

Moreover, we can explicitly give an estimate for
E[Rp]: The null hypothesis is that both systems are
“equally good”. Then, we should expect as many
sentences where X is better than Y as vice versa,
i.e. z = y. Thus, E[Ry] = 0.

Using Equation 4, we calculate se[R] and thus a
significance range for adequacy and fluency judg-
ments. When comparing two systems X and Y,
we assume for the null hypothesis that se[Ry] =
se[Rx]| and E[Ry] = E[Ry] (or vice versa).

A very useful (and to our knowledge new) result
for MT evaluation is that se[R] can also be explic-
itly estimated for weighted means — such as WER,
PER, and TER. These measures are defined as fol-
lows: Letd;, 7 = 1, ..., m denote the number of “er-
rors” (edit operations) of the translation candidate e;
with regard to a reference translation with length ;.
Then, the total error rate will be computed as

1 m
R:—L;di (7

where .
L= Z l; )
=1

As aresult, each sentence e; affects the overall score
with weight [; — the effect of leaving out a sen-
tence with length 40 is four times higher than that
of leaving out one with length 10. Consequently,
these weights must be considered when estimating
the standard error of R:

1 ~(d 2 l

<m—1><L—1>;<zi ) :
©)
With this Equation, Monte-Carlo-estimates are no
longer necessary for examining the significance of
WER, PER, TER, etc. Unfortunately, we do not ex-
pect such a short explicit formula to exist for the
standard BLEU score. Still, a confidence range
for BLEU can be estimated by bootstrapping (Och,

2003; Zhang and Vogel, 2004).

se[R] =

100

| Spanish | English |

Train Sentences 1.2M
Words 32M 31IM
Vocabulary 159K 111K
Singletons 63K 46K
Test Sentences 1117
Words 26K
OOV Words 72

Table 1: Statistics of the EPPS Corpus.

4 Evaluation Setup

The evaluation procedure was carried out on the data
generated in the second evaluation campaign of the
Tc-STAR project*. The goal of this project is to
build a speech-to-speech translation system that can
deal with real life data. Three translation directions
are dealt with in the project: Spanish to English, En-
glish to Spanish and Chinese to English. For the sys-
tem comparison we concentrated only in the English
to Spanish direction.

The corpus for the Spanish—-English language pair
consists of the official version of the speeches held in
the European Parliament Plenary Sessions (EPPS),
as available on the web page of the European Parlia-
ment. A more detailed description of the EPPS data
can be found in (Vilar et al., 2005). Table 1 shows
the statistics of the corpus.

A total of 9 different MT systems participated in
this condition in the evaluation campaign that took
place in February 2006. We selected five representa-
tive systems for our study. Henceforth we shall refer
to these systems as System A through System E. We
restricted the number of systems in order to keep the
evaluation effort manageable for a first experimental
setup to test the feasibility of our method. The rank-
ing of 5 systems can be carried out with as few as 7
comparisons, but the ranking of 9 systems requires
19 comparisons.

5 Evaluation Results

Seven human bilingual evaluators (6 native speakers
and one near-native speaker of Spanish) carried out
the evaluation. 100 sentences were randomly cho-
sen and assigned to each of the evaluators for every
system comparison, as discussed in Section 3.3. The
results can be seen in Table 2 and Figure 2. Counts

*nttp://www.tc-star.org/
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Figure 2: Results of the binary comparisons. Number of times the winning system was really judged “better”
vs. number of times it was judged “worse”. Results in hatched area can not reject null hypothesis, i.e. would

be considered insignificant.

missing to 100 and 700 respectively denote “same
quality” decisions.

As can be seen from the results, in most of the
cases the judges clearly favor one of the systems.
The most notable exception is found when compar-
ing systems A and C, where a difference of only 3
sentences is clearly not enough to decide between
the two. Thus, the two bottom positions in the final
ranking could be swapped.

Figure 2(a) shows the outcome for the binary
comparisons separately for each judge, together with
an analysis of the statistical significance of the re-
sults. As can be seen, the number of samples (100)
would have been too low to show significant re-
sults in many experiments (data points in the hatched
area). In some cases, the evaluator even judged bet-
ter the system which was scored to be worse by the
majority of the other evaluators (data points above
the bisector). As Figure 2(b) shows, “the only thing
better than data is more data”: When we summarize
R over all judges, we see a significant difference
(with a confidence of 95%) at all comparisons but
two (A vs. C, and E vs. B). It is interesting to note
that exactly these two pairs do not show a significant
difference when using a majority vote strategy.

Table 3 shows also the standard evaluation met-
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rics. Three BLEU scores are given in this table, the
one computed on the whole corpus, the one com-
puted on the set used for standard adequacy and flu-
ency computations and the ones on the set we se-
lected for this task’. It can be seen that the BLEU
scores are consistent across all data subsets. In this
case the ranking according to this automatic measure
matches exactly the ranking found by our method.
When comparing with the adequacy and fluency
scores, however, the ranking of the systems changes
considerably: B D E C A. However, the difference
between the three top systems is quite small. This
can be seen in Figure 3, which shows some auto-
matic and human scores for the five systems in our
experiments, along with the estimated 95% confi-
dence range. The bigger difference is found when
comparing the bottom systems, namely System A
and System C. While our method produces nearly
no difference the adequacy and fluency scores indi-
cate System C as clearly superior to System A. It is
worth noting that the both groups use quite different
translation approaches (statistical vs. rule-based).

SRegretfully these two last sets were not the same. This is
due to the fact that the “AF Test Set” was further used for eval-
uating Text-to-Speech systems, and thus a targeted subset of
sentences was selected.



Sys |E1 E2 E3 E4 E5 E6 E7| >
A |29 19 38 17 32 29 41 || 205
B |40 59 48 53 63 64 45 || 372
C |32 22 29 23 32 34 42| 214
D |39 61 59 50 64 58 46 | 377
A |32 31 31 31 47 38 40| 250
C |37 29 32 22 39 45 43 | 247
A |36 28 17 28 34 37 31 | 211
E |41 47 44 43 53 45 58 | 331
B |26 29 18 24 43 36 33 | 209
E |34 33 28 27 32 29 43| 226
B |34 28 30 31 40 41 48 || 252
D |23 17 23 17 24 28 38| 170
A |36 14 27 9 31 30 34| 181
D |34 50 40 50 57 61 57 | 349

| Final ranking (best—worst): EBDAC |

Table 2: Result of the binary system comparison.
Numbers of sentences for which each system was
judged better by each evaluator (E1-E7).

Subset: | Whole A+F Binary
Sys BLEU | BLEU A F | BLEU
A 36.3 36.2 293 246 | 363
B 494 493 374 358 | 49.2
C 36.3 362 353 331 | 36.1
D 48.2 46.8 3.68 348 | 477
E 49.8 49.6 3.67 346 | 494

Table 3: BLEU scores and Adequacy and Fluency
scores for the different systems and subsets of the
whole test set. BLEU values in %, Adequacy (A)
and Fluency (F) from 1 (worst) to 5 (best).

6 Discussion

In this section we will review the main drawbacks of
the human evaluation listed in Section 2 and analyze
how our approach deals with them. The first one
was the use of explicit numerical scores, which are
difficult to define exactly. Our system was mainly
designed for the elimination of this issue.

Our evaluation continues to be time consuming.
Even more, the number of individual comparisons
needed is in the order of log(n!), in contrast with the
standard adequacy-fluency evaluation which needs
2n individual evaluations (two evaluations per sys-
tem, one for fluency, another one for adequacy). For
n in the range of 1 up to 20 (a realistic number of
systems for current evaluation campaigns) these two
quantities are comparable. And actually each of our
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Figure 3: Normalized evaluation scores. Higher
scores are better. Solid lines show the 95% con-
fidence range. Automatic scores calculated on the
whole test set, human scores on the A+F subset.

evaluations should be simpler than the standard ad-
equacy and fluency ones. Therefore the time needed
for both evaluation procedures is probably similar.
Reproducibility of the evaluation is also an impor-
tant concern. We computed the number of “errors”
in the evaluation process, i.e. the number of sen-
tences evaluated by two or more evaluators where
the evaluators’ judgement was different. Only in
10% of the cases the evaluation was contradictory,
in the sense that one evaluator chose one sentence as
better than the other, while the other evaluator chose
the other one. In 30% of the cases, however, one
evaluator estimated both sentences to be of the same
quality while the other judged one sentence as supe-
rior to the other one. As comparison, for the fluency-
adequacy judgement nearly one third of the com-
mon evaluations have a difference in score greater or
equal than two (where the maximum would be four),
and another third a score difference of one point®.
With respect to biases, we feel that it is almost im-
possible to eliminate them if humans are involved. If
one of the judges prefers one kind of structure, there
will a bias for a system producing such output, in-
dependently of the evaluation procedure. However,
the suppression of explicit numerical scores elimi-
nates an additional bias of evaluators. It has been
observed that human judges often give scores within

Note however that possible evaluator biases can have a
great influence in these statistics.



a certain range (e.g. in the mid-range or only ex-
treme values), which constitute an additional diffi-
culty when carrying out the evaluation (Leusch et
al., 2005). Our method suppresses this kind of bias.
Another advantage of our method is the possibil-
ity of assessing improvements within one system.
With one evaluation we can decide if some modi-
fications actually improve performance. This eval-
uation even gives us a confidence interval to weight
the significance of an improvement. Carrying out
a full adequacy-fluency analysis would require a lot
more effort, without giving more useful results.

7 Conclusion

We presented a novel human evaluation technique
that simplifies the task of the evaluators. Our method
relies on two basic observations. The first one is that
in most evaluations the final goal is to find a ranking
of different systems, the absolute scores are usually
not so relevant. Especially when considering human
evaluation, the scores are not even comparable be-
tween two evaluation campaigns. The second one
is the fact that a human judge can normally choose
the best one out of two translations, and this is a
much easier process than the assessment of numeri-
cal scores whose definition is not at all clear. Taking
this into consideration we suggested a method that
aims at finding a ranking of different MT systems
based on the comparison of pairs of translation can-
didates for a set of sentences to be evaluated.

A detailed analysis of the statistical significance
of the method is presented and also applied to some
wide-spread automatic measures. The evaluation
methodology was applied for the ranking of 5 sys-
tems that participated in the second evaluation cam-
paign of the TC-STAR project and comparison with
standard evaluation measures was performed.
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Abstract

We present a method for evaluating the
quality of Machine Translation (MT)
output, using labelled dependencies
produced by a Lexical-Functional
Grammar (LFG) parser. Our dependency-
based method, in contrast to most popular
string-based evaluation metrics, does not
unfairly penalize perfectly valid syntactic
variations in the translation, and the
addition of WordNet provides a way to
accommodate lexical wvariation. In
comparison with other metrics on 16,800
sentences of Chinese-English newswire
text, our method reaches high correlation
with human scores.

1 Introduction

Since the creation of BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002), the subject of
automatic evaluation metrics for MT has been
given quite a lot of attention. Although widely
popular thanks to their speed and efficiency, both
BLEU and NIST have been criticized for
inadequate accuracy of evaluation at the segment
level (Callison-Burch et al., 2006). As string
based-metrics, they are limited to superficial
comparison of word sequences between a
translated sentence and one or more reference
sentences, and are unable to accommodate any
legitimate grammatical variation when it comes to
lexical choices or syntactic structure of the
translation, beyond what can be found in the
multiple references. A natural next step in the field
of evaluation was to introduce metrics that would
better reflect our human judgement by accepting
synonyms in the translated sentence or evaluating
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the translation on the basis of what syntactic
features it shares with the reference.

Our method follows and substantially extends
the earlier work of Liu and Gildea (2005), who use
syntactic features and unlabelled dependencies to
evaluate MT quality, outperforming BLEU on
segment-level correlation with human judgement.
Dependencies abstract away from the particulars of
the surface string (and syntactic tree) realization
and provide a “normalized” representation of
(some) syntactic variants of a given sentence.

While Liu and Gildea (2005) calculate n-gram
matches on non-labelled head-modifier sequences
derived by head-extraction rules from syntactic
trees, we automatically evaluate the quality of
translation by calculating an f-score on labelled
dependency structures produced by a Lexical-
Functional Grammar (LFG) parser. These
dependencies differ from those used by Liu and
Gildea (2005), in that they are extracted according
to the rules of the LFG grammar and they are
labelled with a type of grammatical relation that
connects the head and the modifier, such as

subject, determiner, etc. The presence of
grammatical relation labels adds another layer of
important  linguistic  information into the

comparison and allows us to account for partial
matches, for example when a lexical item finds
itself in a correct relation but with an incorrect
partner. Moreover, we use a number of best parses
for the translation and the reference, which serves
to decrease the amount of noise that can be
introduced by the process of parsing and extracting
dependency information.

The translation and reference files are
analyzed by a treebank-based, probabilistic LFG
parser (Cahill et al., 2004), which produces a set of
dependency triples for each input. The translation
set is compared to the reference set, and the
number of matches is calculated, giving the

Proceedings of the Second Workshop on Statistical Machine Translation, pages 104111,
Prague, June 2007. (©2007 Association for Computational Linguistics



precision, recall, and f-score for each particular
translation.

In addition, to allow for the possibility of valid
lexical differences between the translation and the
references, we follow Kauchak and Barzilay
(2006) in adding a number of synonyms in the
process of evaluation to raise the number of
matches between the translation and the reference,
leading to a higher score.

In an experiment on 16,800 sentences of
Chinese-English newswire text with segment-level
human evaluation from the Linguistic Data
Consortium’s (LDC) Multiple Translation project,
we compare the LFG-based evaluation method
with other popular metrics like BLEU, NIST,
General Text Matcher (GTM) (Turian et al., 2003),
Translation Error Rate (TER) (Snover et al.,
2006)', and METEOR (Banerjee and Lavie, 2005),
and we show that combining dependency
representations with synonyms leads to a more
accurate evaluation that correlates better with
human judgment. Although evaluated on a
different test set, our method also outperforms the
correlation with human scores reported in Liu and
Gildea (2005).

The remainder of this paper is organized as
follows: Section 2 gives a basic introduction to
LFG; Section 3 describes related work; Section 4
describes our method and gives results of the
experiment on the Multiple Translation data;
Section 5 discusses ongoing work; Section 6
concludes.

2 Lexical-Functional Grammar

In Lexical-Functional Grammar (Kaplan and
Bresnan, 1982; Bresnan, 2001) sentence structure
is represented in terms of c(onstituent)-structure
and f(unctional)-structure. C-structure represents
the word order of the surface string and the
hierarchical organisation of phrases in terms of
CFG trees. F-structures are recursive feature (or
attribute-value) structures, representing abstract
grammatical relations, such as subj(ect), obj(ect),
obl(ique), adj(unct), etc., approximating to
predicate-argument structure or simple logical
forms. C-structure and f-structure are related in

"' We omit HTER (Human-Targeted Translation Error
Rate), as it is not fully automatic and requires human
input.
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terms of functional annotations (attribute-value
structure equations) in c-structure trees, describing
f-structures.

While c-structure is sensitive to surface
rearrangement of constituents, f-structure abstracts
away from the particulars of the surface
realization. The sentences John resigned yesterday
and Yesterday, John resigned will receive different
tree representations, but identical f-structures,
shown in (1).

(1) C-structure: F-structure:

S SuBJ PRED john
T NUM sg
PERS 3
NP VP PRED resign
| TENSE past
John /\ ADJ  {[PRED vyesterday]}
\ NP-TMP
|
resigned yesterday

S suBJ [PRED john]

NUM sg
T PERS 3
NP NP VP PRED resign
| | | TENSE past
Yesterday John \Y ADJ  {[PRED vyesterday]}
I
resigned

Note that if these sentences were a translation-
reference pair, they would receive a less-than-
perfect score from string-based metrics. For
example, BLEU with add-one smoothing® gives
this pair a score of barely 0.3781. This is because,
although all three unigrams from the “translation”
(John; resigned; yesterday) are present in the
reference, which contains four items including the
comma (Yesterday; John; resigned), the
“translation” contains only one bigram (John
resigned) that matches the “reference” (Yesterday
., , John; John resigned), and no matching
trigrams.

The f-structure can also be described in terms
of a flat set of triples. In triples format, the f-
structure in (1) is represented as follows:
{subj(resign, john), pers(john, 3), num(john, sg),
tense(resign,  past), adj(resign, yesterday),
pers(yesterday, 3), num(yesterday, sg)}.

9

* We use smoothing because the original BLEU metric
gives zero points to sentences with fewer than one four-
gram.



Cahill et al. (2004) presents a set of Penn-II
Treebank-based LFG parsing resources. Their
approach distinguishes 32 types of dependencies,
including grammatical functions and
morphological information. This set can be divided
into two major groups: a group of predicate-only
dependencies and non-predicate dependencies.
Predicate-only dependencies are those whose path
ends in a predicate-value pair, describing
grammatical relations. For example, for the f-
structure in (1), predicate-only dependencies would

include: {subj(resign,  john), adj(resign,
yesterday)}.

Other predicate-only dependencies include:
apposition,  complement, open  complement,

coordination, determiner, object, second object,
oblique, second oblique, oblique agent, possessive,
quantifier, relative clause, topic, and relative
clause pronoun. The remaining non-predicate
dependencies are: adjectival degree, coordination
surface form, focus, complementizer forms: if,
whether, and that, modal, number, verbal particle,
participle, passive, person, pronoun surface form,
tense, and infinitival clause.

In parser evaluation, the quality of the f-
structures produced automatically can be checked
against a set of gold standard sentences annotated
with f-structures by a linguist. The evaluation is
conducted by calculating the precision and recall
between the set of dependencies produced by the
parser, and the set of dependencies derived from
the human-created f-structure. Usually, two
versions of f-score are calculated: one for all the
dependencies for a given input, and a separate one
for the subset of predicate-only dependencies.

In this paper, we use the parser developed by
Cahill et al. (2004), which automatically annotates
input text with c-structure trees and f-structure
depenSdencies, obtaining high precision and recall
rates.

3 Related work

3.1

The insensitivity of BLEU and NIST to perfectly
legitimate syntactic and lexical variation has been
raised, among others, in Callison-Burch et al.
(2006), but the criticism is widespread. Even the

String-based metrics

* A demo of the parser can be found at http:/Ifg-
demo.computing.dcu.ie/lfgparser.html
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creators of BLEU point out that it may not
correlate particularly well with human judgment at
the sentence level (Papineni et al., 2002).

Recently a number of attempts to remedy these
shortcomings have led to the development of other
automatic MT evaluation metrics. Some of them
concentrate mainly on word order, like General
Text Matcher (Turian et al.,, 2003), which
calculates precision and recall for translation-
reference pairs, weighting contiguous matches
more than non-sequential matches, or Translation
Error Rate (Snover et al., 2006), which computes
the number of substitutions, insertions, deletions,
and shifts necessary to transform the translation
text to match the reference. Others try to
accommodate both  syntactic and lexical
differences between the candidate translation and
the reference, like CDER (Leusch et al., 2006),
which employs a version of edit distance for word
substitution and reordering; or METEOR
(Banerjee and Lavie, 2005), which uses stemming
and WordNet synonymy. Kauchak and Barzilay
(2006) and Owczarzak et al. (2006) use
paraphrases during BLEU and NIST evaluation to
increase the number of matches between the
translation and the reference; the paraphrases are
either taken from WordNet' in Kauchak and
Barzilay (2006) or derived from the test set itself
through automatic word and phrase alignment in
Owczarzak et al. (2006). Another metric making
use of synonyms is the linear regression model
developed by Russo-Lassner et al. (2005), which
makes use of stemming, WordNet synonymy, verb
class synonymy, matching noun phrase heads, and
proper name matching. Kulesza and Shieber
(2004), on the other hand, train a Support Vector
Machine using features such as proportion of n-
gram matches and word error rate to judge a given
translation’s distance from human-level quality.

3.2 Dependency-based metric

The metrics described above use only string-based
comparisons, even while taking into consideration
reordering. By contrast, Liu and Gildea (2005)
present three metrics that use syntactic and
unlabelled dependency information. Two of these
metrics are based on matching syntactic subtrees
between the translation and the reference, and one

* http://wordnet.princeton.edu/



is based on matching headword chains, i.c.
sequences of words that correspond to a path in the
unlabelled dependency tree of the sentence.
Dependency trees are created by extracting a
headword for each node of the syntactic tree,
according to the rules used by the parser of Collins
(1999), where every subtree represents the
modifier information for its root headword. The
dependency trees for the translation and the
reference are converted into flat headword chains,
and the number of overlapping n-grams between
the translation and the reference chains is
calculated. Our method, extending this line of
research with the wuse of Ilabelled LFG
dependencies, partial matching, and n-best parses,
allows us to considerably outperform Liu and
Gildea’s (2005) highest correlations with human
judgement (they report 0.144 for the correlation
with human fluency judgement, 0.202 for the
correlation with human overall judgement),
although it has to be kept in mind that such
comparison is only tentative, as their correlation is
calculated on a different test set.

4 LFG f-structure in MT evaluation

LFG-based automatic MT evaluation reflects the
same process that underlies the evaluation of
parser-produced f-structure quality against a gold
standard: we parse the translation and the
reference, and then, for each sentence, we check
the set of labelled translation dependencies against
the set of Ilabelled reference dependencies,
counting the number of matches. As a result, we
obtain the precision and recall scores for the
translation, and we calculate the f-score for the
given pair.

4.1 Determining parser noise

Because we are comparing two outputs that were
produced automatically, there is a possibility that
the result will not be noise-free, even if the parser
fails to provide a parse only in 0.1% of cases.

To assess the amount of noise that the parser
introduces, Owczarzak et al. (2006) conducted an
experiment where 100 English sentences were
hand-modified so that the position of adjuncts was
changed, but the sentence remained grammatical
and the meaning was not influenced. This way, an
ideal parser should give both the source and the
modified sentence the same f-structure, similarly to
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the example presented in (1). The modified
sentences were treated like a translation file, and
the original sentences played the part of the
reference. Each set was run through the parser, and
the dependency triples obtained from the
“translation” were compared against the
dependency triples for the “reference”, calculating
the f-score. Additionally, the same “translation-
reference” set was scored with other metrics (TER,
METEOR, BLEU, NIST, and GTM). The results,
including the distinction between f-scores for all
dependencies and predicate-only dependencies,
appear in Table 1.

baseline modified
TER 0.0 6.417
METEOR 1.0 0.9970
BLEU 1.0000 0.8725
NIST 11.5232 11.1704 (96.94%)
GTM 100 99.18
dep f-score 100 96.56
dep_preds f-score 100 94.13

Table 1. Scores for sentences with reordered adjuncts

The baseline column shows the upper bound for a
given metric: the score which a perfect translation,
word-for-word identical to the reference, would
obtain.” The other column lists the scores that the
metrics gave to the “translation” containing
reordered adjunct. As can be seen, the dependency
and predicate-only dependency scores are lower
than the perfect 100, reflecting the noise
introduced by the parser.

We propose that the problem of parser
noise can be alleviated by introducing a number of
best parses into the comparison between the
translation and the reference. Table 2 shows how
increasing the number of parses available for
comparison brings our method closer to an ideal
noise-free parser.

> Two things have to be noted here: (1) in the case of
NIST the perfect score differs from text to text, which is
why the percentage points are provided along the
numerical score, and (2) in the case of TER the lower
the score, the better the translation, so the perfect
translation will receive 0, and there is no upper bound
on the score, which makes this particular metric
extremely difficult to directly compare with others.



dependency f-score

1 best 96.56
2 best 97.31
5 best 97.90
10 best 98.31
20 best 98.59
30 best 98.74
50 best 98.79
baseline 100

Table 2. Dependency f-scores for sentences with reordered
adjuncts with n-best parses available

It has to be noted, however, that increasing the
number of parses beyond a certain threshold does
little to further improve results, and at the same
time it considerably decreases the efficiency of the
method, so it is important to find the right balance
between these two factors. In our opinion, the
optimal value would be 10-best parses.

4.2 Correlation with human judgement —
MultiTrans

4.2.1 Experimental design

To evaluate the correlation with human
assessment, we used the data from the Linguistic
Data Consortium Multiple Translation Chinese
(MTC) Parts 2 and 4, which consists of multiple
translations of Chinese newswire text, four human-
produced references, and segment-level human
scores for a subset of the translation-reference
pairs. Although a single translated segment was
always evaluated by more than one judge, the
judges used a different reference every time, which
is why we treated each translation-reference-
human score triple as a separate segment. In effect,
the test set created from this data contained 16,800
segments. As in the previous experiment, the
translation was scored using BLEU, NIST, GTM,
TER, METEOR, and our labelled dependency-
based method.

4.2.2 Labelled dependency-based method

We examined a number of modifications of the
dependency-based method in order to find out
which one gives the highest correlation with
human scores. The correlation differences between
immediate neighbours in the ranking were often
too small to be statistically significant; however,
there is a clear overall trend towards improvement.
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Besides the plain version of the dependency f-
score, we also looked at the f-score calculated on
predicate dependencies only (ignoring “atomic”
features such as person, number, tense, etc.), which
turned out not to correlate well with human
judgements.

Another addition was the use of 2-, 10-, or 50-
best parses of the translation and reference
sentences, which partially neutralized parser noise
and resulted in increased correlations.

We also created a version where predicate
dependencies of the type subj(resign,John) are split
into two parts, each time replacing one of the
elements participating in the relation with a
variable, giving in effect subj(resign,x) and
subj(y,John). This lets us score partial matches,
where one correct lexical object happens to find
itself in the correct relation, but with an incorrect
“partner”.

Lastly, we added WordNet synonyms into the
matching process to accommodate lexical
variation, and to compare our WordNet-enhanced
method with the WordNet-enhanced version of
METEOR.

4.2.3 Results

We calculated Pearson’s correlation coefficient for
segment-level scores that were given by each
metric and by human judges. The results of the
correlation are shown in Table 3. Note that the
correlation for TER is negative, because in TER
zero is the perfect score, in contrast to other
metrics where zero is the worst possible score;
however, this time the absolute values can be
easily compared to each other. Rows are ordered
by the highest value of the (absolute) correlation
with the human score.

First, it seems like none of the metrics is very
good at reflecting human fluency judgments; the
correlation values in the first column are
significantly lower than the correlation with
accuracy. This finding has been previously
reported, among others, in Liu and Gildea (2005).
However, the dependency-based method in almost
all its versions has decidedly the highest
correlation in this area. This can be explained by
the method’s sensitivity to the grammatical
structure of the sentence: a more grammatical
translation is also a translation that is more fluent.

As to the correlation with human evaluation of
translation accuracy, our method currently falls



short of METEOR. This is caused by the fact that
METEOR assign relatively little importance to the
position of a specific word in a sentence, therefore
rewarding the translation for content rather than
linguistic form. Interestingly, while METEOR,
with  or without WordNet, considerably
outperforms all other metrics when it comes to the
correlation with human judgements of translation
accuracy, it falls well behind most versions of our
dependency-based method in correlation with
human scores of translation fluency.

Surprisingly, adding partial matching to the
dependency-based method resulted in the greatest
increase in correlation levels, to the extent that the
partial-match versions consistently outperformed
versions with a larger number of parses available
but without the partial match. The most interesting
effect was that the partial-match versions (even
those with just a single parse) offered results
comparable to or higher than the addition of
WordNet to the matching process when it comes to
accuracy and overall judgement.

5 Current and future work

Fluency and accuracy are two very different
aspects of translation quality, each with its own set
of conditions along which the input is evaluated.
Therefore, it seems unfair to expect a single
automatic metric to correlate highly with human
judgements of both at the same time. This pattern
is very noticeable in Table 3: if a metric is
(relatively) good at correlating with fluency, its
accuracy correlation suffers (GTM might serve as
an example here), and the opposite holds as well
(see METEOR’s scores). It does not mean that any
improvement that increases the method’s
correlation with one aspect will result in a decrease
in the correlation with the other aspect; but it does
suggest that a possible way of development would
be to target these correlations separately, if we
want our automated metrics to reflect human
scores better. At the same time, string-based
metrics might have already exhausted their
potential when it comes to increasing their
correlation with human evaluation; as has been
pointed out before, these metrics can only tell us
that two strings differ, but they cannot distinguish
legitimate grammatical variance from
ungrammatical variance. As the quality of MT

109

fluency accuracy average
d_50+WN 0.177 IM+WN 0.294 [IM+WN  0.255
d+WN 0.175 M 0.278 |d_50_var 0.252
d_50_var 0.174 |d_50_var 0.273 |d_50+WN 0.250
GTM 0.172 |NIST 0.273 |d_10_var 0.250
d_10_var 0.172 {d_10_var 0.273 |d_2_var 0.247
d_5s0 0.171 |d_2_var 0.270 [d+WN  0.244
d_2_var 0.168 |{d_50+WN  0.269 |d_50 0.243
d_10 0.168 |d_var 0.266 |d_var 0.243
d_var 0.165 (d_50 0.262 M 0.242
d_2 0.164 (d_10 0.262 |d_10 0.242
d 0.161 |d+WN 0.260 |NIST 0.238
BLEU 0.155 (d_2 0.257 |d_2 0.237
M+WN 0.153 |d 0.256 |d 0.235
M 0.149 |d_pr 0.240 |d_pr 0.216
NIST 0.146 |GTM 0.203 |GTM 0.208
d_pr 0.143 |BLEU 0.199 |BLEU 0.197
TER -0.133|TER -0.192|TER -0.182

Table 3. Pearson’s correlation between human scores and
evaluation metrics. Legend: d = dependency f-score, _pr =
predicate-only f-score, 2, 10, 50 = n-best parses; var =
partial-match version; M = METEOR, WN = WordNet®

improves, the community will need metrics that are
more sensitive in this respect. After all, the true
quality of MT depends on producing grammatical
output which describes the same concept as the
source utterance, and the string identity with a
reference is only a very selective approximation of
this goal.

% In general terms, an increase of 0.022 or more between
any two scores in the same column is significant with a
95% confidence interval. The statistical significance of
correlation differences was calculated using Fisher’s z’
transformation and the general formula for confidence
interval.



In order to maximize the correlation with
human scores of fluency, we plan to look more
closely at the parser output, and implement some
basic transformations which would allow an even
deeper logical analysis of input (e.g. passive to
active voice transformation).

Additionally, we want to take advantage of
the fact that the score produced by the dependency-
based method is the proportional average of
matches for a group of up to 32 (but usually far
fewer) different dependency types. We plan to
implement a set of weights, one for each
dependency type, trained in such a way as to
maximize the correlation of the final dependency f-
score with human evaluation. In a preliminary
experiment, for example, assigning a low weight to
the topic dependency increases our correlations
slightly (this particular case can also be seen as a
transformation into a more basic logical form by
removing non-elementary dependency types).

In a similar direction, we want to
experiment more with the f-score calculations.
Initial check shows that assigning a higher weight
to recall than to precision improves results.

To improve the correlation with accuracy
judgements, we would like to experiment using a
paraphrase set derived from a large parallel corpus,
as described in Owczarzak et al. (2006). While
retaining the advantage of having a similar size to
a corresponding set of WordNet synonyms, this set
will also capture low-level syntactic variations,
which can increase the number of matches.

6 Conclusions

In this paper we present a linguistically-
motivated method for automatically evaluating the
output of Machine Translation. Most currently
used popular metrics rely on comparing translation
and reference on a string level. Even given
reordering, stemming, and synonyms for individual
words, current methods are still far from reaching
human ability to assess the quality of translation,
and there exists a need in the community to
develop more dependable metrics. Our method
explores one such direction of development,
comparing the sentences on the level of their
grammatical structure, as exemplified by their f-
structure labelled dependency triples produced by
an LFG parser. In our experiments we showed that
the dependency-based method correlates higher
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than any other metric with human evaluation of
translation fluency, and shows high correlation
with the average human score. The use of
dependencies in MT evaluation has not been
extensively researched before (one exception here
would be Liu and Gildea (2005)), and requires
more research to improve it, but the method shows
potential to become an accurate evaluation metric.
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Abstract

Attempts to estimate phrase translation
probablities for statistical machine transla-
tion using iteratively-trained models have
repeatedly failed to produce translations as
good as those obtained by estimating phrase
translation probablities from surface statis-
tics of bilingual word alignments as de-
scribed by Koehn, et al. (2003). We pro-
pose a new iteratively-trained phrase trans-
lation model that produces translations of
quality equal to or better than those pro-
duced by Koehn, et al.'s model. Moreover,
with the new model, translation quality de-

Wong (2002), was found by Koehn, et al. (2003),
to produce translations not quite as good as their
method. Recently, Birch et al. (2006) tried the
Marcu and Wong model constrained by a word
alignment and also found that Koehn, et al.'s model
worked better, with the advantage of the standard
model increasing as more features were added to the
overall translation model. DeNero et al. (2006) tried
a different generative phrase translation model anal-
ogous to IBM word-translation Model 3 (Brown et
al., 1993), and again found that the standard model
outperformed their generative model.

DeNero et al. (2006) attribute the inferiority of
their model and the Marcu and Wong model to a hid-
den segmentation variable, which enables the EM

grades much more slowly as pruning is tigh-

Wiy & algorithm to maximize the probability of the train-
tend to reduce translation time.

ing data without really improving the quality of the
model. We propose an iteratively-trained phrase
translation model that does not require different seg-

Estimates of conditional phrase translation probabientations to compete against one another, and we
ities provide a major source of translation knowl|-Show that this produces translations of quality equal
edge in phrase-based statistical machine translatiéh Or better than those produced by the standard
(SMT) systems. The most widely used method fomodel. We find, moreover, that with the new model,
estimating these probabilities is that of Koehn, effanslation quality degrades much more slowly as
al. (2003), in which phrase pairs are extracted frorR"uning is tightend to reduce translation time.
word-aligned bilingual sentence pairs, and their Decoding efficiency is usually considered only in
translation probabilities estimated heuristically fronthe design and implementation of decoding algo-
surface statistics of the extracted phrase pairs. Wihms, or the choice of model structures to support
will refer to this approach as “the standard model”. faster decoding algorithms. We are not aware of any
There have been several attempts to estimagétention previously having been paid to the effect of
phrase translation probabilities directly, using gerdifferent methods of parameter estimation on trans-
erative models trained iteratively on a parallel corlation efficiency for a given model structure.
pus using the Expectation Maximization (EM) algo- The time required for decoding is of great im-
rithm. The first of these models, that of Marcu angortance in the practical application of SMT tech-

1 Introduction
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nology. One of the criticisms of SMT often made 4. For each selected phrasednand the corre-
by adherents of rule-based machine translation is sponding phrase position ity stochastically
that SMT is too slow for practical application. The choose a target phrase.

rapidly falling price of computer hardware has ame-

liorated this problem to a great extent, but the fact re- 5- Read off the target sentenéefrom the se-
mains that every factor of 2 improvement in transla- ~ quence of target phrases.

tion efficiency means a factor of 2 decrease in hard- , ) ]

ware cost for intensive applications of SMT, such DPeNero et al’s analysis of why their model per-
as a web-based translation service (“Translate thfg'Ms relatively poorly hinges on the fact that the

page”). SMT surely needs all the help in can get iﬁegmentation probabilities used in step 2 are, in
this regard. fact, not trained, but simply assumed to be uniform.

Given complete freedom to select whatever segmen-
2 Previous Approaches tation maximizes the likelihood of any given sen-

, o tence pair, EM tends to favor segmentations that
Koehn, et al.'s (2003) method of estimating phraseie|q source phrases with as few occurrences as pos-

translation probabilities is very simple. They stargjpie since more of the associated conditional prob-
with an automatically word-aligned corpus of bilin-gpjjity mass can be concentrated on the target phrase
gual sentence pairs, in which certain words argjignments that are possible in the sentence at hand.
linked, indicating that they are translations of eackn ;s EM tends to maximize the probability of the
other, or that they are parts of phrases that are tra’l?aining data by concentrating probability mass on
lations of each other. They extract every posSine rarest source phrases it can construct to cover
ble phrase pair (up to a given length limit) that (@}ne training data. The resulting probability estimates
contains at least one pair of linked words, and (Bhys have less generalizability to unseen data than

does not contain any words that have links to othef rohapility mass were concentrated on more fre-
words not included in the phrase pairIn other quently occurring source phrases.

words, word alignment links cannot cross phrase
pair boundaries. Phrase translation probabilities ag A Segmentation-Free Model
estimated simply by marginalizing the counts of

phrase instances: To avoid the problem identified by DeNero et al.,
we propose an iteratively-trained model that does
p(zly) = C(z,y) not assume a segmentatio_n of the training data into
Yo C(2!y) non-overlapping phrase pairs. We refer to our model

as “iteratively-trained” rather than “generative” be-

Th'z rkr;'?t'hod '? tl;sid to estm;]ate the Fond't'onat!ause we have not proved any of the mathematical
probabilities of both target phrases give SourCﬁroperties usually associated with generative mod-
phrases and source phrases given target phrases.els; e.g., that the training procedure maximizes the

In contrqst to the standard quel, DeNe_r_o_, et af'rkelihood of the training data. We will motivate
(2005) estimate phrgse translapon probabilities a%he model, however, with a generative story as to
cording to the following generative model: how phrase alignments are produced, given a pair of
source and target sentences. Our model extends to
phrase alignment the concept of a sentence pair gen-
2. Stochastically segmentinto some number of erating a word alignment developed by Cherry and

phrases. Lin (2003).

_ _ Our model is defined in terms of two stochastic
3. For each selected phrase dn stochastically ,,cessegelectiorandalignment as follows:
choose a phrase position in the target sentence

b that is being generated. 1. For each word-aligned sentence pair, we iden-

1This method of phrase pair extraction was originally de- tify a_‘” the pOSSi_ble_ phrase pair instances ac-
scribed by Och et al. (1999). cording to the criteria used by Koehn et al.

1. Begin with a source sentenee
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2. Each source phrase instance that is included inWe have seen how to derive phrase translation
any of the possible phrase pair instances indgrobabilities from the selection probabilities, but
pendently selects one of the target phrase irwhere do the latter come from? We answer this
stances that it forms a possible phrase pair irguestion by adding the following constraint to the

stance with.

. Each target phrase instance that is included in
any of the possible phrase pair instances inde-
pendently selects one of the source phrase in-
stances that it forms a possible phrase pair in-
stance with.

model:

The probabilty of a phrase selecting a
phraser is proportional to the probability
of z translating ag;, normalized over the
possible non-null choices far presented
by the word-aligned sentence pair.

4. A source phrase instance is aligned to a targ&tymbolically, we can express this as
phrase instance, if and only if each selects the

other Plylz)

> Pe(yl")

Given a set pf selection probability distributionswhereps denotes selection probability, denotes
and a word-aligned parallel corpus, we can eagransiation probability, and’ ranges over the phrase

ily compute the expected number of alignment injnstances that could possibly aligngo We are, in

stances for a given phrase pair type. The probabilitytect, inverting and renormalizing translation prob-
of a pair of phrase instancesandy being aligned is  gpjjities to get selection probabilities. The reason
simply ps(z[y) x ps(y|x), wherep; is the applica- tor the inversion may not be immediately apparent,
ble selection probability distribution. The expected, ; it in fact simply generalizes the e-step formula

number of instances of alignmerf(z, y), for the iy the EM training for IBM Model 1 from words to
pair of phrases andy, is just the sum of the align- phrases.

ment probabilities of all the possible instances of Tnis model immediately suggests (and, in fact

that phrase pair type. _ was designed to suggest) the following EM-like
From the expected number of alignments and thﬁaining procedure:

total number of occurrences of each source and tar- - . N o
get phrase type in the corpus (Whether or not they 1. I'nltlallze the t.ranslatlon probablllty dlStl’lbU.-
particpate in possible phrase pairs), we estimate the tions to be uniform. (It doesn’t matter at this

conditional phrase translation probabilities as point whether the possibility of no translation
is included or not.)
E(z,y)

C(z) ’

p5($|y) =

(ely) = =
PRET= 700y 2.
where E' denotes expected counts, a6ddenotes
observed counts.

The use of the total observed counts of particu-
lar source and target phrases (instead of marginal-3-
ized expected joint counts) in estimating the condi-
tional phrase translation probabilities, together with
the multiplication of selection probabilities in com-
puting the alignment probability of particular phrase
pair instances, causes the conditional phrase transla-
tion probability distributions generally to sumtoless We view this training procedure as iteratively try-
than1.0. We interpret the missing probability massing to find a set of phrase translation probabilities
as the probability that a given word sequence dod¢hat satisfies all the constraints of the model, al-
not translate as any contiguous word sequence in thi@ugh we have not proved that this training proce-
other language. dure always converges. We also have not proved that

pe(yle) = E step: Compute the expected phrase alignment
counts according to the model, deriving the se-
lection probabilities from the current estimates

of the translation probabilities as described.

M step: Re-estimate the phrase translation
probabilities according to the expected phrase
alignment counts as described.

4. Repeat the E and M steps, until the desired de-
gree of convergence is obtained.
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the procedure maximizes the likelihood of anything(Brown et al., 1993). The feature weights for the
although we find empirically that each iteration deoverall translation models were trained using Och’s
creases the conditional entropy of the phrase tran€003) minimume-error-rate training procedure. The
lation model. In any case, the training procedurgeights were optimized separately for our model
seems to work well in practice. It is also very simi-and for the standard phrase translation model. Our
lar to the joint training procedure for HMM word- decoder is a reimplementation in Perl of the algo-
alignment models in both directions described byithm used by the Pharaoh decoder as described by
Liang et al. (2006), which was the original inspira-Koehn (2003Y

tion for our training procedure. The data we used comes from an English-French
_ bilingual corpus of Canadian Hansards parliamen-
4 Experimental Set-Up and Data tary proceedings supplied for the bilingual word

We evaluated our phrase translation model conftignment workshop held at HLT-NAACL 2003
pared to the standard model of Koehn et al. in théVihalcea and Pedersen, 2003). Automatic sentence
context of a fairly typical end-to-end phrase-based!ignment of this data was provided by Ulrich Ger-
SMT system. The overall translation model scorann. We used 500,000 sentences pairs from this
consists of a weighted sum of the following eight agE0"PUs for training both the phrase translation mod-

gregated feature values for each translation hypotflS and IBM Model 1 exical scores. These 500,000
esis: sentence pairs were word-aligned using a state-of-

the-art word-alignment method (Moore et al., 2006).

e the sum of the log probabilities of each source separate set of 500 sentence pairs was used to train
phrase in the hypothesis given the correspondhe translation model weights, and two additional
ing target phrase, computed either by ouheld-out sets of 2000 sentence pairs each were used
model or the standard model, as test data.

The two phrase translation models were trained

¢ the sum of the log probabilities of each tar'usin the same set of possible phrase pairs extracted
get phrase in the hypothesis given the corre- g P P P

: . rom the word-aligned 500,000 sentence pair cor-
sponding source phrase, computed either b o : . .
us, finding all possible phrase pairs permitted by
our model or the standard model, o
the criteria followed by Koehn et al., up to a phrase
e the sum of lexical scores for each source phrad@ngth of seven words. This produced approximately

given the corresponding target phrase, 69 million distinct phrase pair types. No pruning of
the set of possible phrase pairs was done during or

» the sum of lexical scores for each target phrasgefore training the phrase translation models. Our
given the corresponding source phrase, phrase translation model and IBM Model 1 were

... both trained for five iterations. The training pro-
¢ the log of the target language model probability : :
edure for our phrase translation model trains mod-

for the sequence of target phrases in the hypoth-"", . . .
esis au getp ! yp els in both directions simultaneously, but for IBM

Model 1, models were trained separately in each di-
e the total number of words in the target phrasetgction. The models were then pruned to include
in the hypothesis, only phrase pairs that matched the source sides of

_the small training and test sets.
¢ the total number of source/target phrase pairs

composing the hypothesis, 5 Entropy Measurements

e the distortion penalty as implemented in thelo verify that our iterative training procedure was
Pharaoh decoder (Koehn, 2003). behaving as expected, after each training iteration

The lexical scores are computed as the (unnor- “Since Perl is a byte-code interpreted language, absolute de-
. . . . coding times will be slower than with the standard machine-
malized) log probability of the Viterbi alignment for language-compiled implementation of Pharaoh, but relative
a phrase pair under IBM word-translation Model Zimes between models should be comparable.
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we measured the conditional entropy of the model The distortion limit is the maximum distance al-
in predicting English phrases given French phrasemwed between two source phrases that produce ad-

according to the formula jacent target phrases in the decoder output. The dis-
tortion limit can be viewed as a model parameter,

H(E|F) =Y _p(f)Y_pilelf)logypilelf), as well as a pruning paramter, because setting it to
S ¢ an optimum value usually improves translation qual-

. ity over leaving it unrestricted. We carried out ex-
wheree and f range over the English and French %riments with the distortion limit set to 1, which

phrases that occur in the extracted phrase pairs, aﬁeemed to produce the highesteR scores on our

p(f) was estimated according to the relative freEzlata set with the standard model, and also set to 5,

guency of these French phrases in a 2000 sentencgiCh is perhaps a more typical value for phrase-

sample_of the French sen_tences from th? 500’9 ased SMT systems. Translation model weights
Yxor'c':(;?;?gﬁg seen(t)(z:;:i epdagsrﬁor?c;{[ig'raell f"éi;:g;ns\ivere trained separately for these two settings, be-
g1 ! ’Wf i ' ! i y bit cause the greater the distortion limit, the higher the
NG sequence of entropy measurements in bits Piqiqrtion penalty weight needed for optimal trans-
phrase: 1.329, 1.177, 1.146, 1.140, 1.136.

We al dth ditional ent fthIation quality.
€ also compare € conditional entropy ot the The translation table limit and translation table

sta_ndar'd model tp the fln_al iteration of our mOOIelthreshold are applied statically to the phrase trans-
estimatingp(f) using the first of our 2000 sentence,, ;. table. which combines all components of the

pgirtest sets. For this data, our model measured 1'%@erall translation model score that can be com-
bits per phrase, and the standard model measur gted for each phrase pair in isolation. This in-

4.30 bits per phrase. DeNero et al. obtained corr ludes all information except the distortion penalty

sponding measurements of 1.55 bits per phrase a080re and the part of the language model score that

3'72 bltsdpler phraseai;(f')r th?; rr:odelt anz thel_sft?éoks atn-grams that cross target phrase boundaries.
ard model, using a dierent data set and a sightiyy, o anslation table limit is the maximum number

different estimation method. of translations allowed in the table for any given

source phrase. The translation table threshold is
the maximum difference in combined translation ta-
We wanted to look at the trade-off between decoddle score allowed between the highest scoring trans-
ing time and translation quality for our new phrasdation and lowest scoring translation for any given
translation model compared to the standard modedource phrase. The beam limit and beam threshold
Since this trade-off is also affected by the settings afre defined similarly, but they apply dynamically to
various pruning parameters, we compared decodirige sets of competing partial hypotheses that cover
time and translation quality, as measured lmeB  the same number of source words in the beam search
score (Papineni et al, 2002), for the two models ofor the highest scoring translation.

our first test set over a broad range of settings for the For each of the two distortion limits we tried, we

6 Translation Experiments

decoder pruning parameters. carried out a systematic search for combinations of
The Pharaoh decoding algorithm, has five pruningettings of the other four pruning parameters that
parameters that affect decoding time: gave the best trade-offs between decoding time and
BLEU score. Starting at a setting of 0.5 for the
e Distortion limit threshold parametéetaind 5 for the limit parameters

we performed a hill-climbing search over step-wise

Translation table limit relaxations of all combinations of the four parame-

Translation table threshold 3We use difference in weighted linear scores directly for
our pruning thresholds, whereas the standard implementation of
Pharaoh expresses these as probability ratios. Hence the specific

e Beam limit values for these parameters are not comparable to published de-
scriptions of experiments using Pharaoh, although the effects of
e Beam threshold pruning are exactly the same.
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ters, incrementing the threshold parameters by Odood translation time.
and the limit parameters by 5 at each step. For eachExamining the results for a distortion limit of
resulting point that provided the bestBu scoreyet 1, we found that the BEu score obtained with
seen for the amount of decoding time used, we itethe loosest pruning parameter settings (2.5 for both
ated the search. threshold paramters, and 25 for both limit parame-
The resulting possible combinations ofLiBy  ters) were essentially identical for the two mod-
score and decoding time for the two phrase trangls: 30.42 BEU[%]. As the pruning parameters
lation models are displayed in Figure 1, for a distorare tightened to reduce decoding time, however,
tion limit of 1, and Figure 2, for a distortion limit the new model performs much better. At a decod-
of 5. BLEU score is reported on a scale of 1-100ng time almost 6 times faster than for the settings
(BLEU[%]), and decoding time is measured in mil-that produced the highestLBU score, the change

liseconds per word. Note that the decoding time axi§ score was only-0.07 BLEU[%] with the new
is presented on a log scale. model. To obtain a slightly woréeBLEU score

The points that represent pruning parameter sef=0-08 BLEU[%]) using the standard model took

tings one might consider using in a practical systerd0% more decoding time.

are those on or near the upper convex hull of the It does appear, however, that the bestB score
set of points for each model. These upper-conveior the standard model is slightly better than the best
hull points are highlighted in the figures. Points faBLEU score for the new model: 30.43 vs. 30.42.
from these boundaries represent settings of one BriS in fact currious that there seem to be numer-
more of the parameters that are too restrictive to olUs points where the standard model gets a slightly

tain good translation quality, together with settingS™ 4pgints on the convex hulls with exactly comparableB
of other parameters that are too permissive to obtaégores do not often occur.
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better B.EU score than it does with with the loos- reflect reality, but not in the region where they equal
est pruning settings, which should have the loweslr exceed the score for the loosest pruning settings.
search error. At a distortion limit of 5, there seems no question
We conjectured that this might be an artifact othat the new model performs better than the standard
our test procedure. If a model is at all reasonablenodel. The difference Beu scores for the upper-
most search errors will reduce the ultimate objecsonvex-hull points ranges from about 0.8 to 0.2
tive function, in our case the IEuU score, but oc- BLEU[%] for comparable decoding times. Again,
casionally a search error will increase the objectivthe advantage of the new model is greater at shorter
function just by chance. The smaller the number oflecoding times. Compared to the results with a dis-
search errors in a particular test, the greater the likartion limit of 1, the standard model loses transla-
lihood that, by chance, more search errors will intion quality, with a change of about0.2 BLEU[%]
crease the objective function than decrease it. Sinder the loosest pruning settings, while the new model
we are sampling a fairly large number of combi-gains very slightly ¢0.04 BLEU[%)]).
nations of pruning parameter settings (179 for the _
standard model with a distortion limit of 1), it is / Conclusions

possible that a small number of these have MOrg,ig stydy seems to confirm DeNero et al.’s diagno-
“good” search errors than *bad” search errors sim;g that the main reason for poor performance of pre-
ply by chance, and that this accounts for the smafq, s jteratively-trained phrase translation models,
number of points (13) at which theLBU score ex- ¢ompared to Koehn et al.’'s model, is the effect of the
ceeds that of the point which should have the fewegfiygen segmentation variable in these models. We
search errors. This effect may be more pronouncegh e geveloped an iteratively-trained phrase transla-

with the standard model than with the new model;, o qel that is segmentation free, and shown that,
simply because there is more noise in the standag 5 minimum, it eliminates the shortfall inLBU

model. score compared to the standard model. With a larger

To test the hypothesis that theLBU SCOres igiortion Iimit, the new model produced transla-
greater than the score for the loosest pruning sefyns with a noticably better BEU score.

tings simply represent noise in the data, we col- grom g practical point of view, the main result

lected all the pruning settings that produceteB 4 probably that BEU score degrades much more
scores greater than or equal to the the one for thg, v \ith our model than with the standard model,
loosest pruning settings, and evaluated the standgfflen, the decoding search is tuned for speed. For
model at those settings on our second held-out tegh e settings that appear reasonable, this difference
set. We then looked at the correlation between tqg close to a factor of 2. even if there is no differ-

BLEU scores for these settings on the two test Set§pcq i the translation quality obtainable when prun-
and found that it was very small and negative, with is |g0sened. For high-demand applications like
r = —0.099. The standard F-test for the significancyep, nage translation, roughly half of the investment
of a correlation yieldegp = 0.74; in other words, i, yansiation servers could be saved while provid-

completely insignificant. This strongly suggests thgf his level of translation quality with the same re-
the apparent improvement inLBu score for certain sponse time.

tighter pruning settings is illusory.
As a sanity check, we tested the®J score cor- Acknowledgement

relation between the two test sets for the points on ]
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Abstract

Most state-of-the-art statistical machine
translation systems use log-linear models,
which are defined in terms of hypothesis fea-
tures and weights for those features. It is
standard to tune the feature weights in or-
der to maximize a translation quality met-
ric, using held-out test sentences and their
corresponding reference translations. How-
ever, obtaining reference translations is ex-
pensive. In this paper, we introduce a new
full-sentence paraphrase technique, based
on English-to-English decoding with an MT
system, and we demonstrate that the result-
ing paraphrases can be used to drastically re-
duce the number of human reference transla-
tions needed for parameter tuning, without a
significant decrease in translation quality.

1 Introduction

Viewed at a very high level, statistical machine
translation involves four phases: language and trans-
lation model training, parameter tuning, decoding,
and evaluation (Lopez, 2007; Koehn et al., 2003).
Since their introduction in statistical MT by Och and
Ney (2002), log-linear models have been a standard
way to combine sub-models in MT systems. Typi-
cally such a model takes the form

RVNEND 0

where ¢; are features of the hypothesis e and \; are
weights associated with those features.

Selecting appropriate weights J\; is essential
in order to obtain good translation performance.
Och (2003) introduced minimum error rate train-
ing (MERT), a technique for optimizing log-linear
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model parameters relative to a measure of translation
quality. This has become much more standard than
optimizing the conditional probability of the train-
ing data given the model (i.e., a maximum likelihood
criterion), as was common previously. Och showed
that system performance is best when parameters are
optimized using the same objective function that will
be used for evaluation; BLEU (Papineni et al., 2002)
remains common for both purposes and is often re-
tained for parameter optimization even when alter-
native evaluation measures are used, e.g., (Banerjee
and Lavie, 2005; Snover et al., 2006).

Minimum error rate training—and more gener-
ally, optimization of parameters relative to a trans-
lation quality measure—relies on data sets in which
source language sentences are paired with (sets of)
reference translations. It is widely agreed that, at
least for the widely used BLEU criterion, which is
based on n-gram overlap between hypotheses and
reference translations, the criterion is most accu-
rate when computed with as many distinct reference
translations as possible. Intuitively this makes sense:
if there are alternative ways to phrase the meaning
of the source sentence in the target language, then
the translation quality criterion should take as many
of those variations into account as possible. To do
otherwise is to risk the possibility that the criterion
might judge good translations to be poor when they
fail to match the exact wording within the reference
translations that have been provided.

This reliance on multiple reference translations
creates a problem, because reference translations are
labor intensive and expensive to obtain. A com-
mon source of translated data for MT research is the
Linguistic Data Consortium (LDC), where an elab-
orate process is undertaken that involves translation
agencies, detailed translation guidelines, and qual-
ity control processes (Strassel et al., 2006). Some

Proceedings of the Second Workshop on Statistical Machine Translation, pages 120-127,
Prague, June 2007. (©2007 Association for Computational Linguistics



efforts have been made to develop alternative pro-
cesses for eliciting translations, e.g., from users on
the Web (Oard, 2003) or from informants in low-
density languages (Probst et al., 2002). However,
reference translations for parameter tuning and eval-
uation remain a severe data bottleneck for such ap-
proaches.

Note, however, one crucial property of reference
translations: they are paraphrases, i.e., multiple ex-
pressions of the same meaning. Automatic tech-
niques exist for generating paraphrases. Although
one would clearly like to retain human transla-
tions as the benchmark for evaluation of translation,
might it be possible to usefully increase the number
of reference translations for funing by using auto-
matic paraphrase techniques?

In this paper, we demonstrate that it is, in fact,
possible to do so. Section 2 briefly describes our
translation framework. Section 3 lays out a novel
technique for paraphrasing, designed with the ap-
plication to parameter tuning in mind. Section 4
presents evaluation results using a state of the art sta-
tistical MT system, demonstrating that half the hu-
man reference translations in a standard 4-reference
tuning set can be replaced with automatically gener-
ated paraphrases, with no significant decrease in MT
system performance. In Section 5 we discuss related
work, and in Section 6 we summarize the results and
discuss plans for future research.

2 Translation Framework

The work described in this paper makes use
of the Hiero statistical MT framework (Chiang,
2007). Hiero is formally based on a weighted syn-
chronous context-free grammar (CFG), containing
synchronous rules of the form

X — (e f,¢5(f.e,X)) 2)

where X is a symbol from the nonterminal alpha-
bet, and € and f can contain both words (terminals)
and variables (nonterminals) that serve as placehold-
ers for other phrases. In the context of statistical
MT, where phrase-based models are frequently used,
these synchronous rules can be interpreted as pairs
of hierarchical phrases. The underlying strength
of a hierarchical phrase is that it allows for effec-
tive learning of not only the lexical re-orderings, but
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phrasal re-orderings, as well. Each ¢(e, f, X) de-
notes a feature function defined on the pair of hierar-
chical phrases.! Feature functions represent condi-
tional and joint co-occurrence probabilities over the
hierarchical paraphrase pair.

The Hiero framework includes methods to learn
grammars and feature values from unannotated par-
allel corpora, without requiring syntactic annotation
of the data. Briefly, training a Hiero model proceeds
as follows:

o GIZA++ (Och and Ney, 2000) is run on the
parallel corpus in both directions, followed by
an alignment refinement heuristic that yields a
many-to-many alignment for each parallel sen-
tence.

e Initial phrase pairs are identified following the
procedure typically employed in phrase based
systems (Koehn et al., 2003; Och and Ney,
2004).

e Grammar rules in the form of equation (2)
are induced by “subtracting” out hierarchical
phrase pairs from these initial phrase pairs.

e Fractional counts are assigned to each pro-
duced rule:
1

(X — (& f) :Zn'

j=1 Jr

3)

where m is the number of initial phrase pairs
that give rise to this grammar rule and n;j, is
the number of grammar rules produced by the
4 initial phrase pair.

e Feature functions ¢¥(f,é, X) are calculated
for each rule using the accumulated counts.

Once training has taken place, minimum error rate
training (Och, 2003) is used to tune the parameters
Aje

Finally, decoding in Hiero takes place using a
CKY synchronous parser with beam search, aug-
mented to permit efficient incorporation of language
model scores (Chiang, 2007). Given a source lan-
guage sentence f, the decoder parses the source lan-
guage sentence using the grammar it has learned

!Currently only one nonterminal symbol is used in Hiero
productions.



during training, with parser search guided by the
model; a target-language hypothesis is generated
simultaneously via the synchronous rules, and the
yield of that hypothesized analysis represents the hy-
pothesized string e in the target language.

3 Generating Paraphrases

As discussed in Section 1, our goal is to make it pos-
sible to accomplish the parameter-tuning phase us-
ing fewer human reference translations. We accom-
plish this by beginning with a small set of human
reference translations for each sentence in the devel-
opment set, and expanding that set by automatically
paraphrasing each member of the set rather than by
acquiring more human translations.

Most previous work on paraphrase has focused
on high quality rather than coverage (Barzilay and
Lee, 2003; Quirk et al., 2004), but generating ar-
tificial references for MT parameter tuning in our
setting has two unique properties compared to other
paraphrase applications. First, we would like to ob-
tain 100% coverage, in order to avoid modifications
to our minimum error rate training infrastructure.’
Second, we prefer that paraphrases be as distinct as
possible from the original sentences, while retaining
as much of the original meaning as possible.

In order to satisfy these two properties, we ap-
proach sentence-level paraphrase for English as
a problem of English-to-English translation, con-
structing the model using English-F' translation, for
a second language F', as a pivot. Following Ban-
nard and Callison-Burch (2005), we first identify
English-to-F' correspondences, then map from En-
glish to English by following translation units from
English to F' and back. Then, generalizing their ap-
proach, we use those mappings to create a well de-
fined English-to-English translation model. The pa-
rameters of this model are tuned using MERT, and
then the model is used in an the (unmodified) sta-
tistical MT system, yielding sentence-level English
paraphrases by means of decoding input English
sentences. The remainder of this section presents
this process in detail.

2Strictly speaking, this was not a requirement of the ap-
proach, but rather a concession to practical considerations.
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3.1 Mapping and Backmapping

We employ the following strategy for the induction
of the required monolingual grammar. First, we train
the Hiero system in standard fashion on a bilingual
English-F' training corpus. Then, for each exist-
ing production in the resulting Hiero grammar, we
create multiple new English-to-English productions
by pivoting on the foreign hierarchical phrase in the
rule. For example, assume that we have the follow-
ing toy grammar for English-F", as produced by Hi-
ero:

wl &l

MI &l
&h S

llill

{e1, f1)
(€3, /1)
{e1,£2)
(€2, f2)
(4, f2)

If we use the foreign phrase f1 as a pivot and
backmap, we can extract the two English-to-English
rules: X — (el,e3) and X — (e3,el). Backmap-
ping using both f1 and f2 produces the following
new rules (ignoring duplicates and rules that map
any English phrase to itself):

X — (el,e2)
X — (el,e3)
X — (el,ed)
X — (e2,el)
X — (e2,ed)

3.2 Feature values

Each rule production in a Hiero grammar is
weighted by several feature values defined on the
rule themselves. In order to perform accurate
backmapping, we must recompute these feature
functions for the newly created English-to-English
grammar. Rather than computing approximations
based on feature values already existing in the bilin-
gual Hiero grammar, we calculate these features
in a more principled manner, by computing max-
imum likelihood estimates directly from the frac-
tional counts that Hiero accumulates in the penul-
timate training step.

We use the following features in our induced
English-to-English grammar:>

*Hiero also uses lexical weights (Koehn et al., 2003) in both



e The joint probability of the two English hierar-
chical paraphrases, conditioned on the nonter-
minal symbol, as defined by this formula:

(X — (€1, €2))
Zel /6! C(X - (e_l e_2l>)

_ C(X — <€_1,€_2>)
c(X)
where the numerator is the fractional count of
the rule under consideration and the denomina-
tor represents the marginal count over all the
English hierarchical phrase pairs.

pler, elz) =

“)

e The conditionals p(é1,x|é2) and p(éz,z|é)
defined as follows:

o(X — (é1,€62))
e (X — (e, e2))

pler, z|ez) = > )

(X — (e1,€2))
P (X — (é1,€2'))

Finally, for all induced rules, we calculate a word
penalty exp(—T(€2)), where T'(€2) just counts the
number of terminal symbols in é3. This feature al-
lows the model to learn whether it should produce
shorter or longer paraphrases.

In addition to the features above that are estimated
from the training data, we also use a trigram lan-
guage model. Since we are decoding to produce
English sentences, we can use the same language
model employed in a standard statistical M T setting.

Calculating the proposed features is complicated
by the fact that we don’t actually have the counts
for English-to-English rules because there is no
English-to-English parallel corpus. This is where
the counts provided by Hiero come into the picture.
We estimate the counts that we need as follows:

(6)

p(€_2, 13’6_1) =

(X — (e, e2)) =

dooX = e, X — (e f)) D

!

An intuitive way to think about the formula above
is by using an example at the corpus level. As-
sume that, in the given bilingual parallel corpus,
there are m sentences in which the English phrase

directions as features but we don’t use them for our grammar.
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é1 co-occurs with the foreign phrase f and n sen-
tences in which the same foreign phrase f co-occurs
with the English phrase 3. The problem can then
be thought of as defining a function g(m,n) which
computes the number of sentences in a hypotheti-
cal English-to-English parallel corpus wherein the
phrases ¢; and é; co-occur. For this paper, we de-
fine g(m, n) to be the upper bound mn.

Tables 1 and 2 show some examples of para-
phrases generated by our system across a range of
paraphrase quality for two different pivot languages.

3.3 Tuning Model Parameters

Although the goal of the paraphrasing approach
is to make it less data-intensive to tune log-linear
model parameters for translation, our paraphrasing
approach, since it is based on an English-to-English
log-linear model, also requires its own parameter
tuning. This, however, is straightforward: regard-
less of how the paraphrasing model will be used
in statistical MT, e.g., irrespective of source lan-
guage, it is possible to use any existing set of English
paraphrases as the tuning set for English-to-English
translation. We used the 2002 NIST MT evaluation
test set reference translations. For every item in the
set, we randomly chose one sentence as the source
sentence, and the remainder as the “reference trans-
lations” for purposes of minimum error rate training.

4 Evaluation

Having developed a paraphrasing approach based on
English-to-English translation, we evaluated its use
in improving minimum error rate training for trans-
lation from a second language into English.
Generating paraphrases via English-to-English
translation makes use of a parallel corpus, from
which a weighted synchronous grammar is automat-
ically acquired. Although nothing about our ap-
proach requires that the paraphrase system’s training
bitext be the same one used in the translation exper-
iments (see Section 6), doing so is not precluded, ei-
ther, and it is a particularly convenient choice when
the paraphrasing is being done in support of MT.*
The training bitext comprised of Chinese-English

*The choice of the foreign language used as the pivot should
not really matter but it is worth exploring this using other lan-
guage pairs as our bitext.



we must remember the wider community .

we must bear in mind the community as a whole .

thirdly , the implications of enlargement for the union ’s regional policy cannot be overlooked .
finally , the impact of enlargement for eu regional policy cannot be ignored .

how this works in practice will become clear when the authority has to act .
how this operate in practice will emerge when the government has to play .

this is an ill-advised policy .
this is an unwelcome in europe .

OB ORORO

Table 1: Example paraphrases with French as the pivot language. O = Original Sentence, P = Paraphrase.

alcatel added that the company’s whole year earnings would be announced on february 4 .
alcatel said that the company’s total annual revenues would be released on february 4 .

he was now preparing a speech concerning the us policy for the upcoming world economic forum .

tibet has entered an excellent phase of political stability, ethnic unity and people living in peace .
tibetans have come to cordial political stability, national unity and lived in harmony .

its ocean and blue-sky scenery and the mediterranean climate make it world’s famous scenic spot .

(0]
P:
(0]
P:  he was now ready to talk with regard to the us policies for the forthcoming international economic forum .
(0]
P:
(0]
P:

its harbour and blue-sky appearance and the border situation decided it world’s renowned tourist attraction .

Table 2: Example paraphrases with Chinese as the pivot language. O = Original Sentence, P = Paraphrase.

Corpus | # Sentences | # Words
HK News | 542540 11171933
FBIS 240996 9121210
Xinhua | 54022 1497562

Newsl1 9916 314121
Treebank | 3963 125848
Total 851437 22230674

Table 3: Chinese-English corpora used as training
bitext both for paraphrasing and for evaluation.

parallel corpora containing 850, 000 sentence pairs —
approx. 22 million words (details shown in Table 3).

As the source of development data for minimum
error rate training, we used the 919 source sen-
tences and human reference translations from the
2003 NIST Chinese-English MT evaluation exer-
cise. As raw material for experimentation, we gen-
erated a paraphrase for each reference sentence via
1-best decoding using the English-to-English trans-
lation approach of Section 3.

As our test data, we used the 1082 source sen-
tences and human reference translations from the
2005 NIST Chinese-English MT evaluation.
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Our core experiment involved three conditions
where the only difference was the set of references
for the development set used for tuning feature
weights. For each condition, once the weights were
tuned, they were used to decode the test set. Note
that for all the conditions, the decoded test set was
always scored against the same four high-quality hu-
man reference translations included with the set.

The three experimental conditions were designed
around the constraint that our development set con-
tains a total of four human reference translations per
sentence, and therefore a maximum of four human
references with which to compute an upper bound:

e Baseline (2H): For each item in the devel-
opment set, we randomly chose two of the
four human-constructed reference translations
as references for minimum error rate training.

e Expanded (2H + 2P): For each of the two hu-
man references in the baseline tuning set, we
automatically generated a corresponding para-
phrase using (1-best) English-to-English trans-
lation, decoding using the model developed in
Section 3. This condition represents the critical
case in which you have a limited number of hu-




man references (two, in this case) and augment
them with artificially generated reference trans-
lations. This yields a set of four references for
minimum error rate training (two human, two
paraphrased), which permits a direct compar-
ison against the upper bound of four human-
generated reference translations.

e Upper bound: 4H: We performed minimum
error rate training using the four human refer-
ences from the development set.

In addition to these core experimental conditions,
we added a fourth condition to assess the effect on
performance when all four human reference trans-
lations are used in expanding the reference set via
paraphrase:

e Expanded (4H + 4P): This is the same as Con-
dition 2, but using all four human references.

Note that since we have only four human references
per item, this fourth condition does not permit com-
parison with an upper bound of eight human refer-
ences.

Table 4 shows BLEU and TER scores on the test
set for all four conditions.”> If only two human ref-
erences were available (simulated by using only two
of the available four), expanding to four using para-
phrases would yield a clear improvement. Using
bootstrap resampling to compute confidence inter-
vals (Koehn, 2004), we find that the improvement in
BLEU score is statistically significant at p < .01.

Equally interesting, expanding the number of ref-
erence translations from two to four using para-
phrases yields performance that approaches the up-
per bound obtained by doing MERT using all four
human reference translations. The difference in
BLEU between conditions 2 and 3 is not significant.

Finally, our fourth condition asks whether it is
possible to improve MT performance given the
typical four human reference translations used for
MERT in most statistical MT systems, by adding a
paraphrase to each one for a total eight references
per translation. There is indeed further improve-
ment, although the difference in BLEU score does
not reach significance.

>We plan to include METEOR scores in future experiments.
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Condition | References used | BLEU | TER
1 2H 30.43 | 59.82
2 2H+2P 31.10 | 58.79
3 4H 31.26 | 58.66
4 4H+4P 31.68 | 58.24

Table 4: BLEU and TER scores showing utility of
paraphrased reference translations. H = human ref-
erences, P = paraphrased references.

We also evaluated our test set using TER (Snover
et al., 2006) and observed that the TER scores follow
the same trend as the BLEU scores. Specifically, the
TER scores demonstrate that using paraphrases to
artificially expand the reference set is better than us-
ing only 2 human reference translations and as good
as using 4 human reference translations.®

5 Related Work

The approach we have taken here arises from a typ-
ical situation in NLP systems: the lack of sufficient
data to accurately estimate a model based on super-
vised training data. In a structured prediction prob-
lem such as MT, we have an example input and a
single labeled, correct output. However, this output
is chosen from a space in which the number of pos-
sible outputs is exponential in the input size, and in
which there are many good outputs in this space (al-
though they are vastly outnumbered by the bad out-
puts). Various discriminative learning methods have
attempted to deal with the first of these issues, often
by restricting the space of examples. For instance,
some max-margin methods restrict their computa-
tions to a set of examples from a “feasible set,”
where they are expected to be maximally discrim-
inative (Tillmann and Zhang, 2006). The present
approach deals with the second issue: in a learning
problem where the use of a single positive example
is likely to be highly biased, how can we produce a
set of positive examples that is more representative
of the space of correct outcomes? Our method ex-
ploits alternative sources of information to produce
new positive examples that are, we hope, reasonably
likely to represent a consensus of good examples.
Quite a bit of work has been done on paraphrase,

SWe anticipate doing significance tests for differences in
TER in future work.



some clearly related to our technique, although in
general previous work has been focused on human
readability rather than high coverage, noisy para-
phrases for use downstream in an automatic process.

At the sentence level, (Barzilay and Lee, 2003)
employed an unsupervised learning approach to
cluster sentences and extract lattice pairs from
comparable monolingual corpora. Their technique
produces a paraphrase only if the input sentence
matches any of the extracted lattice pairs, leading to
a bias strongly favoring quality over coverage. They
were able to generate paraphrases for 59 sentences
(12%) out of a 484-sentence test set, generating no
paraphrases at all for the remainder.

Quirk et al. (2004) also generate sentential para-
phrases using a monolingual corpus. They use
IBM Model-1 scores as the only feature, and em-
ploy a monotone decoder (i.e., one that cannot pro-
duce phrase-level reordering). This approach em-
phasizes very simple “substitutions of words and
short phrases,” and, in fact, almost a third of their
best sentential “paraphrases” are identical to the in-
put sentence.

A number of other approaches rely on parallel
monolingual data and, additionally, require pars-
ing of the training sentences (Ibrahim et al., 2003;
Pang et al.,, 2003). Lin and Pantel (2001) use a
non-parallel corpus and employ a dependency parser
and computation of distributional similarity to learn
paraphrases.

There has also been recent work on using para-
phrases to improve statistical machine translation.
Callison-Burch et al. (2006) extract phrase-level
paraphrases by mapping input phrases into a phrase
table and then mapping back to the source language.
However, they do not generate paraphrases of entire
sentences, but instead employ paraphrases to add en-
tries to an existing phrase table solely for the pur-
pose of increasing source-language coverage.

Other work has incorporated paraphrases into MT
evaluation: Russo-Lassner et al. (2005) use a com-
bination of paraphrase-based features to evaluate
translation output; Zhou et al. (2006) propose a new
metric that extends n-gram matching to include syn-
onyms and paraphrases; and Lavie’s METEOR met-
ric (Banerjee and Lavie, 2005) can be used with ad-
ditional knowledge such as WordNet in order to sup-
port inexact lexical matches.
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6 Conclusions and Future Work

We introduced an automatic paraphrasing technique
based on English-to-English translation of full sen-
tences using a statistical MT system, and demon-
strated that, using this technique, it is possible to
cut in half the usual number of reference transla-
tions used for minimum error rate training with no
significant loss in translation quality. Our method
enables the generation of paraphrases for thousands
of sentences in a very short amount of time (much
shorter than creating other low-cost human refer-
ences). This might prove beneficial for various dis-
criminative training methods (Tillmann and Zhang,
2006).

This has important implications for data acquisi-
tion strategies For example, it suggests that rather
than obtaining four reference translations per sen-
tence for development sets, it may be more worth-
while to obtain fewer translations for a wider range
of sentences, e.g., expanding into new topics and
genres. In addition, this approach can significantly
increase the utility of datasets which include only a
single reference translation.

A number of future research directions are pos-
sible. First, since we have already demonstrated
that noisy paraphrases can nonetheless add value,
it would be straightforward to explore the quan-
tity/quality tradeoff by expanding the MERT refer-
ence translations with n-best paraphrases for n > 1.

We also plan to conduct an intrinsic evaluation of
the quality of paraphrases that our technique gener-
ates. It is important to note that a different tradeoff
ratio may lead to even better results, e.g, using only
the paraphrased references when they pass some
goodness threshold, as used in Ueffing’s (2006) self-
training MT approach.

We have also observed that named entities are
usually paraphrased incorrectly if there is a genre
mismatch between the training and the test data. The
Hiero decoder allows spans of source text to be an-
notated with inline translations using XML. We plan
to identify and annotate named entities in the En-
glish source so that they are left unchanged.

Also, since the language F' for English-F' pivoting
is arbitrary, we plan to investigate using English-to-
English grammars created using multiple English-F'
grammars based on different languages, both indi-



vidually and in combination, in order to improve
paraphrase quality.

We also plan to explore a wider range of
paraphrase-creation techniques, ranging from sim-
ple word substitutions (e.g., based on WordNet) to
using the pivot technique with other translations sys-
tems.
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Abstract in-domain text is available, and it is used to optimize

for translating future texts drawn from the same do-

We describe a mixture-model approach to  main. Indynamicadaptation, no domain informa-

1

adapting a Statistical Machine Translation
System for new domains, using weights that
depend on text distances to mixture compo-
nents. We investigate a number of variants
on this approach, including cross-domain
versus dynamic adaptation; linear versus
loglinear mixtures; language and transla-
tion model adaptation; different methods of
assigning weights; and granularity of the
source unit being adapted to. The best
methods achieve gains of approximately one
BLEU percentage point over a state-of-the
art non-adapted baseline system.

Introduction

tion is available ahead of time, and adaptation is
based on the current source text under translation.
Approaches developed for the two settings can be
complementary: an in-domain development corpus
can be used to make broad adjustments, which can
then be fine tuned for individual source texts.

Our method is based on the classical technique
of mixture modeling (Hastie et al., 2001). This
involves dividing the training corpus into different
components, training a model on each part, then
weighting each model appropriately for the current
context. Mixture modeling is a simple framework
that encompasses many different variants, as de-
scribed below. It is naturally fairly low dimensional,

because as the number of sub-models increases, the

Language varies significantly across different ger@mount of text available to train each, and therefore
res, tOpiCS, Sty|es’ etc. This affects empirica| modIS rellablllty, decreases. This makes it suitable for
els: a model trained on a corpus of car-repair man@liscriminative SMT training, which is still a chal-
als, for instance, will not be well suited to an applilenge for large parameter sets (Tillmann and Zhang,
cation in the field of tourism. Ideally, models should2006; Liang et al., 2006).
be trained on text that is representative of the area Techniques for assigning mixture weights depend
in which they will be used, but such text is not al-on the setting. In cross-domain adaptation, knowl-
ways available. This is especially the case for bilinedge of both source and target texts in the in-domain
gual applications, because parallel training corporsample can be used to optimize weights directly. In
are relatively rare and tend to be drawn from spedynamic adaptation, training poses a problem be-
cific domains such as parliamentary proceedings. cause no reference text is available. Our solution

In this paper we address the problem of adaptinig to construct a multi-domain development sample
a statistical machine translation system by adjusfer learning parameter settings that are intended to
ing its parameters based on some information abogéneralize to new domains (ones not represented in
a test domain. We assume two basic settings. the sample). We do not learn mixture weights di-
cross-domairadaptation, a small sample of parallelrectly with this method, because there is little hope
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that these would be well suited to new domains. Ind-gram language model probabilitiésg p(t), us-
stead we attempt to learn how weights should be sigty Kneser-Ney smoothing as implemented in the
as a function of distance. To our knowledge, this apSRILM toolkit.

proach to dynamic adaptation for SMT is novel, and Phrase translation model probabilities are features
it is one of the main contributions of the paper. of the form: logp(s|t,a) ~ Zszl log p(31|tx).

A second contribution is a fairly broad investiga-We use two different estimates for the conditional
tion of the large space of alternatives defined by thgrobabilitiesp(¢|3) andp(3|¢): relative frequencies
mixture-modeling framework, using a simple genreand “lexical” probabilities as described in (Zens and
based corpus decomposition. We experimented witlley, 2004). In both cases, the “forward” phrase
the following choices: cross-domain versus dynamiprobabilitiesp(Z|5) are not used as features, but only
adaptation; linear versus loglinear mixtures; lanas a filter on the set of possible translations: for each
guage and translation model adaptation; various tegburce phrasé that matches some ngramsnonly
distance metrics; different ways of converting disthe 30 top-ranked translationsaccording top(|3)
tance metrics into weights; and granularity of there retained.
source unit being adapted to. To derive the joint counts:(3,) from which

The remainder of the paper is structured followsp(3|¢) andp(#|3) are estimated, we use the phrase in-
section 2 briefly describes our phrase-based SMduction algorithm described in (Koehn et al., 2003),
system; section 3 describes mixture-model adaptaith symmetrized word alignments generated using
tion; section 4 gives experimental results; section BM model 2 (Brown et al., 1993).

summarizes previous work; and section 6 concludes.
3 Mixture-Model Adaptation

2 Phrase-based Statistical MT _
Our approach to mixture-model adaptation can be

Our baseline is a standard phrase-based SMT S¥gimmarized by the following general algorithm:
tem (Koehn et al., 2003). Given a source sentefnce

this tries to find the target sentencthat is the most 1. Split the corpus into different components, ac-
likely translation ofs, using the Viterbi approxima- cording to some criterion.
tion:
X 2. Train a model on each corpus component.
t = argmax p(t|s) ~ argmax p(t, a|s),
t

t.a 3. Weight each model according to its fit with the
where alignment = (31,1, 51), ..., 3k, i, jK); test domain:
t), are target phrases such that ¢, ...1x; 5 are e For cross-domain adaptation, set param-
source phrases such that= 5;, ...35;,; andsy is eters using a development corpus drawn
the translation of théth target phrase,. from the test domain, and use for all fu-
To modelp(t,a|s), we use a standard loglinear ture documents.

approach: e For dynamic adaptation, set global param-
eters using a development corpus drawn

p(t,als) o exp [Z i fi(s, t, a)] (1) from several different domains. Set mix-

i ture weights as a function of the distances

from COrpus components to the current

where eachf;(s,t,a) is a feature function, and
source text.

weights «; are set using Och’s algorithm (Och,

2003) to maximize the system's BLEU score (Pa- 4. combine weighted component models into a

pineni et al., 2001) on a development corpus. The  gjngle global model, and use it to translate as
features used in this study are: the length of  gescribed in the previous section.

t; a single-parameter distortion penalty on phrase
reordering ina, as described in (Koehn et al., We now describe each aspect of this algorithm in
2003); phrase translation model probabilities; anchore detail.
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3.1 Corpus Decomposition using standard minimume-error training techniques,

We partition the corpus into different genres, definednich assume only a “flat” loglinear model.
as being roughly identical to corpus source. This i§_4 Distance Metrics

the simplest way to exploit heterogeneous trainin%v _ ,
material for adaptation. An alternative, which we'/e Used four standard distance metrics to cap-

have not explored, would be to cluster the corputa“re the relation between the current source or tar-
automatically according to topic. get textq and each corpus componéntAll are

monolingual—they are applied only to source text
3.2 Component Models or only to target text.

We adapt both language and translation model fea- The tf/idf metric commonly used in information
tures within the overall loglinear combination (1). retrieval is defined asos(v,v,), wherev. and

To train translation models on each corpus comivq aré vectors derived from componenand doc-
ponent, we used a global IBM2 model for wordumentg, each consisting of elements of the form:
alignment (in order to avoid degradation in align—P(w) 10g Paoc(w), Wherep(w) is the relative fre-
ment quality due to smaller training corpora), theflueéncy of wordw within the component or docu-
extracted component-specific relative frequencid®€nt, antha,(w) is the proportion of components
for phrase pairs. Lexical probabilities were also dell appears in.
rived from the global IBM2 model, and were not Latent Semantic Analysis (LSADeerwester et
adapted. al., 1990) is a technique for implicitly capturing the

The procedure for training component-specifiSémantic properties of texts, based on the use of
language models on the target halves of each copingular Value Decomposition to produce a rank-
pus component is identical to the procedure for theéduced approximation of an original matrix of word
global model described in section 2. In addition t&tnd document frequencies. We applied this tech-
the component models, we also used a large stafiédue to all documents in the training corpus (as op-

global model. posed to components), reduced the rank to 100, then
calculated the projections of the component and doc-
3.3 Combining Framework ument vectors described in the previous paragraph
The most commonly-used framework for mixtureinto the reduced space.
models is a linear one: Perplexity (Jelinek, 1997) is a standard way of
evaluating the quality of a language model on a test
p(alh) = Aepe(|h) (2) text. We define a perplexity-based distance metric

pe(q)Y14l, wherep.(q) is the probability assigned to
where p(z|h) is either a language or translationg by an ngram language model trained on compo-
model; p.(x|h) is a model trained on component nentc.
and ). is the corresponding weight. An alternative, The final distance metric, which we cdlM, is
suggested by the form of the global model, is a logeased on expressing the probabilityqods a word-

linear combination: level mixture modelp(q) = quz‘l > e depe(wilhy),
o whereq = wy...wy, andp.(wlh) is the ngram
plalh) = Hpc(x’h) probability ofw following word sequencé in com-

ponente. It is straighforward to use the EM algo-
where we writea,. to emphasize that in this caserithm to find the set of weightsic,Vc that maxi-
the mixing parameters are global weights, like thenizes the likelihood of.. The weightd, is defined
weights on the other features within the loglineaas the distance to componentFor all experiments
model. Thisisin contrast to linear mixing, where thelescribed below, we used a probability difference
combined modep(x|h) receives a loglinear weight, threshold of 0.001 as the EM convergence criterion.
but the weights on the components do not partic—; _ )

Although we refer to these metrics as distances, most are

pate in the glol?a.l Iogllnea.r (_:Ombmatlon' One CONSER fact proximities, and we use the convention throughout that
guence is that it is more difficult to set linear weightsiigher values mean closer.

130



3.5 Learning Adaptive Parameters selectively suppress contributions from components

Our focus in this paper is on adaptation via mixturdhat are far away. Here we assume thaabsorbs
weights. However, we note that the usual loglineaf Normalization constant, so that thes sumto 1.
parameter tuning described in section 2 can also b this approach, there are three parameters per dis-
considered adaptation in the cross-domain settiniNce Metric to learn;, a;, andp;. In general, these
because learned preferences for word penalty, reqa_rameters are_also specific to the particular model
ative LM/TM weighting, etc, will reflect the target P€ing adapted, ie the LM or the TM.
domain. This is not the case for dynamic adapta- T0 optimize these parameters, we fixed global
tion, where, in the absence of an in-domain develoglinear weights at values obtained with Och’s al-
opment corpus, the only information we can hope tgorithm using representative adapted models based
glean are the weights on adapted models compar€8 & single distance metric in (3), then used the
to other features of the system. Downhill Simplex algorithm (Press et al., 2002) to

The method used for adapting mixture weight§naximize BLEU score on the development corpus.
depends on both the combining framework (|Og|inF0r tractability, we followed standard practice with
ear versus linear), and the adaptive setting (crostlis technique and considered only monotonic align-
domain versus dynamic), as described below. ~ ments when decoding (Zens and Ney, 2004).

] ] ] ] The two approaches just described avoid condi-

3.5.1 Setting Loglinear Mixture Weights tioning \. explicitly on ¢. This is necessary for

When using a loglinear combining framework asiynamic adaptation, since any genre preferences
described in section 3.3, mixture weights are segarned from the development corpus cannot be ex-
in the same way as the other loglinear parametepgcted to generalize. However, it is not necessary
when performing cross-domain adaptation. Loglinfor cross-domain adaptation, where the genre of the
ear mixture models were not used for dynamic adagfevelopment corpus is assumed to represent the test
tation. domain. Therefore, we also experimented with us-

3.5.2 Setting Linear Mixture Weights ing Downhill Simplex optimization talirectly learn

. . . . . the set of linear weights\. that yield maximum
For both adaptive settings, linear mixture We|ght%|_EU score on the development corpus

were set as a function of the distance metrics de- , .. : S . . .
A final variant on setting linear mixture weights is

scribed in section 3.4. Given a set of metricsa hvbrid between cross-domain and dvnamic adan-
{D1,...,Dp}, letd; . be the distance from the cur- y y b

. . ion. In thi roach h the global loglinear
rent text to component according to metrid);. A tatp t S approach, pOt the globa ‘ogiinea
. Co . weights and, if they are being used, the mixture pa-
simple approach to weighting is to choose a single .
: . ) rameterss;, a;, b; are set to characterize the test do-
metric D;, and set the weights in (2) to be propor- . . . .
. . . ) main as in cross-domain adaptation. When trans-
tional to the corresponding distances: : :
lating, however, distances to the current source text
Z are used in (3) or (4) instead of distances to the in-
)\c — di,c/ di,c’~ (3) . ( ) ( ) . . ..
> domain development corpus. This obviously limits
the metrics used to ones that depend only on source
Because different distance metrics may captut@xt.
complementary information, and because optimal
weights might be a non-linear function of distance4 Experiments

we also experimented with a linear combination of

metrics transformed using a sigmoid function: ~ All experiments were run on the NIST MT evalua-
tion 2006 Chinese data set. Table 1 summarizes the
A — Z Bi @) corpora used. The training corpus was divided into
c 1+ exp(a;(b; — dic)) seven components according to genre; in all cases

= these were identical to LDC corpora, with the excep-

whereg; reflects the relative predictive powerbf, tion of the Newswirecomponent, which was amal-
and the sigmoid parametes andb; can be set to gamated from several smaller corpora. The target
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genre for cross-domain adaptation was newswiremoothing schemes, including Kneser-Ney phrase
for which high-quality training material is avail- table smoothing similar to that described in (Foster
able. The cross-domain development Bé8T04- et al., 2006), and binary features to indicate phrase-
nw is the newswire subset of the NIST 2004 evalupair presence within different components. None
ation set, and the dynamic adaptation developmehetlped, however, and we conclude that the problem
setNISTO04-mixs a balanced mixed-genre subset ofs most likely that Och’s algorithm is unable to find
NIST 2004. The NIST 2005 evaluation set was used good maximimum in this setting. Due to this re-
for testing cross-domain adaptation, and the NIS$ult, all experiments we describe below involve lin-
2006 evaluation set (both the “GALE” and “NIST” ear mixtures only.

parts) was used to test dynamic adaptation.

Because different development corpora are usged>ombination adapted model
for cross-domain and dynamic adaptation, we LM T™M LM+TM
trained one static baseline model for each of thesebaseline 30.2 30.2 30.2
adaptation settings, on the corresponding developloglinear mixture 309 312 314
ment set. uniform linear mixture| 31.2 31.1 31.8

All results given in this section are BLEU scores. : . —
Table 2: Linear versus loglinear combinations on

role | corpus genres sent| NISTO4-nw.
train | FBISO4 nw 182k
HK Hans proceedings | 1,375k 4.2 Distance Metrics for Weighting
HK Laws legal 475k
HK News press release| 740k Table 3 compares the performance of all distance
Newswire nw 26k metrics described in section 3.4 when used on their
Sinorama news mag 366k | Own as defined in (3). The difference between them
UN proceedings | 4,979k is fairly small, but appears to be consistent across
dev | NISTO4-nw nw 901| LM and TM adaptation and (for the LM metrics)
NIST04-mix nw, sp, ed ggg| across source and target side matching. In general,
test | NISTO5 nw 1,082| LM metrics seem to have a slight advantage over the
NISTO6-GALE | nw, ng, bn, bc| 2,276 vector space metrics, with EM being the best overall.
NISTO6-NIST | nw, ng, bn 1,664 We focus on this metric for most of the experiments
that follow.
Table 1: Corpora. In thgenrescolumn: nw = _
newswire, sp = speeches, ed = editorial, ng = news- | Metrc source text  target text
group, bn = broadcast news, and bc = broadcast con- M ™ LM T™
versation. tf/idf 31.3 31.3 311 311
LSA 315 31.6
. : o perplexity | 31.6 31.3 31.7 31.5
4.1 Linear versus Loglinear Combination EM 317 316 321 313

Table 2 shows a comparison between linear and
loglinear mixing frameworks, with uniform weights Table 3: Distance metrics for linear combination on
used in the linear mixture. Both types of mixturethe NISTO4-nw development set. (Entries in the top
model are better than the baseline, but the linedight corner are missing due to lack of time.)
mixture is slightly better than the loglinear mix-

ture. This is quite surprising, because these resultsTable 4 shows the performance of the parame-
are on thedevelopmenset: the loglinear model terized weighting function described by (4), with
tunes its component weights on this set, wherea®urce-side EM and LSA metrics as inputs. This
the linear model only adjusts global LM and TMis compared to direct weight optimization, as both
weights. We speculated that this may have been dtigese techniques use Downhill Simplex for param-
to non-smooth component models, and tried variowster tuning. Unfortunately, neither is able to beat

132



the performance of the normalized source-side ENbrmance of cross domain adaptation (reproduced
metric on its own (reproduced on the first line fromfrom table 5 on the second line) is slightly better for
table 3). In additional tests we verified that this alséhe in-domain test set (NISTO05), but worse than dy-
holds for the test corpus. We speculate that this disramic adaptation on the two mixed-domain sets.
appointing result is due to compromises made in or-

der to run Downhill Simplex efficiently, including

X | - ’ ’ model dev test
holding global weights fixed, using only a single nisto4- | nisto5 [ nisto6- 1 nistos-
starting point, and running with monotone decoding mix nist gale
— baseline 31.9| 304 27.6 12.9
weighting LM TM crossLM| nfa| 31.2| 27.8| 125
EM-src, direct 31.7 31.6
: LM 32.8| 30.8 28.6 134
EM-src + LSA-src, parameterized31.0 30.0
direct optimization 31.7 30.2 ™ 32.41 30.7 27.6 12.8
P : . LM+TM 33.4| 30.8 28.5 13.0

Table 4: Weighting techniques for linear combina- ) . . . .
tion on the NISTO4-nw development set. Table 6: Dynamic adaptation results, using src-side

EM distances.

4.3 Cross-Domain versus Dynamic Adaptation

Table 5 shows results for cross-domain adaptation, model NISTOS
using the source-side EM metric for linear weight- baseline 30.3
ing. Both LM and TM adaptation are effective, with cross EM-src LM 31.2
test-set improvements of approximately 1 BLEU cross EM-src TM 30.9
point over the baseline for LM adaptation and some- hybrid EM-src LM 30.9
what less for TM adaptation. Performance also im- hybrid EM-src TM 30.7

proves on the NIST06 out-of-domain test set (al-
though this set includes a newswire portion as well).
However, combined LM and TM adaptation is not
better than LM adaptation on its own, indicating that Table 7 shows results for the hybrid approach de-
the individual adapted models may be capturing thscribed at the end of section 3.5.2: global weights
same information. are learned on NISTO04-nw, but linear weights are
derived dynamically from the current test file. Per-

Table 7: Hybrid adaptation results.

mode| i dev i tESt_ formance drops slightly compared to pure cross-
nist04- ) nist05 n'StO_G' domain adaptation, indicating that it may be impor-
_ nw nist tant to have a good fit between global and mixture
baseline 30.2| 30.3 26.5 weigh
ghts.
EM-src LM 31.7] 31.2 27.8
EM-src TM 31.6| 30.9 27.3
EM-src LM+TM 325] 31.2 27.7 4.4 Source Granularity

Table 5: Cross-Domain adaptation results.  The results of the final experiment, to determine the
effects of source granularity on dynamic adaptation,
Table 6 contains results for dynamic adaptatiorare shown in table 8. Source-side EM distances are
using the source-side EM metric for linear weightapplied to the whole test set, to genres within the set,
ing. In this setting, TM adaptation is much lessaand to each document individually. Global weights
effective, not significantly better than the baselineywere tuned specifically for each of these conditions.
performance of combined LM and TM adaptationThere appears to be little difference among these ap-
is also lower. However, LM adaptation improvesproaches, although genre-based adaptation perhaps
over the baseline by up to a BLEU point. The perhas a slight advantage.
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granularity dev test niques are then applied to extract an adapted phrase
nist04- | nist05 nist06- nist061 table from the system’s own output.

mix nist  gale Finally, Zhang et al (2006) cluster the parallel
baseline 31.9| 304 276 12.9 training corpus using an algorithm that heuristically
file 32.4| 308 286 13.4  minimizes the average entropy of source-side and
genre 325 311 28.9 13.2 target-side language models over a fixed number of

document 32.9] 309 28.6 13.4  clusters. Each source sentence is then decoded us-
) . ing the language model trained on the cluster that

TabI(_e 8: The _effects of source granularity on OIyIassigns highest likelihood to that sentence.

namic adaptation. .

The work we present here is complementary
to both the IR approaches and Ueffing’'s method
5 Related Work because it provides a way of exploiting a pre-

established corpus division. This has the potential

Mixture modeling is a standard technique in mayg gllow sentences having little surface similarity to
chine learning (Hastie et al., 2001). It has beeghe current source text to contribute statistics that
widely used to adapt language models for speegfiay pe relevant to its translation, for instance by
recognition and other applications, for instance Usyjsing the probability of rare but pertinent words.
ing cross-domain topic mixtures, (lyer and Ostenoyr work can also be seen as extending all previous
dorf, 1999), dynamic topic mixtures (Kneser anthpnroaches in that it assigns weights to components
Steinbiss, 1993), hierachical mixtures (Florian an@epending on their degree of relevance, rather than
Yarowsky, 1999), and cache mixtures (Kuhn and Dgssuming a binary distinction between relevant and
Mori, 1990). non-relevant components.

Most previous work on adaptive SMT focuses on
the use of IR techniques to identify a relevant subg Conclusion and Future Work
set of the training corpus from which an adapted
model can be learned. Byrne et al (2003) use cd¥e have investigated a number of approaches to
sine distance from the current source document tixture-based adaptation using genres for Chi-
find relevant parallel texts for training an adaptediese to English translation. The most successful
translation model, with background information foris to weight component models in proportion to
smoothing alignments. Hildebrand et al (1995) demaximum-likelihood (EM) weights for the current
scribe a similar approach, but apply it at the sentendext given an ngram language model mixture trained
level, and use it for language model as well as tranen corpus components. This resulted in gains of
lation model adaptation. They rely on a perplexityround one BLEU point. A more sophisticated ap-
heuristic to determine an optimal size for the releproach that attempts to transform and combine mul-
vant subset. Zhao et al (2004) apply a slightly differtiple distance metrics did not yield positive results,
ent sentence-level strategy to language model adaprobably due to an unsucessful optmization proce-
tation, first generating an nbest list with a baselingure.
system, then finding similar sentences in a monolin- Other conclusions are: linear mixtures are more
gual target-language corpus. This approach has tlractable than loglinear ones; LM-based metrics are
advantage of not limiting LM adaptation to a parallebetter than VS-based ones; LM adaptation works
corpus, but the disadvantage of requiring two transwvell, and adding an adapted TM yields no improve-
lation passes (one to generate the nbest lists, and ament; cross-domain adaptation is optimal, but dy-
other to translate with the adapted model). namic adaptation is a good fallback strategy; and

Ueffing (2006) describesself-trainingapproach source granularity at the genre level is better than
that also uses a two-pass algorithm. A baseline sythe document or test-set level.
tem generates translations that, after confidence fil- In future work, we plan to improve the optimiza-
tering, are used to construct a parallel corpus baséidn procedure for parameterized weight functions.
on the test set. Standard phrase-extraction tectWe will also look at bilingual metrics for cross-
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Abstract

This paper evaluates the translation quality
of machine translation systems for 8 lan-
guage pairs: translating French, German,
Spanish, and Czech to English and back.
We carried out an extensive human evalua-
tion which allowed us not only to rank the
different MT systems, but also to perform
higher-level analysis of the evaluation pro-
cess. We measured timing and intra- and
inter-annotator agreement for three types of
subjective evaluation. We measured the cor-
relation of automatic evaluation metrics with
human judgments. This meta-evaluation re-
veals surprising facts about the most com-
monly used methodologies.

1 Introduction

This paper presents the results for the shared trans-
lation task of the 2007 ACL Workshop on Statistical
Machine Translation. The goals of this paper are
twofold: First, we evaluate the shared task entries
in order to determine which systems produce trans-
lations with the highest quality. Second, we analyze
the evaluation measures themselves in order to try to
determine “best practices” when evaluating machine
translation research.

Previous ACL Workshops on Machine Transla-
tion were more limited in scope (Koehn and Monz,
2005; Koehn and Monz, 2006). The 2005 workshop
evaluated translation quality only in terms of Bleu
score. The 2006 workshop additionally included a
limited manual evaluation in the style of NIST ma-
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chine translation evaluation workshop. Here we ap-
ply eleven different automatic evaluation metrics,
and conduct three different types of manual evalu-
ation.

Beyond examining the quality of translations pro-
duced by various systems, we were interested in ex-
amining the following questions about evaluation
methodologies: How consistent are people when
they judge translation quality? To what extent do
they agree with other annotators? Can we im-
prove human evaluation? Which automatic evalu-
ation metrics correlate most strongly with human
judgments of translation quality?

This paper is organized as follows:

e Section 2 gives an overview of the shared task.
It describes the training and test data, reviews
the baseline system, and lists the groups that
participated in the task.

e Section 3 describes the manual evaluation. We
performed three types of evaluation: scoring
with five point scales, relative ranking of trans-
lations of sentences, and ranking of translations
of phrases.

e Section 4 lists the eleven different automatic
evaluation metrics which were also used to
score the shared task submissions.

e Section 5 presents the results of the shared task,
giving scores for each of the systems in each of
the different conditions.

e Section 6 provides an evaluation of the dif-
ferent types of evaluation, giving intra- and

Proceedings of the Second Workshop on Statistical Machine Translation, pages 136—-158,
Prague, June 2007. (©2007 Association for Computational Linguistics



inter-annotator agreement figures for the man-
ual evaluation, and correlation numbers for the
automatic metrics.

2 Shared task overview

This year’s shared task changed in some aspects
from last year’s:

e We gave preference to the manual evaluation of
system output in the ranking of systems. Man-
ual evaluation was done by the volunteers from
participating groups and others. Additionally,
there were three modalities of manual evalua-
tion.

e Automatic metrics were also used to rank the
systems. In total eleven metrics were applied,
and their correlation with the manual scores
was measured.

e As in 2006, translation was from English, and
into English. English was again paired with
German, French, and Spanish. We additionally
included Czech (which was fitting given the lo-
cation of the WS).

Similar to the IWSLT International Workshop on
Spoken Language Translation (Eck and Hori, 2005;
Paul, 2006), and the NIST Machine Translation
Evaluation Workshop (Lee, 2006) we provide the
shared task participants with a common set of train-
ing and test data for all language pairs. The major
part of data comes from current and upcoming full
releases of the Europarl data set (Koehn, 2005).

2.1 Description of the Data

The data used in this year’s shared task was similar
to the data used in last year’s shared task. This year’s
data included training and development sets for the
News Commentary data, which was the surprise out-
of-domain test set last year.

The majority of the training data for the Spanish,
French, and German tasks was drawn from a new
version of the Europarl multilingual corpus. Addi-
tional training data was taken from the News Com-
mentary corpus. Czech language resources were
drawn from the News Commentary data. Additional
resources for Czech came from the CzEng Paral-
lel Corpus (Bojar and Zabokrtsky, 2006). Overall,
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there are over 30 million words of training data per
language from the Europarl corpus and 1 million
words from the News Commentary corpus. Figure 1
provides some statistics about the corpora used this
year.

2.2 Baseline system

To lower the barrier of entrance to the competition,
we provided a complete baseline MT system, along
with data resources. To summarize, we provided:

e sentence-aligned training corpora

development and dev-test sets

language models trained for each language

e an open source decoder for phrase-based SMT
called Moses (Koehn et al., 2006), which re-
places the Pharaoh decoder (Koehn, 2004)

e a training script to build models for Moses

The performance of this baseline system is similar
to the best submissions in last year’s shared task.

2.3 Test Data

The test data was again drawn from a segment of
the Europarl corpus from the fourth quarter of 2000,
which is excluded from the training data. Partici-
pants were also provided with three sets of parallel
text to be used for system development and tuning.

In addition to the Europarl test set, we also col-
lected editorials from the Project Syndicate web-
site!, which are published in all the five languages
of the shared task. We aligned the texts at a sentence
level across all five languages, resulting in 2,007
sentences per language. For statistics on this test set,
refer to Figure 1.

The News Commentary test set differs from the
Europarl data in various ways. The text type are ed-
itorials instead of speech transcripts. The domain is
general politics, economics and science. However, it
is also mostly political content (even if not focused
on the internal workings of the European Union) and
opinion.

2.4 Participants

We received submissions from 15 groups from 14
institutions, as listed in Table 1. This is a slight

"http://www.project-syndicate.com/



Europarl Training corpus

Spanish < English | French < English | German — English
Sentences 1,259,914 1,288,901 1,264,825
Foreign words 33,159,337 33,176,243 29,582,157
English words 31,813,692 32,615,285 31,929,435
Distinct foreign words 345,944 344,287 510,544
Distinct English words 266,976 268,718 250,295

News Commentary Training corpus

Spanish < English

French < English

German — English

Czech — English

Sentences

51,613

43,194

59,975

57797

Foreign words

1,263,067

1,028,672

1,297,673

1,083,122

English words

1,076,273

906,593

1,238,274

1,188,006

Distinct foreign words

84,303

68,214

115,589

142,146

Distinct English words

70,755

63,568

76,419

74,042

Language model data

English

Spanish

French

German

Sentence

1,407,285

1,431,614

1,435,027

1,478,428

Words

34,539,822

36,426,542

35,595,199

32,356,475

Distinct words

280,546

385,796

361,205

558,377

Europarl test set

English

Spanish

French | German

Sentences

2,000

Words

53,531

55,380

53,981 | 49,259

Distinct words

8,558

10,451

10,186 | 11,106

News Commentary test set

English

Spanish

French

German | Czech

Sentences

2,007

Words 43,767

50,771

49,820

45,075 | 39,002

Distinct words

10,002

10,948

11,244

12,322 | 15,245

Figure 1: Properties of the training and test sets used in the shared task. The training data is drawn from the
Europarl corpus and from the Project Syndicate, a web site which collects political commentary in multiple

languages.
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ID Participant
cmu-uka Carnegie Mellon University, USA (Paulik et al., 2007)
cmu-syntax | Carnegie Mellon University, USA (Zollmann et al., 2007)
cu Charles University, Czech Republic (Bojar, 2007)
limsi LIMSI-CNRS, France (Schwenk, 2007)
liu University of Linkdping, Sweden(Holmgqvist et al., 2007)
nrc National Research Council, Canada (Ueffing et al., 2007)
pct a commercial MT provider from the Czech Republic
saar Saarland University & DFKI, Germany (Chen et al., 2007)
systran SYSTRAN, France & U. Edinburgh, UK (Dugast et al., 2007)
systran-nrc | National Research Council, Canada (Simard et al., 2007)
ucb University of California at Berkeley, USA (Nakov and Hearst, 2007)
uedin University of Edinburgh, UK (Koehn and Schroeder, 2007)
umd University of Maryland, USA (Dyer, 2007)
upc University of Catalonia, Spain (Costa-Jussa and Fonollosa, 2007)
upv University of Valencia, Spain (Civera and Juan, 2007)

Table 1: Participants in the shared task. Not all groups participated in all translation directions.

increase over last year’s shared task where submis-
sions were received from 14 groups from 11 insti-
tutions. Of the 11 groups that participated in last
year’s shared task, 6 groups returned this year.

This year, most of these groups follow a phrase-
based statistical approach to machine translation.
However, several groups submitted results from sys-
tems that followed a hybrid approach.

While building a machine translation system is a
serious undertaking we hope to attract more new-
comers to the field by keeping the barrier of entry
as low as possible. The creation of parallel corpora
such as the Europarl, the CzEng, and the News Com-
mentary corpora should help in this direction by pro-
viding freely available language resources for build-
ing systems. The creation of an open source baseline
system should also go a long way towards achieving
this goal.

For more on the participating systems, please re-
fer to the respective system description in the pro-
ceedings of the workshop.

3 Human evaluation

We evaluated the shared task submissions using both
manual evaluation and automatic metrics. While
automatic measures are an invaluable tool for the
day-to-day development of machine translation sys-
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tems, they are an imperfect substitute for human
assessment of translation quality. Manual evalua-
tion is time consuming and expensive to perform,
so comprehensive comparisons of multiple systems
are rare. For our manual evaluation we distributed
the workload across a number of people, including
participants in the shared task, interested volunteers,
and a small number of paid annotators. More than
100 people participated in the manual evaluation,
with 75 of those people putting in at least an hour’s
worth of effort. A total of 330 hours of labor was in-
vested, nearly doubling last year’s all-volunteer ef-
fort which yielded 180 hours of effort.

Beyond simply ranking the shared task submis-
sions, we had a number of scientific goals for the
manual evaluation. Firstly, we wanted to collect
data which could be used to assess how well au-
tomatic metrics correlate with human judgments.
Secondly, we wanted to examine different types of
manual evaluation and assess which was the best.
A number of criteria could be adopted for choos-
ing among different types of manual evaluation: the
ease with which people are able to perform the task,
their agreement with other annotators, their reliabil-
ity when asked to repeat judgments, or the number
of judgments which can be collected in a fixed time
period.

There are a range of possibilities for how human



evaluation of machine translation can be done. For
instance, it can be evaluated with reading compre-
hension tests (Jones et al., 2005), or by assigning
subjective scores to the translations of individual
sentences (LDC, 2005). We examined three differ-
ent ways of manually evaluating machine translation
quality:

e Assigning scores based on five point adequacy
and fluency scales

e Ranking translated sentences relative to each
other

e Ranking the translations of syntactic con-
stituents drawn from the source sentence

3.1 Fluency and adequacy

The most widely used methodology when manually
evaluating MT is to assign values from two five point
scales representing fluency and adequacy. These
scales were developed for the annual NIST Machine
Translation Evaluation Workshop by the Linguistics
Data Consortium (LDC, 2005).

The five point scale for adequacy indicates how
much of the meaning expressed in the reference
translation is also expressed in a hypothesis trans-

lation:
5=Al
4 = Most
3 = Much
2 = Little
1 = None

The second five point scale indicates how fluent
the translation is. When translating into English the
values correspond to:

5 = Flawless English

4 = Good English

3 = Non-native English
2 = Disfluent English

1 = Incomprehensible

Separate scales for fluency and adequacy were
developed under the assumption that a translation
might be disfluent but contain all the information
from the source. However, in principle it seems that
people have a hard time separating these two as-
pects of translation. The high correlation between
people’s fluency and adequacy scores (given in Ta-
bles 17 and 18) indicate that the distinction might be
false.

140

Constituents selected S
for evaluation

Parsed source
sentence

Target phrases
highlighted via
word alignments

NP NP
(o]
: >
B o
: NP § NP J 5
N = 2 o 2
; = 2 25
: o= c © 55
: =2 @ o> < 22 _
. =~ R £ < c 3 09223 c
B o) NG [5] = = SSog
: < © 0 £ S.2E PZ_o222c
L 523285 Gof¥sEs freoges
: YEoEfM® - 2028232 05550682«
. Can [
. the
. US
sustain
its
occupation
if
it
§ cannot
T provide
- |
2 food
©
= )
g::, health
S care
o
o )
] d
2 an
other
basic
services
to
Iraq
's
people
? ||

Figure 2: In constituent-based evaluation, the source
sentence was parsed, and automatically aligned with
the reference translation and systems’ translations

Another problem with the scores is that there are
no clear guidelines on how to assign values to trans-
lations. No instructions are given to evaluators in
terms of how to quantify meaning, or how many
grammatical errors (or what sort) separates the dif-
ferent levels of fluency. Because of this many judges
either develop their own rules of thumb, or use the
scales as relative rather than absolute. These are
borne out in our analysis of inter-annotator agree-
ment in Section 6.

3.2 Ranking translations of sentences

Because fluency and adequacy were seemingly diffi-
cult things for judges to agree on, and because many
people from last year’s workshop seemed to be using
them as a way of ranking translations, we decided to
try a separate evaluation where people were simply



asked to rank translations. The instructions for this
task were:

Rank each whole sentence translation
from Best to Worst relative to the other
choices (ties are allowed).

These instructions were just as minimal as for flu-
ency and adequacy, but the task was considerably
simplified. Rather than having to assign each trans-
lation a value along an arbitrary scale, people simply
had to compare different translations of a single sen-
tence and rank them.

3.3 Ranking translations of syntactic
constituents

In addition to having judges rank the translations
of whole sentences, we also conducted a pilot
study of a new type of evaluation methodology,
which we call constituent-based evaluation. In our
constituent-based evaluation we parsed the source
language sentence, selected constituents from the
tree, and had people judge the translations of those
syntactic phrases. In order to draw judges’ attention
to these regions, we highlighted the selected source
phrases and the corresponding phrases in the transla-
tions. The corresponding phrases in the translations
were located via automatic word alignments.

Figure 2 illustrates the constituent based evalu-
ation when applied to a German source sentence.
The German source sentence is parsed, and vari-
ous phrases are selected for evaluation. Word align-
ments are created between the source sentence and
the reference translation (shown), and the source
sentence and each of the system translations (not
shown). We parsed the test sentences for each of
the languages aside from Czech. We used Cowan
and Collins (2005)’s parser for Spanish, Arun and
Keller (2005)’s for French, Dubey (2005)’s for Ger-
man, and Bikel (2002)’s for English.

The word alignments were created with Giza++
(Och and Ney, 2003) applied to a parallel corpus
containing 200,000 sentence pairs of the training
data, plus sets of 4,007 sentence pairs created by
pairing the test sentences with the reference transla-
tions, and the test sentences paired with each of the
system translations. The phrases in the translations
were located using techniques from phrase-based
statistical machine translation which extract phrase
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pairs from word alignments (Koehn et al., 2003; Och
and Ney, 2004). Because the word-alignments were
created automatically, and because the phrase ex-
traction is heuristic, the phrases that were selected
may not exactly correspond to the translations of the
selected source phrase. We noted this in the instruc-
tions to judges:

Rank each constituent translation from
Best to Worst relative to the other choices
(ties are allowed). Grade only the high-
lighted part of each translation.

Please note that segments are selected au-
tomatically, and they should be taken as
an approximate guide. They might in-
clude extra words that are not in the actual
alignment, or miss words on either end.

The criteria that we used to select which con-
stituents were to be evaluated were:

e The constituent could not be the whole source
sentence

e The constituent had to be longer three words,
and be no longer than 15 words

e The constituent had to have a corresponding
phrase with a consistent word alignment in
each of the translations

The final criterion helped reduce the number of
alignment errors.

3.4 Collecting judgments

We collected judgments using a web-based tool.
Shared task participants were each asked to judge
200 sets of sentences. The sets consisted of 5 sys-
tem outputs, as shown in Figure 3. The judges
were presented with batches of each type of eval-
uation. We presented them with five screens of ade-
quacy/fluency scores, five screens of sentence rank-
ings, and ten screens of constituent rankings. The
order of the types of evaluation were randomized.
In order to measure intra-annotator agreement
10% of the items were repeated and evaluated twice
by each judge. In order to measure inter-annotator
agreement 40% of the items were randomly drawn
from a common pool that was shared across all
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WMTO07 Manual Evaluation
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[http://www.statmt.org/wmt07/shared-task/judge/do_task.php
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Rank Segments

You have judged 25 sentences for WMT07 German-English News Corpus, 190 sentences total taking 64.9 seconds per sentence.

Source: Kénnen die USA ihre Besetzung aufrechterhalten, wenn sie dem irakischen Volk nicht Nahrung, Gesundheitsfiirsorge und andere

grundlegende Dienstleistungen anbieten konnen?

Reference: Can the US sustain its occupation if it cannot provide food, health care, and other basic services to Iraq's people?
Translation Rank
The United States can maintain its employment when it the Iraqi people not food, health care and other (1) (;) ? (4) o
basic services on offer?.
Worst Best
The US can maintain its occupation, if they cannot offer the Iraqi people food, health care and other basic (1) (2) 9 (4) (;)
services?
Worst Best
Can the US their occupation sustained if it to the Iraqi people not food, health care and other basic (1) (2) (? (4) (5)
services can offer?
‘Worst Best
Can the United States maintain their occupation, if the Iraqi people do not food, health care and other (1) (2) ? (? (5)
basic services can offer?
‘Worst Best
The United States is maintained, if the Iraqi people, not food, health care and other basic services can (1) (;) ? (4) (5)
offer?
Worst Best

Annotator: ccb Task: WMTO07 German-English News Corpus

Instructions:

only the highlighted part of each translation.

Rank each constituent translation from Best to Worst relative to the other choices (ties are allowed). Grade

Please note that segments are selected automatically, and they should be taken as an approximate guide.
They might include extra words on either end that are not in the actual alignment, or miss words.

Figure 3: For each of the types of evaluation, judges were shown screens containing up to five different
system translations, along with the source sentence and reference translation.

annotators so that we would have items that were
judged by multiple annotators.

Judges were allowed to select whichever data set
they wanted, and to evaluate translations into what-
ever languages they were proficient in. Shared task
participants were excluded from judging their own
systems.

Table 2 gives a summary of the number of judg-
ments that we collected for translations of individ-
ual sentences. Since we had 14 translation tasks and
four different types of scores, there were 55 differ-
ent conditions.? In total we collected over 81,000
judgments. Despite the large number of conditions
we managed to collect more than 1,000 judgments
for most of them. This provides a rich source of data
for analyzing the quality of translations produced by
different systems, the different types of human eval-
uation, and the correlation of automatic metrics with
human judgments.>

>We did not perform a constituent-based evaluation for
Czech to English because we did not have a syntactic parser
for Czech. We considered adapting our method to use Bojar
(2004)’s dependency parser for Czech, but did not have the time.

3The judgment data along with all system translations are
available at http://www.statmt.org/wmt07/
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4 Automatic evaluation

The past two ACL workshops on machine trans-
lation used Bleu as the sole automatic measure of
translation quality. Bleu was used exclusively since
it is the most widely used metric in the field and
has been shown to correlate with human judgments
of translation quality in many instances (Dodding-
ton, 2002; Coughlin, 2003; Przybocki, 2004). How-
ever, recent work suggests that Bleu’s correlation
with human judgments may not be as strong as pre-
viously thought (Callison-Burch et al., 2006). The
results of last year’s workshop further suggested that
Bleu systematically underestimated the quality of
rule-based machine translation systems (Koehn and
Monz, 2006).

We used the manual evaluation data as a means of
testing the correlation of a range of automatic met-
rics in addition to Bleu. In total we used eleven
different automatic evaluation measures to rank the
shared task submissions. They are:

e Meteor (Banerjee and Lavie, 2005)—Meteor
measures precision and recall of unigrams
when comparing a hypothesis translation



Language Pair Test Set Adequacy Fluency  Rank Constituent
English-German Europarl 1,416 1,418 1,419 2,626
News Commentary 1,412 1,413 1,412 2,755

German-English  Europarl 1,525 1,521 1,514 2,999
News Commentary 1,626 1,620 1,601 3,084

English-Spanish  Europarl 1,000 1,003 1,064 1,001
News Commentary 1,272 1,272 1,238 1,595

Spanish-English  Europarl 1,174 1,175 1,224 1,898
News Commentary 947 949 922 1,339

English-French ~ Europarl 773 772 769 1,456
News Commentary 729 735 728 1,313

French-English ~ Europarl 834 833 830 1,641
News Commentary 1,041 1,045 1,035 2,036

English-Czech News Commentary 2,303 2,304 2,331 3,968
Czech-English News Commentary 1,711 1,711 1,733 0
Totals 17,763 17,771 17,820 27,711

Table 2: The number of items that were judged for each task during the manual evaluation

against a reference. It flexibly matches words
using stemming and WordNet synonyms. Its
flexible matching was extended to French,
Spanish, German and Czech for this workshop
(Lavie and Agarwal, 2007).

e Bleu (Papineni et al., 2002)—Bleu is currently
the de facto standard in machine translation
evaluation. It calculates n-gram precision and
a brevity penalty, and can make use of multi-
ple reference translations as a way of capturing
some of the allowable variation in translation.
We use a single reference translation in our ex-
periments.

o GTM (Melamed et al., 2003)—GTM general-
izes precision, recall, and F-measure to mea-
sure overlap between strings, rather than over-
lap between bags of items. An “exponent” pa-
rameter which controls the relative importance
of word order. A value of 1.0 reduces GTM to
ordinary unigram overlap, with higher values
emphasizing order.*

e Translation Error Rate (Snover et al., 2006)—

*The GTM scores presented here are an F-measure with a
weight of 0.1, which counts recall at 10x the level of precision.
The exponent is set at 1.2, which puts a mild preference towards
items with words in the correct order. These parameters could
be optimized empirically for better results.
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TER calculates the number of edits required to
change a hypothesis translation into a reference
translation. The possible edits in TER include
insertion, deletion, and substitution of single
words, and an edit which moves sequences of
contiguous words.

ParaEval precision and ParaEval recall (Zhou
et al., 2006)-ParaEval matches hypothesis and
reference translations using paraphrases that
are extracted from parallel corpora in an unsu-
pervised fashion (Bannard and Callison-Burch,
2005). It calculates precision and recall using a
unigram counting strategy.

Dependency overlap (Amigé et al., 2006)—
This metric uses dependency trees for the hy-
pothesis and reference translations, by comput-
ing the average overlap between words in the
two trees which are dominated by grammatical
relationships of the same type.

Semantic role overlap (Giménez and Marquez,
2007)—This metric calculates the lexical over-
lap between semantic roles (i.e., semantic argu-
ments or adjuncts) of the same type in the the
hypothesis and reference translations. It uni-
formly averages lexical overlap over all seman-
tic role types.



e Word Error Rate over verbs (Popovic and Ney,
2007)—WER’ creates a new reference and a
new hypothesis for each POS class by extract-
ing all words belonging to this class, and then
to calculate the standard WER. We show results
for this metric over verbs.

e Maximum correlation training on adequacy and
on fluency (Liu and Gildea, 2007)—a lin-
ear combination of different evaluation metrics
(Bleu, Meteor, Rouge, WER, and stochastic it-
erative alignment) with weights set to maxi-
mize Pearson’s correlation with adequacy and
fluency judgments. Weights were trained on
WMT-06 data.

The scores produced by these are given in the ta-
bles at the end of the paper, and described in Sec-
tion 5. We measured the correlation of the automatic
evaluation metrics with the different types of human
judgments on 12 data conditions, and report these in
Section 6.

5 Shared task results

The results of the human evaluation are given in Ta-
bles 9, 10, 11 and 12. Each of those tables present
four scores:

e FLUENCY and ADEQUACY are normalized ver-
sions of the five point scores described in Sec-
tion 3.1. The tables report an average of the
normalized scores.

e RANK is the average number of times that a
system was judged to be better than any other
system in the sentence ranking evaluation de-
scribed in Section 3.2.

e CONSTITUENT is the average number of times
that a system was judged to be better than any
other system in the constituent-based evalua-
tion described in Section 3.3.

There was reasonably strong agreement between
these four measures at which of the entries was the
best in each data condition. There was complete

SSince different annotators can vary widely in how they as-
sign fluency and adequacy scores, we normalized these scores
on a per-judge basis using the method suggested by Blatz et al.
(2003) in Chapter 5, page 97.
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SYSTRAN (systran) 32%
University of Edinburgh (uedin) 20%
University of Catalonia (upc) 15%
LIMSI-CNRS (limsi) 13%
University of Maryland (umd) 5%
National Research Council of Canada’s 5%
joint entry with SYSTRAN (systran-nrc)

Commercial Czech-English system (pct) 5%
University of Valencia (upv) 2%
Charles University (cu) 2%

Table 3: The proportion of time that participants’
entries were top-ranked in the human evaluation

University of Edinburgh (uedin) 41%
University of Catalonia (upc) 12%
LIMSI-CNRS (limsi) 12%
University of Maryland (umd) 9%
Charles University (cu) 4%
Carnegie Mellon University (cmu-syntax) 4%
Carnegie Mellon University (cmu-uka) 4%
University of California at Berkeley (ucb) 3%
National Research Council’s joint entry 2%
with SYSTRAN (systran-nrc)

SYSTRAN (systran) 2%
Saarland University (saar) 0.8%

Table 4: The proportion of time that participants’
entries were top-ranked by the automatic evaluation
metrics

agreement between them in 5 of the 14 conditions,
and agreement between at least three of them in 10
of the 14 cases.

Table 3 gives a summary of how often differ-
ent participants’ entries were ranked #1 by any of
the four human evaluation measures. SYSTRAN’s
entries were ranked the best most often, followed
by University of Edinburgh, University of Catalonia
and LIMSI-CNRS.

The following systems were the best perform-
ing for the different language pairs: SYSTRAN
was ranked the highest in German-English, Uni-
versity of Catalonia was ranked the highest in
Spanish-English, LIMSI-CNRS was ranked high-
est in French-English, and the University of Mary-
land and a commercial system were the highest for



Evaluation type P(A) P(E) K Evaluation type P(A) P(E) K

Fluency (absolute) 400 2 250 Fluency (absolute) .630 2 .537
Adequacy (absolute) 380 2 226 Adequacy (absolute) 574 2 468
Fluency (relative) .520 333 281 Fluency (relative) .690 333 535
Adequacy (relative) 538 333 307 Adequacy (relative) 696 333 544
Sentence ranking 582 333 373 Sentence ranking 749 333 623
Constituent ranking 693 333 540 Constituent ranking 825 333 738
Constituent ranking 712 333 566 Constituent ranking 842 333 762

(w/identical constituents)

(w/identical constituents)

Table 5: Kappa coefficient values representing the
inter-annotator agreement for the different types of
manual evaluation

Czech-English.

While we consider the human evaluation to be
primary, it is also interesting to see how the en-
tries were ranked by the various automatic evalua-
tion metrics. The complete set of results for the auto-
matic evaluation are presented in Tables 13, 14, 15,
and 16. An aggregate summary is provided in Table
4. The automatic evaluation metrics strongly favor
the University of Edinburgh, which garners 41% of
the top-ranked entries (which is partially due to the
fact it was entered in every language pair). Signif-
icantly, the automatic metrics disprefer SYSTRAN,
which was strongly favored in the human evaluation.

6 Meta-evaluation

In addition to evaluating the translation quality of
the shared task entries, we also performed a “meta-
evaluation” of our evaluation methodologies.

6.1 Inter- and Intra-annotator agreement

We measured pairwise agreement among annotators
using the kappa coefficient (/') which is widely used
in computational linguistics for measuring agree-
ment in category judgments (Carletta, 1996). It is
defined as

P(A) - P(E)

K= 1— P(E)

where P(A) is the proportion of times that the an-
notators agree, and P(FE) is the proportion of time
that they would agree by chance. We define chance
agreement for fluency and adequacy as %, since they

are based on five point scales, and for ranking as %
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Table 6: Kappa coefficient values for intra-annotator
agreement for the different types of manual evalua-
tion

since there are three possible out comes when rank-
ing the output of a pair of systems: A > B, A = B,
A< B.

For inter-annotator agreement we calculated
P(A) for fluency and adequacy by examining all
items that were annotated by two or more annota-
tors, and calculating the proportion of time they as-
signed identical scores to the same items. For the
ranking tasks we calculated P(A) by examining all
pairs of systems which had been judged by two or
more judges, and calculated the proportion of time
that they agreed that A > B, A = B,or A < B.
For intra-annotator agreement we did similarly, but
gathered items that were annotated on multiple oc-
casions by a single annotator.

Table 5 gives K values for inter-annotator agree-
ment, and Table 6 gives K values for intra-annoator
agreement. These give an indication of how often
different judges agree, and how often single judges
are consistent for repeated judgments, respectively.
The interpretation of Kappa varies, but according to
Landis and Koch (1977) 0 — —.2 is slight, .21 — —.4
is fair, .41 — —.6 is moderate, .61 — —.8 is substantial
and the rest almost perfect.

The K values for fluency and adequacy should
give us pause about using these metrics in the fu-
ture. When we analyzed them as they are intended to
be—scores classifying the translations of sentences
into different types—the inter-annotator agreement
was barely considered fair, and the intra-annotator
agreement was only moderate. Even when we re-
assessed fluency and adequacy as relative ranks the
agreements increased only minimally.
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Figure 4: Distributions of the amount of time it took
to judge single sentences for the three types of man-
ual evaluation

The agreement on the other two types of man-
ual evaluation that we introduced were considerably
better. The both the sentence and constituent ranking
had moderate inter-annotator agreement and sub-
stantial intra-annotator agreement. Because the con-
stituent ranking examined the translations of short
phrases, often times all systems produced the same
translations. Since these trivially increased agree-
ment (since they would always be equally ranked)
we also evaluated the inter- and intra-annotator
agreement when those items were excluded. The
agreement remained very high for constituent-based
evaluation.

6.2 Timing

We used the web interface to collect timing infor-
mation. The server recorded the time when a set of
sentences was given to a judge and the time when
the judge returned the sentences. We divided the
time that it took to do a set by the number of sen-
tences in the set. The average amount of time that it
took to assign fluency and adequacy to a single sen-
tence was 26 seconds.® The average amount of time
it took to rank a sentence in a set was 20 seconds.
The average amount of time it took to rank a high-
lighted constituent was 11 seconds. Figure 4 shows
the distribution of times for these tasks.

8Sets which took longer than 5 minutes were excluded from
these calculations, because there was a strong chance that anno-
tators were interrupted while completing the task.
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These timing figures are promising because they
indicate that the tasks which the annotators were the
most reliable on (constituent ranking and sentence
ranking) were also much quicker to complete than
the ones that they were unreliable on (assigning flu-
ency and adequacy scores). This suggests that flu-
ency and adequacy should be replaced with ranking
tasks in future evaluation exercises.

6.3 Correlation between automatic metrics and
human judgments

To measure the correlation of the automatic metrics
with the human judgments of translation quality we
used Spearman’s rank correlation coefficient p. We
opted for Spearman rather than Pearson because it
makes fewer assumptions about the data. Impor-
tantly, it can be applied to ordinal data (such as the
fluency and adequacy scales). Spearman’s rank cor-
relation coefficient is equivalent to Pearson correla-
tion on ranks.

After the raw scores that were assigned to systems
by an automatic metric and by one of our manual
evaluation techniques have been converted to ranks,
we can calculate p using the simplified equation:

6 d?

—1_
P n(n?—1)

where d; is the difference between the rank for
system; and n is the number of systems. The pos-
sible values of p range between 1 (where all systems
are ranked in the same order) and —1 (where the sys-
tems are ranked in the reverse order). Thus an auto-
matic evaluation metric with a higher value for p is
making predictions that are more similar to the hu-
man judgments than an automatic evaluation metric
with a lower p.

Table 17 reports p for the metrics which were
used to evaluate translations into English.”. Table
7 summarizes the results by averaging the correla-
tion numbers by equally weighting each of the data
conditions. The table ranks the automatic evalua-
tion metrics based on how well they correlated with
human judgments. While these are based on a rela-
tively few number of items, and while we have not
performed any tests to determine whether the dif-
ferences in p are statistically significant, the results

"The Czech-English conditions were excluded since there
were so few systems



are nevertheless interesting, since three metrics have
higher correlation than Bleu:

e Semantic role overlap (Giménez and Marquez,
2007), which makes its debut in the proceed-
ings of this workshop

e ParaEval measuring recall (Zhou et al., 2006),
which has a model of allowable variation in
translation that uses automatically generated
paraphrases (Callison-Burch, 2007)

e Meteor (Banerjee and Lavie, 2005) which also
allows variation by introducing synonyms and
by flexibly matches words using stemming.

Tables 18 and 8 report p for the six metrics which
were used to evaluate translations into the other lan-
guages. Here we find that Bleu and TER are the
closest to human judgments, but that overall the cor-
relations are much lower than for translations into
English.

7 Conclusions

Similar to last year’s workshop we carried out an ex-
tensive manual and automatic evaluation of machine
translation performance for translating from four
European languages into English, and vice versa.
This year we substantially increased the number of
automatic evaluation metrics and were also able to
nearly double the efforts of producing the human
judgments.

There were substantial differences in the results
results of the human and automatic evaluations. We
take the human judgments to be authoritative, and
used them to evaluate the automatic metrics. We
measured correlation using Spearman’s coefficient
and found that three less frequently used metrics
were stronger predictors of human judgments than
Bleu. They were: semantic role overlap (newly in-
troduced in this workshop) ParaEval-recall and Me-
teor.

Although we do not claim that our observations
are indisputably conclusive, they again indicate that
the choice of automatic metric can have a signifi-
cant impact on comparing systems. Understanding
the exact causes of those differences still remains an
important issue for future research.
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Semantic J74 839 803 .741 789

role overlap

ParaEval- 712 7742 7768 798 755

Recall

Meteor JJ01 719 745 669  .709

Bleu 690 722 672 .602 .671

1-TER .607 538 520 .514 .644

Max adequ- | .651 .657 .659 .534 .626

correlation

Max fluency | .644 .653 .656 .512 .616

correlation

GTM .655 .674 616 .495 .610

Dependency | .639 .644 .601 .512 .599

overlap

ParaEval- .639 .654 610 .491 .598

Precision

1-WER  of | .378 422 431 .297 .382

verbs

Table 7: Average corrections for the different auto-
matic metrics when they are used to evaluate trans-
lations into English

=
o &
R« = 3
SO ¢ % =
m =) b4 Z m
. @) ] < o >
metric < ) &, O o
Bleu 657 445 352 409 466
1-TER 589 419 361 380 .437
Max fluency | .534 419 368 .400 .430
correlation
Max adequ- | .498 414 385 .409 .426
correlation
Meteor 490 356 279 304 357
1I-WER of | 371 .304 .359 .359 .348
verbs

Table 8: Average corrections for the different auto-
matic metrics when they are used to evaluate trans-
lations into the other languages



This year’s evaluation also measured the agree-
ment between human assessors by computing the
Kappa coefficient. One striking observation is
that inter-annotator agreement for fluency and ad-
equacy can be called ‘fair’ at best. On the other
hand, comparing systems by ranking them manually
(constituents or entire sentences), resulted in much
higher inter-annotator agreement.
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] German-English Europarl
cmu-uka 0.511 0.496 0.395 0.206
liu 0.541 055 0415 0.234
nrc 0474 0459 0.354 0.214
saar 0.334 0.404 0.119 0.104
systran 0.562 0.594 0.530 0.302
uedin 0.53 0.554 043 0.187
upc 0.534 0.533 0.384 0.214
German-English News Corpus
nrc 0.459 0429 0325 0.245
saar 0.278 0.341 0.108 0.125
systran 0.552 0.56 0.563 0.344
uedin 0.508 0.536 0.485 0.332
upc 0.536 0.512 0476 0.330
] English-German Europarl
cmu-uka 0.557 0.508 0.416 0.333
nrc 0.534 0.511 0.328 0.321
saar 0.369 0.383 0.172 0.196
systran 0.543 0.525 0.511 0.295
uedin 0.569 0.576 0.389 0.350
upc 0.565 0.522 0438 0.3
English-German News Corpus

nrc 0453 04 0437 0.340
saar 0.186 0.273 0.108 0.121
systran 0.542 0.556 0.582 0.351
ucb 0.415 0.403 0.332 0.289
uedin 0472 0.445 0455 0.303
upc 0.505 0475 0.377 0.349

Table 9: Human evaluation for German-English sub-
missions
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* Spanish-English Europarl ‘ ’ French-English Europarl
p g P limsi 0.634 0618 0458 0.290
cmu-syntax  0.552 0.568 0478 0.152
nrc 0.553 0.551 0.404 0.253
cmu-uka 0.557 0.564 0.392 0.139
saar 0.384 0.447 0.176 0.157
nrc 0477 0489 0.382 0.143
systran 0.494 0.484 0.286 0.202
saar 0.328 0.336 0.126 0.075
systran-nrc 0.604 0.6 0503 0.267
systran 0.525 0.566 0.453 0.156 :

. uedin 0.616 0.635 0.514 0.283
uedin 0.593 0.610 0.419 0.14 upe 0616 0619 0448 0267
upc 0.587 0.604 0.5 0.188 P ' ' ‘ '
upv 0.562 0.573 0326 0.154 ’ French-English News Corpus

- - limsi 0.575 0.596 0.494 0.312
| Spanish-English News Corpus | nre 0472 0442 0306 0241

cmu-uka 0.522 0495 041 0.213
saar 0.280 0.372 0.183 0.159

nrc 0479 0464 0334 0.243
systran 0.553 0.534 0.469 0.288

saar 0446 046 0.246 0.198
systran-nrc 0.513 049 0464 0.290

systran 0.525 0.503 0453 0.22 .

. uedin 0.556 0.586 0.493 0.306
uedin 0.546 0.534 048 0.268 ube 0576 0587 0493 0291
upc 0.566 0.543 0.537 0.312 P ) ' ' '
upv 0.435 0459 0.295 0.151 ’ English-French Europarl

English-Spanish Europarl \ limsi 0.635 0.627 0.505 0.259
cmu-uka 0.563 0.581 0.391 0.23 nrc 0.517 0.518 0.359 0.206
nrc 0.546 0.548 0323 0.22 saar 0.398 0.448 0.155 0.139
systran 0.495 0482 0.329 0.224 systran 0.574 0.526 0.353 0.179
uedin 0.586 0.638 0.468 0.225 systran-nrc 0.575 058 0.512 0.225
upc 0.584 0.578 0.444 0.239 uedin 0.620 0.608 0.485 0.273
upv 0.573 0.587 0.406 0.246 upc 0.599 0.566 045 0.256

English-Spanish News Corpus ‘ ] English-French News Corpus

cmu-uka 0.51 0492 045 0.277 limsi 0.537 0495 044 0.363
nrc 0.408 0.392 0.367 0.224 nrc 0481 0.484 0.372 0.324
systran 0.501 0.507 0.481 0.352 saar 0.243 0276 0.086 0.121
ucb 0.449 0414 0.390 0.307 systran 0.536 0.546 0.634 0.440
uedin 0.429 0419 0.389 0.266 systran-nrc 0.557 0.572 0.485 0.287
upc 0.51 0488 0.404 0.311 ucb 0401 0.391 0.316 0.245
upv 0405 0418 0.250 0.217 uedin 0.466 0.447 0485 0.375

upc 0.509 0.469 0.437 0.326

Table 10: Human evaluation for Spanish-English

. Table 11: Human evaluation for French-English
submissions

submissions
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Czech-English News Corpus
cu 0.468 0478 0.362 —
pet 0418 0388 0.220 —
uedin 0.458 0471 0.353 —
umd 0.550 0.592 0.627 —

English-Czech News Corpus

cu 0.523 0.510 0.405 0.440
pet 0.542 0.541 0.499 0.381
uedin 0.449 0.433 0.249 0.258

Table 12: Human evaluation for Czech-English sub-
missions

152



=¥
" 2 .
o~
, &8 Z & 5 2
= 2 m - n Z o
< ) > m m = o
= £ 3% 3 % 2 2
o o 5 & > R <
I A -
o < < A = Q o O
Q " m m Z Z © Q Q
- B & =z £ £ & : & 3 z
system = 2 — S S £ A 7 — = =
German-English Europarl
cmu-uka 0.559 0.247 0326 0455 0.528 0531 0259 0.182 0.848 191 1910
liu 0.559 0.263 0.329 0.460 0.537 0.535 0.276 0.197 0.846 191 1.910
nrc 0.551 0.253 0.324 0454 0.528 0.532 0.263 0.185 0.848 1.88 1.88
saar 0.477 0.198 0.313 0447 044 0527 0.228 0.157 0.846 1.76 1.710
systran 0.560 0.268 0.342 0.463 0.543 0.541 0.261 0.21 0.849 191 191
systran-2 0.501 0.154 0.238 0376 0.462 0448 0.237 0.154 — .71 1.73
uedin 0.56 0.277 0319 0480 0.536 0.562 0.298 0.217 0.855 1.96 1.940
upc 0.541 0.250 0.343 0470 0.506 0.551 0.27 0.193 0.846 1.89 1.88
German-English News Corpus
nrc 0.563 0.221 0.333 0454 0.514 0514 0246 0.157 0.868 1.920 1.91
saar 0.454 0.159 0.288 0.413 0405 0467 0.193 0.120 086 1.700 1.64
systran 0.570 0.200 0.275 0.418 0.531 0472 0274 0.18 0.858 1910 1.93
systran-2 0.556 0.169 0.238 0.397 0.511 0.446 0.258 0.163 — 1.86  1.88
uedin 0.577 0.242 0339 0.459 0.534 0.524 0.287 0.181 0.871 198 1.970
upc 0.575 0.233 0339 0455 0.527 0516 0265 0.171 0.865 196 1.96
English-German Europarl
cmu-uka 0268 0.189 0.251 — — — — — 0884 1.66 1.63
nrc 0.272 0.185 0.221 — — — — — 0.882 1.660 1.630
saar 0.239 0.174 0237 — — — — — 0881 1.61 1.56
systran 0.198 0.123 0.178 — — — — — 0866 146 1.42
uedin 0.277 0.201 0.273 — — — — — 0.889 1.690 1.66
upc 0266 0.177 0.195 — — — — — 0.88 1.640 1.62
English-German News Corpus
nrc 0.257 0.157 0.25 — — — — — 0891 1.590 1.560
saar 0.162 0.098 0.212 — — — — — 0.881 1.400 1.310
systran 0.223 0.143 0.266 — — — — — 0.887 1.55 1.500
ucb 0.256 0.156 0.249 — — — — — 0889 159 156
ucb-2 0.252 0.152 0.229 — — — — — — 1.57 1.55
uedin 0.266 0.166 0.266 — — — — — 0891 1.600 1.58
upc 0.256 0.167 0.266 — — — — — 0.89 1.590 1.56

Table 13: Automatic evaluation scores for German-English submissions
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Spanish-English Europarl
cmu-syntax 0.602 0323 0414 0499 059 0588 0338 0.254 0.866 2.10 2.090
cmu-syntax-2  0.603 0.321 0.408 0.494 0.593 0.584 0336 0249 — 2.09  2.09
cmu-uka 0597 032 042 0501 0.581 0.595 0336 0.247 0.867 2.09 2.080
nrc 0.596 0313 0402 0484 0.581 0.581 0321 0.227 0.867 2.04 2.04
saar 0.542 0245 032 0432 0.531 0511 0272 0.198 0.854 1.870 1.870
systran 0.593 0.290 0364 0.469 0.586 0.550 0321 0.238 0.858 2.02 2.03
systran-2 0.535 0.202 0.288 0.406 0.524 049 0.263 0.187 — 1.81 1.84
uedin 0.6 0324 0414 0499 0584 0.589 0339 0.252 0.868 2.09 2.080
upc 0.600 0.322 0.407 0.492 0.593 0.583 0.334 0.253 0.865 2.08 2.08
upv 0.594 0315 0400 0.493 0.582 0.581 0329 0.249 0.865 2.060 2.06
Spanish-English News Corpus
cmu-uka 0.64 0.299 0428 0497 0.617 0.575 0339 0246 089 2.17 2.17
cmu-uka-2 0.64 0.297 0427 0496 0.616 0.574 0.339 0246 — 217 217
nrc 0.641 0.299 0434 0499 0.615 0584 0.329 0.238 0.892 2.160 2.160
saar 0.607 0.244 0338 0.447 0.587 0.512 0303 0.208 0.879 2.04 2.05
systran 0.628 0.259 0.35 0453 0.611 0.523 0325 0.221 0.877 2.08 2.10
systran-2 0.61 0.233 0.321 0438 0.602 0.506 0311 0209 —  2.020 2.050
uedin 0.661 0327 0.457 0.512 0.634 0595 0363 0.264 0.893 225 2.24
upc 0.654 0.346 0.480 0.528 0.629 0.616 0.363 0.265 0.895 2240 2.23
upv 0.638 0.283 0.403 0.485 0.614 0.562 0334 0.234 0.887 2.15 2.140
English-Spanish Europarl
cmu-uka 0.333 0311 0389 — — — — — 0889 198 2.00
nrc 0.322 0299 0376 — — — — — 0886 192 1940
systran 0269 0.212 0301 — — — — — 0878 1.730 1.760
uedin 033 0316 0399 — — — — — 0.891 1.980 1.990
upc 0.327 0312 0393 — — — — — 0.89 1960 1.98
upv 0.323 0304 0379 — — — — — 0887 195 197
English-Spanish News Corpus
cmu-uka 0.368 0327 0469 — — — — — 0903 2.070 2.090
cmu-uka-2 0.355 0306 0461 — — — — — — 2.04  2.060
nrc 0362 0311 0448 — — — — — 0904 204 2.060
systran 0.335 0.281 0439 — — — — — 0906 1970 2.010
ucb 0374 0331 0464 — — — — — — 209 211
ucb-2 0375 0325 0456 — — — — — — 2.09 2110
ucb-3 0.372 0324 0457 — — — — — — 2.08 2.10
uedin 0361 0322 0479 — — — — — 0907 208 2.09
upc 0.361 0328 0467 — — — — — 0902 2.06 2.08
upv 0.337 0.285 0432 — — — — — 0900 198 2.000

Table 14: Automatic evaluation scores for Spanish-English submissions
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French-English Europarl
limsi 0.604 0.332 0418 0504 0.589 0.591 0344 0.259 0.865 2.100 2.10
limsi-2 0.602 033 0417 0504 0.587 0592 0.302 0257 — 2.05 2.05
nrc 0.594 0312 0403 0488 0.578 0.58 0.324 0.244 0.861 2.05 2.050
saar 0.534 0.249 0.354 0459 0.512 0546 0.279 0.202 0.856 1.880 1.88
systran 0.549 0.211 0308 0.417 0.525 0501 0.277 0.201 0.849 1.850 1.890
systran-nrc 0.594 0313 0404 0492 0.578 0.580 0.330 0.248 0.862 2.06 2.060
uedin 0.595 0318 0.424 0.505 0.574 0.599 0338 0.254 0.865 208 2.08
upc 0.6 0319 0409 0495 0588 0.583 0.337 0.255 0.861 2.08 2.080
French-English News Corpus
limsi 0.595 0.279 0.405 0478 0.563 0.555 0.289 0.235 0.875 2.030 2.020
nrc 0.587 0.257 0.389 0470 0.557 0.546 0.301 0.22 0.876 2.020 2.020
saar 0.503 0.206 0.301 0418 0475 0476 0.245 0.169 0.864 180 1.78
systran 0.568 0.202 0.28 0415 0.554 0472 0.292 0.198 0.866 1930 1.96
systran-nrc 0.591 0.269 0.398 0475 0.558 0.547 0.323 0.226 0.875 2.050 2.06
uedin 0.602 0.27 0.392 0471 0569 0545 0326 0.233 0.875 2.07 2.07
upc 0.596 0.275 0.400 0476 0.567 0.552 0.322 0.233 0.876 2.06 2.06
English-French Europarl
limsi 0.226 0.306 0.366 — — — — — 0.891 1940 1.96
nrc 0218 0.294 0354 — — — — — 0.888 1930 1.96
saar 0.190 0.262 0.333 — — — — — 0892 186 1.87
systran 0.179 0.233 0.313 — — — — — 0885 1.79 1.83
systran-nrc 0.220 0.301 0365 — — — — —  0.892 1.940 1.960
uedin 0.207 0.262 0.301 — — — — — 0.886 1930 1.950
upc 022 0299 0379 — — — — — 0.892 1940 1.960
English-French News Corpus
limsi 0.206 0.255 0354 — — — — — 0897 184 1.87
nrc 0.208 0.257 0.369 — — — — — 0.9 1.87  1.900
saar 0.151 0.188 0.308 — — — — —  0.896 1.65 1.65
systran 0.199 0.243 0378 — — — — — 0901 1.860 1.90
systran-nrc 023 0.290 0408 — — — — — 0903 1940 1.98
ucb 0.201 0.237 0.366 — — — — — 0.897 1.830 1.860
uedin 0.197 0.234 0.340 — — — — — 0.899 1.87 1.890
upc 0.212 0263 0.391 — — — — — 0900 1.87 190

Table 15: Automatic evaluation scores for French-English submissions
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Czech-English News Corpus
cu 0.545 0.215 0.334 0.441 0.502 0.504 0.245 0.165 0.867 1.87 1.88
cu-2 0.558 0.223 0.344 0447 0.510 0514 0254 0.17 — 1.90 1910
uedin 0.54 0217 0340 0445 0497 051 0.243 0.160 0.865 1.860 1.870
umd 0.581 0.241 0.355 0.460 0.531 0.526 0.273 0.184 0.868 196 1.97
English-Czech News Corpus
cu 0429 0.134 0231 — — — — — — 1580 1.53
cu-2 0430 0.132 0219 — — — — — — 1.58  1.520
uedin 042 0.119 0211 — — — — — — 1.550 1.49

Table 16: Automatic evaluation scores for Czech-English submissions
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German-English News Corpus
adequacy 1 0.900 0.900 0.900 | 0.600 0.300 -0.025 0.300 0.700 0.300 0.700 0.700 -0.300 0.300 0.600
fluency — 1 1.000 1.000 | 0.700 0.400 -0.025 0.400 0.900 0.400 0.900 0.900 -0.100 0.400 0.700
rank —  — 1 1.000 | 0.700 0.400 -0.025 0.400 0.900 0.400 0.900 0.900 -0.100 0.400 0.700
constituent — « — — 1 0.700 0.400 -0.025 0.400 0900 0400 0.900 0.900 -0.100 0.400 0.700
German-English Europarl
adequacy 1 0.893 0.821 0.750 | 0.599 0.643 0.787 0.68 0.750 0.643 0.464 0.750 0.206 0.608 0.447
fluency — 1 0964 0.537 | 0.778 0.858 0.500 0.821 0.821 0.787 0.571 093 0562 0.821 0.661
rank — — 1 0.500 | 0.902 0.821 0.393 0.714 0.858 0.643 0464 0.858 0.652 0.893 0.769
constituent ——  — — 1 0456 0464 0.714 0.18 0.750 0250 0.214 043 0.117 0.214 0.126
Spanish-English News Corpus
adequacy 1 1.000 0964 0.893 |0.643 0.68 0.68 0.68 0.68 0.68 0.634 0714 0.571 0.68 0.68
fluency — 1 0.964 0.893 | 0.643 0.68  0.68 0.68 0.68 068 0.634 0714 0.571 0.68 0.68
rank —  — 1 0.858 | 0.714 0.750 0.750 0.750 0.750 0.750 0.741 0.787 0.608 0.750 0.750
constituent —— « — — 1 0.787 0.821 0.821 0.821 0.714 0.821 0.599 0.750 0.750 0.714 0.714
Spanish-English Europarl
adequacy 1 093 0452 0333|059 0810 0.62 0.690 0542 0.714 0.762 0.739 0.489 0.638 0.638
fluency — 1 0.571 0.524 | 0.596 0.787 043 0500 0.732 0.524 0.690 0.810 0.346 0.566 0.566
rank —  — 1 0.643 | 0.739 0.596 043 0262 0923 0406 0500 0.739 0.168 0.542 0.542
constituent —— = — — 1 0.262 0.143 -0.143 -0.143 0.816 -0.094 0.000 0.477 -0.226 0.042 0.042
French-English News Corpus
adequacy 1 0964 0964 0.858 | 0.787 0.750 0.68 0.68 0.787 0.571 0.321 0.787 0456 0.68 0.554
fluency — 1 1.000 093 | 0.750 0.787 0.714 0.714 0.750 0.608 0.214 0.858 0.367 0.608 0.482
rank —  — 1 093 | 0.750 0.787 0.714 0.714 0.750 0.608 0.214 0.858 0.367 0.608 0.482
constituent ——  — — 1 0.858 0.858 0.787 0.787 0.858 0.643 0.393 0.964 0.349 0.750 0.661
French-English Europarl
adequacy 1 0884 0.778 0.991 | 0982 0.956 0902 0.902 0.812 0.902 0956 0956 0.849 0.964 0.991
fluency — 1 0.858 0.893 | 0.849 0.821 0.93 093 0571 093 0.858 0.821 0.787 0.849 0.858
rank —  — 1 0.821 | 0.670 0.68 0.858 0.858 043 0.858 0.787 0.68 0.893 0.741 0.714
constituent — « — — 1 0.956 093 093 093 0750 093 0964 093 0.893 0.956 0.964

Table 17: Correlation of the automatic evaluation metrics with the human judgments when translating into English
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English-German News Corpus
adequacy 1 0943 083 0943 | 0.187 043 0814 0.243 033 0.187
fluency — 1 0.714 0.83 | 0.100 0.371 0.758 0.100 0.243 0.100
rank —  — 1 0.771 | 0414 0.258 0.671 0414 0414 0414
constituent —— « — — 1 0.13 0371 0.671 0243 0.243 0.13
English-German Europarl
adequacy 1 0714 0487 0.714 | 0487 0.600 0.314 0.371 0.487 0.487
fluency — 1 0.543 043 | 0258 0.200 -0.085 0.03 0.258 0.258
rank —  — 1 0.03 | -0.37 -0.256 -0.543 -0485 -0.37 -0.37
constituent — « — — 1 0.887 0943 0.658 0.83 0.887 0.887
English-Spanish News Corpus
adequacy 1 0714 0771 0.83 | 0314 0.658 0487 0.03 0.314 0.600
fluency — 1 0.943 0.887 | -0.200 0.03 0.143 0.200 -0.085 0.258
rank —  — 1 0.943 | -0.029 0.087 0.258 0.371 -0.029 0.371
constituent — « — — 1 -0.143  0.143 0.200 0.314 -0.085 0.258
English-Spanish Europarl
adequacy 1 083 0943 0543 | 0.658 0943 0943 0943 0.83 0.658
fluency — 1 0.771 0543 | 0.714 0.771 0.771 0771 083 0.714
rank — — 1 0.600 | 0.600 0.887 0.887 0.887 0.771 0.600
constituent — « — — 1 0.43 0.43 0.43 043 0371 043
English-French News Corpus
adequacy 1 0952 0762 0452 0.690 0.787 0.690 0.709 0.596 0.686
fluency — 1 0.810 0477 | 0.62 0.739 0.714 0.792 0.62 0.780
rank —  — 1 0.762 | 0.239 0.381 0.500 0.757 0.596 0.601
constituent — « — — 1 -0.048 0.096 0.143 0411 0.333 0.304
English-French Europarl
adequacy 1 0964 0.750 093 | 0.608 0.528 0.287 -0.07 0.652 0.376
fluency — 1 0.858 0.893 | 0.643 0.562 0.214 -0.07 0.652 0.376
rank —  — 1 0.750 | 0.821 0.76  0.393 0.214 0.830 0.697
constituent — @ — — 1 0.571 0473  0.18 -0.07  0.652 0.447

Table 18: Correlation of the automatic evaluation metrics with the human judgments when translating out

of English
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Abstract

In this work we revise the application
of discriminative learning to the problem
of phrase selection in Statistical Machine
Translation.  Inspired by common tech-
nigues used in Word Sense Disambiguation,
we train classifiers based on local context
to predict possible phrase translations. Our
work extends that of Vickrey et al. (2005) in
two main aspects. First, we move from word
translation to phrase translation. Second, we
move from theblank-filling’ task to thefull
translation’ task. We report results on a set
of highly frequent source phrases, obtaining
a significant improvement, specially with re-
spect to adequacy, according to a rigorous
process of manual evaluation.

Introduction

t@lsi.upc.edu

We extend the work by Vickrey et al. (2005) in two
main aspects. First, we move froword transla-
tion’ to ‘phrase translation! Second, we move from
the‘blank-filling’ task to thefull translation’ task.

Our approach is fully described in Section 2. We
apply it to the Spanish-to-English translation of Eu-
ropean Parliament Proceedings. In Section 3, prior
to considering the ‘full translation’ task, we ana-
lyze the impact of using DPT models for the iso-
lated ‘phrase translation’ task. In spite of working
on a very specific domain, a large room for improve-
ment, coherent with WSD performance, and results
by Vickrey et al. (2005), is predicted. Then, in Sec-
tion 4, we tackle the full translation task. DPT mod-
els are integrated in a ‘soft’ manner, by making them
available to the decoder so they can fully interact
with other models. Results using a reduced set of
highly frequent source phrases show a significant
improvement, according to several automatic eval-

Translations tables in Phrase-based Statistical MH?‘“O” metrics. Interestingly, tre Eu metric (Pap-

chine Translation (SMT) are often built on the ba
sis of Maximume-likelihood Estimation (MLE), be-

ineni et al., 2001) is not able to reflect this improve-
ment. Through a rigorous process of manual eval-

ing one of the major limitations of this approach that'ation we have verified the gain. We have also ob-

the source sentence context in which phrases occ

is completely ignored (Koehn et al., 2003).

In this work, inspired by state-of-the-art Word
Sense Disambiguation (WSD) techniques, we s
gest using Discriminative Phrase Translation (DPT,

rved that it is mainly related to adequacy. These
results confirm that better phrase translation proba-
bilities may be helpful for the full translation task.

dicates that the integration of these probabilities

1%-Zi‘owever, the fact that no gain in fluency is reported

models which take into account a wider featurd™© the statistical framework requires further study.

context. Following the approach by Vickrey et al.2 Discriminative Phrase Translation
(2005), we deal with théhrase translation’prob-

lem as a classification problem. We use Suppoth this section we describe the phrase-based SMT
Vector Machines (SVMs) to predict phrase translabaseline system and how DPT models are built and
tions in the context of the whole source sentencéntegrated into this system in a ‘soft’ manner.
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2.1 Baseline System have applied a simplene-vs-allbinarization, i.e., a

The baseline system is a phrase-based SMT s VM is trained for every possible translation candi-

tem (Koehn et al., 2003), built almost entirely us- ateejt. Trf""n"llg texam_pleti are extra}clt\jfgrom dthle
ing freely available components. We use BRI Same training data as in Ine case o MOGELS,

Language Modeling Toolk{Stolcke, 2002) for lan- i.e., an aligned parallel corpus, obtained as described

guage modeling. We build trigram language modelt%: Section 2#' We use ea:ch sente?ce palr_tl_n which
applying linear interpolation and Kneser-Ney dis- & source phrash occurs to generate a positive ex-

counting for smoothing. Translation models aré;;\mple fpr the clf'assifier corresponding to_ the actual
built on top of word-aligned parallel corpora Iinguis—tranSIat'c.)n o.ffi in that sgntgnce, according to the
tically annotated at the level of shallow syntax (i_e_:automatlc alignment. .T.h'S will be as wgll a negative
lemma, part-of-speech, and base phrase Chun@?ampl_e for the cla_ssmers corresponding to the rest
as described by Giménez and Marquez (20055’. possible translations gf.

Text is automatically annotated, using ti$&/M-

Tool (Giménez and Marquez, 2008teeling (Car- 2.2.1 Feature Set

reras et al., 2004), arféhreco(Carreras et al., 2005)

packages. We used ti@&ZA++ SMT Toolkit (Och
and Ney, 2003) to generate word alignments.
apply the phrase-extract algorithm, as described
Och (2002), on the Viterbi alignments output b
GlzZA++ following the ‘global phrase extraction’
strategy described by Giménez and Marquez (200
(i.e., a single phrase translation table is built on to
of the union of alignments corresponding to dif-
ferent linguistic data views). We work with the
union of source-to-target and target-to-source alig
ments, with no heuristic refinement. Phrases up to

length five are considered. Also, phrase pairs a2.2 Decoding. A Trick.

pearing only once are discarded, and phrase pairs L . .

in which the source/target phrase is more than three At translation time, we consider every instance Of,
times longer than the target/source phrase are ig: as a separate case. In each case, for all possi-
nored. Phrase pairs are scored on the basis of e translations of;, we collect the SVM score, ac-

smoothed relative frequency (i.e., MLE) Regard9ording to the SVM classification rule. We are in

ing the argmax search, we used farachbeam fact modelingP(e;|f;). However, these scores are

search decoder (Koehn, 2004), which naturally fit p_t.probabilities.. We transform thgm into !oroba-
with the previous tools. ilities by applying thesoftmax functiordescribed

by Bishop (1995). We do not constrain the decoder
22 DPT for SMT to use the translatioa; Wit_h highest probability. In-

_ o stead, we make all predictions available and let the
Instead of relying on MLE estimation to score thejecoder choose. We have avoided implementing a

phrase palrs(:fi,e_j) in the trans_latlon table, wWe new decoder by pre-computing all the SVM pre-

suggest considering the translation of every sourGgctions for all possible translations for all source
phrase f; as a multi-class classification problem, nrases appearing in the test set. We input this in-
where every possible translation ffis a class.  formation onto the decoder by replicating the entries
We uselocal linear SVMS”. Since SVMs are bi- i, the translation table. In other words, each distinct
nary classifiers, the problem must be binarized. Wgccurrence of every single source phrase has a dis-

T ihttpowww fioch.com/GIZA++ html tinct list of phrase translation c_andldates with their
2\We use the SVN9"* package, which is freely available at correspondlng SCOres. Accordingly, the source sen-
http://svmlight.joachims.org (Joachims, 1999). tence is transformed into a sequence of identifiers,

We consider different kinds of information, al-
ways from the source sentence, based on standard
SD methods (Yarowsky et al., 2001). As to the
cal context, inside the source phrase to disam-
biguate, and 5 tokens to the left and to the right,

e usen-grams f € {1,2,3}) of: words, parts-

-speech, lemmas and base phrase chunking I0B
abels. As to the global context, we collect topical
information by considering the source sentence as a
rQag of lemmas.

160



in our case a sequence (@b, i) pairs’, which allow phrase set| model | macro | micro
us to uniquely identify every distinct instance of ev- all MFT 0.66| 0.70
ery word in the test set during decoding, and to re- DPT 0.68| 0.76
trieve DPT predictions in the translation table. For frequent | MFT 0.76| 0.75
that purpose, source phrases in the translation table DPT 0.86| 0.86

must comply with the same format.
This imaginative trick saved us in the short run
a gigantic amount of work. However, it imposes a

severe limitation on the kind of features which the

DPT system may use. In particular, features froane is equivalent to selecting the translation candi-
the target sentence under construction and frorf%ate with highest probability according to MLE. The

the correspondence between source and target (i.é‘l?l,""cgo column SEOWS macro—?veragﬁd rr]esults over
alignments) can not be used. all phrases, i.e., the accuracy for each phrase counts

equally towards the average. The ‘micro’ column
3 Phrase Translation shows micro-averaged accuracy, where each test ex-

ample counts equally. The ‘all’ set includes results
Analogously to théword translation’ definition by for the 241,234 phrases, whereas the ‘frequent’ set
Vickrey et al. (2005), rather than predicting the sensimcludes results for a selection of 41 very frequent
of a word according to a given sense inventory, iphrases ocurring more than 50,000 times.

‘phrase translation, the goal is to predict the correct 5 priori, DPT models seem to offer a significant
translation of gphrase for a given target language, yoom for potential improvement. Although phrase
in the context of a sentence. This task is simpler thapsnsiation differs from WSD in a number of as-
the “full translation’ task, but provides an insight topects; the increase with respect to the MFT baseline

the gain prospectives. is comparable. Results are also coherent with those
We used the data from tH@penlab 200@nitia-  attained by Vickrey et al. (2005).

tive® promoted by the TC-STAR Consorti@mThis

test suite is entirely based on European Parliament
Proceedings. We have focused on the Spanish-to-
English task. The training set consists of 1,281,427 _ .
parallel sentences. Performing phrase extractionz °SE’:
over the training data, as described in Section 2.1, g
we obtained translation candidates for 1,729,191
source phrases. We built classifiers &irthe source
phrases with more than one possible translation and &
more than 10 occurrences. 241,234 source phrasef
fulfilled this requirement. For each source phrase,
we used 80% of the instances for training, 10% for G 50000 100000 150000 200000 250000 300000
development, and 10% for test. Fexamples

Table 1 shows “phrase translation” results ovegig,re 1: Analysis of “Phrase Translation” Results

the test set. We compare the performance, in termgs, ihe development set (Spanish-to-English).
of accuracy, of DPT models and the “most fre-

quent translation” baseline (MFT’). The MFT base- . _
Figure 1 shows the relationship between the accu-

3w is a word and; corresponds to the number of instancesracy7 gain and the number of training examples_ In

of word w seen in the test set before the current instance. : -
“We have checked that results following this type of decod-general' with a sufficient number of examples (over

ing when translation tables are estimated on the basis of MLE0,000), DPT outperforms the MFT baseline.
are identical to regular decoding results.

Shttp://tc-star.itc.it/openlab2006/

Shttp://www.tc-star.org/ "We focus on micro-averaged accuracy.

Table 1: “Phrase Translation” Accuracy (test set).

y(DPT) - accurac

-0.5
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4 Full Translation

In the “phrase translation” task the predicted phrase
does not interact with the rest of the target sentence.”
In this section we analyze the impact of DPT models
when the goal is to translate the whole sentence.

For evaluation purposes we count on a set of 1,008

sentences. Three human references per sentence are

available. We randomly split this set in two halves,
and use them for development and test, respectively.

4.1 Evaluation

Evaluating the effects of using DPT predictions, di-
rected towards a better word selection, in the full
translation task presents two serious difficulties.

In first place, the actual room for improvement
caused by a better translation modeling is smaller
than estimated in Section 3. This is mainly due to
the SMT architecture itself which relies on a search
over a probability space in which several models co-
operate. For instance, in many cases errors caused
by a poor translation modeling may be corrected by
the language model. In a recent study, Vilar et al.
(2006) found that only around 25% of the errors are
related to word selection. In half of these cases er-
rors are caused by a wrong word sense disambigua-
tion, and in the other half the word sense is correct
but the lexical choice is wrong.

In second place, most conventional automatic
evaluation metrics have not been designed for this
purpose. For instance, metrics sucheagu (Pa-
pineni et al., 2001) tend to favour longergram
matchings, and are, thus, biased towards word or-
dering. We might find better suited metrics, such
as METEOR (Banerjee and Lavie, 2005), which is
oriented towards word selectitnHowever, a new
problem arises. Because different metrics are biased
towards different aspects of quality, scores conferred
by different metrics are often controversial.

In order to cope with evaluation difficulties we
have applied several complementary actions:

and exhibits a potential absolute accuracy gain
around 11% (See Table 1).

2. With the purpose of evaluating the changes re-

lated only to this small set of very promis-
ing phrases, we introduce a new measurg,
which computes “phrase translation” accuracy
for a given list of source phrases. For every
test casea,: counts the proportion of phrases
from the list appearing in the source sentence
which have a validl translation both in the tar-
get sentence and in any of the reference trans-
lations. In fact, because in general source-to-
target alignments are not knowa,; calculates

an approximat® solution.

3. We evaluate overall MT quality on the basis

of ‘Human Likeness’. In particular, we use
the QUEEN!! meta-measure from the QARLA
Framework (Amigb et al., 2005)QUEEN op-
erates under the assumption that a good trans-
lation must be similar to all human references
according to all metrics. Given a set of auto-
matic translationsd, a set of similarity metrics
X, and a set of human referencBSQUEEN s
defined as the probability, ovét x R x R, that
for every metric inX the automatic translation
a is more similar to a referenaethan two other
references’ andr” to each other. Formally:

QUEENy y(a) = Prob(Vo € X : z(a,r) > z(r',r"))

QUEEN captures the features that are common
to all human references, rewarding those auto-
matic translations which share them, and pe-
nalizing those which do not. ThugUEENpro-
vides a robust means of combining several met-
rics into a single measure of quality. Following
the methodology described by Giménez and
Amigd (2006), we compute theUEEN mea-
sure over the metric combination with high-
estKING, i.e., discriminative power. We have
considered all the lexical metritsprovided by

1. Based on the results from Section 3, we focus *valid translations are provided by the translation table.

on a reduced set of 41 very promising phrases

%Current A,; implementation searches phrases from left to
fight in decreasing length order.

trained on more than 50,000 examples. This 1iqyEgEN is available inside the 1@ package for MT
set covers 25.8% of the words in the test se€valuation based on ‘Human Likeness’ (Giménez and Amigo,
2006). http://www.Isi.upc.edu/"nlp/IQMT
8METEOR works at the unigram level, may consider word *2Consult the I@t Technical Manual v1.3 for a detailed de-
stemming and, for the case of English is also able to perform scription of the metric sethttp://www.lsi.upc.edu/

lookup for synonymy in WordNet (Fellbaum, 1998).
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QUEEN Apt BLEU | METEOR | ROUGE
P(e) + Pure(fle) | 0.43]0.86] 059 0.77| 042
Ple) + Pyrelelf) | 045] 0.87] 0.62 0.77| 0.43
P(e) + Pppr(elf) 0.47] 089 0.62 0.78] 0.44

Table 2: Automatic evaluation of the ‘full translation’ téts on the test set.

IQur. The optimal set is: more robust system configurations ttereu (Lam-
bert et al., 2006). We exhaustively try all possible
{ METEORy5yn, ROUGE, 1 2 } 6). Wi y Uy ail p
o _ parameter configurations, at a resolution of 0.1, over
which includes variants ofMETEOR, and  the development set and select the best one. In order
ROUGE(Lin and Och, 2004). to keep the optimization process feasible, in terms of

42 Adjustment of Parameters time, the search space is prufiéduring decoding.

Models are combined in a log-linear fashion: 4.3 Results
logP(e|f) oc MimlogP(e) + AglogPrre(fle) We compare the systems using the generative and
+ XalogPyure(elf) + ApprlogPppr(elf) discriminative MLE-based translation models to the

] _discriminative translation model which uses DPT
P(e) is the language model probability. oragictions for the set of 41 very ‘frequent’ source

Puyrp(fle) corresponds to  the MLE-basedppiases. Table 2 shows automatic evaluation re-
generative translation model, whereBsizr(e|f) gyits on the test set, according to several metrics.

corresponds to the analogous discriminative modebp, e translation accuracy (over the ‘frequent’ set

Pppr(elf) corresponds to the DPT model whichyt hhrases) and MT quality are evaluated by means
uses SVM-based predictions in a wider featurgs yhe a , and QUEEN measures, respectively. For
context. In order to perform fair comparisoNSype sake of informativenesgLEU, METEOR sy

model weights must be adjusted. andROUGE,, 1 » scores are provided as well.
Because we have focused on a reduced set of €| nterestingly, discriminative models outperform

quent phrases, in order to translate the whole test sgt, (noisy-channel) default generative model. Im-

we must provide alternative translation probabilitieBrovement i, measure also reveals that DPT pre-
. . pt
l;lor all tEe source phrazgs_m the vc;lcabularydwhlc ictions provide a better translation for the set of
0 S,Ot, ave a DPT :ore 'ﬁt'on' (\jNT ave use _MLEfrequent’ phrases than the MLE models. This im-
pres |ct|l;)ns to complete ; € mode 'dHIOV\_/ever't;Interbrovement remains when measuring overall transla-
action between DPT and MLE models is pro ®Miion quality viaQUEEN. If we take into account that

atic. Problem_s e_lrise when, for a given _source phrasBPT predictions are available for only 25% of the
Ji, DPT predictions must compete with MLE P'€words in the test set, we can say that the gain re-

dictions for larger phraseg; OVe”apE'ng Wlllth or ‘{Z/O”ed by theQUEENandA,. measures is consistent
containingf; (See Section 4.3). We have alleviate ith the accuracy prospectives predicted in Table 1.

these problems by splitting DPT tables in 3 subtaMETEOansyn andROUGE, ; , reflect a slight im-

bles: (1) phrases with DPT prediction, (2) phraseﬁrovement as well. However, according BoEU

with DPT pred_iction only for supphrases of it, anOIthere is no difference between both systems. We
(3) phr.ases with no DPT_ pre_:d|ct|on_ for 'any SUb'suspect thaBLEU is unable to accurately reflect the
phrase; and separately adjusting their weights. Eossible gains attained by a better ‘phrase selection’

~ Counting on areliable automatic measure of quals e 5 small set of phrases because of its tendency
ity is a crucial issue for system development. Opti-
mal configurations may vary very significantly de- *3ror each phrase only the 30 top-scoring translations are

pending on the metric governing the optimizatiorvsed- At all times, only the 100 top-scoring solutions anetke
Wi timize th t t We also disabled distortion and word penalty models. There-
process. € opumize the system parameters ovf:c')'fe, translations are monotonic, and source and targdttten

the QUEEN measure, which has proved to lead tthave the same number of words (that is not mandatory).
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to reward longn-gram matchings. In order to clar- Adequacy | Fluency | Overall

ify this scenario a rigorous process of manual evaly-MLE > DPT 39 84 83

ation has been conducted. We have selected a subsbtLE = DPT 100 76 46

of sentences based on the following criteria: MLE < DPT 89 68 99
o sentence length between 10 and 30 words. e 3: Manual evaluation of the ‘full translation’
e atleast 5 words have a DPT prediction. results on the test set. Counts on the number of
e DPT and MLE outputs differ. translation cases for which the ‘MLE’ system is bet-

ter than ¢&), equal to €), or worse than <) the
T’ system, with respect to adequacy, fluency,
overall MT quality, are presented.

A total of 114 sentences fulfill these require-
ments. In each translation case, assessors mustjudl%g
whether the output by the discriminative ‘MLE’ sys-a d
tem is better, equal to or worse than the output by

the ‘DPT’ system, with respect to adequacy, fluencycuestbn’ as‘matter’, although acceptable, is break-
and overall quality. In order to avoid any bias in thang the phrasecuestbn de orden’of high cohe-
evaluation, we have randomized the respective posiion, which is commonly translated gmint of or-
tion in the display of the sentences corresponding i@er’. The cause underlying these problems is that
each system. Four judges participated in the evalugpT predictions are available only for a subset of

tion. Each judge evaluated only half of the caseghrases. Thus, during decoding, for these cases our
Each case was evaluated by two different judge®PT models may be in disadvantage.

Therefore, we count on 228 human assessments.

Table 3 shows the results of the manual syste Related Work
comparison. Statistical significance has been deter-
mined using the sign-test (Siegel, 1956). AccordingRecently, there is a growing interest in the appli-
to human assessors, the ‘DPT’ system outperfornggtion of WSD technology to MT. For instance,
the ‘MLE’ system very significantly with respect to Carpuat and Wu (2005b) suggested integrating
adequacy, whereas for fluency there is a slight ad¥SD predictions into a SMT system in ‘hard’
vantage in favor of the ‘MLE’ system. Overall, theremanner, either for decoding, by constraining the set
is a slight but significant advantage in favor of thedf acceptable translation candidates for each given
‘DPT’ system. Manual evaluation confirms our sussource word, or for post-processing the SMT sys-
picion that theBLEU metric is less sensitive than tem output, by directly replacing the translation of

QUEENto improvements related to adequacy. each selected word with the WSD system predic-
_ tion. They did not manage to improve MT quality.
Error Analysis They encountered several problems inherent to the

Guided by thegUEENmMeasure, we carefully inspect SMT architecture. In particular, they described what
particular cases. We start, in Table 4, by showthey called the'language model effect’in SMT:
ing a positive case. The three phrases highlightéd he lexical choices are made in a way that heav-
in the source sentencéiéne’, ‘sefiora’ and ‘una ily prefers phrasal cohesion in the output target sen-
cueston’) find a better translation with the help oftence, as scored by the language modéThis prob-
the DPT models‘tiene’ translates intthas’ instead lem is a direct consequence of the ‘hard’ interaction
of ‘i give’, ‘sefiora’ into ‘mrs’ instead oflady’, and between their WSD and SMT systems. WSD pre-
‘una cuestbn’ into ‘a point’ instead ofa ... motion’.  dictions cannot adapt to the surrounding target con-
In contrast, Table 5 shows a negative case. THext. In a later work, Carpuat and Wu (2005a) ana-
translation of the Spanish wotsefiora’ as‘mrs’ is  lyzed the converse question, i.e. they measured the
acceptable. However, it influences very negativelfWSD performance of SMT models. They showed
the translation of the following worddiputada’, that dedicated WSD models significantly outper-
whereas the ‘MLE’ system translates the phrastorm current state-of-the-art SMT models. Conse-
‘sefiora diputada; which does not have a DPT pre-quently, SMT should benefit from WSD predictions.
diction, as a whole. Similarly, the translation of Simultaneously, Vickrey et al. (2005) studied the
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Source tienela palabra lasdiora mussolini paraina cuestbn de orden .

Ref 1 mrs mussolinihasthe floor fora point of order .
Ref 2 you have the floor missusmussolini , fora questionof order .
Ref 3 msmussolinihasnow the floor fora point of order .

P(e) + Prnre(elf) igive the floor to thdady mussolini fora procedural motion .
P(e) + Pppr(e|f) hasthe floor themrs mussolini ona point of order .

Table 4: Case of Analysis of sentence #422. DPT models help.

Source séora diputada , éstao es una cuestin de orden .
Ref 1 mrs mussolini, that isnot a point of order .

Ref 2 honourable member, this isnot a questionof order .
Ref 3 my honourable friend, this isnot a point of order .

P(e) + Prre(e|f) honourable member, this isnot a point of order .
P(e) + Pppr(e|f) mrskaramanou, this isnot a matter of order .

Table 5: Case of Analysis of sentence #434. DPT models fail.

application of discriminative models based on WSDRhe impact of a larger set of phrases, covering over
technology to the'blank-filling” task, a simplified 99% of the words in the test set. Experiments with
version of the translation task, in which the targeenabled reordering and word penalty models should
context surrounding the word translation is availbe conducted as well. Second, automatic evalua-
able. They did not encounter the “language modgion of the results revealed a low agreement between
effect” because they approached the task isoft’ BLEU and other metrics. For system comparison, we
way, i.e., allowing their WSD models to interactsolved this through a process of manual evaluation.
with other models during decoding. Similarly, ourHowever, this is impractical for the adjustment of
DPT models are, as described in Section 8dfifly parameters, where hundreds of different configura-
integrated in the decoding step, and thus do not sufions are tried. In this work we have relied on auto-
fer from the detrimental “language model effect” ei-matic evaluation based on ‘Human Likeness’ which
ther, in the context of the “full translation” task. Be-allows for metric combinations and provides a sta-
sides, DPT models enforce phrasal cohesion by cohle and robust criterion for the metric set selection.
sidering disambiguation at the level of phrases.  Other alternatives could be tried. The crucial issue,
) in our opinion, is that the metric guiding the opti-

6 Conclusions and Further Work mization is able to capture the changes.

Despite the fact that measuring improvements in Finally, we argue that, if DPT models considered

word selection is a very delicate issue, we havifatures from the target side, and from the corre-
showed that dedicated discriminative translatiogPondence between source and target, results could

models considering a wider feature context provigdrther improve. However, at the short term, the in-
a useful mechanism in order to improve the qualgorporatlon of these type of features will force us to
ity of current phrase-based SMT systems, speciall?/ither build a new decoder or extend an existing one,

with regard to adequacy. However, the fact that n8" {0 MOVe to & new MT architecture, for instance,
gain in fluency is reported indicates that the integrd! the fashion of the architectures suggested by Till-

tion of these probabilities into the statistical frameManN and Zhang (2006) or Liang et al. (2006).
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Abstract

This paper describes the 2007 Ngram-based sta-
tistical machine translation system developed at
the TALP Research Center of the UPC (Uni-
versitat Politecnica de Catalunya) in Barcelona.
Empbhasis is put on improvements and extensions
of the previous years system, being highlighted
and empirically compared. Mainly, these include
a novel word ordering strategy based on: (1) sta-
tistically monotonizing the training source cor-
pus and (2) a novel reordering approach based
on weighted reordering graphs. In addition, this
system introduces a target language model based
on statistical classes, a feature for out-of-domain
units and an improved optimization procedure.

The paper provides details of this system par-
ticipation in the ACL 2007 SECOND WORK-
SHOP ON STATISTICAL MACHINE TRANSLA-
TION. Results on three pairs of languages are
reported, namely from Spanish, French and Ger-
man into English (and the other way round) for
both the in-domain and out-of-domain tasks.

1 Introduction

Based on estimating a joint-probability model between
the source and the target languages, Ngram-based SMT
has proved to be a very competitive alternatively to
phrase-based and other state-of-the-art systems in previ-
ous evaluation campaigns, as shown in (Koehn and Monz,
2005; Koehn and Monz, 2006).

Given the challenge of domain adaptation, efforts have
been focused on improving strategies for Ngram-based
SMT which could generalize better. Specifically, a novel
reordering strategy is explored. It is based on extending
the search by using precomputed statistical information.
Results are promising while keeping computational ex-
penses at a similar level as monotonic search. Addition-
ally, a bonus for tuples from the out-of-domain corpus is
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introduced, as well as a target language model based on
statistical classes. One of the advantages of working with
statistical classes is that they can easily be used for any
pair of languages.

This paper is organized as follows. Section 2 briefly
reviews last year’s system, including tuple definition and
extraction, translation model and feature functions, de-
coding tool and optimization criterion. Section 3 delves
into the word ordering problem, by contrasting last year
strategy with the novel weighted reordering input graph.
Section 4 focuses on new features: both tuple-domain
bonus and target language model based on classes. Later
on, Section 5 reports on all experiments carried out for
WMT 2007. Finally, Section 6 sums up the main conclu-
sions from the paper and discusses future research lines.

2 Baseline N-gram-based SMT System

The translation model is based on bilingual n-grams. It
actually constitutes a language model of bilingual units,
referred to as tuples, which approximates the joint proba-
bility between source and target languages by using bilin-
gual n-grams.

Tuples are extracted from a word-to-word aligned cor-
pus according to the following two constraints: first, tu-
ple extraction should produce a monotonic segmentation
of bilingual sentence pairs; and second, no smaller tuples
can be extracted without violating the previous constraint.

For all experiments presented here, the translation
model consisted of a 4-gram language model of tuples.
In addition to this bilingual n-gram translation model, the
baseline system implements a log linear combination of
four feature functions. These four additional models are:
a target language model (a 5-gram model of words);
a word bonus; a source-to-target lexicon model and a
target-to-source lexicon model, both features provide a
complementary probability for each tuple in the transla-
tion table.

The decoder (called MARIE) for this translation sys-
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tem is based on a beam search .

This baseline system is actually the same system used
for the first shared task “Exploiting Parallel Texts for Sta-
tistical Machine Translation” of the ACL 2005 Work-
shop on Building and Using Parallel Texts: Data-Driven
Machine Translation and Beyond. A more detailed de-
scription of the system can be found in (Marifio et al.,
2006).

3 Baseline System Enhanced with a
Weighted Reordering Input Graph

This section briefly describes the statistical machine re-
ordering (SMR) technique. Further details on the archi-
tecture of SMR system can be found on (Costa-jussa and
Fonollosa, 2006).

3.1 Concept

The SMR system can be seen as a SMT system which
translates from an original source language (S) to a re-
ordered source language (S’), given a target language
(T). The SMR technique works with statistical word
classes (Och, 1999) instead of words themselves (partic-
ularly, we have used 200 classes in all experiments).

on multiannual guidance programmes
de plurianual direccion programas T

SMR SMT
s s

Trainin
programas de direccion plurianual

(A) TRAINING

0 1 2 3
(0.3) (0.09) (0.4) (0.2)
00O

EMT
O !
ranslation| T

better and different structure

(B) TEST

estructura diferente y mejor
0 1 2 3

Figure 1: SMR approach in the (A) training step (B) in
the test step (the weight of each arch is in brackets).

3.2 Using SMR technique to improve SMT training

The original source corpus S is translated into the re-
ordered source corpus S’ with the SMR system. Fig-
ure 1 (A) shows the corresponding block diagram. The
reordered training source corpus and the original training
target corpus are used to build the SMT system.

The main difference here is that the training is com-
puted with the S’27 task instead of the S2T original task.
Figure 2 (A) shows an example of the alignment com-
puted on the original training corpus. Figure 2 (B) shows
the same links but with the source training corpus in a
different order (this training corpus comes from the SMR
output). Although, the quality in alignment is the same,
the tuples that can be extracted change (notice that the
tuple extraction is monotonic). We are able to extract

"http://gps-tsc.upc.es/veu/soft/soft/marie/
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smaller tuples which reduces the translation vocabulary
sparseness. These new tuples are used to build the SMT
system.

increasingly close cooperation S

cooperacion cada vez mas estrecha T

B cooperation increasingly close S'

cooperacion cada vez mas estrecha T
TUPLES A

increasingly close cooperation # cooperation cada vez mas estrecha

TUPLES B

cooperation # cooperacion
increasingly # cada vez mas
close # estrecha

Figure 2: Alignment and tuple extraction (A) original
training source corpus (B) reordered training source cor-

pus.

3.3 Using SMR technique to generate multiple
weighted reordering hypotheses

The SMR system, having its own search, can generate ei-
ther an output 1-best or an output graph. In decoding, the
SMR technique generates an output graph which is used
as an input graph by the SMT system. Figure 1 (B) shows
the corresponding block diagram in decoding: the SMR
output graph is given as an input graph to the SMT sys-
tem. Hereinafter, this either SMR output graph or SMT
input graph will be referred to as (weighted) reordering
graph. The monotonic search in the SMT system is ex-
tended with reorderings following this reordering graph.
This reordering graph has multiple paths and each path
has its own weight. This weight is added as a feature
function in the log-linear framework. Figure 3 shows the
weighted reordering graph.

The main difference with the reordering technique for
WMTO06 (Crego et al., 2006) lies in (1) the tuples are ex-
tracted from the word alignment between the reordered
source training corpus and the given target training cor-
pus and (2) the graph structure: the SMR graph provides
weights for each reordering path.

4 Other features and functionalities

In addition to the novel reordering strategy, we consider
two new features functions.

4.1 Target Language Model based on Statistical
Classes

This feature implements a 5-gram language model of tar-
get statistical classes (Och, 1999). This model is trained
by considering statistical classes, instead of words, for
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Figure 3: Weighted reordering input graph for SMT sys-
tem.

the target side of the training corpus. Accordingly, the tu-
ple translation unit is redefined in terms of a triplet which
includes: a source string containing the source side of
the tuple, a target string containing the target side of the
tuple, and a class string containing the statistical classes
corresponding to the words in the target strings.

4.2 Bonus for out-of-domain tuples

This feature adds a bonus to those tuples which comes
from the training of the out-of-domain task. This feature
is added when optimizing with the development of the
out-of-domain task.

4.3 Optimization

Finally, a n-best re-ranking strategy is implemented
which is used for optimization purposes just as pro-
posed in http://www.statmt.org/jhuws/. This procedure
allows for a faster and more efficient adjustment of model
weights by means of a double-loop optimization, which
provides significant reduction of the number of transla-
tions that should be carried out. The current optimization
procedure uses the Simplex algorithm.

5 Shared Task Framework
5.1 Data

The data provided for this shared task corresponds to a
subset of the official transcriptions of the European Par-
liament Plenary Sessions 2. Additionally, there was avail-
able a smaller corpus called News-Commentary. For all
tasks and domains, our training corpus was the catenation
of both.

Zhttp://www.statmt.org/wmt07/shared-task/
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5.2 Processing details

Word Alignment. The word alignment is automati-
cally computed by using GIZA++ 3 in both directions,
which are symmetrized by using the union operation. In-
stead of aligning words themselves, stems are used for
aligning. Afterwards case sensitive words are recovered.

Spanish Morphology Reduction. We implemented a
morphology reduction of the Spanish language as a pre-
processing step. As a consequence, training data sparse-
ness due to Spanish morphology was reduced improving
the performance of the overall translation system. In par-
ticular, the pronouns attached to the verb were separated
and contractions as del or al are splited into de el or a
el. As a post-processing, in the En2Es direction we used
a POS target language model as a feature (instead of the
target language model based on classes) that allowed to
recover the segmentations (de Gispert, 20006).

Language Model Interpolation. In other to better
adapt the system to the out-of-domain condition, the
target language model feature was built by combining
two 5-gram target language models (using SRILM 4).
One was trained from the EuroParl training data set, and
the other from the available, but much smaller, news-
commentary data set. The combination weights for the
EuroParl and news-commentary language models were
empirically adjusted by following a minimum perplexity
criterion. A relative perplexity reduction around 10-15%
respect to original EuroParl language model was achieved
in all the tasks.

5.3 Experiments and Results

The main difference between this year’s and last year’s
systems are: the amount of data provided; the word align-
ment; the Spanish morphology reduction; the reordering
technique; the extra target language model based on sta-
tistical classes (except for the En2Es); and the bonus for
the out-of-domain task (only for the En2Es task).
Among them, the most important is the reordering
technique. That is why we provide a fair comparison be-
tween the reordering patterns (Crego and Marifio, 2006)
technique and the SMR reordering technique. Table 1
shows the system described above using either reorder-
ing patterns or the SMR technique. The BLEU calcula-
tion was case insensitive and sensitive to tokenization.
Table 2 presents the BLEU score obtained for the 2006
test data set comparing last year’s and this year’s systems.
The computed BLEU scores are case insensitive, sensi-
tive to tokenization and uses one translation reference.
The improvement in BLEU results shown from UPC-jm

3http://www.fjoch.com/GIZA++.html
*http://www.speech.sri.com/projects/srilm/



| Task | Reordering patterns | SMR technique |

31.21 33.34
31.67 32.33

es2en
en2es

Table 1: BLEU comparison: reordering patterns vs. SMR
technique.

| Task | UPC-jm 2006 UPC 2007

in-d | out-d | in-d | out-d
es2en | 31.01 | 27.92 | 33.34 | 32.85
en2es | 30.44 | 25.59 | 32.33 | 33.07
fr2en | 30.42 | 21.79 | 32.44 | 26.93
en2fr | 31.75 | 23.30 | 32.30 | 27.03
de2en | 24.43 | 17.57 | 26.54 | 21.63
en2de | 17.73 | 10.96 | 19.74 | 15.06

Table 2: BLEU scores for each of the six translation di-
rections considered (computed over 2006 test set) com-
paring last year’s and this year’s system results (in-
domain and out-domain).

2006 Table 2 and reordering patterns Table 1 in the En-
glish/Spanish in-domain task comes from the combina-
tion of: the additional corpora, the word alignment, the
Spanish morphology reduction and the extra target lan-
guage model based on classes (only in the Es2En direc-
tion).

6 Conclusions and Further Work

This paper describes the UPC system for the WMTO07
Evaluation. In the framework of Ngram-based system, a
novel reordering strategy which can be used for any pair
of languages has been presented and it has been showed
to significantly improve translation performance. Ad-
ditionally two features has been added to the log-lineal
scheme: the target language model based on classes and
the bonus for out-of-domain translation units.
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Abstract

One main challenge of statistical machine trans-
lation (SMT) is dealing with word order. The
main idea of the statistical machine reordering
(SMR) approach is to use the powerful tech-
niques of SMT systems to generate a weighted
reordering graph for SMT systems. This tech-
nique supplies reordering constraints to an SMT
system, using statistical criteria.

In this paper, we experiment with different graph
pruning which guarantees the translation quality
improvement due to reordering at a very low in-
crease of computational cost.

The SMR approach is capable of generalizing re-
orderings, which have been learned during train-
ing, by using word classes instead of words
themselves. We experiment with statistical and
morphological classes in order to choose those
which capture the most probable reorderings.

Satisfactory results are reported in the WMTO7
Es/En task. Our system outperforms in terms of
BLEU the WMTO07 Official baseline system.

1 Introduction

Nowadays, statistical machine translation is mainly based
on phrases (Koehn et al., 2003). In parallel to this phrase-
based approach, the use of bilingual n-grams gives com-
parable results, as shown by Crego et al. (2005). Two
basic issues differentiate the n-gram-based system from
the phrase-based: training data is monotonically seg-
mented into bilingual units; and, the model considers n-
gram probabilities rather than relative frequencies. The
n-gram-based system follows a maximum entropy ap-
proach, in which a log-linear combination of multiple
models is implemented (Marifio et al., 2006), as an al-
ternative to the source-channel approach.
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Introducing reordering capabilities is important in both
systems. Recently, new reordering strategies have been
proposed such as the reordering of each source sentence
to match the word order in the corresponding target sen-
tence, see Kanthak et al. (2005) and Marifio et al. (2006).
These approaches are applied in the training set and they
lack of reordering generalization.

Applied both in the training and decoding step, Collins
et al. (2005) describe a method for introducing syntac-
tic information for reordering in SMT. This approach is
applied as a pre-processing step.

Differently, Crego et al. (2006) presents a reordering
approach based on reordering patterns which is coupled
with decoding. The reordering patterns are learned di-
rectly from word alignment and all reorderings have the
same probability.

In our previous work (Costa-jussa and Fonollosa,
2006) we presented the SMR approach which is based
on using the powerful SMT techniques to generate a re-
ordered source input for an SMT system both in train-
ing and decoding steps. One step further, (Costa-jussa
et al., 2007) shows how the SMR system can generate a
weighted reordering graph, allowing the SMT system to
make the final reordering decision.

In this paper, the SMR approach is used to train the
SMT system and to generate a weighted reordering graph
for the decoding step. The SMR system uses word classes
instead of words themselves and we analyze both statisti-
cal and morphological classes. Moreover, we present ex-
periments regarding the reordering graph efficiency: we
analyze different graph pruning and we show the very low
increase in computational cost (compared to a monotonic
translation). Finally, we compare the performance our
system in terms of BLEU with the WMTO07 baseline sys-
tem.

This paper is organized as follows. The first two sec-
tions explain the SMT and the SMR baseline systems,
respectively. Section 4 reports the study of statistical and

Proceedings of the Second Workshop on Statistical Machine Translation, pages 171-176,
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morphological classes. Section 5 describes the experi-
mental framework and discusses the results. Finally, Sec-
tion 6 presents the conclusions and some further work.

2 Ngram-based SMT System

This section briefly describes the Ngram-based SMT (for
further details see (Marifio et al., 2006)). The Ngram-
based SMT system uses a translation model based on
bilingual n-grams. It is actually a language model of
bilingual units, referred to as tuples, which approxi-
mates the joint probability between source and target lan-
guages by using bilingual n-grams. Tuples are extracted
from any word alignment according to the following con-
straints:

1. a monotonic segmentation of each bilingual sen-
tence pairs is produced,

2. no word inside the tuple is aligned to words outside
the tuple, and

3. no smaller tuples can be extracted without violating
the previous constraints.

As a result of these constraints, only one segmentation
is possible for a given sentence pair.

In addition to the bilingual n-gram translation model,
the baseline system implements a log-linear combination
of feature functions, which are described as follows:

e A target language model. This feature consists of
a 4-gram model of words, which is trained from the
target side of the bilingual corpus.

e A class target language model. This feature con-
sists of a 5-gram model of words classes, which is
trained from the target side of the bilingual corpus
using the statistical classes from (Och, 1999).

e A word bonus function. This feature introduces
a bonus based on the number of target words con-
tained in the partial-translation hypothesis. It is used
to compensate for the system’s preference for short
output sentences.

e A source-to-target lexicon model. This feature,
which is based on the lexical parameters of the IBM
Model 1 (Brown et al., 1993), provides a comple-
mentary probability for each tuple in the translation
table. These lexicon parameters are obtained from
the source-to-target alignments.

o A target-to-source lexicon model. Similarly to the
previous feature, this feature is based on the lexical
parameters of the IBM Model 1 but, in this case,
these parameters are obtained from target-to-source
alignments.
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SMR translation model
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Figure 1: SMR block diagram.

3 SMR Baseline System

As mentioned in the introduction, SMR and SMT are
based on the same principles.

3.1 Concept

The aim of SMR consists in using an SMT system to deal
with reordering problems. Therefore, the SMR system
can be seen as an SMT system which translates from an
original source language (S) to a reordered source lan-
guage (S’), given a target language (7).

3.2 Description

Figure 1 shows the SMR block diagram and an exam-
ple of the input and output of each block inside the
SMR system. The input is the initial source sentence
(S) and the output is the reordered source sentence (S’).
There are three blocks inside SMR: (1) the class replac-
ing block; (2) the decoder, which requires an Ngram
model containing the reordering information; and, (3) the
post-processing block which either reorders the source
sentence given the indexes of the decoder output 1-best
(training step) or transforms the decoder output graph to
an input graph for the SMT system (decoding step).

The decoder in Figure 1 requires a translation model
which is an Ngram model. Given a training parallel cor-
pus this model has been built following the next steps:

1. Select source and target word classes.

2. Align parallel training sentences at the word level in
both translation directions. Compute the union of
the two alignments to obtain a symmetrized many-
to-many word alignment.

3. Use the IBM1 Model to obtain a many-to-one word
alignment from the many-to-many word alignment.

4. Extract translation units from the computed many-
to-one alignment. Replace source words by their
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Figure 2: SMR approach in the (A) training step (B) in
the test step (the weight of each arch is in brackets).

classes and target words by the index of the linked
source word. An example of a translation unit here
is: C61 C28 C63#2 0 1, where # divides source
(word classes) and target (positions).

5. Compute the sequence of the above units and learn
the language model

For further information about the SMR training proce-
dure see (Costa-jussa and Fonollosa, 2006).

3.3 Improving SMT training

Figure 2 (A) shows the corresponding block diagram
for the training corpus: first, the given training corpus
S is translated into the reordered training source corpus
S’ with the SMR system. Then, this reordered training
source corpus S’ and the given training target corpus 7T
are used to build the SMT system

The main difference here is that the training is com-
puted with the S°27 task instead of the S27 given task.
Figure 3 (A) shows an example of the word alignment
computed on the given training parallel corpus S27. Fig-
ure 3 (B) shows the same links but with the reordered
source training corpus S’. Although the quality in align-
ment is the same, the tuples that can be extracted change
(notice that tuple extraction is monotonic). We now are
able to extract smaller tuples which reduce the transla-
tion vocabulary sparseness. These new tuples are used to
build the SMT system.

3.4 Generation of multiple weighted reordering
hypotheses

The SMR system, having its own search, can generate ei-
ther an output 1-best or an output graph. In decoding, the
SMR technique generates an output graph which is used
as an input graph by the SMT system. Figure 2 (B) shows
the corresponding block diagram in decoding: the SMR
output graph is given as an input graph to the SMT sys-
tem. Hereinafter, this either SMR output graph or SMT
input graph will be referred to as (weighted) reordering
graph. The monotonic search in the SMT system is ex-
tended with reorderings following this reordering graph.
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increasingly close cooperation S

cooperacion cada vez mas estrecha T

B cooperation increasingly close S'

cooperacion cada vez mas estrecha T
TUPLES A

increasingly close cooperation # cooperation cada vez mas estrecha

TUPLES B

cooperation # cooperacion
increasingly # cada vez mas
close # estrecha

Figure 3: Alignment and tuple extraction (A) original
training source corpus (B) reordered training source cor-

pus.

This reordering graph has multiple paths and each path
has its own weight. This weight is added as a feature
function in the log-linear model.

4 Morphological vs Statistical Classes

Previous SMR studies (Costa-jussa and Fonollosa,
2006) (Costa-jussa et al., 2007) considered only statisti-
cal classes. On the one hand, these statistical classes per-
formed fairly well and had the advantage of being suit-
able for any language. On the other hand, it should be
taken into account the fact of training them in the train-
ing set allows for unknown words in the development or
in the test set. Additionally, they do not have any reorder-
ing information because they are trained on a monolin-
gual set.

The first problem, unknown words which appear in
the development or in the test set, may be solved by us-
ing a disambiguation technique. Unknown words can be
assigned to one class by taking into account their own
context. The second problem, incorporating information
about order, might be solved by training classes in the
reordered training source corpus. In other words, we
monotonized the training corpus with the alignment in-
formation (i.e. reorder the source corpus in the way that
matches the target corpus under the alignment links cri-
terion). After that, we train the statistical classes, here-
inafter, called statistical reordered classes.

In some pair of languages, as for example En-
glish/Spanish, the reordering that may be performed is
related to word’s morphology (i.e. TAGS). Some TAGS
rules (with some lexical exceptions) can be extracted as
in (Popovic and Ney, 2006) where they were applied
with reordering purposes as a preprocessing step. An-
other approach that has related TAGS and reordering was
presented in (Crego and Marifio, 2006) where instead of
rules, they learned reordering patterns based on TAGS as
named in this paper’s introduction. Hence, the SMR tech-



| Spanish | English

Train Sentences 1,3M
Words 37,9M 35,5M
Vocabulary 138,9k 133k
Dev Sentences 2000 2000
Words 60.5k 58.7k
Vocabulary 8.1k 6.5k
Test Sentences 2000 2000
Words 60,2k 58k
Vocabulary 8,2k 6,5k

Table 1: Corpus Statistics.

nique may take advantage of the morphological informa-
tion. Notice that an advantage is that there is a TAG for
each word, hence there are not unknown words.

5 [Evaluation Framework

5.1 Corpus Statistics

Experiments were carried out using the data in the second
evaluation campaign of the WMT07 !.

This corpus consists in the official version of the
speeches held in the European Parliament Plenary Ses-
sions (EPPS), as available on the web page of the Eu-
ropean Parliament. Additionally, there was available a
smaller corpus (News-Commentary). Our training cor-
pus was the catenation of both. Table 1 shows the corpus
statistics.

5.2 Tools and preprocessing

The system was built similarly to (Costa-jussa et al.,
2007). The SMT baseline system uses the Ngram-
based approach, which has been explained in Section 2.
Tools used are defined as follows: word alignments were
computed using GIZA++ 2; language model was esti-
mated using SRILM ?; decoding was carried out with
MARIE*; an n-best re-ranking strategy is implemented
which is used for optimization purposes just as pro-
posed in http://www.statmt.org/jhuws/ using the simplex
method (Nelder and Mead, 1965) and BLEU as a loss
function.

The SMT system we use a 4gram translation language
model, a Sgram target language model and a Sgram class
target language model.

Spanish data have been processed so that the pronouns
which are attached to verbs are split up. Additionally,
several article and prepositions words are separated (i.e.

"http://www.statmt.org/wmt07/
“http://www.fjoch.com/GIZA++.html
3http://www.speech.sri.com/projects/srilm/
*http://gps-tsc.upc.es/veu/soft/soft/marie/
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—

N-gram length

Figure 5: Perplexity over the manually aligned test set
given the SMR Ngram length.

del goes into de el). This preprocessing was performed
using Freeling software (Atserias et al., 2006). Training
and evaluation were both true-case.

5.3 Classes and Ngram length Study for the
SMR-Graph generation

This section evaluates several types of classes and n-gram
lengths in the SMR model in order to choose the SMR
configuration which provides the best results in trans-
lation in terms of quality. To accomplish this evalua-
tion, we have designed the following experiment. Given
500 manually aligned parallel sentences of the EPPS cor-
pora (Lambert et al., 2006), we order the source test in
the way that better matches the target set. This ordered
source set is considered our reference as it is based on
manual alignments. On the other hand, the 500 sen-
tences set is translated using the SMR configurations to
be tested. Finally, the Word Error Rate (WER) is used as
quality measure.

Figure 4 shows the WER behavior given different types
of classes. As statistical classes (cI50,cl100,cl200) we
used the Och monolingual classes (Och, 1999), which
can be performed using 'mkcls’ (a tool available with
GIZA). Also we used the statistical reordered classes
(cl100mono) which were explained in Section 4. Both
statistical and statistical reordered classes used the dis-
amb tool of SRILM in order to classify unknown words.
As morphological classes we used the TAGS provided by
Freeling. Clearly, statistical classes perform better than
TAGS and best results can be achieved with 100 and 200
classes and an n-gram length of 5.

For the sake of completeness, we have evaluated the
perplexity of the SMR Ngram model over the aligned test
set above and choosing 200 classes. Figure 5 is coherent
with the WER results above and it shows that perplexity
is not reduced for an n-gram length greater than 5.
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Figure 4: WER over the reference given various sets of classes and Ngram lengths.

5.4 Graph pruning

The more complex is the reordering graph, the less effi-
cient is the decoding. That is why, in this section, we ex-
periment with several ways of graph pruning. Addition-
ally, for each pruning we see the influence of considering
the graph weights (i.e. reordering feature importance).

Given that the reordering graph is the output of a beam
search decoder, we can consider pruning the reordering
graph by limiting the SMR beam, i.e. limiting the size of
hypothesis stacks.

Given a reordering graph, another option is to prune
states and arches only used in paths s times worse than
the best path.

Table 2 gives the results of the proposed pruning. Note
that computational time is given in terms of the mono-
tonic translation time (and it is the same for both direc-
tions). It is shown that graph pruning guarantees the effi-
ciency of the system and even increases the translation’s
quality. Similar results are obtained in terms of BLEU for
both types of pruning. In this task and for both translation
directions, it seems more appropriate to limit directly the
beam search in the SMR step to 5.

As expected, the influence of the reordering feature,
which takes into account the graph weights, tends to be
more important as pruning decreases (i.e. when the graph
has more paths).
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Pruning WT BLEUEngES BLEUESQETL TIME
b5 yes | 31.32 32.64 24T,
b5 no | 31.25 31.82 2.5T,,
b50 yes | 30.95 32.28 5.3T,,
b50 no | 30.90 27.44 4.87,,
b50s10 | yes | 31.19 32.20 1.57,,
b50s10 | no | 31.07 32.41 14T,

Table 2: Performance in BLEU in the test set of different
graph pruning (b stands for beam and s for states); the
use of reordering feature function (W, indicates its use);
and the time increase related to 7, (monotonic transla-
tion time).

5.5 Results and discussion

Table 3 shows the performance of our Ngram-
based system using the SMR technique. First
row is the WMTO7 baseline system which can
be reproduced following the instructions in
http://www.statmt.org/wmtO7/baseline.html. This
baseline system uses a non-monotonic search. Second
row shows the results of the Ngram-based system
presented in section 2 using the weighted reordering
graph trained with the best configuration found in the
above section (200 statistical classes and an Ngram of
length 5).




System BLEU.s2¢n | BLEUgp2¢s
WMTO07 Of. Baseline 31.21 30.74
Ngram-based 32.64 31.32

Table 3: BLEU Results.

6 Conclusions and further work

The proposed SMR technique can be used both in training
and test steps in a SMT system. Applying the SMR tech-
nique in the training step reduces the sparseness in the
translation vocabulary. Applying SMR technique in the
test step allows to generate a weighted reordering graph
for SMT system.

The use of classes plays an important role in the SMR
technique, and experiments have shown that statistical
classes are better than morphological ones.

Moreover, we have experimented with different graph
pruning showing that best translation results can be
achieved at a very low increase of computational cost
when comparing to the monotonic translation computa-
tional cost.

Finally, we have shown that our translation system us-
ing the SMR technique outperforms the WMT07 Official
baseline system (which uses a non-monotonic search) in
terms of BLEU.

As further work, we want to introduce the SMR tech-
nique in a state-of-the-art phrase-based system.
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Abstract

Mixture modelling is a standard technique
for density estimation, but its use in sta-
tistical machine translation (SMT) has just
started to be explored. One of the main
advantages of this technique is its capabil-
ity to learn specific probability distributions
that better fit subsets of the training dataset.
This feature is even more important in SMT
given the difficulties to translate polysemic
terms whose semantic depends on the con-
text in which that term appears. In this pa-
per, we describe a mixture extension of the
HMM alignment model and the derivation of
Viterbi alignments to feed a state-of-the-art
phrase-based system. Experiments carried
out on the Europarl and News Commentary
corpora show the potential interest and limi-
tations of mixture modelling.

Introduction

@iti.upv.es

In Machine Translation (MT), it is common to
encounter large parallel corpora devoted to hetero-
geneous topics. These topics usually define sets
of topic-specific lexicons that need to be translated
taking into the semantic context in which they are
found. This semantic dependency problem could
be overcome by learning topic-dependent translation
models that capture together the semantic context
and the translation process.

However, there have not been until very recently
that the application of mixture modelling in SMT
has received increasing attention. In (Zhao and
Xing, 2006), three fairly sophisticated bayesian top-
ical translation models, taking IBM Model 1 as a
baseline model, were presented under the bilingual
topic admixture model formalism. These models
capture latent topics at the document level in order to
reduce semantic ambiguity and improve translation
coherence. The models proposed provide in some
cases better word alignment and translation quality
than HMM and IBM models on an English-Chinese
task. In (Civera and Juan, 2006), a mixture exten-

Mixture modelling is a popular approach for densitysion of IBM model 2 along with a specific dynamic-
estimation in many scientific areas (G. J. McLachprogramming decoding algorithm were proposed.
lan and D. Peel, 2000). One of the most interestFhis IBM-2 mixture model offers a significant gain
ing properties of mixture modelling is its capabilityin translation quality over the conventional IBM
to model multimodal datasets by defining soft partimodel 2 on a semi-synthetic task.

tions on these datasets, and learning specific proba—ln this work, we present a mixture extension of the

bility distributions for each partition, that better ex-\yall-known HMM alignment model first proposed
plains the general data generation process.

in (Vogel and others, 1996) and refined in (Och and

Work supported by the EC (FEDER) and the SpanistNey, 2003). This model possesses appealing proper-
MEC under grant TIN2006-15694-CO2-01, ti@onsellefa
d’Empresa, Universitat i Gncia - Generalitat Valencianan-

der contract GV06/252, theniversidad Poliecnica de Valen-

cia with ILETA project and Ministerio de Educam y Ciencia.
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ties among which are worth mentioning, the simplic-
ity of the first-order word alignment distribution that
can be made independent of absolute positions while

Proceedings of the Second Workshop on Statistical Machine Translation, pages 177-180,
Prague, June 2007. (©2007 Association for Computational Linguistics



taking advantage of the localization phenomeno8 Mixture of HMM alignment models

of word alignment in European languages, and the :
efficient and exact computation of the E-step angStYS SUPPOse thalz | ) has been generated using

Viterbi alignment by using a dynamic-programminga T-component mixture of HMM alignment models:

approach. These properties have made this model
suitable for extensions (Toutanova et al., 2002) p(z|y) =
and integration in a phrase-based model (Deng and t
Byrne, 2005) in the past.

B

p(t|y)p(z|y,t)

1

I
B

ptly) > pz,aly,t) (6)

2 HMM alignment model 1 a€A(z,y)

~+~
I

Given a bilingual paifz, y), wherez andy are mu- In Eq. 6, we introduce mixture coefficienté | y)
tual translation, we incorporate the hidden variablg, weight the contribution of each HMM alignment
a = aiaz - ajy| t0reveal, for each source word po-pqqe| in the mixture. While the terp(z, a | y, t) is
sition j, the target word positiom; < {0,1,...,[yl} " gecomposed as in the original HMM model.
to which itis connected. Thus, The assumptions of the constituent HMM mod-
els are the same than those of the previous section,
plzly) = Z p(a,aly) (1) but we obtain topic-dependent statistical dictionaries
acA(z,y) and word alignments. Apropos of the mixture coef-
where A(z, y) denotes the set of all possible a”gn_ﬁcients, we simplify these terms dro.ppi_ng its.dep.en-
ments between andy. The alignment-completed dency ony, leaving as future Worl_< its inclusion in
probability P(z, a | y) can be decomposed in termsth® model. Formally, the assumptions are:
of source position-dependent probabilities as:

p(t|y) =~p(t) (7)

2| 1 pla;|t) j=1
i—1 j—1 i -1 a2l Ty t) R J ‘ 8
p(z,aly) =] plaj|al "l Yy plas ol )ty Pllarsay.t) {p(aj_aj_m)m (8)

= @  plajl al, 2y, t) = (25| Ya, . t) (9)
The original formulation of the HMM alignment
model assumes that each source wordosnected
to exactly ongarget word. This connection depend
on the target position to which was aligned the pre- T
vious source word and the length of the target senyp(z | ) = Zp(t) Z plar [t)x
tence. Here, we drop both dependencies in order to =1

Replacing the assumptions in Eq. 6, we obtain the
S‘(incomplete) HMM mixture model as follows:

acA(z,y)
simplify to a jump width alignment probability dis- 12| 12|
tribution: x [ p(as—a;—116) [T plslya, 1) (20)
i1 a; =1 j=2 j=1
gl ey { M) I |
plaj—aj-1) j> and the set of unknown parameters comprises:
T aj,mjfl, ~p(x|Ya, 4
P(j| 1,47 Y) p(]Iy]) 4) (1) b1 T
Furthermore, the treatment of the NULL word is g _ ) P(i[?) j=1 (11)
the same as that presented in (Och and Ney, 2003). pi—i'[t) j>1
Finally, the HMM alignment model is defined as: p(ufv,t)  VueXandv ey
|z| || X and), being the source and target vocabular-
p(xly) =Y pla) [[plaj—a;2) [ p(xilva;) €S- o _
acA(z,y) j=2 j=1 The estimation of the unknown parameters in

(5) Egqg. 10 is troublesome, since topic and alignment
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data are missing. Here, we revert to the EM opti- The M step finds a new estimate of by max-

misation algoritm to compute these parameters. imising Eq. 12, using the expected value of the miss-
In order to do that, we define the complete versioing data from Eqs. 13,14 and 15 over all sample

of Eq. 10 incorporating the indicator variablgsaand N

Zq, Uncovering, the until now hidden variables. The p(t) = 1 Z -

variablez; is aT-dimensional bit vector with in — "

the position corresponding to the component gener-

ating («,y) and zeros elsewhere, while the variable ;| 4) Z nant

Za = Zay - - - Zay, wherez,, is a|y|-dimensional bit i

vector withl in the position corresponding to the tar- |20

get position to which positiofi is aligned and zeros j,(; — i/ | ¢) Z Z(znaj_u/ Znay )t

=z

elsewhere. Then, the complete model is: n=1j=1
T [yl N |zn| yn]

p(x7 2ty Za | y) ~ Hp(t)Zt Hp(z | t)ZaliZt X p(u | v, t) X Z Z Z Znag;t 5(37713’7 u)5(ym-, U)
t=1 =1 n=1 j=1 i=1

=yl ly|

Za,; . e . za.z 3.1 Word alignment extraction
x [T T ptes ity T pGi =i [y i 2o | - |
=1 The HMM mixture model described in the previous

(12) section was used to generate Viterbi alignments on

) . the training dataset. These optimal alignments are
Given the complete model, the EM algorlthmthe basis for phrase-based systems.

works in two basic steps in each iteration: the In the original HMM model, the Viterbi align-
_E(xpgctation) step and the M(aximisation) step. Afnent can be efficiently computed by a dynamic-
iterationk, the E step computes the expected Valuﬁrogramming algorithm with a complexitg(|z| -

of the hidden variables given the observed dat@|2)- In the mixture HMM model, we approximate

(z,y) and the estimate of the parameté_)r@). the Viterbi alignment by maximising over the com-
The E step reduces to the computation of the ©fonents of the mixture:

pected value ot;, z,;,2: and Za,_ .y Zaj %t for each

j=1i=1

samplen: wl G ~ arg max mtaxp(t)p(a:, aly,t)
a
t ; 13 .

2 o pl );a“” (13) So we have that the complexity of the compu-
Y s s (14) tation of the Viterbi alignment in a T-component
agi%t T eyt 2t HMM mixture model isO(T - |z| - [y[2).

Za;_yyZagit = (Za;_y, %05t 2t (15)
4 Experimental results
where

1 The data that was employed in the experiments to

2005 ) gt train the HMM mixture model corresponds to the

k=t . concatenation of the Spanish-English partitions of

(2a; 1 2a; )t 10 p( = 0[O p(xjlysn t) Bie - e Europarl and the News Commentary corpora.
and the recursive functionsand defined as: ~ The idea behind this decision was to let the mixture
model distinguish which bilingual pairs should con-
tribute to learn a given HMM component in the mix-

ple|t)plz;|yi,t) 7=1
@ty plz;lyit) g ture. Both corpora were preprocessed as suggested

|y|

Wit= ¥ aj_ 1k p(i — k|t) p(x;|yi,t) j>1  for the baseline system by tokenizing, filtering sen-
k=1 tences longer than 40 words and lowercasing.

1 j =1zl  Regarding the components of the translation sys-

Bjit = ly tem, 5-gram language models were trained on the

k,:lp(k — U8 P@j [y OBk 5 < o] monolingual version of the corpora for English(En)

179



and Spanish(Es), while phrase-based models withents that were input into a state-of-the-art phrase-
lexicalized reordering model were trained using theased system. The preliminary results reported on
Moses toolkit (P. Koehn and others, 2007), but rethe English-Spanish partitions of the Europarl and
placing the Viterbi alignments, usually provided byNews-Commentary corpora may raise some doubts
GIZA++ (Och and Ney, 2003), by those of the HMM about the applicability of mixture modelling to SMT,
mixture model with training schemeniz 1°H°. nonetheless in the advent of larger open-domain cor-
This configuration was used to translate both test deora, the idea behind topic-specific translation mod-
velopment sets, Europarl and News Commentary. els seem to be more than appropriate, necessary. On
Concerning the weights of the different modelsthe other hand, we are fully aware that indirectly
we tuned those weights by minimum error rate trainassessing the quality of a model through a phrase-
ing and we employed the same weighting schemeased system is a difficult task because of the differ-
for all the experiments in the same language paient factors involved (Ayan and Dorr, 2006).
Therefore, the same weighting scheme was usedFinally, the main problem in mixture modelling is
over different number of components. the linear growth of the set of parameters as the num-
BLEU scores are reported in Tables 1 and 2 aslzer of components increases. In the HMM, and also
function of the number of components in the HMMin IBM models, this problem is aggravated because
mixture model on the preprocessed development tesft the use of statistical dictionary entailing a large
sets of the Europarl and News Commentary corporaumber of parameters. A possible solution is the im-
plementation of interpolation techniques to smooth
Table 1: BLEU scores on the Europarl developmengharp distributions estimated on few events (Och and

test data - i
T ‘ 1 5 3 4 Ney, 2003; Zhao and Xing, 2006).
En-Es| 31.27 31.08 31.12 31.11
Es-En| 31.74 31.70 3180 31.71 References

Table 2: BLEU scores on the News—Commentar;'/\" F. Ayan and B. J. Dorr. 2006. Going beyond AER: an
) extensive analysis of word alignments and their impact

development test data on MT. InProc. of ACL'06 pages 9-16.

T |1 2 3 4
J. Civera and A. Juan. 2006. Mixtures of IBM Model 2.
En-Bs| 29.62 3001 3017 29.95 In Proc. of EAMT'06 pages 159-167.

Es-En| 29.15 29.22 29.11 29.02
Y. Deng and W. Byrne. 2005. HMM word and phrase
alignment for statistical machine translation. Rroc.
As observed in Table 1, if we compare the BLEU of HLT-EMNLP’05 pages 169-176.

scores of the conventional single-component HMM;_ 5 niclachlan and D. Peel. 200Binite Mixture Mod-
model to those of the HMM mixture model, it seems els Wiley.

that therg IS. little or n.0 gain from incorporating F. J. Och and H. Ney. 2003. A systematic comparison of
more topics into the mixture for the Europarl cor- yarious statistical alignment modelsComputational

pus. However, in Table 2, the BLEU scores on Linguistics 29(1):19-51.

the English-Spanish pair significantly increase as ”}9_ Koehn and others. 2007. Moses: Open Source
number of components is incremented. We believe Toolkit for Statistical Machine Translation. IRroc.
that this is due to the fact that the News Commen- of ACL'07 Demo Sessiopage To be published.

tary corpus seems to have greater influence on ﬂl)@' Toutanova, H. T. Ilhan, and C. D. Manning. 2002.

mixture model than on the single-component model, Extensions to HMM-based statistical word alignment
specializing Viterbi alignments to favour this corpus. models. InProc. of EMNLP '02 pages 87-94.

5 C lusi df K S. Vogel et al. 1996. HMM-based word alignment in
onclusions and future wor statistical translation. IRroc. of CL, pages 836-841.

In this work, a novel mixture version of the HMM B. Zhao and E. P. Xing. 2006. BiTAM: Bilingual Topic
alignment model was introduced. This model was AdMixture Models for Word Alignment.  IrProc. of
employed to generate topic-dependent Viterbi align- COLING/ACL'06
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Abstract

We present results and experiences from
our experiments with phrase-based statisti-
cal machine translation using Moses. The
paper is based on the idea of using an off-
the-shelf parser to supply linguistic infor-
mation to a factored translation model and
compare the results of German—English
translation to the shared task baseline sys-
tem based on word form. We report partial
results for this model and results for two
simplified setups. Our best setup takes ad-
vantage of the parser’s lemmatization and
decompounding. A qualitative analysis of
compound translation shows that decom-
pounding improves translation quality.

1 Introduction

One of the stated goals for the shared task of this
workshop is “to offer newcomers a smooth start
with hands-on experience in state-of-the-art statis-
tical machine translation methods”. As our previ-
ous research in machine translation has been
mainly concerned with rule-based methods, we
jumped at this offer.

We chose to work on German-to-English trans-
lation for two reasons. Our primary practical inter-
est lies with translation between Swedish and Eng-
lish, and of the languages offered for the shared
task, German is the one closest in structure to
Swedish. While there are differences in word order
and morphology between Swedish and German,
there are also similarities, e.g., that both languages
represent nominal compounds as single ortho-
graphic words. We chose the direction from Ger-
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man to English because our knowledge of English
is better than our knowledge of German, making it
easier to judge the quality of translation output.
Experiments were performed on the Europarl data.

With factored statistical machine translation,
different levels of linguistic information can be
taken into account during training of a statistical
translation system and decoding. In our experi-
ments we combined syntactic and morphological
factors from an off-the-shelf parser with the fac-
tored translation framework in Moses (Moses,
2007). We wanted to test the following hypotheses:

e Translation models based on lemmas will im-
prove translation quality (Popovi¢ and Ney,
2004)

e Decompounding German nominal compounds
will improve translation quality (Koehn and
Knight, 2003)

e Re-ordering models based on word forms and
parts-of-speech will improve translation qual-
ity (Zens and Ney, 2006).

2 The parser

The parser, Machinese Syntax, is a commercially
available dependency parser from Connexor Oy .
It provides each word with lemma, part-of-speech,
morphological features and dependency relations
(see Figure 1). In addition, the lemmas of com-
pounds are marked by a ‘# separating the two
parts of the compound. For the shared task we only
used shallow linguistic information: lemma, part-
of-speech and morphology. The compound bound-
ary identification was used to split noun com-

! Connexor Oy, http://www.connexor.com.
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pounds to make the German input more similar to
English text.

1 Mit mit pm>2 @PREMARK PREP
2 Blick blick advl>10 @NH N MSC SG DAT
3 auf auf pm>5 @PREMARK PREP

Figure 1. Example of parser output

We used the parser’s tokenization as given. Some
common multiword units, such as ‘at all’ and ‘von
heute’, are treated as single words by the parser
(cf. Niessen and Ney, 2004). The German parser
also splits contracted prepositions and determiners
like ‘zum’ — ‘zu dem’ (“to the™).

3 System description

For our experiments with Moses we basically fol-
lowed the shared task baseline system setup to
train our factored translation models. After training
a statistical model, minimum error-rate tuning was
performed to tune the model parameters. All ex-
periments were performed on an AMD 64 Athlon
4000+ processor with 4 Gb of RAM and 32 bit
Linux (Ubuntu).

Since time as well as computer resources were
limited we designed a model that we hoped would
make the best use of all available factors. This
model turned out to be too complex for our ma-
chine and in later experiments we abandoned it for
a simpler model.

3.1 Pre-processing

In the pre-processing step we used the standard
pre-processing of the shared task baseline system,
parsed the German and English texts and processed
the output to obtain four factors: word form,
lemma, part-of-speech and morphology. Missing
values for lemma, part-of-speech and morphology
were replaced with default values.

Noun compounds are very frequent in German,
2.9% of all tokens in the tuning corpus were identi-
fied by the parser as noun compounds. Compounds
tend to lead to sparse data problems and splitting
them has been shown to improve German-English
translation (Koehn and Knight, 2003). Thus we
decided to decompund German noun compounds
identified as such by our parser.

We used a simple strategy to remove fillers and
to correct some obvious mistakes. We removed the
filler ‘-s’ that appear before a marked split unless it
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was one of ‘-ss’, ‘-urs’, ‘-eis’ or ‘-us’. This applied
to 35% of the noun compounds in the tuning cor-
pus. The fillers were removed both in the word
form and the lemma (see Figure 2).

There were some mistakes made by the parser,
for instance on compounds containing the word
‘nahmen’ which was incorrectly split as ‘stel-
lungn#ahmen® instead of ‘stellung#nahmen’
(“statement”). These splits were corrected by mov-
ing the ‘n’ to the right side of the split.

We then split noun-lemmas on hyphens unless
there were numbers on either side of it and on the
places marked by ‘#’. Word forms were split in the
corresponding places as the lemmas.

The part-of-speech and morphology of the last
word in the compound is the same as for the whole
compound. For the other parts we hypothesized
that part-of-speech is Noun and the morphology is
unknown, marked by the tag UNK.

Parser output:
unionslander unions#land N NEU PL ACC

Factored output:
unionjunionNJUNK
lander] landNJNEU_PL_ACC

Figure 2. Compound splitting for ‘unionsldander’
“countries in the union”)

These strategies are quite crude and could be fur-
ther refined by studying the parser output thor-
oughly to pinpoint more problems.

3.2 Training translation models with linguis-
tic factors

After pre-processing, the German—English Eu-
roparl training data contains four factors: 0: word
form, 1: lemma, 2: part-of-speech, 3: morphology.
As a first step in training our translation models we
performed word alignment on lemmas as this could
potentially improve word alignment.

3.2.1

Factored translation requires a number of decoding
steps, which are either mapping steps mapping a
source factor to a target factor or generation steps
generating a target factor from other target factors.
Our first setup contained three mapping steps, TO—
T2, and one generation step, GO.

First setup



TO: 0-0 (word — word)

T1: 1-1 (lemma — lemma)

T2: 2,3-2,3 (postmorph — pos+morph)
GO0: 1,2,3-0 (lemma+pos+morph — word)

With the generation step, word forms that did not
appear in the training data may still get translated
if the lemma, part-of-speech and morphology can
be translated separately and the target word form
can be generated from these factors.

Word order varies a great deal between German
and English. This is especially true for the place-
ment of verbs. To model word order changes we
included part-of-speech information and created
two reordering models, one based on word form
(0), the other on part-of-speech (2):

0-0.msd-bidirectional-fe
2-2.msd-bidirectional-fe

The decoding times for this setup turned out to be
unmanageable. In the first iteration of parameter
tuning, decoding times were approx. 6
min/sentence. In the second iteration decoding
time increased to approx. 30 min/sentence. Re-
moving one of the reordering models did not result
in a significant change in decoding time. Just trans-
lating the 2000 sentences of test data with untuned
parameters would take several days. We inter-
rupted the tuning and abandoned this setup.

3.2.2

Because of the excessive decoding times of the
first factored setup we resorted to a simpler system
that only used the word form factor for the transla-
tion and reordering models. This setup differs from
the shared task baseline in the following ways:
First, it uses the tokenization provided by the
parser. Second, alignment was performed on the
lemma factor. Third, German compounds were
split using the method described above. To speed
up tuning and decoding, we only used the first 200
sentences of development data (dev2006) for tun-
ing and reduced stack size to 50.

Second setup

TO0: 0-0 (word — word)
R:  0-0.msd-bidirectional-fe

3.2.3 Third setup

To test our hypothesis that word reordering would
benefit from part-of-speech information we created
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another simpler model. This setup has two map-
ping steps, TO and T1, and a reordering model
based on part-of-speech.

TO: 0-0 (word — word)
T1: 2,3-2,3 (postmorph — pos+morph)
R:  2-2.msd-bidirectional-fe

4 Results

We compared our systems to a baseline system
with the same setup as the WMT2007 shared task
baseline system but tuned with our system’s sim-
plified tuning settings (200 instead of 2000 tuning
sentences, stack size 50). Table 1 shows the Bleu
improvement on the 200 sentences development
data from the first and last iteration of tuning.

System Dev2006 (200)
1* iteration Last iteration
Baseline | 19.56 27.07
First 21.68 -
Second 20.43 27.16
Third 20.72 24.72

Table 1. Bleu scores on 200 sentences of tuning
data before and after tuning

The final test of our systems was performed on the
development test corpus (devtest2006) using stack
size 50. The results are shown in Table 2. The low
Bleu score for the third setup implies that reorder-
ing on part-of-speech is not enough on its own.
The second setup performed best with a slightly
higher Bleu score than the baseline. We used the
second setup to translate test data for our submis-
sion to the shared task.

System | Devtest2006 (NIST/Bleu)
Baseline | 6.7415/25.94

First -

Second | 6.8036/26.04

Third 6.5504 / 24.57

Table 2. NIST and Bleu scores on development
test data

4.1 Decompounding

We have evaluated the decompounding strategy by
analyzing how the first 75 identified noun com-
pounds of the devtest corpus were translated by our
second setup compared to the baseline. The sample



excluded doubles and compounds that had no clear
translation in the reference corpus.

Out of these 75 compounds 74 were nouns that
were correctly split and 1 was an adjective that was
split incorrectly: ‘allumfass#ende’. Despite that it
was incorrectly identified and split it was trans-
lated satisfyingly to ‘comprehensive’.

The translations were grouped into the catego-
ries shown in Table 3. The 75 compounds were
classified into these categories for our second sys-
tem and the baseline system, as shown in Table 4.
As can be seen the compounds were handled better
by our system, which had 62 acceptable transla-
tions (C or V) compared to 48 for the baseline and
did not leave any noun compounds untranslated.

Example
Regelungsentwurf
Draft regulation

Ref: Draft regulation
Schlachthofen
Abattoirs

Ref: Slaughter houses
Anpassungsdruck
Pressure

Ref: Pressure for adaption
Léanderberichte
Country report

Ref: Country reports
Erbonkel

Uncle dna

Ref: Sugar daddy
Schlussentwurf
Schlussentwurf

Ref: Final draft
Table 3. Classification scheme with examples for
compound translations

Category
C-correct

V-variant

P-partly correct

F-wrong form

W-wrong

U-untranslated

Baseline system
C |V |P|W|U |F|Tot

c|C 3|1 |3 3 |1 |44
% \% 1 9 (211 5 18
> | P 3 2 5
T W 1 |2 3
S |u 0
DIF |1 45

Tot (38|10 |8 |2 |12|5 |75

Table 4. Classification of 75 compounds from our
second system and the baseline system
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Decompounding of nouns reduced the number
of untranslated words, but there were still some
left. Among these were cases that can be handled
such as separable prefix verbs like ‘aufzeigten’
(“pointed out”) (Niessen and Ney, 2000) or adjec-
tive compounds such as ‘multidimensionale’
(“multi dimensional”). There were also some noun
compounds left which indicates that we might need
a better decompounding strategy than the one used
by the parser (see e.g. Koehn and Knight, 2003).

4.2  Experiences and future plans

With the computer equipment at our disposal,
training of the models and tuning of the parameters
turned out to be a very time-consuming task. For
this reason, the number of system setups we could
test was small, and much fewer than we had hoped
for. Thus it is too early to draw any conclusions as
regards our hypotheses, but we plan to perform
more tests in the future, also on Swedish—English
data. The parser's ability to identify compounds
that can be split before training seems to give a
definite improvement, however, and is a feature
that can likely be exploited also for Swedish-to-
English translation with Moses.
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Abstract

We present the PORTAGE statistical
machine translation system which par-
ticipated in the shared task of the ACL
2007 Second Workshop on Statistical
Machine Translation. The focus of this
description is on improvements which
were incorporated into the system over
the last year. These include adapted lan-
guage models, phrase table pruning, an
IBM1-based decoder feature, and rescor-
ing with posterior probabilities.

1 Introduction

The statistical machine translation (SMT) sys-
tem PORTAGE was developed at the National
Research Council Canada and has recently been
made available to Canadian universities and
research institutions. It is a state-of-the-art
phrase-based SMT system. We will shortly de-
scribe its basics in this paper and then high-
light the new methods which we incorporated
since our participation in the WMT 2006 shared
task. These include new scoring methods for
phrase pairs, pruning of phrase tables based
on significance, a higher-order language model,
adapted language models, and several new de-
coder and rescoring models. PORTAGE was
also used in a joint system developed in coop-
eration with Systran. The interested reader is
referred to (Simard et al., 2007).

Throughout this paper, let s{ := s1...s; de-
note a source sentence of length J, t{ :=#;...t;
a target sentence of length I, and 5 and ¢ phrases
in source and target language, respectively.
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2 Baseline

As baseline for our experiments, we used a ver-
sion of PORTAGE corresponding to its state at
the time of the WMT 2006 shared task. We pro-
vide a basic description of this system here; for
more details see (Johnson et al., 2006).
PORTAGE implements a two-stage transla-
tion process: First, the decoder generates N-
best lists, using a basic set of models which are
then rescored with additional models in a sec-
ond step. In the baseline system, the decoder
uses the following models (or feature functions):

e one or several phrase table(s), which model

the translation direction p(3|#). They are
generated from the training corpus via the
“diag-and” method (Koehn et al., 2003)
and smoothed using Kneser-Ney smooth-

ing (Foster et al., 2006),

e one or several m-gram language model(s)
trained with the SRILM toolkit (Stolcke,
2002); in the baseline experiments reported
here, we used a trigram model,

e a distortion model which assigns a penalty
based on the number of source words which
are skipped when generating a new target
phrase,

e a word penalty.

These different models are combined log-
linearly. Their weights are optimized
w.r.t. BLEU score using the algorithm de-
scribed in (Och, 2003). This is done on the
provided development corpus. The search
algorithm implemented in the decoder is a
dynamic-programming beam-search algorithm.

Proceedings of the Second Workshop on Statistical Machine Translation, pages 185-188,
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After the decoding step, rescoring with addi-
tional models is performed. The baseline system
generates a 1,000-best list of alternative trans-
lations for each source sentence. These lists
are rescored with the different models described
above, a character penalty, and three different
features based on IBM Models 1 and 2 (Brown
et al., 1993) calculated in both translation di-
rections. The weights of these additional models
and of the decoder models are again optimized
to maximize BLEU score.

Note that we did not use the decision-tree-
based distortion models described in (Johnson
et al., 2006) here because they did not improve
translation quality.

In the following subsections, we will describe
the new models added to the system for our
WMT 2007 submissions.

3 Improvements in PORTAGE

3.1 Phrase translation models

Whereas the phrase tables used in the baseline
system contain only one score for each phrase
pair, namely conditional probabilities calculated
using Kneser-Ney smoothing, our current sys-
tem combines seven different phrase scores.

First, we used several types of phrase table
smoothing in the WMT 2007 system because
this proved helpful on other translation tasks:
relative frequency estimates, Kneser-Ney- and
Zens-Ney-smoothed probabilities (Foster et al.,
2006). Furthermore, we added normalized joint
probability estimates to the phrase translation
model. The other three scores will be explained
at the end of this subsection.

We pruned the generated phrase tables fol-
lowing the method introduced in (Johnson et
al., 2007). This approach considers all phrase
pairs (3, %) in the phrase table. The count C(3,?)
of all sentence pairs containing (5,7) is deter-
mined, as well as the count of all source/target
sentences containing §/f. Using these counts,
Fisher’s exact test is carried out to calculate
the significance of the phrase pair. The phrase
tables are then pruned based on the p-value.
Phrase pairs with low significance, i.e. which are
only weakly supported by the training data, are
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pruned. This reduces the size of the phrase ta-
bles to 8-16% on the different language pairs.
See (Johnson et al., 2007) for details.

Three additional phrase scores were derived
from information on which this pruning is based:

e the significance level (or p-value),

e the number C(§,t) of sentence pairs con-
taining the phrase pair, normalized by the
number of source sentences containing s,

e C(5,1), normalized by the number of target
sentences containing ¢.

For our submissions, we used the last three
phrase scores only when translating the Eu-
roParl data. Initial experiments showed that
they do not improve translation quality on the
News Commentary data. Apart from this, the
systems for both domains are identical.

3.2 Adapted language models

Concerning the language models, we made two
changes to our system since WMT 2006. First,
we replaced the trigram language model by a 4-
gram model trained on the WMT 2007 data. We
also investigated the use of a 5-gram, but that
did not improve translation quality. Second,
we included adapted language models which
are specific to the development and test cor-
pora. For each development or test corpus, we
built this language model using information re-
trievall to find relevant sentences in the train-
ing data. To this end, we merged the train-
ing corpora for EuroParl and News Commen-
tary. The source sentences from the develop-
ment or test corpus served as individual queries
to find relevant training sentence pairs. For
each source sentence, we retrieved 10 sentence
pairs from the training data and used their tar-
get sides as language model training data. On
this small corpus, we trained a trigram lan-
guage model, again using the SRILM toolkit.
The feature function weights in the decoder and
the rescoring model were optimized using the
adapted language model for the development
corpus. When translating the test corpus, we
kept these weights, but replaced the adapted

"We wused the lemur toolkit for querying, see
http://www.lemurproject.org/



language model by that specific to the test cor-
pus.

3.3 New decoder and rescoring features

We integrated several new decoder and rescoring
features into PORTAGE. During decoding, the
system now makes use of a feature based on IBM
Model 1. This feature calculates the probability
of the (partial) translation over the source sen-
tence, using an IBM1 translation model in the
direction p(t! | s{).

In the rescoring process, we additionally in-
cluded several types of posterior probabilities.
One is the posterior probability of the sentence
length over the N-best list for this source sen-
tence. The others are determined on the level
of words, phrases, and n-grams, and then com-
bined into a value for the whole sentence. All
posterior probabilities are calculated over the N-
best list, using the sentence probabilities which
the baseline system assigns to the translation
hypotheses. For details on the posterior prob-
abilities, see (Ueffing and Ney, 2007; Zens and
Ney, 2006). This year, we increased the length
of the N-best lists from 1,000 to 5,000.

3.4 Post-processing

For truecasing the translation output, we used
the model described in (Agbago et al., 2005).
This model uses a combination of statisti-
cal components, including an n-gram language
model, a case mapping model, and a special-
ized language model for unknown words. The
language model is a 5-gram model trained on
the WMT 2007 data. The detokenizer which we
used is the one provided for WM'T 2007.

4 Experimental results

We submitted results for six of the translation
directions of the shared task: French < English,
German <« English, and Spanish < English.
Table 1 shows the improvements result-
ing from incorporating new techniques into
PORTAGE on the Spanish — English EuroParl
task. The baseline system is the one described
in section 2. Trained on the 2007 training cor-
pora, this yields a BLEU score of 30.48. Adding
the new phrase scores introduced in section 3.1
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yields a slight improvement in translation qual-
ity. This improvement by itself is not signifi-
cant, but we observed it consistently across all
evaluation metrics and across the different devel-
opment and test corpora. Increasing the order
of the language model and adding an adapted
language model specific to the translation input
(see section 3.2) improves the BLEU score by
0.6 points. This is the biggest gain we observe
from introducing a new method. The incorpora-
tion of the IBM1-based decoder feature causes
a slight drop in translation quality. This sur-
prised us because we found this feature to be
very helpful on the NIST Chinese — English
translation task. Adding the posterior proba-
bilities presented in section 3.3 in rescoring and
increasing the length of the N-best lists yielded
a small, but consistent gain in translation qual-
ity. The overall improvement compared to last
year’s system is around 1 BLEU point. The gain
achieved from introducing the new methods by
themselves are relatively small, but they add up.

Table 2 shows results on all six language pairs
we translated for the shared task. The trans-
lation quality achieved on the 2007 test set is
similar to that on the 2006 test set. The system
clearly performs better on the EuroParl domain
than on News Commentary.

Table 2:  Translation quality in terms of
BLEU[%] and NIST score on all tasks. True-

cased and detokenized translation output.

test2006 test2007
task BLEU NIST BLEU NIST
Eu D—E 2527 6.82 26.02 6.91
E—D 1936 586 1894 5.71
S—E 3154 755 3209 7.67
E—-S 3094 739 3092 741
F—E 3090 7.51 3190 7.68
E—F 30.08 7.26 30.06 7.26
NC D—E 2023 6.19 23.17 7.10
E—-D 1384 538 16.30 5.95
S—E 3107 7.68 31.08 811
E—-S 30.79 7.73 3256 8.25
F—E 2497 6.78 26.84 747
E—F 2491 6.79 26.60 7.24




Table 1: Effect of integrating new models and methods into the PORTAGE system. Translation
quality in terms of BLEU and NIST score, WER and PER on the EuroParl Spanish—English 2006
test set. True-cased and detokenized translation output. Best results printed in boldface.

system BLEU[%] NIST WER[%| PER|[%]
baseline 30.48 7.44 58.62 42.74
+ new phrase table features 30.66 7.48 58.25 42.46

+ 4-gram LM + adapted LM 31.26 7.53 57.93 42.26
+ IBM1-based decoder feature 31.18 7.51 58.13 42.53
+ refined rescoring 31.54 7.55 57.81 42.24
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Abstract This architecture is motivated and detailed in the

_ _ following sections.
This paper describes the development of a

statistical machine translation system based 2 Architecture of the system
on the Moses decoder for the 2007 WMT

shared tasks. Several different translation
strategies were explored. We also use a sta-
tistical language model that is based on a
continuous representation of the words in

the vocabulary. By these means we expect to
take better advantage of the limited amount
of training data. Finally, we have investi-

gated the usefulness of a second reference *

_ e* = argmaxp(elf)
translation of the development data. ~ arg mgx{exp(z Nhie, £)) (D)

The goal of statistical machine translation (SMT) is
to produce a target senteneefrom a source sen-
tencef. It is today common practice to use phrases
as translation units (Koehn et al., 2003; Och and
Ney, 2003) and a log linear framework in order to
introduce several models explaining the translation
process:

1 Introduction
The feature functiong; are the system models and

This paper describes the development of a statistic e \; weights are typically optimized to maximize

mZChms tr?]nslatl?nzsgg;erp bisegocc))r; ‘i/l:/elvll\_lll_oies 'scoring function on a development set (Och and
coder (Koehn etal., ) for the share ey, 2002). In our system fourteen features func-

t‘;‘SkS' D:Je, o téme conslt:ralntsr; we dolgly I(;or?sferegons were used, namely phrase and lexical transla-
the translation between French and English. A sy, probabilities in both directions, seven features

tem with a similar architecture was successfully AP the lexicalized distortion model, a word and a

pl!ed .to the translation between Spanish and E'b'hrase penalty and a target language model (LM).
glish in the framework of the 2007 STAR eval- The system is constructed as follows. First,

uation:" For the 2007 WMT shared task a recipe 'Giza++ is used to perform word alignments in both

provided to build a baseline translation system USingirections. Second, phrases and lexical reorderings

the Moses de_coder. Qur §ystem d|ff.er.s n seve.ral a3te extracted using the default settings of the Moses
pects from this base-line: 1) the training data is n MT toolkit. A target LM is then constructed as

lower-cased, 2) Giza alignments are calculated Oetailed in section 2.1. The translation itself is per-

sentence; of l(ijA:[o 90 Wor(ills;d3) a t:vo pass-decodllr]xgrmed in two passes: first, Moses in run and a 1000-
was used, an )a SO called conlinuous Space 1aflaqy g jg generated for each sentence. When gen-
guage model is used in order to take better advantag?atingn-best lists it may happen that the same tar-

of the limited amount of training data. get sentence is generated multiple times, for instance
A paper on this work is submitted to MT Sumit 2007. using different segmentations of the source sentence
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or a different set of phrases. We enforced all the French English
hypothesis in am-best list to be lexically different Eparl News| Eparl News
since our purpose was to rescore them with a LM. Back-off LM:
The parameters of Moses are tuned on devtest2006 | 3-gram| 47.0 91.6| 57.2 160.1
for the Europarl task and nc-dev2007 for the news 4-gram| 415 85.2| 51.6 152.4
commentary task, using the cmert tool. Continuous space LM:

These 1000-best lists are then rescored with dif- 4-gram| 35.8 73.9| 445 1334
ferent language models, either using a longer con- | 5-gram| 33.9 71.2 - -
text or performing the probability estimation in the 6-gram| 33.1 70.1| 41.2 127.0

continuous space. After rescoring, the weights of the

feature functions are optimized again using the nulable 1: Perplexities on devtest2006 (Europarl) and

merical optimization toolkit Condor (Berghen and"¢-d€v2007 (news commentary) for various LMs.
Bersini, 2005). Note that this step operates only on

the 1000-best lists, no re-decoding is performed. '(Bengio etal., 2003). Since the resulting probability
general, this results in an increased weight for thgnctions are smooth functions of the word repre-
LM. Comparative results are provided in the resultentation, better generalization to unknomagrams
section whether it seems to be better to use highggn pe expected. A neural network can be used to si-
order language models already during decoding, Qfyitaneously learn the projection of the words onto
to generate first ricm-best lists and to use the im-the continuous space and to estimate thgram
proved LMs during rescoring. probabilities. This is still ar-gram approach, but
the LM probabilities are "interpolated” for any pos-

_ sible context of lengtm-1 instead of backing-off to
The monolingual part of the Europarl (38.3M En-ghorter contexts.

glish and 43.1 French words) and the news commen- g approach was successfully used in large vo-

tary corpus (1.8M/1.2M words) were used. Separaigypylary continuous speech recognition (Schwenk,
LMs were build on each data source and then linogg7) and in a phrase-based system for a small task
early interpolated, optimizing the coefficients W'th(Schwenk et al., 2006). Here, it is the first time
an EM procedure. This usually gives better regpplied in conjunction with a lexicalized reordering
sults than building an LM on the pooled data. Notgnagel. A 4-gram continuous space LM achieves a
that we build two sets of LMs: a first set tuned onyerplexity reduction of about 13% relative with re-
devtest2006, and a second one on nc-dev2007. s';Sect to a 4-gram back-off LM (see Table 1). Ad-

i; not Sl_errisi_ng _tp see that the interpolation coeffigitional improvements can be obtained by using a
cients differ significantly: 0.97/0.03 for devtest2006|Onger context. Note that this is difficult for back-
and 0.42/0.58 for nc-dev2007. The perplexities off | Ms due to insufficient training data.

the interpolated LMs are given in Table 1.

2.1 Language modeling

2.2 Continuous space language model 3 Experimental Evaluation

Overall, there are roughly 40 million words of textsThe system was trained on the Europarl parallel texts
available to train the target language models. Thienly (approx. 1.3M words). The news commentary
is a quite limited amount in comparison to tasks likgparallel texts were not used. We applied the tok-
the NIST machine translation evaluations for whichenization proposed by the Moses SMT toolkit and
several billion words of newspaper texts are availthe case was preserved. While case sensitivity may
able. Therefore, new techniques must be deploydulirt the alignment process, we believe that true case
to take the best advantage of the limited resourcesis beneficial for language modeling, in particular in
Here, we propose to use the so-called continduture versions of our system in which we plan to
ous space LM. The basic idea of this approach is tase POS information. Experiences with alternative
project the word indices onto a continuous space aridkenizations are undergoing.
to use a probability estimator operating on this space The parameters of the system were tuned on
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DevTest2006 Test2006 DevTest2006 Test2006
Decode:| 3-gram 4-gram| 3-gram 4-gram Decode:| 3-gram 4-gram| 3-gram 4-gram
Back-off LM: Back-off LM:
decode| 30.88 - 30.82 - decode| 32.21 - 31.50 -
4-gram| 31.65 31.43| 31.35 30.86 4-gram| 32.46 32.34| 32.07 32.12
Continuous space LM: Continuous space LM:
4-gram| 31.96 31.75| 32.03 31.59 4-gram| 32.87 32.90| 30.51 32.47
5-gram| 31.97 31.86| 31.90 31.50 6-gram| 32.85 3298 | 32.46 3250
6-gram| 3200 31.93 | 31.89 31.64 Lex. diff. | 791.3 822.7| 802.5 827.8
Lex. diff. | 904.2 797.6 | 900.6 795.8 Oracle| 38.80 39.69 - -
Oracle| 37.82 37.64 - -

Table 3: Comparison of different translation strate-
Table 2: Comparison of different translation strategies (BLEU scores for French to English).

gies (BLEU scores for English to French): 3- or 4-

gram decoding (columns) andbest list rescoring

with various language models (lines). tation of lexical reordering in the Moses decoder, it

is apparently better to use a 4-gram LM during de-
coding. The oracle scores of thebest lists and
devtest2006 and nc-dev2007 respectively. Thiae average number of lexically different hypothe-
generalization performance was estimated on thgs seem to correlate well with the BLEU scores: in
test2006 and nc-devtest2007 corpora respectively.all cases it is better to use the system that produced
n-best lists with more variety and a higher oracle
BLEU score.

The continuous space language model achieved

provements in the BLEU by about 0.4 on the de-
elopment data. It is interesting to note that this ap-

the incorporation of this knowledge can be postproach showed a very good generalization behavior:
poned to then-best list rescoring. Tri- or 4-gram the improvements obtained on the test data are as

back-off language models were used during decodo0d or even exceed those observed on the Dev data.

ing. In both cases the generateebest lists were 3, Multiple reference translations

rescored with higher order back-off or the continu- o _

ous space language model. A beam of 0.6 was us&ly one reference translation is provided for all

in all our experiments. tasks in the WMT’07 evaluation. This may be prob-
The oracle BLEU scores of the generatedbest lematic since systems that do not use the official jar-

lists were estimated by rescoring thebest lists with 90N or different word order may get “incorrectly” a

a cheating LM trained on the development data. \W@W BLEU score. We have also noticed that the ref-

also provide the average number of lexically differ-8rence translations are not always real translations
ent hypothesis in the-best lists. The results are ©f the input, but they rely on document wide context

summarized in Table 2 and 3. The numbers in bolifformation. Therefore, we have produced a second
indicate the systems that were used in the evaluation€t Of sentence based reference translaﬁons:

These results are somehow contradictory : while 1€ improvements brought by the continuous
running Moses with a trigram LM seems to be bettefPac® LM are much higher using the new reference
when translating from English to French, a 4_gr(,jmliranslatlons. Usmg_ both refe_rence translations to-
LM achieves better results when translating to End€ther leads to an important increase of the BLEU
glish. An analysis after the evaluation seems to indSCOré and confirms the improvements obtained by
cate that the pruning was too aggressive fora4-grame continuous space LM. These results are in line

LM, at IeaSt. fora morphOIOgica”y rich Iang_uage like 2The second reference translations can be downloaded from
French. Using a beam of 0.4 and a faster implemem tp: //instar.|insi.fr/en/data.htmn

3.1 Comparison of decoding strategies

Two different decoding strategies were compared in
order to find out whether it is necessary to alread}
use higher-order LMs during decoding or whethe
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| Ref. transl.:| official | addtl. || both | retuned] ing longer span LMs. The BLEU score is even 0.5
Back-off | 31.64 | 32.91| 47.62| 47.95 worse on nc-devtest due to a brevity penalty of 0.95.
CSLM | 32.00 | 33.81| 48.66| 49.02 The continuous space LM also achieves interesting

improvements in the BLEU score when translating
Table 4: Impact of additional human reference transrom French to English.

lations (devtest2006, English to French)
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. Fonollosa. 2006. Continuous space language models
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Table 5: BLEU scores for news commentary task.
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Abstract Already before, decades of work went into the im-
plementation of MT systems (typically rule-based)

We describe an architecture that allows for frequently used language pd-i;sind these sys-
to combine statistical machine translation tems quite often contain a wealth of linguistic
(SMT) with rule-based machine translation  knowledge about the languages involved, such as
(RBMT) in a multi-engine setup. We use a  fairly complete mechanisms for morphological and
variant of standard SMT technology to align  syntactic analysis and generation, as well as a large
translations from one or more RBMT sys-  number of bilingual lexical entries spanning many
tems with the source text. We incorporate  application domains.
phrases extracted from these alignmentsinto  |ts an interesting challenge to combine the differ-
the phrase table of the SMT system and use ent types of knowledge into integrated systems that
the open-source decoder Moses to find good  could then exploit both explicit linguistic knowledge
combinations of phrases from SMT training  contained in the rules of one or several conventional
data with the phrases derived from RBMT.  MT system(s) and implicit knowledge that can be
First experiments based on this hybrid archi-  extracted from large amounts of text.

tecture achieve promising results. The recently started EuroMatfproject will ex-
. plore this integration of rule-based and statistical
1 Introduction knowledge sources, and one of the approaches to

Recent work on statistical machine translation hal2€ investigated is the combination of existing rule-
led to significant progress in coverage and quality gfased MT systems into a multi-engine architecture.
translation technology, but so far, most of this workl € Work described in this paper is one of the
focuses on translation into English, where relativelfiSt incarnations of such a multi-engine architec-
simple morphological structure and abundance d€ Within the project, and a careful analysis of the
monolingual training data helped to compensate fdfSults Will guide us in the choice of further steps
the relative lack of linguistic sophistication of theWIthln the project.

underlying models. As SMT systems are trained o
massive amounts of data, they are typically quit
good at capturing implicit knowledge contained inCombinations of MT systems into multi-engine ar-
co-occurrence statistics, which can serve as a shahitectures have a long tradition, starting perhaps
low replacement for the world knowledge that wouldwith (Frederking and Nirenburg, 1994). Multi-
be required for the resolution of ambiguities and thengine systems can be roughly divided into simple
!nsertlon of mformatlon that hgppens to be missin See (Hutchins et al., 2006) for a list of commercial MT
in the source text but is required to generate welkystems

formed text in the target language. 2See hitp://www.euromatrix.net

g Architectures for multi-engine MT
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Monolingual stead of implementing a special purpose search pro
Corpus cedure from scratch, we transform the information

Corpus contained in the MT output into a form that is suit-
Alignment, Counting, able as input for an existing SMT decoder. This has
E:thfai? Model | [Smoothing the additional advantage that resources used in stan-
Taclon S Y dard phrase-based SMT can be flexibly combined
Dt

Decoder

results; the optimal combination can essentially be

SMT | —, | Target with the material extracted from the rule-based MT
Text

- ﬁ reduced to the task of finding good relative weights
‘- Source for the various phrase table entries.
_ A sketch of the overall architecture is given in
Fig. 1, where the blue (light) parts represent the
Figure 1: Architecture for multi-engine MT driven Modules and data sets used in purely statistical MT,
by a SMT decoder and the red (dark) parts are the additional modules

and data sets derived from the rule-based engines. It

) should be noted that this is by far not the only way
architectures that try to select the best output from@ combine systems. In particular, as this proposed

number of systems, but leave the individual hypothesetyp gives the last word to the SMT decoder, we
ses as is (Tidhar andissner, 2000; Akiba et al., yigk that linguistically well-formed constructs from

2001; Callison-Burch and Flournoy, 2001; Akiba efyne of the rule-based engines will be deteriorated in
al., 2002; Nomoto, 2004; Eisele, 2005) and more sqQpe final decoding step. Alternative architectures are

phisticated setups that try to recombine the best paiger exploration and will be described elsewhere.
from multiple hypotheses into a new utterance that

can be better than the best of the given candidates,
as described in (Rayner and Carter, 1997; Hogan add MT systems and other knowledge
Frederking, 1998; Bangalore et al., 2001; Jayaraman SOUICES
and Lavie, 2005; Matusov et al., 2006; Rosti et al.,
2007). For the experiments, we used a set of six rule-based
Recombining multiple MT results requires find-MT engines that are partly available via web inter-
ing the correspondences between alternative rendé&ces and partly installed locally. The web based
ings of a source-language expression proposed Bystems are provided by Google (based on Systran
different MT systems. This is generally not straightfor the relevant language pairs), SDL, and ProMT
forward, as different word order and errors in thavhich all deliver significantly different output. Lo-
output can make it hard to identify the alignmentcally installed systems are OpenLogos, Lucy (a re-
Still, we assume that a good way to combine the vagent offspring of METAL), and translate pro by lin-
ious MT outcomes will need to involve word align-genio (only for German- English). In addition to
ment between the MT output and the given sourcese engines, we also used the scripts included in
text, and hence a specialized module for word aligrthe Moses toolkit (Koehn et al., 2066) generate
ment is a central component of our setup. phrase tables from the training data. We enhanced
Additionally, a recombination system needs awa$he phrase tables with information on whether a
to pick the best combination of alternative buildinggdiven pair of phrases can also be derived via a third,
blocks; and when judging the quality of a particu.intel’mediate language. We assume that this can be
lar configuration, both the plausibility of the build- useful to distinguish different degrees of reliability,
ing blocks as such and their relation to the conteXut due to lack of time for fine-tuning we could not
need to be taken into account. The required optyet show thatitindeed helps in increasing the overall
mization process is very similar to the search in guality of the output.
SMT decoder that looks for naturally sounding com-
binations of highly probable partial translations. In- 3see http://www.statmt.org/moses/
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4 Implementation Details entries are trained on documents from different do-
mains. However, due to the distinct mechanisms
used to generate these entries, rule-based systems
The input text and the output text of the MT system@nd statistical systems usually differ in coverage.
was aligned by means of GIZA++ (Och and NeyOur system managed to utilize lexical entries from
2003), a tool with which statistical models for align-various sources by integrating the phrase tables de-
ment of parallel texts can be trained. Since trainingved from rule-based systems into the phrase table
new models on merely short texts does not yield verjyained on a large parallel corpus. Table 1 shows
accurate results, we applied a method where text can

4.1 Alignment of MT output

be aligned based on existing models that have been Systems  Token #
trained on the Europarl Corpus (Koehn, 2005) be- Ref. | 2091 (4.21%)
forehand. This was achieved by using a modified R-I | 3886 (7.02%)
version of GIZA++ that is able to load given mod- R-II | 3508 (6.30%)
els. SMT | 3976 (7.91%)
The modified version of GIZA++ is embedded Hybrid | 2425 (5.59%)

into a client-server setup. The user can send tV\LP

. ) . able 1: Untranslated tokens (excl. numbers and
corresponding files to the server, and specify tWOunctuations) in output for news commentary task
models for both translation directions from whichlcJ P y

. . -en) f iff t syst
alignments should be generated. After generatln%je en) from different systems

alignments in both directions (by running GIZAH? rough estimation of the number of untranslated

twice), the system also delivers a combination %vords in the respective output of different systems.

these_alignments Wh.iCh then serves as input to thﬁwe estimation was done by counting “words” (i.e.
following steps described below. tokens excluding numbers and punctuations) that ap-
pear in both the source document and the outputs.
Note that, as we are investigating translations from
We then concatenated the phrase tables from ti&rman to English, where the languages share a lot
SMT baseline system and the phrase tables obtaingfj\,ocabmary, e.g. named entities such as “USA”,
from the rule-based MT systems and augmenteg@ere are around.21% of words that should stay the
them by additional columns, one for each syster§game throughout the translation process. In the hy-
used. With this additional information it is clearprid system5.59% of the words remain unchanged,
which of the MT systems a phrase pair stems fronyyhich is is the lowest percentage among all systems.
enabling us to assign relative weights to the conyr baseline system (SMT in Table 1), not compris-
tributions of the different systems. The optimaling additional phrase tables, was the one to produce

weights for the different columns can then be aste highest number of such untranslated words.
signed with the help of minimum error rate training

4.2 Phrase tables from MT output

(Och, 2003). Baseline| Hybrid
test 18.07 21.39
5 Results nc-test| 21.17 22.86

We compared the hybrid system to a purely statisfable 2: Performance comparison (BLEU scores)

tical baseline system as well as two rule-based sypetween baseline and hybrid systems, on in-domain
tems. The only differences between the baseline sygest) and out-of-domain (nc-test) test data

tem and our hybrid system are the phrase table — the

hybrid system includes more lexical entries than the Higher lexical coverage leads to better perfor-

baseline — and the weights obtained from minimurmance as can be seen in Table 2, which compares

error rate training. BLEU scores of the baseline and hybrid systems,
For a statistical system, lexical coverage becomdsoth measured on in-domain and out-of-domain test

an obstacle — especially when the bilingual lexicaflata. Due to time constraints these numbers reflect
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results from using a single RBMT system (Lucy);Andreas Eisele. 2005. First steps towards multi-engine
using more systems would potentially further im- Mmachine translation. IRroceedings of the ACL Work-
prove results shop on Building and Using Parallel Textiune.

Robert E. Frederking and Sergei Nirenburg. 1994. Three
6 Outlook heads are better than one ANLP, pages 95-100.

D lack of ti for fi . h Christopher Hogan and Robert E. Frederking. 1998. An
ue to ack o 'Flme or |.ne-tun|ngt € parameters - oy5jyation of the multi-engine MT architecture. In
and technical difficulties in the last days before de- proceedings of AMTApages 113-123.

livery, the results submitted for the shared task d9ohn Hutchins, Walter Hartmann, and Etsuo Ito. 2006.

not yet show the full potential of our architecture. AT compendium of translation software. Twelfth
The architecture described here places a strongEdition, January.
emphas.ls on the statistical mF’de'_S and can be Se§F11yamsundar Jayaraman and Alon Lavie. 2005. Multi-
as a variant of SMT where lexical information from  gngine machine translation guided by explicit word
rule-based engines is used to increase lexical cover-matching. InProc. of EAMT Budapest, Hungary.
age. We are currently also exploring setups Wherg Koehn, M. Federico, W. Shen, N. Bertoldi, O. Bo-
statistical alignments are fed into a rule-based sys- jar c. Callison-Burch, B. Cowan, C. Dyer, H. Hoang,
tem, which has the advantage that well-formed syn- R. Zens, A. Constantin, C. C. Moran, and E. Herbst.
tactic structures generated via linguistic rules can- |2?_06- Cl):pe? SO(ljthce IOIO|L<.itf0f stgtils,ticagmac?ine transt-
ot be broken apart by the SMT components. But %0, F2cred ansiaton mosels g conen e
as rule-based systems typically lack mechanisms forWorkshop.
ruling out implausible results, they cannot easily
cope with errors that creep into the lexicon due t&
misalignments and similar problems.
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tistical machine translation. IRroceedings of the MT
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Abstract

In this paper we describe the Interactive Sys-
tems Laboratories (ISL) phrase-based ma-
chine translation system used in the shared
task “Machine Translation for European
Languages” of the ACL 2007 Workshop on
Statistical Machine Translation. We present
results for a system combination of the
ISL syntax-augmented MT system and the
ISL phrase-based system by combining and
rescoring the n-best lists of the two systems.
We also investigate the combination of two
of our phrase-based systems translating from
different source languages, namely Spanish
and German, into their common target lan-
guage, English.

1 Introduction

The shared task of the ACL 2007 Workshop on Sta-
tistical Machine Translation focuses on the auto-
matic translation of European language pairs. The
workshop provides common training sets for trans-
lation model training and language model training
to allow for easy comparison of results between the
participants.

Interactive Systems Laboratories participated in the
English <+ Spanish Europarl and News Commen-
tary task as well as in the English < German Eu-
roparl task. This paper describes the phrase-based
machine translation (MT) system that was applied
to these tasks. We also investigate the feasibility
of combining the ISL syntax-augmented MT system
(Zollmann et al., 2007) with our phrase-based sys-
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tem by combining and rescoring the n-best lists pro-
duced by both systems for the Spanish — English
Europarl task. Furthermore, we apply the same com-
bination technique to combine two of our phrase-
based systems that operate on different source lan-
guages (Spanish and German), but share the same
target language (English).

The paper is organized as follows. In section 2 we
give a general description of our phrase-based sta-
tistical machine translation system. Section 3 gives
an overview of the data and of the final systems
used for the English < Spanish Europarl and News
Commentary tasks, along with corresponding per-
formance numbers. Section 4 shows the data, final
systems and results for the English <~ German Eu-
roparl task. In Section 5, we present our experiments
involving a combination of the syntax-augmented
MT system with the phrase-based MT system and a
combination of the Spanish — English and German
— English phrase-based systems.

2 The ISL Phrase-Based MT System

2.1 Word and Phrase Alignment

Phrase-to-phrase translation pairs are extracted by
training IBM Model-4 word alignments in both di-
rections, using the GIZA++ toolkit (Och and Ney,
2000), and then extracting phrase pair candidates
which are consistent with these alignments, start-
ing from the intersection of both alignments. This
is done with the help of phrase model training
code provided by University of Edinburgh during
the NAACL 2006 Workshop on Statistical Machine
Translation (Koehn and Monz, 2006). The raw rel-
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ative frequency estimates found in the phrase trans-
lation tables are then smoothed by applying modi-
fied Kneser-Ney discounting as explained in (Foster
et al., 2006). The resulting phrase translation tables
are pruned by using the combined translation model
score as determined by Minimum Error Rate (MER)
optimization on the development set.

2.2 Word Reordering

We apply a part-of-speech (POS) based reordering
scheme (J. M. Crego et al., 2006) to the POS-tagged
source sentences before decoding. For this, we use
the GIZA++ alignments and the POS-tagged source
side of the training corpus to learn reordering rules
that achieve a (locally) monotone alignment. Fig-
ure 1 shows an example in which three reordering
rules are extracted from the POS tags of an En-
glish source sentence and its corresponding Span-
ish GIZA++ alignment. Before translation, we con-
struct lattices for every source sentence. The lattices
include the original source sentence along with all
the reorderings that are consistent with the learned
rules. All incoming edges of the lattice are anno-
tated with distortion model scores. Figure 2 gives an
example of such a lattice. In the subsequent lattice
decoding step, we apply either monotone decoding
or decoding with a reduced local reordering window,
typically of size 2.

2.3 Decoder and MER Training

The ISL beam search decoder (Vogel, 2003) com-
bines all the different model scores to find the best
translation. Here, the following models were used:

e The translation model, i.e. the phrase-to-
phrase translations extracted from the bilingual
corpus, annoted with four translation model
scores. These four scores are the smoothed for-
ward and backward phrase translation proba-
bilities and the forward and backward lexical
weights.

e A 4-gram language model. The SRI language
model toolkit was used to train the language
model and we applied modified Kneser-Ney
smoothing.

e An internal word reordering model in addition
to the already described POS-based reordering.
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We all agree on that
PRP DT VB IN DT
En {4} esto {5} estamos {1} todos {2} de {} acuerdo {3}

0 PRPDTVBINDT: 4-5-1-2-3
0 PRPDTVB: 2-3-1
0 PRPDTVBIN: 3-4-1-2

Figure 1: Rule extraction for the POS-based reorder-
ing scheme.

This internal reordering model assigns higher
costs to longer distance reordering.

e Simple word and phrase count models. The
former is essentially used to compensate for
the tendency of the language model to prefer
shorter translations, while the latter can give
preference to longer phrases, potentially im-
proving fluency.

The ISL SMT decoder is capable of loading

several language models (LMs) at the same time,
namely n-gram SRI language models with n up to
4 and suffix array language models (Zhang and Vo-
gel, 2006) of arbitrary length. While we typically
see gains in performance for using suffix array LMs
with longer histories, we restricted ourselves here to
one 4-gram SRI LM only, due to a limited amount
of available LM training data. The decoding process
itself is organized in two stages. First, all available
word and phrase translations are found and inserted
into a so-called translation lattice. Then the best
combination of these partial translations is found
by doing a best path search through the translation
lattice, where we also allow for word reorderings
within a predefined local reordering window.
To optimize the system towards a maximal BLEU
or NIST score, we use Minimum Error Rate (MER)
Training as described in (Och, 2003). For each
model weight, MER applies a multi-linear search
on the development set n-best list produced by the
system. Due to the limited numbers of translations
in the n-best list, these new model weights are sub-
optimal. To compensate for this, a new full trans-
lation is done. The resulting new n-best list is then
merged with the old n-best list and the optimization
process is repeated. Typically, the translation quality
converges after three iterations.



“Honourable Members, we have a challenging agenda”

honourable

Figure 2: Example for a source sentence lattice from
the POS-based reordering scheme.

English | Spanish
sentence pairs 1259914
unique sent. pairs 1240151
sentence length 253 26.3
words 31.84 M | 33.16 M
vocabulary 266.9K | 346.3 K

Table 1: Corpus statistics for the English/Spanish
Europarl corpus.

3 Spanish < English Europarl and News
Commentary Task

3.1 Data and Translation Tasks

The systems for the English < Spanish translation
tasks were trained on the sentence-aligned Europarl
corpus (Koehn, 2005). Detailed corpus statistics can
be found in Table 1. The available parallel News
Commentary training data of approximately 1 mil-
lion running words for both languages was only
used as additional language model training data, to
adapt our in-domain (Europarl) system to the out-of-
domain (News Commentary) task.

The development sets consist of 2000 Europarl
sentences (dev-EU) and 1057 News Commentary
sentences (dev-NC). The available development-
test data consists of 2 x 2000 Europarl sentences
(devtest-EU and test06-EU) and 1064 News Com-
mentary sentences (test06-NC). All development
and development-test sets have only one reference
translation per sentence.

3.2 Data Normalization

The ACL shared task is very close in form and con-
tent to the Final Text Editions (FTE) task of the TC-
STAR (TC-STAR, 2004) evaluation. For this rea-
son, we decided to apply a similar normalization
scheme to the training data as was applied in our TC-
STAR verbatim SMT system. Although trained on
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“verbatimized” data that did not contain any num-
bers, but rather had all numbers and dates spelled
out, it yielded consistently better results than our
TC-STAR FTE SMT system. When translating FTE
content, the verbatim system treated all numbers as
unknown words, i.e. they were left unchanged dur-
ing translation. To compensate for this, we applied
extended postprocessing to the translations that con-
ducts the necessary conversions between Spanish
and English numbers, e.g. the conversion of deci-
mal comma in Spanish to decimal point in English.
Other key points which we adopted from this nor-
malization scheme were the tokenization of punc-
tuation marks, the true-casing of the first word of
each sentence, as well as extended cleaning of the
training data. The latter mainly consisted of the re-
moval of sections with a highly unbalanced source
to target words ratio and the removal of unusual
string combinations and document references, like
for example "B5-0918/2000”, ”(COM(2000) 335 -
C5-0386/2000 - 2000/0143(CNS))”, etc.

Based on this normalization scheme, we trained and
optimized a baseline in-domain system on accord-
ingly normalized source and reference sentences.
For optimization, we combined the available de-
velopment sets for the Europarl task and the News
Commentary task. In order to further improve
the applied normalization scheme, we experimented
with replacing all numbers with the string "’NMBR”,
rather than spelling them out and by replacing all
document identifiers with the string "DCMNT”,
rather than deleting them. This was first done for
the language model training data only, and then for
all data, i.e. for the bilingual training data and for
the development set source and reference sentences.
In the latter case, the respective tags were again re-
placed by the correct numbers and document identi-
fiers during postprocessing. Table 2 shows the case
sensitive BLEU scores for the three normalization
approaches on the English < Spanish Europarl and
News Commentary development sets. These scores
were computed with the official NIST scoring script
against the original (not normalized) references.

3.3 In-domain System

As mentioned above, we combined the Europarl and
News Commentary development sets when optimiz-
ing the in-domain system. This resulted in only one



Task baseline | LM only | all data
Europarl 30.94 31.20 31.26
News Com. | 31.28 31.39 31.73

Table 2: Case sensitive BLEU scores on the in-
domain and out-of-domain development sets for the
three different normalization schemes.

Task Eng — Spa | Spa — Eng
dev-EU 31.29 31.77
dev-NC 31.81 31.12
devtest-EU 31.01 31.40
test06-EU 31.87 31.76
test06-NC 30.23 29.22

Table 3: Case sensitive BLEU scores for the final
English < Spanish in-domain systems.

set of scaling factors, i.e. the in-domain system
applies the same scaling factors for translating in-
domain data as for translating out-of-domain data.
Our baseline system applied only monotone lattice
decoding. For our final in-domain system, we used a
local reordering window of length 2, which accounts
for the slightly higher scores when compared to the
baseline system. The BLEU scores for both trans-
lation directions on the different development and
development-test sets can be found in Table 3.

3.4 Out-of-domain System

In order to adapt our in-domain system towards the
out-of-domain News Commentary task, we consid-
ered two approaches based on language model adap-
tation. First, we interpolated the in-domain LM
with an out-of-domain LM computed on the avail-
able News Commentary training data. The inter-
polation weights were chosen such as to achieve a
minimal LM perplexity on the out-of-domain de-
velopment set. For both languages, the interpo-
lation weights were approximately 0.5. Our sec-
ond approach was to simply load the out-of-domain
LM as an additional LM into our decoder. In both
cases, we optimized the translation system on the
out-of-domain development data only. For the sec-
ond approach, MER optimization assigned three to
four times higher scaling factors to the consider-
ably smaller out-domain LM than to the original in-
domain LM. Table 4 shows the results in BLEU on
the out-of-domain development and development-
test sets for both translation directions. While load-
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Task Eng — Spa Spa — Eng
interp | 2 LMs | interp | 2 LMs

dev-NC 33.31 | 33.28 | 32.61 | 32.70

test06-NC | 32.55 | 32.15 | 30.73 | 30.55

Table 4: Case sensitive BLEU scores for the final
English < Spanish out-of-domain systems.

ing a second LM gives similar or slightly better re-
sults on the development set during MER optimiza-
tion, we see consistently worse results on the unseen
development-test set. This, in the context of the rela-
tively small amount of development data, can be ex-
plained by stronger overfitting during optimization.

4 English < German Europarl Task

The systems for the English <+ German translation
tasks were trained on the sentence-aligned Europarl
corpus only. The complete corpus consists of ap-
proximately 32 million English and 30 million Ger-
man words.

We applied a similar normalization scheme to the
training data as for the English < Spanish system.
The main difference was that we did not replace
numbers and that we removed all document refer-
ences. In the translation process, the document ref-
erences were treated as unknown words and there-
fore left unchanged. As above, we trained and op-
timized a first baseline system on the normalized
source and reference sentences. However, we used
only the Europarl task development set during opti-
mization. To achieve further improvements on the
German — English task, we applied a compound
splitting technique. The compound splitting was
based on (Koehn and Knight, 2003) and was applied
on the lowercased source sentences. The words gen-
erated by the compound splitting were afterwards
true-cased. Instead of replacing a compound by
its separate parts, we added a parallel path into the
source sentence lattices used for translation. The
source sentence lattices were augmented with scores
on their edges indicating whether each edge repre-
sents a word of the original text or if it was gener-
ated during compound splitting.

Table 5 shows the case-sensitive BLEU scores for
the final German < English systems. In contrast
to the English < Spanish systems, we used only
monotonous decoding on the lattices containing the



task Eng — Ger | Ger — Eng
dev-EU 18.58 23.85
devtest-EU 18.50 23.87
test06-EU 18.39 23.88

Table 5: Case sensitive BLEU scores for the final
English <= German in-domain systems.

syntactical reorderings.

5 System Combination via n-best List
Combination and Rescoring

5.1 N-best List Rescoring

For n-best list rescoring we used unique 500-best
lists, which may have less than 500 entries for
some sentences. In this evaluation, we used sev-
eral features computed from different information
sources such as features from the translation sys-
tem, additional language models, IBM-1 word lex-
ica and the n-best list itself. We calculated 4 fea-
tures from the IBM-1 word lexica: the word proba-
bility sum as well as the maximum word probabil-
ity in both language directions. From the n-best list
itself, we calculated three different sets of scores.
A position-dependent word agreement score as de-
scribed in (Ueffing and Ney, 2005) with a position
window instead of the Levenshtein alignment, the
n-best list n-gram probability as described in (Zens
and Ney, 2006) and a position-independent n-gram
agreement, which is a variation on the first two. To
tune the feature combination weights, we used MER
optimization.

Rescoring the n-best lists from our individual sys-
tems did not give significant improvements on the
available unseen development-test data. For this rea-
son, we did not apply n-best list rescoring to the indi-
vidual systems. However, we investigated the feasi-
bility of combining two different systems by rescor-
ing the joint n-best lists of both systems. The corre-
sponding results are described in the following sec-
tions.

5.2 Combining Syntax-Augmented MT and
Phrase-Based MT

On the Spanish — English in-domain task, we par-
ticipated not only with the ISL phrase-based SMT
system as described in this paper, but also with
the ISL syntax-augmented system. The syntax-
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task | PHRA [ SYNT | COMB
dev-EU 31.77 | 3248 | 32.77
test06-EU | 31.76 | 32.15 | 32.27

Table 6: Results for combining the syntax-

augmented system (SYNT) with the phrase-based
system (PHRA).

augmented system was trained on the same normal-
ized data as the phrase-based system. However, it
was optimized on the in-domain development set
only. More details on the syntax-augmented system
can be found in (Zollmann et al., 2007). Table 6
lists the respective BLEU scores of both systems as
well as the BLEU score achieved by combining and
rescoring the individual 500-best lists.

5.3 Combining MT Systems with Different
Source Languages

(Och and Ney, 2001) describes methods for trans-
lating text given in multiple source languages into a
single target language. The ultimate goal is to im-
prove the translation quality when translating from
one source language, for example English into mul-
tiple target languages, such as Spanish and German.
This can be done by first translating the English doc-
ument into German and then using the translation as
an additional source, when translating to Spanish.
Another scenario where a multi-source translation
becomes desirable was described in (Paulik et al.,
2005). The goal was to improve the quality of au-
tomatic speech recognition (ASR) systems by em-
ploying human-provided simultaneous translations.
By using automatic speech translation systems to
translate the speech of the human interpreters back
into the source language, it is possible to bias the
source language ASR system with the additional
knowledge. Having these two frameworks in mind,
we investigated the possibility of combining our in-
domain German — English and Spanish — English
translation systems using n-best list rescoring. Ta-
ble 7 shows the corresponding results. Even though
the German — English translation performance was
approximately 8 BLEU below the translation perfor-
mance of the Spanish — English system, we were
able to improve the final translation performance by
up to 1 BLEU.



task Spa — Eng | Ger — Eng \ Comb. ‘

dev-EU 31.77 23.85 32.76
devtest-EU 31.40 23.87 32.41
test06-EU 31.76 23.88 32.51

Table 7: Results for combining the Spanish — En-
glish and German — English phrase-based systems
on the in-domain tasks.

6 Conclusion

We described the ISL phrase-based statistical ma-
chine translation systems that were used for the 2007
ACL Workshop on Statistical Machine Translation.
Using the available out-of-domain News Commen-
tary task training data for language model adapta-
tion, we were able to significantly increase the per-
formance on the out-of-domain task by 2.3 BLEU
for English — Spanish and by 1.3 BLEU for Span-
ish — English. We also showed the feasibility of
combining different MT systems by combining and
rescoring their resprective n-best lists. In particular,
we focused on the combination of our phrase-based
and syntax-augmented systems and the combination
of two phrase-based systems operating on different
source languages. While we saw only a minimal im-
provement of 0.1 BLEU for the phrase-based and
syntax-augmented combination, we gained up to 1
BLEU, in case of the multi-source translation.
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Abstract

This article describes a machine translation
system based on an automatic post-editing
strategy: initially translate the input text into
the target-language using a rule-based MT
system, then automatically post-edit the out-
put using a statistical phrase-based system.
An implementation of this approach based
on the SYSTRAN and PORTAGE MT sys-
tems was used in the shared task of the Sec-
ond Workshop on Statistical Machine Trans-
lation. Experimental results on the test data
of the previous campaign are presented.

1 Introduction

Simard et al. (2007) have recently shown how a sta-
tistical phrase-based machine translation system can
be used as an automatic post-editing (APE) layer,
on top of a rule-based machine translation system.
The motivation for their work is the repetitive nature
of the errors typically made by rule-based systems.
Given appropriate training material, a statistical MT
system can be trained to correct these systematic er-
rors, therefore reducing the post-editing effort. The
statistical system views the output of the rule-based
system as the source language, and reference hu-
man translations as the target language. Because the
training material for the APE layer will typically be
domain-specific, this process can be viewed as a way
of automatically adapting a rule-based system to a
specific application domain.

This approach has been shown experimentally
to produce large improvements in performance not
only over the baseline rule-based system that it cor-
rects, but also over a similar statistical phrase-based
MT system used in standalone mode, i.e. translating
the “real” source text directly: Simard et al. report a
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reduction in post-editing effort of up to a third when
compared to the input rule-based translation, and as
much as 5 BLEU points improvement over the direct
SMT approach.

These impressive results, however, were obtained
in a very specific and somewhat unusual context:
the training and test corpora were extracted from
a collection of manually post-edited machine trans-
lations. The two corpora (one English-to-French,
one French-to-English) each contained three paral-
lel “views” of the same data: 1) the source language
text, 2) a machine translation of that text into the
target language, as produced by a commercial rule-
based MT system, and 3) the final target-language
version of the text, produced by manually post-
editing the machine translation. Furthermore, the
corpus was very small, at least by SMT standards:
500K words of source-language data in the French-
to-English direction, 350K words in the English-to-
French. Because of this, the authors were left with
two important questions: 1) how would the results
scale up to much larger quantities of training data?
and 2) are the results related to the dependent nature
of the translations, i.e. is the automatic post-editing
approach still effective when the machine and hu-
man translations are produced independently of one
another?

With these two questions in mind, we partici-
pated in the shared task of the Second Workshop
on Statistical Machine Translation with an auto-
matic post-editing strategy: initially translate the in-
put text into the target-language using a rule-based
system, namely SYSTRAN, and automatically post-
edit the output using a statistical phrase-based sys-
tem, namely PORTAGE. We describe our system in
more detail in Section 2, and present some experi-
mental results in Section 3.

Proceedings of the Second Workshop on Statistical Machine Translation, pages 203-206,
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2 System description

Our system is composed of two main components:
a rule-based MT system, which handles the initial
translation into the target language, and a statistical
phrase-based post-editing system, which performs
domain-specific corrections and adaptations to the
output. We describe each component separately be-
low.

2.1 Rule-based Translation

The initial source-to-target language translation is
performed using the SYSTRAN machine translation
system, version 6. A detailed overview of SYS-
TRAN systems can be found in Dugast et al. (2007).
For this shared task, we used the French-to-English
and English-to-French configurations of the system.
Although it is possible to provide the system with
specialized lexica, we did not rely on this feature,
and used the system in its basic “out-of-the-box”
configuration.

2.2 Statistical Phrase-based Post-Editing

The output of the rule-based MT system described
above is fed into a post-editing layer that performs
domain-specific corrections and adaptation. This
operation is conceptually not very different from a
“target-to-target” translation; for this task, we used
the PORTAGE system, a state-of-the-art statistical
phrase-based machine translation system developed
at the National Research Council of Canada (NRC).!
A general description of PORTAGE can be found in
(Sadat et al., 2005).

For our participation in this shared task, we de-
cided to configure and train the PORTAGE system
for post-editing in a manner as much as possible
similar to the corresponding translation system, the
details of which can be found in (Ueffing et al.,
2007). The main features of this configuration are:

e The use of two distinct phrase tables, contain-
ing phrase pairs extracted from the Europarl
and the News Commentary training corpora re-
spectively.

e Multiple phrase-probability feature functions
in the log-linear models, including a joint prob-

'A version of PORTAGE is made available by the NRC to
Canadian universities for research and education purposes.
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ability estimate, a standard frequency-based
conditional probability estimate, and variants
thereof based on different smoothing methods
(Foster et al., 2006).

e A 4-gram language model trained on the com-
bined Europarl and News Commentary target-
language corpora.

e A 3-gram adapted language model: this is
trained on a mini-corpus of test-relevant target-
language sentences, extracted from the training
material using standard information retrieval
techniques.

e A 5-gram truecasing model, trained on the
combined Europarl and News Commentary
target-language corpora.

2.3 Training data

Ideally, the training material for the post-editing
layer of our system should consist in a corpus of
text in two parallel versions: on the one hand, raw
machine translation output, and on the other hand,
manually post-edited versions of these translations.
This is the type of data that was used in the initial
study of Simard et al. (2007).

Unfortunately, this sort of training data is seldom
available. Instead, we propose using training ma-
terial derived directly from standard, source-target
parallel corpora. The idea is to translate the source
portion of the parallel corpus into the target lan-
guage, using the rule-based MT component. The
post-editing component can then be trained using
this translation as “source” training material, and the
existing target portion of the parallel corpus as “tar-
get” training material. Note how this sort of data
is subtly different from the data used by Simard et
al.: there, the “target” text was dependent on the
“source”, in the sense that it was produced by manu-
ally post-editing the machine translation; here, the
two can be said to be independent, in the sense
that both “source” and “target” were produced inde-
pendently by man and machine (but from the same
“real” source, of course). It was one of the initial
motivations of the current work to verify to what ex-
tent the performance of the APE approach is affected
by using two different translations (human and ma-



en — fr fr —en
Europarl (>32M words/language)
SYSTRAN 23.06 20.11
PORTAGE 31.01 30.90
SYSTRAN+PORTAGE  31.11 30.61

News Commentary (1M words/language)

SYSTRAN 24.41 18.09
PORTAGE 25.98 25.17
SYSTRAN+PORTAGE  28.80 26.79

Table 1: System performances on WMT-06 test. All
figures are single-reference BLEU scores, computed
on truecased, detokenized translations.

chine) instead of two versions of the same transla-
tion (raw MT versus post-edited MT).

We concentrated our efforts on the English-
French language pair. For each translation direc-
tion, we prepared two systems: one for the Eu-
roparl domain, and one for the News Commentary
domain. The two systems have almost identical
configurations (phrase tables, log-linear model fea-
tures, etc.); the only differences between the two
are the adapted language model, which is computed
based on the specific text to be translated and the
parameters of the log-linear models, which are opti-
mized using domain-specific development sets. For
the Europarl domain system, we used the dev2006
and devtest2006 data sets, while for the News Com-
mentary, we used the nc-dev2007. Typically, the
optimization procedure will give higher weights to
Europarl-trained phrase tables for the Europarl do-
main systems, and inversely for the News Commen-
tary domain systems.

3 Experimental Results

We computed BLEU scores for all four systems on
the 2006 test data (test2006 for the Europarl do-
main and nc-devtest2007 for the News Commen-
tary). The results are presented in Table 1. As points
of comparison, we also give the scores obtained by
the SYSTRAN systems on their own (i.e. without a
post-editing layer), and by the PORTAGE MT sys-
tems on their own (i.e. translating directly source
into target).

The first observation is that, as was the case
in the Simard et al. study, post-editing (SYS-
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TRAN+PORTAGE lines) very significantly in-
creases the BLEU scores of the rule-based system
(SYSTRAN lines). This increase is more spectacu-
lar in the Europarl domain and when translating into
English, but it is visible for all four systems.

For the News Commentary domain, the APE
strategy (SYSTRAN+PORTAGE lines) clearly out-
performs the direct SMT strategy (PORTAGE lines):
translating into English, the gain exceeds 1.5 BLEU
points, while for French, it is close to 3 BLEU
points. In contrast, for the Europarl domain, both ap-
proaches display similar performances. Let us recall
that the News Commentary corpus contains less than
50K sentence pairs, totalling a little over one mil-
lion words in each language. With close to 1.3 mil-
lion sentence pairs, the Europarl corpus is almost 30
times larger. Our results therefore appear to confirm
one of the conjectures of the Simard et al. study:
that APE is better suited for domains with limited
quantities of available training data. To better un-
derstand this behavior, we trained series of APE and
SMT systems on the Europarl data, using increas-
ing amounts of training data. The resulting learning
curves are presented in Figure 1.2

As observed in the Simard et al. study, while both
the SMT and APE systems improve quite steadily
with more data (note the logarithmic scale), SMT
appears to improve more rapidly than APE. How-
ever, there doesn’t seem to be a clear “crossover”
point, as initially conjectured by Simard et al. In-
stead, SMT eventually catches up with APE (any-
where between 100K and 1M sentence pairs), be-
yond which point both approaches appear to be more
or less equivalent. Again, one impressive feature
of the APE strategy is how little data is actually re-
quired to improve upon the rule-based system upon
which it is built: around 5000 sentence pairs for
English-to-French, and 2000 for French-to-English.

4 Conclusions

We have presented a combination MT system based
on a post-editing strategy, in which a statistical
phrase-based system corrects the output of a rule-
based translation system. Experiments confirm the

>The systems used for this experiment are simplified ver-
sions of those described in Section 2, using only one phrase
table, a trigram language model and no rescoring; furthermore,
they were optimized and tested on short sentences only.
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alone and SYSTRAN MT with PORTAGE APE.

conclusions of earlier studies: not only can phrase-
based post-editing significantly improve the out-
put of a rule-based MT system (in terms of BLEU
score), but when training data is scarce, it also out-
performs a direct phrase-based MT strategy. Fur-
thermore, our results indicate that the training data
for the post-editing component does not need to be
manually post-edited translations, it can be gener-
ated from standard parallel corpora. Finally, our ex-
periments show that while post-editing is most effec-
tive when little training data is available, it remains
competitive with phrase-based translation even with
much larger amounts of data.

This work opens the door to a number of lines of
investigation. For example, it was mentioned earlier
that phrase-based APE could be seen as a form of au-
tomatic domain-adaptation for rule-based methods.
One thing we would like to verify is how this ap-
proach compares to the standard “lexical customiza-
tion” method proposed by most rule-based MT ven-
dors. Also, in the experiments reported here, we
have used identical configurations for the APE and
direct SMT systems. However, it might be possible
to modify the phrase-based system so as to better
adapt it to the APE task. For example, it could be
useful for the APE layer to “look™ at the real source-
language text, in addition to the MT output it is post-
editing. Finally, we have so far considered the front-
end rule-based system as a “black box”. But in the
end, the real question is: Which part of the rule-
based processing is really making things easier for
the phrase-based post-editing layer? Answering this
question will likely require diving into the internals

206

of the rule-based component. These are all direc-
tions that we are currently pursuing.
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Abstract

This paper presents a new paradigm for
translation from inflectionally rich lan-
guages that was used in the University
of Maryland statistical machine transla-
tion system for the WMTO7 Shared Task.
The system is based on a hierarchical
phrase-based decoder that has been aug-
mented to translate ambiguous input given
in the form of a confusion network (CN),
a weighted finite state representation of a
set of strings. By treating morphologi-
cally derived forms of the input sequence
as possible, albeit more “costly” paths that
the decoder may select, we find that sig-
nificant gains (10% BLEU relative) can
be attained when translating from Czech,
a language with considerable inflectional
complexity, into English.

1 Introduction

Morphological analysis occupies a tenuous position
statistical machine translation systems. Conven-
tional translation models are constructed with no
consideration of the relationships between lexical
items and instead treat different inflected (observed)
forms of identical underlying lemmas as completely
independent of one another. While the variously
inflected forms of one lemma may express differ-
ences in meaning that are crucial to correct transla-
tion, the strict independence assumptions normally
made exacerbate data sparseness and lead to poorly
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estimated models and suboptimal translations. A va-
riety of solutions have been proposed: Niessen and
Ney (2001) use of morphological information to im-
prove word reordering before training and after de-
coding. Goldwater and McClosky (2005) show im-
provements in a Czech to English word-based trans-
lation system when inflectional endings are simpli-
fied or removed entirely. Their method can, how-
ever, actually harm performance since the discarded
morphemes carry some information that may have
bearing on the translation (cf. Section 3.3). To avoid
this pitfall, Talbot and Osborne (2006) use a data-
driven approach to cluster source-language morpho-
logical variants that are meaningless in the target
language, and Yang and Kirchhoff (2006) propose
the use of a backoff model that uses morphologically
reduced forms only when the translation of the sur-
face form is unavailable. All of these approaches
have in common that the decisions about whether to
use morphological information are made in either a
pre- or post-processing step.

Recent work in spoken language translation sug-
gests that allowing decisions about the use of mor-
phological information to be made along side other
translation decisions (i.e., inside the decoder), will
yield better results. At least as early as Ney (1999),
it has been shown that when translating the out-
put from automatic speech regonition (ASR) sys-
tems, the quality can be improved by considering
multiple (rather than only a single best) transcrip-
tion hypothesis. Although state-of-the-art statistical
machine translation systems have conventionally as-
sumed unambiguous input; recent work has demon-
strated the possibility of efficient decoding of am-
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biguous input (represented as confusion networks or
word lattices) within standard phrase-based models
(Bertoldi et al., to appear 2007) as well as hierarchi-
cal phrase-based models (Dyer and Resnik, 2007).
These hybrid decoders search for the target language
sentence é that maximizes the following probability,
where G (o) represents the set of weighted transcrip-
tion hypotheses produced by an ASR decoder:

2 !

¢ = arg max fpggé)P(e, f'lo) (1)
The conditional probability p(e, f|o) that is maxi-
mized is modeled directly using a log-linear model
(Och and Ney, 2002), whose parameters can be
tuned to optimize either the probability of a devel-
opment set or some other objective (such as max-
imizing BLEU). In addition to the standard trans-
lation model features, the ASR system’s posterior
probability is another feature. The decoder thus
finds a translation hypothesis é that maximizes the
joint translation/transcription probability, which is
not necessarily the one that corresponds to the best
single transcription hypothesis.

2 Noisier channel translation

We extend the concept of translating from an am-
biguous set of source hypotheses to the domain of
text translation by redefining G(-) to be a set of
weighted sentences derived by applying morpholog-
ical transformations (such as stemming, compound
splitting, clitic splitting, etc.) to a given source sen-
tence f. This model for translation extends the usual
noisy channel metaphor by suggesting that an “En-
glish” source signal is first distorted into a morpho-
logically neutral “French” and then morphological
processes represent a further distortion of the signal,
which can be modeled independently. Whereas in
the context of an ASR transcription hypothesis, G(+)
assigns a posterior probability to each sentence, we
redefine of this value to be a backoff penalty. This
can be intuitively thought of as a measure of the
“distance” that a given morphological alternative is
from the observed input sentence.

The remainder of the paper is structured as fol-
lows. In Section 2, we describe the basic hierarchi-
cal translation model. In Section 3, we describe the
data and tools used and present experimental results
for Czech-English. Section 4 concludes.
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3 Hierarchical phrase-based decoding

Chiang (2005; to appear 2007) introduced hierar-
chical phrase-based translation models, which are
formally based on synchronous context-free gram-
mars. These generalize phrase-based translation
models by allowing phrase pairs to contain vari-
ables. Like phrase correspondences, the correspond-
ing synchronous grammar rules can be learned auto-
matically from aligned, but otherwise unannotated,
training bitext. For details about the extraction algo-
rithm, refer to Chiang (to appear 2007).

The rules of the induced grammar consist of pairs
of strings of terminals and non-terminals in the
source and target languages, as well one-to-one cor-
respondences between non-terminals on the source
and target side of each pair (shown as indexes in
the examples below). Thus they encapsulate not
only meaning translation (of possibly discontinuous
spans), but also typical reordering patterns. For ex-
ample, the following two rules were extracted from
the Spanish < English segment of the Europarl cor-
pus (Koehn, 2003):

X — (la Xg de X5 X5 s X )

X — (el Xm verde, the green Xm> 3)

Rule (2) expresses the fact that possessors can
be expressed prior to the possessed object in En-
glish but must follow in Spanish. Rule (3) shows
that the adjective verde follows the modified expres-
sion in Spanish whereas the corresponding English
lexical item green precedes what it modifies. Al-
though the rules given here correspond to syntactic
constituents, this is accidental. The grammars ex-
tracted make use of only a single non-terminal cate-
gory and variables are posited that may or may not
correspond to linguistically meaningful spans.

Given a synchronous grammar (, the translation
process is equivalent to parsing an input sentence
with the source side of G and thereby inducing a
target sentence. The decoder we used is based on
the CKY+ algorithm, which permits the parsing of
rules that are not in Chomsky normal form (Chep-
palier and Rajman, 1998) and that has been adapted
to admit input that is in the form of a confusion net-
work (Dyer and Resnik, 2007). To incorporate target



Language | Tokens | Types [ Singletons |

Czech surface 1.2M 88037 42341
Czech lemmas 1.2M 34227 13129
Czech truncated 1.2M 37263 13093
English 1.4M 31221 10508
Spanish 1.4M 47852 20740
French 1.2M | 38241 15264
German 1.4M 75885 39222
Table 1: Corpus statistics, by language, for the

WMTO7 training subset of the News Commentary
corpus.

language model probabilities into the model, which
is important for translation quality, the grammar is
intersected during decoding with an m-gram lan-
guage model. This process significantly increases
the effective size of the grammar, and so a beam-
search heuristic called cube pruning is used, which
has been experimentally determined to be nearly as
effective as an exhaustive search but far more effi-
cient.

4 Experiments

We carried out a series of experiments using differ-
ent strategies for making use of morphological in-
formation on the News Commentary Czech-English
data set provided for the WMTO7 Shared Task.
Czech was selected because it exhibits a rich inflec-
tional morphology, but its other morphological pro-
cesses (such as compounding and cliticization) that
affect multiple lemmas are relatively limited. This
has the advantage that a morphologically simpli-
fied (i.e., lemmatized) form of a Czech sentence has
the same number of tokens as the surface form has
words, which makes representing G(f) as a confu-
sion network relatively straightforward. The relative
morphological complexity of Czech, as well as the
potential benefits that can be realized by stemming,
can be inferred from the corpus statistics given in
Table 1.

4.1 Technical details

A trigram English language model with modified
Kneser-Ney smoothing (Kneser and Ney, 1995) was
trained using the SRI Language Modeling Toolkit
(Stolcke, 2002) on the English side of the News
Commentary corpus as well as portions of the
GigaWord v2 English Corpus and was used for
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all experiments. Recasing was carried out using
SRI’'s disambig tool using a trigram language
model. The feature set used included bidirectional
translation probabilities for rules, lexical transla-
tion probabilities, a target language model proba-
bility, and count features for target words, num-
ber of non-terminal symbols used, and finally the
number of morphologically simplified forms se-
lected in the CN. Feature weight tuning was carried
out using minimum error rate training, maximizing
BLEU scores on a held-out development set (Och,
2003). Translation scores are reported using case-
insensitive BLEU (Papineni et al., 2002) with a sin-
gle reference translation. Significance testing was
done using bootstrap resampling (Koehn, 2004).

4.2 Data preparation and training

We used a Czech morphological analyzer by Haji¢
and Hladka (1998) to extract the lemmas from the
Czech portions of the training, development, and
test data (the Czech-English portion of the News
Commentary corpus distributed as as part of the
WMTO7 Shared Task). Data sets consisting of trun-
cated forms were also generated; using a length limit
of 6, which Goldwater and McClosky (2005) exper-
imentally determined to be optimal for translation
performance. We refer to the three data sets and the
models derived from them as SURFACE, LEMMA,
and TRUNC. Czech—English grammars were ex-
tracted from the three training sets using the meth-
ods described in Chiang (to appear 2007). Two ad-
ditional grammars were created by combining the
rules from the SURFACE grammar and the LEMMA
or TRUNC grammar and renormalizing the condi-
tional probabilities, yielding the combined models
SURFACE+LEMMA and SURFACE+TRUNC.

Confusion networks for the development and test
sets were constructed by providing a single back-
off form at each position in the sentence where the
lemmatizer or truncation process yielded a different
word form. The backoff form was assigned a cost of
1 and the surface form a cost of 0. Numbers and
punctuation were not truncated. A “backoff” set,
corresponding approximately to the method of Yang
and Kirchhoff (2006) was generated by lemmatiz-
ing only unknown words. Figure 1 shows a sample
surface+lemma CN from the test set.



(T 2 [ 3 ] 4 [5] 6 [ 7 [ 8 J[9Jw0] 10 [ 172 ]
z | amerického | bfehu | atlantiku | se | veskera | takova | oduvodnéni | jevi | jako | naprosto | bizarni
americky beh atlantik s takovy jevit

Figure 1: Example confusion network generated by lemmatizing the source sentence to generate alternates at
each position in the sentence. The upper element in each column is the surface form and the lower element,

when present, is the lemma.

[ Input [ BLEU [ Sample translation
SURFACE 22.74 From the US side of the Atlantic all such odivodnéni appears to be a totally bizarre.
LEMMA 22.50 || From the side of the Atlantic with any such justification seem completely bizarre.
TRUNC (I=6) 22.07 || From the bank of the Atlantic, all such justification appears to be totally bizarre.
backoff (SURFACE+LEMMA) || 23.94 || From the US bank of the Atlantic, all such justification appears to be totally bizarre.
CN (SURFACE+LEMMA) 25.01 || From the US side of the Atlantic all such justification appears to be a totally bizarre.
CN (SURFACE+TRUNC) 23.57 || From the US Atlantic any such justification appears to be a totally bizarre.

Table 2: Czech-English results on WMTO07 Shared Task DEVTEST set. The sample translations are transla-

tions of the sentence shown in Figure 1.

4.3 Experimental results

Table 2 summarizes the performance of the six
Czech—English models on the WMTO7 Shared
Task development set. The basic SURFACE model
tends to outperform both the LEMMA and TRUNC
models, although the difference is only marginally
significant. This suggests that the Goldwater and
McClosky (2005) results are highly dependent on
the kind of translation model and quantity of data.
The backoff model, a slightly modified version
of the method proposed by Yang and Kirchhoff
(2006),! does significantly better than the baseline
(p < .05). However, the joint (SURFACE+LEMMA)
model outperforms both surface and backoff base-
lines (p < .01 and p < .05, respectively). The SUR-
FACE+TRUNC model is an improvement over the
SURFACE model, but it performances significantly
worse than the SURFACE+LEMMA model.

5 Conclusion

We presented a novel model-driven method for us-
ing morphologically reduced forms when translat-
ing from a language with complex inflectional mor-

' Our backoff model has two primary differences from model
described by Y&K. The first is that our model effectively cre-
ates backoff forms for every surface string, whereas Y&K do
this only for forms that are not found in the surface string. This
means that in our model, the probabilities of a larger number
of surface rules have been altered by backoff discounting than
would be the case in the more conservative model. Second, the
joint model we used has the benefit of using morphologically
simpler forms to improve alignment.
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phology. By allowing the decoder to select among
the surface form of a word or phrase and variants
of morphological alternatives on the source side,
we outperform baselines where hard decisions about
what form to use are made in advance of decod-
ing, as has typically been done in systems that make
use of morphological information. This “decoder-
guided” incorporation of morphology was enabled
by adopting techniques for translating from ambigu-
ous sources that were developed to address problems
specific to spoken language translation. Although
the results presented here were obtained using a hi-
erarchical phrase-based system, the model general-
izes to any system where the decoder can accept a
weighted word graph as its input.
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Abstract

For the WMT 2007 shared task, the UC
Berkeley team employed three techniques of
interest. First, we used monolingual syntac-
tic paraphrases to provide syntactic variety
to the source training set sentences. Sec-
ond, we trained two language models: a
small in-domain model and a large out-of-
domain model. Finally, we made use of re-
sults from prior research that shows that cog-
nate pairs can improve word alignments. We
contributed runs translating English to Span-
ish, French, and German using various com-
binations of these techniques.

1 Introduction

Modern Statistical Machine Translation (SMT) sys-
tems are trained on aligned sentences of bilingual
corpora, typically from one domain. When tested on
text from that same domain, such systems demon-
strate state-of-the art performance; however, on
out-of-domain text the results can get significantly
worse. For example, on the WMT 2006 Shared
Task evaluation, the French to English translation
BLEU scores dropped from about 30 to about 20 for
nearly all systems, when tested on News Commen-
tary rather than Europarl (Koehn and Monz, 2006).
Therefore, this year the shared task organizers
have provided 1M words of bilingual News Com-
mentary training data in addition to the Europarl
data (about 30M words), thus challenging the par-
ticipants to experiment with domain adaptation.
Below we describe our domain adaptation exper-
iments, trying to achieve better results on the News
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Commentary data. In addition to training on both
data sets, we make use of monolingual syntactic
paraphrases of the English side of the data.

2 Monolingual Syntactic Paraphrasing

In many cases, the testing text contains “phrases”
that are equivalent, but syntactically different from
the phrases learned on training, and the potential for
a high-quality translation is missed. We address this
problem by using nearly equivalent syntactic para-
phrases of the original sentences. Each paraphrased
sentence is paired with the foreign translation that is
associated with the original sentence in the training
data. This augmented training corpus can then be
used to train an SMT system. Alternatively, we can
paraphrase the test sentences making them closer to
the target language syntax.

Given an English sentence, we parse it with the
Stanford parser (Klein and Manning, 2003) and then
generate paraphrases using the following syntactic
transformations:

1. [np NP1 PNP3] = [vp NPy NP4 1.
inequality in income = income inequality.
2. [np NP; of NP3] = [np NP3 poss NP ].
inequality of income = income’s inequality.
3. NPjoss = NP.
income’s inequality = income inequality.
4. NPposs = NPppOf.
income’s inequality = inequality of income.
5. NPnc = NPposs.
income inequality = income’s inequality.
6. NPyc = NPpp.
income inequality = inequality in incomes.

Proceedings of the Second Workshop on Statistical Machine Translation, pages 212-215,
Prague, June 2007. (©2007 Association for Computational Linguistics



Sharply rising income inequality has raised the stakes of the economic game .
Sharply rising income inequality has raised the economic game ’s stakes .
Sharply rising income inequality has raised the economic game stakes .

Sharply rising inequality of income has raised the stakes of the economic game .
Sharply rising inequality of income has raised the economic game ’s stakes .
Sharply rising inequality of income has raised the economic game stakes .
Sharply rising inequality of incomes has raised the stakes of the economic game .
Sharply rising inequality of incomes has raised the economic game ’s stakes .
Sharply rising inequality of incomes has raised the economic game stakes .
Sharply rising inequality in income has raised the stakes of the economic game .
Sharply rising inequality in income has raised the economic game ’s stakes .
Sharply rising inequality in income has raised the economic game stakes .
Sharply rising inequality in incomes has raised the stakes of the economic game .
Sharply rising inequality in incomes has raised the economic game ’s stakes .
Sharply rising inequality in incomes has raised the economic game stakes .

Table 1: Sample sentence and automatically generated paraphrases. Paraphrased NCs are in italics.

7. remove that where optional

[ think that he is right = I think he is right.
8. add that where optional

[ think he is right = I think that he is right.

where:

poss possessive marker: > or ’s;

P preposition;

NPpp NP with internal PP-attachment;
NPpp,, NP with internal PP headed by of;
NP,,ss NP with internal possessive marker;
NPyc NP that is a Noun Compound.

While the first four and the last two transfor-
mations are purely syntactic, (5) and (6) are not.
The algorithm must determine whether a possessive
marker is feasible for (5) and must choose the cor-
rect preposition for (6). In either case, for noun com-
pounds (NCs) of length 3 or more, it also needs to
choose the position to modify, e.g., inquiry’s com-
mittee chairman vs. inquiry committee’s chairman.

In order to ensure accuracy of the paraphrases,
we use statistics gathered from the Web, using a
variation of the approaches presented in Lapata and
Keller (2004) and Nakov and Hearst (2005). We use
patterns to generate possible prepositional or copula
paraphrases in the context of the preceding and the
following word in the sentence, First we split the
NC into two parts N1 and Ny in all possible ways,
e.g., beef import ban lifting would be split as: (a)
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Ni="beef’, No="import ban lifting”, (b) N1="beef
import”, No="ban lifting”, and (c) N1="beef import
ban”, No="lifting”. For every split, we issue exact
phrase queries to the Google search engine using
the following patterns:

"1t Ny poss Ny rt"

"1t N, prep det Nj rt"

"1t Ny that be det N; rt"

"lt Ny that be prep det Nj rt"

where: 1t is the word preceding N; in the original
sentence or empty if none, rt is the word following
N5 in the original sentence or empty if none, poss
is a possessive marker (’s or ’), that is that, which
or who, be is is or are, det is a determiner (the, a,
an, or none), prep is one of the 8 prepositions used
by Lauer (1995) for semantic interpretation of NCs:
about, at, for, from, in, of, on, and with, and N7 can
be either N7, or N7 with the number of its last word
changed from singular/plural to plural/singular.

For all splits, we collect the number of page hits
for each instantiation of each pattern, filtering out
the paraphrases whose page hit count is less than 10.
We then calculate the total number of page hits H for
all paraphrases (for all splits and all patterns), and
retain those ones whose page hits count is at least
10% of H. Note that this allows for multiple para-
phrases of an NC. If no paraphrases are retained, we



repeat the above procedure with 1t set to the empty
string. If there are still no good paraphrases, we set
the rt to the empty string. If this does not help ei-
ther, we make a final attempt, by setting both 1t and
rt to the empty string.

Table 1 shows the paraphrases for a sample sen-
tence. We can see that income inequality is para-
phrased as inequality of income, inequality of in-
comes, inequality in income and inequality in in-
comes; also economic game’s stakes becomes eco-
nomic game stakes and stakes of the economic game.

3 Experiments

Table 2 shows a summary of our submissions: the
official runs are marked with a x. For our experi-
ments, we used the baseline system, provided by the
organizers, which we modified in different ways, as
described below.

3.1 Domain Adaptation

All our systems were trained on both corpora.

e Language models. We used two language
models (LM) — a small in-domain one (trained
on News Commentary) and a big out-of-domain
one (trained on Europarl). For example, for EN
— ES (from English to Spanish), on the low-
ercased tuning data set, using in-domain LM
only achieved a BLEU of 0.332910, while us-
ing both LMs yielded 0.354927, a significant
effect.

e Cognates. Previous research has found that
using cognates can help get better word align-
ments (and ultimately better M T results), espe-
cially in case of a small training set. We used
the method described in (Kondrak et al., 2003)
in order to extract cognates from the two data
sets. We then added them as sentence pairs to
the News Commentary corpus before training
the word alignment models' for uch3, uch4 and
uchs.

1Following (Kondrak et al., 2003), we considered words of
length 4 or more, we required the length ratio to be between
1—70 and %, and we accepted as potential cognates all pairs for
which the longest common subsequence ratio (LCSR) was 0.58
or more. We repeated 3 times the cognate pairs extracted from

the Europarl, and 4 times the ones from News Commentary.
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o Phrases. The ucb5 system uses the Europarl
data in order to learn an additional phrase ta-
ble and an additional lexicalized re-ordering
model.

3.2 Paraphrasing the Training Set

In two of our experiments (ucb3, ucb4 and ucbh5),
we used a paraphrased version of the training News
Commentary data, using all rules (1)-(8). We trained
two separate MT systems: one on the original cor-
pus, and another one on the paraphrased version.
We then used both resulting lexicalized re-ordering
models and a merged phrase table with extra para-
meters: if a phrase appeared in both phrase tables,
it now had 9 instead of 5 parameters (4 from each
table, plus a phrase penalty), and if it was in one
of the phrase tables only, the 4 missing parameters
were filled with 1e-40.

The ucb5 system is also trained on Europarl,
yielding a third lexicalized re-ordering model and
adding 4 new parameters to the phrase table entries.

Unfortunately, longer sentences (up to 100 to-
kens, rather than 40), longer phrases (up to 10 to-
kens, rather than 7), two LMs (rather than just
one), higher-order LMs (order 7, rather than 3),
multiple higher-order lexicalized re-ordering mod-
els (up to 3), etc. all contributed to increased sys-
tem’s complexity, and, as a result, time limitations
prevented us from performing minimum-error-rate
training (MERT) (Och, 2003) for ucb3, ucb4 and
ucb5. Therefore, we used the MERT parameter val-
ues from ucb] instead, e.g. the first 4 phrase weights
of ucbl were divided by two, copied twice and used
in ucb3 as the first 8 phrase-table parameters. The
extra 4 parameters of ucb5 came from training a sep-
arate MT system on the Europarl data (scaled ac-
cordingly).

3.3 Paraphrasing the Test Set

In some of our experiments (uch2 and ucb4), given
a test sentence, we generated the single most-likely
paraphrase, which makes it syntactically closer to
Spanish and French. Unlike English, which makes
extensive use of noun compounds, these languages
strongly prefer connecting the nouns with a preposi-
tion (and less often turning a noun into an adjective).
Therefore, we paraphrased all NCs using preposi-
tions, by applying rules (4) and (6). In addition, we



Languages | System LM size Paraphrasing | Cognates? | Extra phrases | MERT
News  Europarl | train?  test? Europarl finished?
EN — ES | ucbl” 3 5 +
ucb2 3 5 + +
ucb3 5 7 + +
ucb4 5 7 + + +
ucb5 5 7 + + +
EN — FR | ucb3 5 7 + +
ucb4* 5 7 + + +
EN — DE | ucbl* 5 7 + +
ucb2 5 7 + + +

Table 2: Summary of our submissions. All runs are for the News Commentary test data. The official

submissions are marked with a star.

applied rule (8), since its Spanish/French equivalent
que (as well as the German daf) is always obliga-
tory. These transformations affected 927 out of the
2007 test sentences. We also used this transformed
data set when translating to German (however, Ger-
man uses NCs as much as English does).

3.4 Other Non-standard Settings

Below we discuss some non-standard settings that
differ from the ones suggested by the organizers in
their baseline system. First, following Birch et al.
(2006), who found that higher-order LMs give bet-
ter results?, we used a 5-gram LM for News Com-
mentary, and 7-gram LM for Europarl (as opposed
to 3-gram, as done normally). Second, for all runs
we trained our systems on all sentences of length up
to 100 (rather than 40, as suggested in the baseline
system). Third, we used a maximum phrase length
limit of 10 (rather than 7, as typically done). Fourth,
we used both a lexicalized and distance-based re-
ordering models (as opposed to lexicalized only, as
in the baseline system). Finally, while we did not
use any resources other than the ones provided by
the shared task organizers, we made use of Web fre-
quencies when paraphrasing the training corpus, as
explained above.

4 Conclusions and Future Work

We have presented various approaches to domain
adaptation and their combinations. Unfortunately,
>They used a 5-gram LM trained on Europarl, but we

pushed the idea further, using a 7-gram LM with a Kneser-Ney
smoothing.
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computational complexity and time limitations pre-
vented us from doing proper MERT for the interest-
ing more complex systems. We plan to do a proper
MERT training and to study the impact of the indi-
vidual components in isolation.

Acknowledgements: This work supported in part
by NSF DBI-0317510.

References

Alexandra Birch, Chris Callison-Burch, Miles Osborne, and
Philipp Koehn. 2006. Constraining the phrase-based, joint
probability statistical translation model. In Proc. of Work-
shop on Statistical Machine Translation, pages 154-157.

Dan Klein and Christopher Manning. 2003. Accurate unlexi-
calized parsing. In Proceedings of ACL "03.

Philipp Koehn and Christof Monz. 2006. Manual and auto-
matic evaluation of machine translation between european
languages. In Proceedings on the Workshop on Statistical
Machine Translation, pages 102—-121.

Grzegorz Kondrak, Daniel Marcu, and Kevin Knight. 2003.
Cognates can improve statistical translation models. In Pro-
ceedings of NAACL, pages 46—48.

Mirella Lapata and Frank Keller. 2004. The web as a base-
line: Evaluating the performance of unsupervised web-based
models for a range of nlp tasks. In Proceedings of HLT-
NAACL "04.

Mark Lauer. 1995. Corpus statistics meet the noun compound:
some empirical results. In Proceedings of ACL ’95.

Preslav Nakov and Marti Hearst. 2005. Search engine statistics
beyond the n-gram: Application to noun compound bracket-
ing. In Proceedings of CoNLL ’05.

Franz Josef Och. 2003. Minimum error rate training in sta-
tistical machine translation. In Proceedings of ACL, pages
160-167.



The Syntax Augmented MT (SAMT) System for the Shared Task in the 2007
ACL Workshop on Statistical Machine Translation

Andreas Zollmann and Ashish Venugopal and Matthias Paulik and Stephan Vogel
School of Computer Science, Carnegie Mellon University, Pittsburgh
interACT Lab, University of Karlsruhe
{ashishv, zollmann, paulik, vogel+}@cs .cmu.edu

Abstract

We describe the CMU-UKA Syntax Augmented
Machine Translation system ‘SAMT’ used for the
shared task “Machine Translation for European Lan-
guages” at the ACL 2007 Workshop on Statistical
Machine Translation. Following an overview of syn-
tax augmented machine translation, we describe pa-
rameters for components in our open-source SAMT
toolkit that were used to generate translation results
for the Spanish to English in-domain track of the
shared task and discuss relative performance against
our phrase-based submission.

1 Introduction

As Chiang (2005) and Koehn et al. (2003) note,
purely lexical “phrase-based” translation models
suffer from sparse data effects when translating con-
ceptual elements that span or skip across several
source language words. Phrase-based models also
rely on distance and lexical distortion models to rep-
resent the reordering effects across language pairs.
However, such models are typically applied over
limited source sentence ranges to prevent errors in-
troduced by these models and to maintain efficient
decoding (Och and Ney, 2004).

To address these concerns, hierarchically struc-
tured models as in Chiang (2005) define weighted
transduction rules, interpretable as components of
a probabilistic synchronous grammar (Aho and Ull-
man, 1969) that represent translation and reordering
operations. In this work, we describe results from
the open-source Syntax Augmented Machine Trans-
lation (SAMT) toolkit (Zollmann and Venugopal,
2006) applied to the Spanish-to-English in-domain
translation task of the ACL’07 workshop on statisti-
cal machine translation.

We begin by describing the probabilistic model of
translation applied by the SAMT toolkit. We then
present settings for the pipeline of SAMT tools that
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we used in our shared task submission. Finally, we
compare our translation results to the CMU-UKA
phrase-based SMT system and discuss relative per-
formance.

2 Synchronous Grammars for SMT

Probabilistic synchronous context-free grammars
(PSCFGs) are defined by a source terminal set
(source vocabulary) 7g, a target terminal set (target
vocabulary) 77, a shared nonterminal set /' and pro-
duction rules of the form

X — (y,a,~,w)
where following (Chiang, 2005)

e X € N is a nonterminal

v € (NU7g)* : sequence of source nonterminals

and terminals

e o € (N UTp)* : sequence of target nonterminals
and terminals

e the count #NT(7) of nonterminal tokens in +y is
equal to the count #NT(«) of nonterminal tokens
in a,

o ~: {l,....#NT(y)} — {1,...,#NT(«)} one-
to-one mapping from nonterminal tokens in v to
nonterminal tokens in o

e w € [0,00) : nonnegative real-valued weight

Chiang (2005) uses a single nonterminal cate-
gory, Galley et al. (2004) use syntactic constituents
for the PSCFG nonterminal set, and Zollmann and
Venugopal (2006) take advantage of CCG (Combi-
natorial Categorical Grammar) (Steedman, 1999) in-
spired “slash” and “plus” categories, focusing on tar-
get (rather than source side) categories to generate
well formed translations.

We now describe the identification and estima-
tion of PSCFG rules from parallel sentence aligned
corpora under the framework proposed by Zollmann
and Venugopal (2006).

Proceedings of the Second Workshop on Statistical Machine Translation, pages 216-219,
Prague, June 2007. (©2007 Association for Computational Linguistics



2.1 Grammar Induction

Zollmann and Venugopal (2006) describe a process
to generate a PSCFG given parallel sentence pairs
(f,e), a parse tree 7 for each e, the maximum a
posteriori word alignment a over (f, e), and phrase
pairs Phrases(a) identified by any alignment-driven
phrase induction technique such as e.g. (Och and
Ney, 2004).

Each phrase in Phrases(a) (phrases identifiable
from a) is first annotated with a syntactic category
to produce initial rules. If the target span of the
phrase does not match a constituent in 7, heuristics
are used to assign categories that correspond to par-
tial rewriting of the tree. These heuristics first con-
sider concatenation operations, forming categories
like “NP+VP”, and then resort to CCG style “slash”
categories like “NP/NN” giving preference to cate-
gories found closer to the leaves of the tree.

To illustrate this process, consider the following
French-English sentence pair and selected phrase
pairs obtained by phrase induction on an automat-
1cally produced alignment a, and matching target
spans with 7.

il ne va pas
e = hedoes not go
PRP — il he
VB — va,go
RB+VB — ne vapas, not go
S — il ne va pas, he does not go

The alignment a with the associated target side
parse tree is shown in Fig. 1 in the alignment visual-
ization style defined by Galley et al. (2004).

Following the Data-Oriented Parsing inspired
rule generalization technique proposed %y Chiang
(2005), one can now generalize each identified
rule (initial or already partially generalized) N —
fi...fm/e1...ey for which there is an initial rule
M — fi...fu/ej...e, where 1 <i <u < mand
1 < j <wv < n,to obtain a new rule

N — fl . fi—lefu+1 e fm/el e ej_leev+1 ...En

where k is an index for the nonterminal M that in-

dicates the one-to-one correspondence between the
new M tokens on the two sides (it is not in the space
of word indices like 7, 7, u, v, m, n). The initial rules
listed above can be generalized to additionally ex-
tract the following rules from f, e.

S — PRP; ne vapas, PRP; does not go

S — ilne VB pas, he does not VB

S — i1RB+VB;, he does RB+VB;

S — PRP; RB+VB3, PRP; does RB+VBs
RB+VB — ne VBj pas, not VB,

Fig. 2 uses regions to identify the labeled, source
and target side span for all initial rules extracted on
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our example sentence pair and parse. Under this rep-
resentation, generalization can be viewed as a pro-
cess that selects a region, and proceeds to subtract
out any sub-region to form a generalized rule.

S
/\
NP VP
|
PRN AUX VB
. |
he does not g0
P
il ne va pas

Figure 1: Alignment graph (word alignment and target parse
tree) for a French-English sentence pair.

S
go 4 RB+VB
\_‘.-.
not_3 T~
VB
VP
does_2 — | —
—=——1—"NP+AUX
"1
he-1 D NP

il.L1 ne?2 va3 pas4
Figure 2: Spans of initial lexical phrases w.r.t. f, e. Each phrase
is labeled with a category derived from the tree in Fig. 1.

2.2 Decoding

Given a source sentence f, the translation task under
a PSCFG grammar can be expressed analogously to
monolingual parsing with a CFG. We find the most
likely derivation D with source-side f and read off
the English translation from this derivation:

argmax p(D) (D
D:sre(D)=f

e =tgt

where tgt(D) refers to the target terminals and
src(D) to the source terminals generated by deriva-
tion D.

Our distribution p over derivations is defined by a
log-linear model. The probability of a derivation D



is defined in terms of the rules r that are used in D:

_ ey (tgt (D) [Toep [T; di(r)™

p(D) 700

2

where ¢; refers to features defined on each rule,
pLM 1s a language model (LM) probability applied to
the target terminal symbols generated by the deriva-
tion D, and Z(\) is a normalization constant cho-
sen such that the probabilities sum up to one. The
computational challenges of this search task (com-
pounded by the integration of the LM) are addressed
in (Chiang, 2007; Venugopal et al., 2007). The
feature weights \; are trained in concert with the
LM weight via minimum error rate (MER) training
(Och, 2003).

We now describe the parameters for the SAMT
implementation of the model described above.

3 SAMT Components

SAMT provides tools to perform grammar induc-
tion ( “extractrules”, “filterrules”), from bilingual
phrase pairs and target language parse trees, as well
as translation (“FastTranslateChart™) of source sen-
tences given an induced grammar.

3.1 extractrules

extractrules is the first step of the grammar induc-
tion pipeline, where rules are identified based on the
process described in section 2.1. This tool works on
a per sentence basis, considering phrases extracted
for the training sentence pair (s;,¢;) and the corre-
sponding target parse tree ;. extractrules outputs
identified rules for each input sentence pair, along
with associated statistics that play a role in the esti-
mation of the rule features ¢. These statistics take
the form of real-valued feature vectors for each rule
as well as summary information collected over the
corpus, such as the frequency of each nonterminal
symbol, or unique rule source sides encountered.
For the shared task evaluation, we ran extrac-
trules with the following extraction parameter
settings to limit the scope and number of rules
extracted. These settings produce the same initial
phrase table as the CMU-UKA phrase based sys-
tem. We limit the source-side length of the phrase
pairs considered as initial rules to 8 (parameter
MaxSourceLength). Further we set the max-
imum number of source and target terminals per
rule (MaxSource/MaxTargetWordCount)
to 5 and 8 respectively with 2 of nonter-
minal pairs (i.e., substitution sites) per rule
(MaxSubstititionCount). We limit the
total number of symbols in each rule to 8
(MaxSource/TargetSymbolCount) and
require all rules to contain at least one source-side
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terminal symbol (noAllowAbstractRules,
noAllowRulesWithOnlyTargetTerminals)
since this reduces decoding time considerably. Ad-
ditionally, we discard all rules that contain source
word sequences that do not exist in the development
and test sets provided for the shared task (parameter
-r).

3.2 filterrules

This tool takes as input the rules identified by ex-
tractrules, and associates each rule with a feature
vector ¢, representing multiple criteria by which the
decoding process can judge the quality of each rule
and, by extension, each derivation. filterrules is also
in charge of pruning the resulting PSCFG to ensure
tractable decoding.

¢ contains both real and Boolean valued features
for each rule. The following probabilistic features
are generated by filterrules:

e p(r|lhs(X)) : Probability of a rule given its left-
hand-side (“result”) nonterminal

e p(r|src(r)) : Prob. of a rule given its source side

e p(ul(sre(r)), ul(tgt(r))|ul(sre(r)) : Probability
of the unlabeled source and target side of the rule
given its unlabeled source side.

Here, the function ul removes all syntactic la-
bels from its arguments, but retains ordering nota-
tion, producing relative frequencies similar to those
used in purely hierarchical systems. As in phrase-
based translation model estimation, ¢ also contains
two lexical weights (Koehn et al., 2003), counters
for number of target terminals generated. ¢ also
boolean features that describe rule types (i.e. purely
terminal vs purely nonterminal).

For the shared task submission, we pruned away
rules that share the same source side based on
p(r|sre(r)) (the source conditioned relative fre-
quency). We prune away a rule if this value is
less that 0.5 times the one of the best performing
rule (parameters BeamFactorLexicalRules,
BeamFactorNonlexicalRules).

3.3 FastTranslateChart

The FastTranslateChart decoder is a chart parser
based on the CYK+(Chappelier and Rajman, 1998)
algorithm. Translation experiments in this paper
are performed with a 4-gram SRI language model
trained on the target side of the corpus. Fast-
TranslateChart implements both methods of han-
dling the LM intersection described in (Venugopal
et al., 2007). For this submission, we use the Cube-
Pruning (Chiang, 2007) approach (the default set-
ting). LM and rule feature parameters A are trained
with the included MER training tool. Our prun-
ing settings allow up to 200 chart items per cell



with left-hand side nonterminal ‘_S’ (the reserved
sentence spanning nonterminal), and 100 items per
cell for each other nonterminal. Beam pruning
based on an (LM-scaled) additive beam of neg-
lob probability 5 is used to prune the search fur-
ther. These pruning settings correspond to setting
"PruningMap=0-100-5-@_S-200-5".

4 Empirical Results

We trained our system on the Spanish-English in-
domain training data provided for the workshop. Ini-
tial data processing and normalizing is described
in the workshop paper for the CMU-UKA ISL
phrase-based system. NIST-BLEU scores are re-
ported on the 2K sentence development ‘dev06’ and
test ‘test06’ corpora as per the workshop guide-
lines (case sensitive, de-tokenized). We compare
our scores against the CMU-UKA ISL phrase-based
submission, a state-of-the art phrase-based SMT
system with part-of-speech (POS) based word re-
ordering (Paulik et al., 2007).

4.1 Translation Results

The SAMT system achieves a BLEU score of
32.48% on the ‘dev06’ development corpus and
32.15% on the unseen ’test06’ corpus. This is
slightly better than the score of the CMU-UKA
phrase-based system, which achieves 32.20% and
31.85% when trained and tuned under the same in-
domain conditions. !

To understand why the syntax augmented ap-
proach has limited additional impact on the Spanish-
to-English task, we consider the impact of reorder-
ing within our phrase-based system. Table 1 shows
the impact of increasing reordering window length
(Koehn et al., 2003) on translation quality for the

‘dev06’ data.” Increasing the reordering window
past 2 has minimal impact on translation quality,
implying that most of the reordering effects across
Spanish and English are well modeled at the local or
phrase level. The benefit of syntax-based systems to
capture long-distance reordering phenomena based
on syntactic structure seems to be of limited value
for the Spanish to English translation task.

5 Conclusions

In this work, we briefly summarized the Syntax-
augmented MT model, described how we trained
and ran our implementation of that model on

'The CMU-UKA phrase-based workshop submission was
tuned on out-of-domain data as well.

>Variant of the CMU-UKA ISL phrase-based system with-
out POS based reordering. With POS-based reordering turned
on, additional window-based reordering even for window length
1 had no improvement in NIST-BLEU.
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ReOrder | 1 | 2 | 3 | 4 | POS | SAMT

BLEU [ 31.98 | 32.24 | 32.30 | 32.26 | 32.20 | 32.48

Table 1: Impact of phrase based reordering model settings com-
pared to SAMT on the ‘dev06’ corpus measured by NIST-
BLEU

the MT’07 Spanish-to-English translation task.
We compared SAMT translation results to
a strong phrase-based system trained under
the same conditions. Our system is available
open-source under the GNU General Pub-
lic License (GPL) and can be downloaded at
Wwww.cs.cmu.edu/ zollmann/samt
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Abstract

This article describes the combination of a
SYSTRAN system with a “statistical post-
editing” (SPE) system. We document
qualitative analysis on two experiments
performed in the shared task of the ACL
2007 Workshop on Statistical Machine
Translation. Comparative results and more
integrated ‘“hybrid” techniques are dis-
cussed.

1 Introduction

The evolution of SYSTRAN’s architecture over
the last years has been to « open » the system to
enable interaction between the internal system’s
rules and the external input — see Senellart (2003),
Attnas et al. (2005). Based on this architecture,
several directions are explored to introduce the use
of « corpus-based » approaches at several levels of
the process:
- use of corpus-based tools to validate and enrich
linguistic resources (detection of forbidden se-
quences, bilingual terminology extraction), - auto-
matic recognition of the text domain, - use of a
corpus-based decision mechanism within « word
boundary » (Chinese word identification), disam-
biguation... - use of word sense disambiguation
techniques — and the use of a language model in
the generation phase to select alternative transla-
tions, prepositions, and local reordering (adjective
positioning).

These tools have been presented in Senellart
(2006) and most of them will be integrated in
SYSTRAN version 7 systems.
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Independently, two experiments were carried
out for the shared task of the ACL 2007 Workshop
on Statistical Machine Translation to combine a
raw SYSTRAN system with a statistical post-
editing (SPE) system. One experiment was run by
NRC using the language pair English<>French in
the context of « Automatic Post-Edition » systems
using the PORTAGE system as described in Si-
mard et al. (2007). The second experiment based
on the same principle was run on the Ger-
man>English and Spanish>English' language pairs
using the Moses system (Koehn et al. 2007). The
objective was to train a SMT system on a parallel
corpus composed of SYSTRAN translations with
the referenced source aligned with its referenced
translation.

Beyond both (a) the huge (and expected) im-
provement of the BLEU score for the combined
system compared to raw translation output (for
German-English, around 10 BLEU points for the
Europarl test set of WMT2007) and (b) the (ex-
pected) corresponding improvement of the transla-
tion fluency, we provide qualitative analysis on the
contributions (positive and negative) of the SPE
layer imposed on the SYSTRAN translation output
in this paper. For this analysis we classifiy the dif-
ferent types of “post-editing” changes and point
out the alternative isolated statistical components
that could achieve the same results.

We conclude with two possible approaches:
breaking down the “statistical layer” into different
components/tools each specialized in a narrow and
accurate area, or refining this global SPE approach
in order to introduce linguistic constraints.

' The Moses model was trained following the recom-
mendations for the baseline system of WMT 2007.
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2  The SYSTRAN System

Covering 80 language pairs for 22 different source
languages, SYSTRAN powers almost all major
portals (Google, Yahoo!, BabelFish, Apple,
Worldlingo, ...) with machine translation services
through URL translations or translation “boxes”
(estimated traffic: over 40 million sentence transla-
tions and over 10 million web page translations per
day).

Customized systems are used by corporate custom-
ers either within a post-editing workflow, or with-
out post-editing for the translation of technical
Knowledge Bases.

SYSTRAN engines are also available as desktop
applications through “plugins” or within post-
editing tools. The same engines are also available
on ultra-light architectures such as for PDA de-
vices.

The SYSTRAN system is traditionally classi-
fied as a “rule-based” system and its design —
which has been in constant evolution - has, over
the years, always been driven by pragmatic consid-
erations — progressively integrating most of the
available productive techniques. As such, it is dif-
ficult to classify SYSTRAN and simply describe
its architecture. However, the evolution of the
SYSTRAN system is governed by the following
principles:

e  provide a deterministic output : it is possi-
ble to easily explain the translation results
for a specific sentence and change the rule

e incremental translation quality: the more
important evaluation criterion for mature
systems is to perform a comparative evalua-
tion of translation output between two con-
secutive versions. Since it is impossible to
guarantee O regressions in linguistic devel-
opment, 8 improvements for 1 degradation
defines the acceptance criterion for a lin-
guistic patch.

Crucial components of the SYSTRAN system
are the linguistic resources for each lan-
guage/language pair ranging from 100k to 800k
entries. Such “entries” should be understood as
both simple or multiword “lexical entries” but also
as customized disambiguation rules.

In this context (continuous integration of new
techniques in SYSTRAN engines, adhering to de-
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terminism and incrementability), over the last three
years one major evolution within SYSTRAN has
been to make use of available corpora - statically
through extraction/learning/validation tools such as:
e  Dictionary improvement using a monolin-
gual corpus: new terms/entities/terminology
extraction (n-grams based on linguistic pat-
terns);
and dynamically through corpus-based decision
algorithms such as:
e  Word sense disambiguation
e Use of a language model to select alterna-
tive translations, determiner choice, and lo-
cal controlled reordering — like multiple ad-
jective sequences.

In the following section, we present a qualitative
review of the SYSTRAN+SPE output and analyze
how the different contributions relate to each spe-
cific effort.

3 Experimental Results

Evaluation

& Linguistic

Based on the data from these two experiments:

SYSTRAN+PORTAGE (En<>Fr), and
SYSTRAN+Moses (De>En, Es>En), we
performed linguistic evaluations on the differences
between raw SYSTRAN output and

SYSTRAN+SPE output. The evaluation for
En<>Fr was performed on the News Commentary
test 2006 corpus, while the evaluations for De>En,
and Es>En were performed on the Europarl test
2007 corpus.

3.1 Impact

The first observation is the impact of the SPE on
the SYSTRAN output. Table 1 displays the WCR
(Word Change Ratez) and the ratio of sentences
impacted by the statistical post-editing. It is inter-
esting to note that the impact is quite high since
almost all sentences were post-edited. On the other
hand, the WCR of SYSTRAN+SPE is relatively
small — as this clearly relates to post-editing and
not a complete reshuffling of the translation. The
same insight is reinforced when reviewing a com-
parator (see Table 2) — the SYSTRAN+SPE output

* Word Change Rate is computed similarly to the Word
Error Rate, with regard to the SYSTRAN output.



is “reasonably” close to the raw SYSTRAN output,
and the SPE output structure is completely based

on the SYSTRAN output.
Word Impact (ratio of
Change sentences impacted)
Rate

SYSTRAN+PORTAGE 0.33 98%

En>Fr (nc devtest 2006)

SYSTRAN+PORTAGE 0.23 95%

Fr>En (nc devtest 2006)

SYSTRAN-+Moses 0.35 100%

De>En (nc test 2007)

SYSTRAN+Moses Es>En (nc | 0.31 99%

test 2007)

Table 1 - Impact of SPE on raw translation output

Source
:En>Fr,De>En,Es>en

SYSTRAN

SYSTRAN +SPE

Monetary policy
can be used to
stimulate an econ-
omy just as much
as fiscal policy, if
not more, in elec-
tion years, which
politicians will
always want to do.

La politique monétaire
peut étre employée
pour stimuler une
économie juste
comme beaucoup que
la politique fiscale,
sinon plus, en années
d'élection, que les
politiciens voudront
toujours faire.

La politique monétaire
peut étre utilisée pour
stimuler I'économie,
tout comme la politique
fiscale, pour ne pas
dire plus, dans les
années d'élection, que
les hommes politiques
voudront toujours faire.

o gram_det — change in determiner (on political com-
mitments—sur des engagements politiques vs. sur les
engagements politiques)

o gram_prep — change in preposition (across the
Atlantic—a travers ’atlantique vs. de ['autre coté de
Uatlantique)

o gram_pron — change in pronoun
o gram_tense — change in tense (should not be hid-
den—ne devraient... vs. ne doivent...)
o gram_number/gram_gender — change in num-
ber/gender — often reflecting lack of agreement
o gram_other — other grammatical changes
. punct/digit/case — change in punctuation, case, or
numbers
. wordorder_local — change in local word order
. wordorder_long — change in word order (long distance)
] style — change in “style” (justifying— justifiant vs. ce qui
justifie)

A detailed count of the number of improvements
(#improv), degradations (#degrad) and equivalents
(#equiv) related to each category performed for a
sample corpus (100 sentences each) for En>Fr,
De>En and Es>En systems, and related results are
reported in the following tables’:

Fortschritte der 12
Bewerberlander
auf dem Weg zum
Beitritt

Progress of the 12
applicant countries on
the way to the entry

Progress of the 12
candidate countries
along the road to ac-
cession

En una perspectiva
a mas largo plazo,
habra una moneda
Unica en todo el
continente.

In a perspective to
more long term, there
will be a unique cur-
rency in all the conti-
nent.

In a more long-term
perspective, there will
be a single currency for
the whole continent.

Table 2 - Comparison of source, SYSTRAN, and
SYSTRAN+SPE: the output is “reasonably close” —
and clearly preserves SYSTRAN’s translation struc-

ture

3.2 Linguistic Categorization of Different
Post-Editing Changes

To classify the types of “post-editing” changes
brought by the SPE system, we define the follow-

ing criteria:

] termchg — changes related to lexical changes.
o termchg_nfw — word not translated by SYSTRAN
generating a translation with SPE.
o termchg_term — slight terminology change pre-

serves part of speech and meaning. Most of the time
changes improve fluency by selecting the appropriate
terminology. (e.g. politicians—politiciens vs. the more
commonly used “hommes politiques”).

o termchg_loc -

multiword

expression/locution

change (the same is true—Le méme est vrai vs. C’est
également vrai)

SYSTRAN SYSTRAN SYSTRAN
PORTAGE Moses Moses
En>Fr De>En Es>En
termchg all +22% +46% +46%
termchg_nfw 0% +3% +1%
termchg_term +19% +42% +45%
termchg_loc +8%
termchg_mean -6%
gram all +2% +4% +12%
gram_det 14% +2% +4%
gram_prep 2% +1% +5%
gram_pron -1% +1% +4%
gram_tense -4% +1% -0%
gram_number 0% None None
gram_gender -4% n/a n/a
gram_other -1% None None
punct/digit/case 1% -1% -1%
wordorder_short -1% +1% +1%
wordorder_long 0% None +1%
style 1% +3% +2%

Table 3 - Relative improvements brought by the SPE
system: (#improv-#degrad)ly #modif

termchg_mean — lexical modification altering the
meaning of the sentences, by changing the part of
speech of the word, or by selecting a completely differ-
ent meaning for a given word. (Despite occasional
grumbles—En dépit des grognements occasionnels Vs.
En dépit des maux économiser)

gram — changes related to grammar
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#improv | #de- #improv / #equiv
grad #degrad
termchg all 90 32 3 33
termchg_nfw 1 0 0
termchg_term 59 7 8 29
termchg_loc 15 1 15 1
termchg_mean 15 24 1 3
gram all 44 38 1 8
gram_det 20 3 7 4
gram_prep 12 9 1 1
gram_pron 0 1 0 2
gram_tense 2 8 0 0
gram_number 4 4 1 0
gram_gender 2 8 0 0

3 Manual evaluations for De>En and Es>En should not
be compared with the results for En>Fr, as both corpus
and evaluation criteria differ.




gram_other

punct/digit/case

wordorder_short

O|=|A|n
—_

1
1
0 0
0

|||~

wordorder_long

style 3 1 3 1

Table 4 - Details on #improv, #degrad, #equiv for each
category for SYSTRAN PORTAGE En>Fr

3.3 Analysis of Results

The figures from the previous section provide very
useful information that requires deeper analysis,
the most obvious of which follow:
e  As is, this basic integration does not meet
the acceptance criterion “8 improv. for 1 de-
grad.”

e The most improved category is the
“termchg” which corresponds to a local
choice of word sense or alternative
translation of words and locutions. In this
category, the main source degradation stems
from the “termchg_mean” category. This
category covers changes of lexical unit parts
of speech.

e In grammatical categories, productive
categories are “gram_det” and “gram_prep”
but the improvement/degradation ratio for
this last category is very low (it shows
global improvements but there are many
unacceptable degradations).

e As expected, no “long-distance” restruc-
turing is observed and local reordering is
negative for En>Fr and relatively negligible
for other language pairs.

e  For the French target, morphology is a ma-
jor issue (accounts for 25% of degradations).
This was also expected since no mechanism
in the SPE provides any control over the
morphology.

4 Conclusions

The SYSTRAN+SPE experiments demonstrate
very good results — both on automatic scoring and
on linguistic analysis. Detailed comparative analy-
sis provides directions on how to further improve
these results by adding “linguistic control” mecha-
nisms. For SPE, we would, for instance, add lin-
guistic constraints in the decoding process, know-
ing that the structure/linguistic information could
be made available in the translation output.
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Beyond the scope of these experiments, our re-
sults set a baseline to compare with other more
sophisticated/integrated “rules and statistics” com-
bination models.

In particular, the most improved categories ob-
served in these experiments confirm that our cur-
rent development direction for integrating data-
driven mechanisms within translation engines (es-
pecially for word sense disambiguation, for the
selection of alternative translations or for specific
local phenomena like determination) should con-
verge on the same results while preventing associ-
ated degradations. Also, the high score reached by
the “termchg_loc” category substantiates the need
to continue exploiting phrase tables built on
parallel corpora to learn new terminology.
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Abstract

The special challenge of the WMT 2007
shared task was domain adaptation. We
took this opportunity to experiment with
various ways of adapting a statistical ma-
chine translation systems to a special do-
main (here: news commentary), when
most of the training data is from a dif-
ferent domain (here: European Parliament
speeches). This paper also gives a descrip-
tion of the submission of the University of
Edinburgh to the shared task.

1 Our framework: the Moses MT system

The open source Moses (Koehn et al., 2007) MT
system was originally developed at the University
of Edinburgh and received a major boost through a
2007 Johns Hopkins workshop. It is now used at
several academic institutions as the basic infrastruc-
ture for statistical machine translation research.

The Moses system is an implementation of the
phrase-based machine translation approach (Koehn
et al., 2003). In this approach, an input sentence is
first split into text chunks (so-called phrases), which
are then mapped one-to-one to target phrases using
a large phrase translation table. Phrases may be re-
ordered, but typically a reordering limit (in our ex-
periments a maximum movement over 6 words) is
used. See Figure 1 for an illustration.

Phrase translation probabilities, reordering prob-
abilities and language model probabilities are com-
bined to give each possible sentence translation a
score. The best-scoring translation is searched for by
the decoding algorithm and outputted by the system
as the best translation. The different system compo-
nents h; (phrase translation probabilities, language
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natuerlich] | hat | l[john| | spass am| | spiel
j A4 \
of course| |john] | has | | fun with the| |game

Figure 1: Phrase-based statistical machine transla-
tion model: Input is split into text chunks (phrases)
which are mapped using a large phrase translation
table. Phrases are mapped one-to-one, and may be
reordered.

model, etc.) are combined in a log-linear model to
obtain the score for the translation e for an input sen-
tence f:
score(e, f) = exp Z i hi(e,f) (1)
7

The weights of the components \; are set by a
discriminative training method on held-out develop-
ment data (Och, 2003). The basic components used
in our experiments are: (a) two phrase translation
probabilities (both p(e| f) and p(f|e)), (b) two word
translation probabilities (both p(e|f) and p(fle)),
(c) phrase count, (d) output word count, (e) language
model, (f) distance-based reordering model, and (g)
lexicalized reordering model.

For a more detailed description of this model,
please refer to (Koehn et al., 2005).

2 Domain adaption

Since training data for statistical machine translation
is typically collected opportunistically from wher-
ever it is available, the application domain for a ma-
chine translation system may be very different from
the domain of the system’s training data.

For the WMT 2007 shared task, the challenge was
to use a large amount of out-of-domain training data

Proceedings of the Second Workshop on Statistical Machine Translation, pages 224-227,
Prague, June 2007. (©2007 Association for Computational Linguistics



(about 40 million words) combined with a much
smaller amount of in-domain training data (about 1
million words) to optimize translation performance
on that particular domain. We carried out these ex-
periments on French—English.

2.1 Only out-of-domain training data

The first baseline system is trained only on the out-
of-domain Europarl corpus, which has the following
corpus statistics:

French [ English
Sentences 1,257,419
Words 37,489,556 | 33,787,890

2.2 Only in-domain training data

The second baseline system is trained only on the
in-domain NewsCommentary corpus. This corpus
is much smaller:

French | English
Sentences 42,884
Words 1,198,041 [ 1,018,503

2.3 Combined training data

To make use of all the training data, the straight-
forward way is to simply concatenate the two train-
ing corpora and use the combined data for both
translation model and language model training. In
our situation, however, the out-of-domain training
data overwhelms the in-domain training data due to
the sheer relative size. Hence, we do not expect the
best performance from this simplistic approach.

2.4 In-domain language model

One way to force a drift to the jargon of the target
domain is the use of the language model. In our next
setup, we used only in-domain data for training the
language model. This enables the system to use all
the translation knowledge from the combined cor-
pus, but it gives a preference to word choices that
are dominant in the in-domain training data.

2.5 Interpolated language model

Essentially, the goal of our subsequent approaches is
to make use of all the training data, but to include a
preference for the in-domain jargon by giving more
weight to the in-domain training data. This and the
next approach explore methods to bias the language
model, while the final approach biases the transla-
tion model.
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Figure 2: Interpolating in-domain and out-of-
domain language models: effect of interpolation
weight on perplexity of LM on development set.

We trained two language models, one for each the
out-of-domain and the in-domain training data. Lan-
guage modeling software such as the SRILM toolkit
we used (Stolke, 2002) allows the interpolation of
these language models. When interpolating, we give
the out-of-domain language model a weight in re-
spect to the in-domain language model.

Since we want to obtain a language model that
gives us the best performance on the target domain,
we set this weight so that the perplexity of the de-
velopment set from that target domain is optimized.
We searched for the optimal weight setting by sim-
ply testing a set of weights and focusing on the most
promising range of weights.

Figure 2 displays all the weights we explored dur-
ing this process and the corresponding perplexity of
the resulting language model on the development set
(nc-dev2007). The optimal weight can be picked out
easily from this very smooth curve.

2.6 Two language models

The log-linear modeling approach of statistical ma-
chine translation enables a straight-forward combi-
nation of the in-domain and out-of-domain language
models. We included them as two separate fea-
tures, whose weights are set with minimum error
rate training. The relative weight for each model is
set directly by optimizing translation performance.

2.7 Two translation models

Finally, besides biasing the language model to a spe-
cific target domain, we may also bias the translation
model. Here, we take advantage of a feature of the
Moses decoder’s factored translation model frame-
work. In factored translation models, the representa-



Method J%BLEU
Large out-of-domain training data 25.11
Small in-domain training data 25.88
Combined training data 26.69
In-domain language model 27.46
Interpolated language model 27.12
Two language models 27.30
Two translation models 27.64

Table 1: Results of domain adaptation experiments

tion of words is extended to a vector of factors (e.g.,
surface form, lemma, POS, morphology).

The mapping of an input phrase to an output
phrase is decomposed into several translation and
generation steps, each using a different translation
or generation table, respectively. Such a decomposi-
tion is called a decoding path.

A more recent feature of the factored translation
model framework is the possible use of multiple al-
ternative decoding paths. This alternate decoding
path model was developed by Birch et al. (2007).
For our purposes, we use two decoding paths, each
consisting of only one translation step. One decod-
ing path is the in-domain translation table, and the
other decoding path is the out-of-domain translation
table. Again, respective weights are set with mini-
mum error rate training.

3 Domain adaptation results

Table 1 shows results of our domain adaptation ex-
periments on the development test set (nc-devtest-
2007). The results suggest that the language model
is a useful tool for domain adaptation. While train-
ing on all the data is essential for good performance,
using an in-domain language model alone already
gives fairly high performance (27.46). The perfor-
mance with the interpolated language model (27.12)
and two language models (27.30) are similar. All
perform better than the three baseline approaches.

The results also suggest that higher performance
can be obtained by using two translation models
through the Moses decoder’s alternative decoding
path framework. We saw our best results under this
condition (27.64).

4 WMT 2007 shared task submissions

We participated in all categories. Given the four lan-
guage pairs, with two translation directions and (ex-
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cept for Czech) two test domains, this required us to
build 14 translation systems.

We had access to a fairly large computer cluster to
carry out our experiments over the course of a few
weeks. However, speed issues with the decoder and
load issues on the crowded cluster caused us to take
a few shortcuts. Also, a bug crept in to our English—
French experiments where we used the wrong deto-
kenizer, resulting drop of 2-3 points in %BLEU.

4.1 Tuning

Minimum error rate training is the most time-
consuming aspects of the training process. Due to
time constraints, we did not carry out this step for all
but the Czech systems (a new language for us). For
the other systems, we re-used weight settings from
our last year’s submission.

One of the most crucial outcomes of tuning is a
proper weight setting for output length, which is es-
pecially important for the BLEU score. Since the
training corpus and tokenization changed, our re-
used weights are not always optimal in this respect.
But only in one case we felt compelled to manually
adjust the weight for the word count feature, since
the original setup led to a output/reference length ra-
tio of 0.88 on the development test set.

4.2 Domain adaptation

For the Europarl test sets, we did not use any do-
main adaptation techniques, but simply used either
just the Europarl training data or the combined data
— whatever gave the higher score on the develop-
ment test set, although scores differed by only about
0.1-0.2 %BLEU.

In order to be able to re-use the old weights, we
were limited to domain adaptation methods that did
not change the number of components. We decided
to use the interpolated language model method de-
scribed in Section 2.5. For the different language
pairs, optimal interpolation weights differed:

Language pair Weight for Europarl LM
French-English 0.43
Spanish—English 0.41
German-English 0.40
English—French 0.51
English—Spanish 0.42
English-German 0.45




Language pair Europarl NewsCommentary
%BLEU | Length | NIST | %BLEU | Length | NIST
French—-English 32.66 0.96 7.94 28.27 1.03 7.50
Spanish-English 33.26 1.00 7.82 34.17 1.06 8.35
German-English 28.49 0.94 7.32 25.45 1.01 7.19
Czech-English — — — 22.68 0.98 6.96
English-French 26.76 1.08 6.66 24.38 1.02 6.73
English—Spanish 32.55 0.98 7.66 33.59 0.94 8.46
English-German 20.59 0.97 6.18 17.06 1.00 6.04
English—Czech — — — 12.34 1.02 4.85

Table 2: Test set performance of our systems: BLEU and NIST scores, and output/reference length ratio.

4.3 Training and decoding parameters

We tried to improve performance by increasing
some of the limits imposed on the training and de-
coding setup. During training, long sentences are
removed from the training data to speed up the
GIZA++ word alignment process. Traditionally, we
worked with a sentence length limit of 40. We found
that increasing this limit to about 80 gave better re-
sults without causing undue problems with running
the word alignment (GIZA++ increasingly fails and
runs much slower with long sentences).

We also tried to increase beam sizes and the
limit on the number of translation options per cov-
erage span (ttable-limit). This has shown to be suc-
cessful in our experiments with Arabic—English and
Chinese—English systems. Surprisingly, increasing
the maximum stack size to 1000 (from 200) and
ttable-limit to 100 (from 20) has barely any ef-
fect on translation performance. The %BLEU score
changed only by less than 0.05, and often worsened.

4.4 German-English system

The German—English language pair is especially
challenging due to the large differences in word or-
der. Collins et al. (2005) suggest a method to reorder
the German input before translating using a set of
manually crafted rules. In our German—English sub-
missions, this is done both to the training data and
the input to the machine translation system.

5 Conclusions

Our submission to the WMT 2007 shared task is a
fairly straight-forward use of the Moses MT system
using default parameters. In a sense, we submitted
a baseline performance of this system. BLEU and
NIST scores for all our systems on the test sets are
displayed in Table 2. Compared to other submitted
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systems, these are very good scores, often the best
or second highest scores for these tasks.

We made a special effort in two areas: We ex-
plored domain adaptation methods for the News-
Commentary test sets and we used reordering rules
for the German—English language pair.
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Abstract

METEOR is an automatic metric for Ma-
chine Translation evaluation which has been
demonstrated to have high levels of corre-
lation with human judgments of translation
quality, significantly outperforming the more
commonly used BLEU metric. It is one of
several automatic metrics used in this year’s
shared task within the ACL. WMT-07 work-
shop. This paper recaps the technical de-
tails underlying the metric and describes re-
cent improvements in the metric. The latest
release includes improved metric parameters
and extends the metric to support evalua-
tion of MT output in Spanish, French and
German, in addition to English.

1 Introduction

Automatic Metrics for MT evaluation have been re-
ceiving significant attention in recent years. Evalu-
ating an MT system using such automatic metrics is
much faster, easier and cheaper compared to human
evaluations, which require trained bilingual evalua-
tors. Automatic metrics are useful for comparing
the performance of different systems on a common
translation task, and can be applied on a frequent
and ongoing basis during MT system development.
The most commonly used MT evaluation metric in
recent years has been IBM’s BLEU metric (Papineni
et al., 2002). BLEU is fast and easy to run, and it
can be used as a target function in parameter op-
timization training procedures that are commonly
used in state-of-the-art statistical MT systems (Och,
2003). Various researchers have noted, however, var-
ious weaknesses in the metric. Most notably, BLEU
does not produce very reliable sentence-level scores.
METEOR , as well as several other proposed metrics
such as GTM (Melamed et al., 2003), TER (Snover
et al., 2006) and CDER (Leusch et al., 2006) aim to
address some of these weaknesses.
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METEOR , initially proposed and released in 2004
(Lavie et al., 2004) was explicitly designed to im-
prove correlation with human judgments of MT qual-
ity at the segment level. Previous publications on
METEOR (Lavie et al., 2004; Banerjee and Lavie,
2005) have described the details underlying the met-
ric and have extensively compared its performance
with BLEU and several other MT evaluation met-
rics. This paper recaps the technical details underly-
ing METEOR and describes recent improvements in
the metric. The latest release extends METEOR to
support evaluation of MT output in Spanish, French
and German, in addition to English. Furthermore,
several parameters within the metric have been opti-
mized on language-specific training data. We present
experimental results that demonstrate the improve-
ments in correlations with human judgments that re-
sult from these parameter tunings.

2 The METEOR Metric

METEOR evaluates a translation by computing a
score based on explicit word-to-word matches be-
tween the translation and a given reference trans-
lation. If more than one reference translation is
available, the translation is scored against each refer-
ence independently, and the best scoring pair is used.
Given a pair of strings to be compared, METEOR cre-
ates a word alignment between the two strings. An
alignment is mapping between words, such that ev-
ery word in each string maps to at most one word
in the other string. This alignment is incrementally
produced by a sequence of word-mapping modules.
The “exact” module maps two words if they are ex-
actly the same. The “porter stem” module maps two
words if they are the same after they are stemmed us-
ing the Porter stemmer. The “WN synonymy” mod-
ule maps two words if they are considered synonyms,
based on the fact that they both belong to the same
“synset” in WordNet.

The word-mapping modules initially identify all
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possible word matches between the pair of strings.
We then identify the largest subset of these word
mappings such that the resulting set constitutes an
alignment as defined above. If more than one maxi-
mal cardinality alignment is found, METEOR selects
the alignment for which the word order in the two
strings is most similar (the mapping that has the
least number of “crossing” unigram mappings). The
order in which the modules are run reflects word-
matching preferences. The default ordering is to
first apply the “exact” mapping module, followed by
“porter stemming” and then “WN synonymy”.
Once a final alignment has been produced between
the system translation and the reference translation,
the METEOR score for this pairing is computed as
follows. Based on the number of mapped unigrams
found between the two strings (m), the total num-
ber of unigrams in the translation (¢) and the total
number of unigrams in the reference (r), we calcu-
late unigram precision P = m/t and unigram recall
R = m/r. We then compute a parameterized har-
monic mean of P and R (van Rijsbergen, 1979):

P-R
a-P+(1-a) R

Precision, recall and Fmean are based on single-
word matches. To take into account the extent to
which the matched unigrams in the two strings are
in the same word order, METEOR computes a penalty
for a given alignment as follows. First, the sequence
of matched unigrams between the two strings is di-
vided into the fewest possible number of “chunks”
such that the matched unigrams in each chunk are
adjacent (in both strings) and in identical word or-
der. The number of chunks (ch) and the number of
matches (m) is then used to calculate a fragmenta-
tion fraction: frag = ch/m. The penalty is then
computed as:

Fmean =

Pen =~ - frag®

The value of v determines the maximum penalty
(0 < v < 1). The value of § determines the
functional relation between fragmentation and the
penalty. Finally, the METEOR score for the align-
ment between the two strings is calculated as:

score = (1 — Pen) - Frean

In all previous versions of METEOR. , the values of
the three parameters mentioned above were set to be:
a =109, 8 =3.0and v = 0.5, based on experimen-
tation performed in early 2004. In the latest release,
we tuned these parameters to optimize correlation
with human judgments based on more extensive ex-
perimentation, as reported in section 4.
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3 METEOR Implementations for
Spanish, French and German

We have recently expanded the implementation of
METEOR to support evaluation of translations in
Spanish, French and German, in addition to English.
Two main language-specific issues required adapta-
tion within the metric: (1) language-specific word-
matching modules; and (2) language-specific param-
eter tuning. The word-matching component within
the English version of METEOR uses stemming and
synonymy modules in constructing a word-to-word
alignment between translation and reference. The re-
sources used for stemming and synonymy detection
for English are the Porter Stemmer (Porter, 2001)
and English WordNet (Miller and Fellbaum, 2007).
In order to construct instances of METEOR for Span-
ish, French and German, we created new language-
specific “stemming” modules. We use the freely
available Perl implementation packages for Porter
stemmers for the three languages (Humphrey, 2007).
Unfortunately, we have so far been unable to obtain
freely available WordNet resources for these three
languages. METEOR versions for Spanish, French
and German therefore currently include only “exact”
and “stemming” matching modules. We are investi-
gating the possibility of developing new synonymy
modules for the various languages based on alterna-
tive methods, which could then be used in place of
WordNet. The second main language-specific issue
which required adaptation is the tuning of the three
parameters within METEOR , described in section 4.

4 Optimizing Metric Parameters

The original version of METEOR (Banerjee and
Lavie, 2005) has instantiated values for three pa-
rameters in the metric: one for controlling the rela-
tive weight of precision and recall in computing the
Fmean score (a); one governing the shape of the
penalty as a function of fragmentation (3) and one
for the relative weight assigned to the fragmenta-
tion penalty (v). In all versions of METEOR to date,
these parameters were instantiated with the values
a = 0.9, 8 =3.0and v = 0.5, based on early data ex-
perimentation. We recently conducted a more thor-
ough investigation aimed at tuning these parameters
based on several available data sets, with the goal of
finding parameter settings that maximize correlation
with human judgments. Human judgments come in
the form of “adequacy” and “fluency” quantitative
scores. In our experiments, we looked at optimizing
parameters for each of these human judgment types
separately, as well as optimizing parameters for the
sum of adequacy and fluency. Parameter adapta-



’ Corpus \ Judgments \ Systems ‘

NIST 2003 Ara-to-Eng 3978 6
NIST 2004 Ara-to-Eng 347 5
WMT-06 Eng-to-Fre 729 4
WMT-06 Eng-to-Ger 756 5
WMT-06 Eng-to-Spa 1201 7

Table 1: Corpus Statistics for Various Languages

tion is also an issue in the newly created METEOR
instances for other languages. We suspected that
parameters that were optimized to maximize corre-
lation with human judgments for English would not
necessarily be optimal for other languages.

4.1 Data

For English, we used the NIST 2003 Arabic-to-
English MT evaluation data for training and the
NIST 2004 Arabic-to-English evaluation data for
testing. For Spanish, German and French we used
the evaluation data provided by the shared task at
last year’s WMT workshop. Sizes of various corpora
are shown in Table 1. Some, but not all, of these data
sets have multiple human judgments per translation
hypothesis. To partially address human bias issues,
we normalize the human judgments, which trans-
forms the raw judgment scores so that they have sim-
ilar distributions. We use the normalization method
described in (Blatz et al., 2003). Multiple judgments
are combined into a single number by taking their
average.

4.2 Methodology

We performed a “hill climbing” search to find the
parameters that achieve maximum correlation with
human judgments on the training set. We use Pear-
son’s correlation coefficient as our measure of corre-
lation. We followed a “leave one out” training proce-
dure in order to avoid over-fitting. When n systems
were available for a particular language, we train the
parameters n times, leaving one system out in each
training, and pooling the segments from all other
systems. The final parameter values are calculated
as the mean of the n sets of trained parameters that
were obtained. When evaluating a set of parameters
on test data, we compute segment-level correlation
with human judgments for each of the systems in the
test set and then report the mean over all systems.

4.3 Results
4.3.1 Optimizing for Adequacy and Fluency

We trained parameters to obtain maximum cor-
relation with normalized adequacy and fluency judg-
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’ \ Adequacy | Fluency \ Sum ‘
« 0.82 0.78 0.81
16} 1.0 0.75 0.83
~ 0.21 0.38 0.28

Table 2: Optimal Values of Tuned Parameters for
Different Criteria for English

’ \ Adequacy \ Fluency \ Sum ‘

Original 0.6123 0.4355 | 0.5704
Adequacy 0.6171 0.4354 | 0.5729
Fluency 0.6191 0.4502 | 0.5818
Sum 0.6191 0.4425 | 0.5778

Table 3: Pearson Correlation with Human Judg-
ments on Test Data for English

ments separately and also trained for maximal corre-
lation with the sum of the two. The resulting optimal
parameter values on the training corpus are shown in
Table 2. Pearson correlations with human judgments
on the test set are shown in Table 3.

The optimal parameter values found are somewhat
different than our previous metric parameters (lower
values for all three parameters). The new parame-
ters result in moderate but noticeable improvements
in correlation with human judgments on both train-
ing and testing data. Tests for statistical significance
using bootstrap sampling indicate that the differ-
ences in correlation levels are all significant at the
95% level. Another interesting observation is that
precision receives slightly more “weight” when op-
timizing correlation with fluency judgments (versus
when optimizing correlation with adequacy). Recall,
however, is still given more weight than precision.
Another interesting observation is that the value of
~ is higher for fluency optimization. Since the frag-
mentation penalty reflects word-ordering, which is
closely related to fluency, these results are consistent
with our expectations. When optimizing correlation
with the sum of adequacy and fluency, optimal val-
ues fall in between the values found for adequacy and
fluency.

4.3.2 Parameters for Other Languages

Similar to English, we trained parameters for
Spanish, French and German on the available WMT-
06 training data. We optimized for maximum corre-
lation with human judgments of adequacy, fluency
and for the sum of the two. Resulting parameters
are shown in Table 4.3.2. For all three languages, the
parameters that were found to be optimal were quite
different than those that were found for English, and
using the language-specific optimal parameters re-



\ Adequacy | Fluency \ Sum ‘

French:a 0.86 0.74 0.76
I} 0.5 0.5 0.5

~y 1.0 1.0 1.0
German:a 0.95 0.95 0.95
16} 0.5 0.5 0.5

5 0.6 0.8 0.75
Spanish:a 0.95 0.62 0.95
I} 1.0 1.0 1.0

~ 0.9 1.0 0.98

Table 4: Tuned Parameters for Different Languages

sults in significant gains in Pearson correlation levels
with human judgments on the training data (com-
pared with those obtained using the English opti-
mal parameters)!. Note that the training sets used
for these optimizations are comparatively very small,
and that we currently do not have unseen test data
to evaluate the parameters for these three languages.
Further validation will need to be performed once ad-
ditional data becomes available.

5 Conclusions

In this paper we described newly developed
language-specific instances of the METEOR metric
and the process of optimizing metric parameters for
different human measures of translation quality and
for different languages. Our evaluations demonstrate
that parameter tuning improves correlation with hu-
man judgments. The stability of the optimized pa-
rameters on different data sets remains to be inves-
tigated for languages other than English. We are
currently exploring broadening the set of features
used in METEOR to include syntax-based features
and alternative notions of synonymy. The latest re-
lease of METEOR is freely available on our website
at: http://www.cs.cmu.edu/"alavie/METEOR/
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Abstract level of detail useful for morphological representa-
tion and Section 6 compares the results to a setting
with more data available, albeit out of domain. The
second part (Section 7) is devoted to a brief analysis
of MT output errors.

This paper describes experiments with
English-to-Czech phrase-based machine
translation. Additional annotation of input
and output tokens (multiple factors) is used
to explicitly model morphology. We vary 1.1 Motivation for Improving Morphology
the translation scenario (the setup of multi-
ple factors) and the amount of information
in the morphological tags. Experimental
results demonstrate significant improvement
of translation quality in terms of BLEU.

Czech is a Slavic language with very rich morphol-
ogy and relatively free word order. The Czech mor-
phological system (Haji¢, 2004) defines 4,000 tags
in theory and 2,000 were actually seen in a big
tagged corpus. (For comparison, the English Penn
1 Introduction Treebank tagset contains just about 50 tags.) In our

Statistical phrase-based machine translation (SM rallel corpus (see Se_ct|_on 3 below), the English
. : ocabulary size is 35k distinct token types but more
systems currently achieve top performing restilts.

than twice as big in Czech, 83k distinct token types.

Known limitations of phrase-based SMT include . .
worse quality when translating to morphologically To further emphasize the importance of morphol-
y in MT to Czech, we compare the standard

ich | dtot lating f th - .
rich fanguages as opposed fo transiating rom the 3LEU (Papineni et al., 2002) of a baseline phrase-

(Koehn, 2005). One of the teams at the 2006 sum : . . .
mer engineering workshop at Johns Hopkins Uni?aseOI tlranslattlpn (\jN:;]TBLEtU Vtvh'Ch dlsregezrc:s \INord
versity? attempted to tackle these problems by in-orms (lemmatize oulput is compared fo lem-

troducing separateacTors in SMT input and/or matized reference translation). The theoretical mar-
output to allow explicit modelling of the underlying gin {o'r tlr:nprOV|nng\T/IT ?ua;hty 'S alrlch)ut _9tBI__EL:
language structure. The support for factored transl oints. the same OUIpUIt SCOres .2 PoInts In stan

tion models was incorporated into the Moses open-ard BLEU and 21 points in lemmatized BLEU.

source SMT systef _ _ 2 Overview of Factored SMT
In this paper, we report on experiments with
English-to-Czech multi-factor translation. After aln statistical MT, the goal is to translate a source
brief overview of factored SMT and our data (Sec{foreign) language sentenc§/ = fi...f;... fs
tions 2 and 3), we summarize some possible trangio a target language (Czech) sentende =
lating scenarios in Section 4. Section 5 studies tha ...c;...c;. In phrase-based SMT, the assump-
" Inttp: //ww nist.gov/ speech/t est s/t / tion is made that the target sentence can be con-
2htt p: // waw. cl sp. j hu. edu/ ws2006/ structed by segmenting source sentence into phrases,
%htt p: // ww. st at nt . or g/ moses/ translating each phrase and finally composing the
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target sentence from phrase translatios!, de- steps produce conflicting values in an output factor
notes the segmentation of the input sentence intre discarded.

K phrases. Among all possible target language A maPPING step from a subset of source fac-
sentences, we choose the sentence with the highesits S C {1...F} to a subset of target factors

probability, T C {1...C} is the standard phrase-based model
. (see e.g. (Koehn, 2004a)) and introduces a feature
& = arlgmaﬁ{PT(Cﬂfi], st )} (1) in the following form:
I,ci,K,s7

In a log-linear model, the conditional probability
of ¢ being the translation of/ under the segmenta-
tion s1¢ is modelled as a combination of independent
feature functionshy(-,-,-)...ha(-,-, ) describing
the relation of the source and target sentences:

hmaeS=T (e f) =logp(fileE) (4

The conditional probability of,f, i.e. the phrase
fk restricted to factorsy, given Ef, i.e. the phrase
¢y, restricted to factorg is estimated from relative
frequenciesyp(f7|ef) = N(f%,é")/N (") where

Prc|ff, %) = N(fS, &M dgnqtes the number of co-occurrences of
o e K a phrase paiff°, ") that are consistent with the
eXP( 1 Amhtm(ct, 1, 51)) (2) word alignment. The marginal coun (¢1) is the
Zc,{/ exp(CM_ Nh (1 7, 55)) number of occurrences of the target phraSén the

training corpus.

The denominator in 2 is used as a normalization . . .
For each mapping step, the model is included in
factor that depends on the source sentefiteand . TS
the log-linear combination in source-to-target and

- K . . . .- ~ J
segmentations;” only and is omitted during maxi target-to-source directiong{ f7|&%) andp (| fT).
mization. The model scaling factorg? are trained L e : .

In addition, statistical single word based lexica are

elt_her to'the maximum entrppy pnnup!e or Op.t' used in both directions. They are included to smooth
mized with respect to the final translation quality . . .

the relative frequencies used as estimates of the
measure. o

rghrase probabilities.

Most of our features are phrase-based and we A ¢ bset of t i
quire all such features to operate synchronously on GENERATION Step maps a subset ot target fac-

the segmentation!* and independently of neigh- tors Tj to a disjoint subset of target factofs,

bouring segments. In other words, we restrict thét2 € {1...C} In the current implementation
form of phrase-based features to: of Moses, generation steps are restricted to word-

to-word correspondences:
K
hm(c{> 1J> 8{() = hm(élm fk:) (3)
k=1 length(¢y)
where f;, represents the source phrase anmépre- h%fn'Tl_)TQ(% fr) =log H p(ég,liwg,?i) ()
sents the target phragegiven the segmentatios{*. =1

2.1 Decoding Steps whereé! ; is thei-th words in thek-th target phrase
In factored SMT, source and target wortlandc are restricted to factord”. We estimate the conditional
represented as tuples &f and C' FACTORS resp., Probabilityp(é;%|é,) by counting over words in the
each describing a different aspect of the word, e.darget-side corpus. Again, the conditional probabil-
its word form, lemma, morphological tag, role in aity is included in the Iog-Iinear combination in both
verbal frame. The process of translation consists éfirections.

DECODING steps of two typesMAPPING steps and In addition to features for decoding steps, we in-
GENERATION steps. If more steps contribute to theclude arbitrary number of target language models
same output factor, they have to agree on the outver subsets of target factofs,C {1...C}. Typi-
come, i.e. partial hypotheses where two decodingally, we use the standardgram language model:
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side of the parallel corpus only, unless stated other-
I wise.
hi, (f,c1) = long(CﬂC;*F—l el ) (6)
i1 3.1 Evaluation Measure and MERT
While generation steps are used to enforce “vertie evaluate our experiments using the (lowercase,
cal” coherence between “hidden properties” of outtokenized) BLEU metric and estimate the empiri-
put words, language models are used to enforce sgal confidence using the bootstrapping method de-
quential coherence of the output. scribed in Koehn (200415). We report the scores
Operationally, Moses performs a stack-basegbtained on the test section with model parameters
beam search very similar to Pharaoh (Koehnuned using the tuning section for minimum error
2004a). Thanks to the synchronous-phrases assunigte training (MERT, (Och, 2003)).
tion, all the decoding steps can be performed during
a preparatory phase. For each span in the input sep- Scenarios of Factored Translation
tence, all possible translation options are constructed English—Czech
using the mapping and generation steps in a user-
specified order. Low-scoring options are pruned alM/e experimented with the following factored trans-
ready during this phase. Once all translation optionigtion scenarios.
are constructed, Moses picks source phrases (all out-The baseline scenario (labelled T for translation)
put factors already filled in) in arbitrary order, sub+s single-factored: input (English) lowercase word
jectto areordering limit, producing output in left-to- forms are directly translated to target (Czech) low-
right fashion and scoring it using the specified lanercase forms. A 3-gram language model (or more
guage models exactly as Pharaoh does. models based on various corpora) checks the stream
of output word forms. The baseline scenario thus
3 Data Used corresponds to a plain phrase-based SMT system:
The experiments reported in this paper were car- )
ried outpwith the Newps Commentaryp(l\FI)C) corpus as English Czech
made available for the SMT workshbpf the ACL lowercase lowercase  +LM
2007 conference. lemma lemma
The Czech part of the corpus was tagged and lem- morphology morphology

matized using the tool by Haji¢ and Hladka (1998), In order to check the output not only for word-
the English part was tagged MXPOST (Ratnaparkhjevel coherence but also for morphological coher-
1996) and lemmatized using the Morpha tool (Minence, we add a single generation step: input word
nen et al., 2001). After some final cleanup, th@orms are first translated to output word forms and
corpus consists of 55,676 pairs of sentences (1.1Mhch output word form then generates its morpho-
Czech tokens and 1.2M English tokens). We use thggical tag.

designated additional tuning and evaluation sections Ty types of language models can be used simul-

consisting of 1023, resp. 964 sentences. _ taneously: a (3-gram) LM over word forms and a
In all experiments, word alignment was obtalneq7_gram) LM over morphological tags.

using the grow-diag-final heuristic for symmetriz- \ye sed tags with various levels of detail, see sec-
ing GIZA++ (Och and Ney, 2003) alignments. Toyjon 5 e call this the “T+C” (translate and check)
reduce data sparseness, the English text was IOW%E‘enario:

cased and Czech was lemmatized for alignment es-

timation. Language models are based on the target °Given a test set of sentences, we perform 1,000 random se-
R —— lections with repetitions to estimate 1,000 BLEU scoresest t
http://ww. statnt. org/ wnt 07/ sets of the same size. The empirical 90%-confidence upper and
*Our preliminary experiments with the Prague Czechiower bounds are obtained after removing top and bottom 5% of
English Dependency Treebank, PCEDT v.1dIngjrek et al., scores. For conciseness, we report the average of the aistan
2004), 20k sentences, gave similar results, although with laetween to standard BLEU value and the empirical upper and
lower level of significance due to a smaller evaluation set. lower bound after the+” symbol.
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English Czech BLEU

lowercase lowercas +LM T+T+G 13.9:0.7
lemma lemma j T+T+C 13.9:0.6
morphology morpholog +LM T+C 13.6:0.6

As a refinement of T+C, we also used T+T+C Baseline: T 12.20.6

scenario, where the morphological output stream is . .
constructed based on both output word forms and ”T able 1: BLEU scores of various translation scenar-
put morphology. This setting should reinforce corl9S:

rect translation of morphological features such as

number of source noun phrases. To reduce the riglypotheses might be estimated less reliably. With
of early pruning, the generation step operationallyhe limited stack size (not more than 200 hypothe-
precedes the morphology mapping step. Agairses of the same number of covered input words), the
two types of language models can be used in thigecoder may more often find sub-optimal solutions.

“T+T+C” scenario: Moreover, the more steps are used, the more model
English Czech weights have to be tuned in the minimum error rate
lowercase lowercas LM training. Considerably more tuning data might be
lemma lemma necessary to tune the weights reliably.
morphology—— morpholog +LM

5 Granularity of Czech Part-of-Speech
The most complex scenario we used is linguis-

tically appealing: output lemmas (base forms) anfiS Stated above, the Czech morphological tag sys-
morphological tags are generated from input in tw&™M 1S Very complex: in theory up to 4,000 different
independent translation steps and combined in a sif@gs are poss'*?'e- In'our ,T_+TJ,rC scenario, we exper-
gle generation step to produce output word form§[nent with various S|mpI|f|cat|ons_ of the system to
The input English text was not lemmatized so Wémd the best ba.Iarjce betyveen _rlchness and robust-
used English word forms as the source for produd!€SS (_)f the Stfit'St!CS avgllablt_e in our corpus.  (The
ing Czech lemmas. more information is retained in the tags, the more

The “T+T+G” setting allows us to use three type?evere data sparseness is.)

of language models. Trigram models are used fqty|| tags (1200 unique seen in the 56k corpus):
word forms and lemmas and 7-gram language mod-  Fy|| Czech positional tags are used. A tag

els are used over tags: consists of 15 positions, each holding the value
English Czech of a morphological property (e.g. number, case
lowercase lowercas +LM or gendery.
lemma lemm +LM : N
POS+ 184 / lify the t
morpholog morpholo +LM OS+case (184 unique seen)Ve simplify the tag

to include only part and subpart of speech (dis-
4.1 Experimental Results: Improved over T tinguishes also partially e.g. verb tenses). For
nouns, pronouns, adjectives and preposifipns

Table 1 summarizes estimated translation quality of .
also the case is included.

the various scenarios. In all cases, a 3-gram LM is

used for word forms or lemmas and a 7-gram LMCNGO1 (621 unique seen)CNGO1 refines POS.

for morphological tags. For nouns, pronouns and adjectives we include
The gOOd news is that multi-factored models al- not only the case but also number and gender.

ways outperform the baseline T. T »
Unfort telv. th | lti-factored In principle, each of the 15 positions could be used as a
nrortunately, the more complex multi-laclor€dgenarate factor. The set of necessary generation stepsddeen

scenarios do not bring any significant improvementlevant dependencies would have to be carefully detednine

over T+C. Our belief is that this effect is caused by #Some Czech prepositions select for a particular case, some
L . are ambiguous. Although the case is never shown on surface of

search errors: with multi-factored models, more hyt'he preposition, the tagset includes this information amdoB

potheses get similar scores and future costs of partiabgers are able to infer the case.
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CNGO2 (791 unique seen)Tag for punctuation is mix

refined: the lemma of the punctuation symbol Qo NO

is taken into account; previous models disre-

garded e.g. the distributional differences be- weighted = aNC + fmix
tween a comma and a question mark. Case, g .onarioc Phrases from  LMs BLEU
number and gender added to nouns, pronouns, T NC NC 12.9:0.6
adjectives, prepositions, but also to verbs and 1 mix miﬁt J 1111-8;8-2

. mix weighte .80.

numerals (where applicable). T+C CNGO3  NC NC 13707
T+C CNG03  mix mix 13.40.7
CNGO3 (1017 unigue seen)Optimized tagset: T+C CNGO3  mix weighted  13:70.7
T+C full tags N_C N_C 13.6:0.6
e Tags for nouns, adjectives, pronouns and ~ I*Cfulltags  mix mix ~ 13.307

5.1 Experimental Results: CNGO03 Best

. T+C full tags mix weighted 13:80.7
numerals describe the case, number and g g

g,e,”d‘?“ the Czech reflexiye pronoseor Figure 1: The effect of additional datain T and T+C
siis highlighted by a special flag. scenarios

Tag for verbs describes subpart of speech,

number, gender, tense and aspect; the tagO it G N the sinal
includes a special flag if the verb was the ur resutis contirm improvement overine singie-

auxiliary verb byt (to be)in any of its factore_d baseline. Detailed kn(_)wlec_lge of the mor-

fOrms. phological system also proves its utility: by choos-

Taq f . includes th ing the most relevant features of tags and lemmas
ag for prepositions includes the case angut avoiding sparseness, we can improve on BLEU

also the lemma of the preposition. score by about 0.3 absolute over T+T+C with full
Lemma included for punctuation, parti- tags.

cles and interjections.

Tag for numbers describes the “shape” o6 More Out-of-Domain Data in T and T+C
the number (all digits are replaced by the ~ Scenarios

digit 5 but number-internal punctuation is ) )
kept intact). The tag thus distinguishes peln order to check if the method scales up W'Fh
tween 4- or 5-digit numbers or the preci-_more parallgl data available, we extend our tra_ln—
sion of floating point numbers. ing data usmg the CzEng parallel corpus (Bojar
and Zabokrtsky, 2006). CzEng contains sentence-
Part of speech and subpart of speech fOzSIigned texts from the European Parliament (about
all other words. 75%), e-books and stories (15%) and open source
documentation. By “Baseline” corpus we denote
NC corpus only, by “Large” we denote the combi-

Table 2 summarizes the results of T+T+C scenaripation of training sentences from NC and CzEng

Table 2:

with varying detail in morphological tag. (1070k sentences, 13.9M Czech and 15.5 English
tokens) where in-domain NC data amounts only to
BLEU 5.2% sentences.
Baseline: T (single-factor) 12490.6 Figure 1 gives full details of our experiments with
T+T+C, POS+case 1340.6 the additional data. We varied the scenario (T or
T+T+C, CNGO1 13.40.6 T+C), the level of detail in the T+C scenario (full
T+T+C, CNGO02 13.50.7 tags vs. CNGO03) and the size of the training corpus.
T+T+C, full tags 13.40.6 We extract phrases from either the in-domain corpus
T+T+C, CNGO3 14.20.7 only (NC) or the mixed corpus (mix). We use either

_ N one LM per output factor, varying the corpus size
BLEU scores of various granularities ofNC or mix), or two LMs per output factors with

morphological tags in T+T+C scenario. weights trained independently in the MERT proce-
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dure (weighted). Independent weights allow us to Translation of Verb Modifier

take domain difference into account, but we exploit . .. preserves meaning 56% 79%

this in the target LM only, not the phrases. ...is disrupted 14% 12%
The only significant difference is caused by the ...is missing 27% 1%

scenario: T+C outperforms the baseline T, regard-...is unknown (not translated) 0% 5%

less of corpus size. Other results (insignificantly)

indicate the following observations: Table 3: Analysis of 77 Verb-Modifier pairs in 15

_ o _ sample sentences.
¢ Ignoring the domain difference and using only

the mixed domain LM in general performs
worse than allowing MERT to optimize LM More importantly, our analysis has shown that
weights for in-domain and generic data sepaeven in cases where both the Verb and the Modi-
rately?® fier are lexically correct, the relation between them
) in Czech is either non-grammatical or meaning-
e CNGO3 outperforms full tags only in small dataigr nted in 56% of these cases. Commented sam-
setting, with large data (treating the domain dif |5 of such errors are given in Figure 2 below. The
ference properly), full tags perform better. .5t sample shows that a strong language model can
lead to the choice of a grammatical relation that nev-
ertheless does not convey the original meaning. The
The previous sections described improvementecond sample illustrates a situation where two cor-
gained on small data sets when checking morpheoect options are available but the system chooses
logical agreement using T+T+C scenario (BLEUan inappropriate relation, most probably because of
raised from 12.9% to 13.9% or up to 14.2% withbacking off to a generic pattern verb-ngmj‘gf“”e.
manually tuned tagset, CNG03). However, the begthis pattern is quite common for expressing the ob-
result achieved is still far below the margin of lem-ject role of many verbs (such agdat see Cor-
matized BLEU (21%), as mentioned in Section 1.1rect option 2 in Figure 2), but does not fit well
When we searched for the unexploited morphowith the verb vykehnout While the target-side
logical errors, visual inspection of MT output sug-data may be rich enough to learn the generalization
gested that local agreement (within 3-word span) igyb&hnout—siastr, no such generalization is possi-
relatively correct but Verb-Modifier relations are of-ble with language models over word forms or mor-
ten malformed causing e.g. a bad case for the Mogbhological tags only. The target side data will be
ifier. To quantify this observation we performed ahardly ever rich enough to learn this particular struc-
micro-study of our best MT output using an intu-ture in all correct morphological and lexical variants:
itive metric. We checked whether Verb-Modifier re-vylehl-s—reklamou, vyhla—s—reklamami, vnl—
lations are properly preserved during the translatios—proh&Senm, vykehli-s—ozamenm, ... We
of 15 sample sentences. would need a mixed model that combines verb lem-
Thesourcetext of the sample sentences containethas, prepositions and case information to properly
77 Verb-Modifier pairs. Table 3 lists our observa-<capture the relations.
tions on the two members in each Verb-Modifier Unfortunately, our preliminary experiments that
pair. We see that only 56% of verbs are translateghade use of automatic Czech dependency parse
correctly and 79% of nouns are translated correctlyrees to construct a factor explicitly highlighting the
The system tends to skip verbs quite often (27% oferb (lexicalized) its Modifiers (case and the lemma
cases). of the preposition, if present) and boundary sym-
" %In our previous experiments with PCEDT as the domainPOIs such as punctuation or conjunctions and using
specific data, the difference was more apparent becauserthe c@ dummy token for all other words did not bring any
pus domains were more distant. In the T scenario reportex _he'improvement over the baseline. A possible reason is
the weighted LMs did not bring any improvement over “mix”
tbat we employed only a standard 7-gram language

and even performed worse than the baseline NC. We attribu i :
this effect to some randomness in the MERT procedure. model to this factor. A more appropriate treatment

7 Untreated Morphological Errors
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is to disregard the dummy tokens in the languagelause coherence, until full-featured syntax-based
model at all and use an n-gram language model thetT models (Yamada and Knight (2002), Eisner

looks at last» — 1 non-dummy items. (2003), Chiang (2005) among many others) are
tested when translating to morphologically rich lan-
8 Related Research guages.

Class-based LMs (Brown et al., 1992) or factore® Conclusion

LMs (Bilmes and Kirchhoff, 2003) are very similar . . .

to our T+C scenario. Given the small differencedVe experimented with multi-factored phrase-based

in all T+. .. scenarios’ performance, class-based LNfansiation aimed at improving morphological co-

might bring equivalent improvement. Yang and!€rénce in MT output. We varied the setup of ad-

Kirchhoff (2006) have recently documented minoditional factors (translation scenario) and the level

BLEU improvement using factored LMs in single—Of detail in morphological tags. Our results on

factored SMT to English. The multi-factored ap_English-to-Czech translation demonstrate signifi-

proach to SMT of Moses is however more general, &Nt improvement in BLEU scores by explicit mod-
Many researchers have tried to employ mort_allmg of morphology and using a separate morpho-

phology in improving word alignment techniquesIoglcal language model to ensure the coherence. To

(e.g. (Popovic and Ney, 2004)) or machine -l knowledge, this is one of the first experiments

lation quality (NieBen and Ney (2001), Koehn anoshowing the advantages of using multiple factors in

Knight (2003), Zollmann et al. (2006), among oth—MT'

ers, for various languages; Goldwater and McClos Verb-modifier errors have been studied and a fac-

(2005), Bojar et al. (2006) and Talbot and Osborrlié)r capturing verb-modifier dependencies has been

(2006) for Czech), however, they focus on translatprOp_osed' Unfortunately, this factor has yet to bring
ing from the highly inflectional language. any improvement.
Durgar El-Kahlout and Oflazer (2006) report pre- g Acknowledgement
liminary experiments in English to Turkish single-
factored phrase-based translation, gaining signifithe work on this project was partially sup-
cant improvements by splitting root words and theiported by the grants Collegium Informaticum
morphemes into a sequence of tokens. In might eACR 201/05/H014, grants No. MEB838 and
interesting to explore multi-factored scenarios fof5A405/06/0589 (PIRE), FP6-IST-5-034291-STP
different Turkish morphology representation sug{Euromatrix), and NSF No. 0530118.
gested the paper.
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Input: Keep on investing.
MT output: Pokracovalo investovani. (grammar correret)

Gloss: Continued investing. (Meaning: The investing caed.)
Correct: PokraCujte v investovani.
Input: brokerage firms rushed out ads . ..
MT Output: brokerské firmy vybéhl reklamy
Gloss: brokerage firmsse,m  rangmase adiﬁzzooﬁifjgc
Correct option 1:  brokerské firmy vybéhly s reklamgimi s,
Correct option 2:  brokerské firmy vydaly reklapy..

Figure 2: Two sample errors in translating Verb-Modifieat&n from English to Czech.
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Sentence Level Machine Translation Evaluation as a Ranking Problem: one

step aside from BLEU
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Abstract their extremely rich mechanisms for reproduction

The paper proposes formulating MT evalu-
ation as a ranking problem, as is often done
in the practice of assessment by human. Un-
der the ranking scenario, the study also in-
vestigates the relative utility of several fea-
tures. The results show greater correlation
with human assessment at the sentence level,
even when using an n-gram match score as
a baseline feature. The feature contributing
the most to the rank order correlation be-
tween automatic ranking and human assess-
ment was the dependency structure relation
rather than BLEU score and reference lan-
guage model feature.

1 Introduction

In recent decades, alongside the growing research
on Machine Translation (MT), automatic MT evalu-
ation has become a critical problem for MT system
developers, who are interested in quick turnaround
development cycles. The state-of-the-art automatic
MT evaluation is an n-gram based metric repre-
sented by BLEU (Papineni et al., 2001) and its vari-
ants. Ever since its creation, the BLEU score has
been the gauge of Machine Translation system eval-
uation. Nevertheless, the research community has
been largely aware of the deficiency of the BLEU
metric. BLEU captures only a single dimension
of the vitality of natural languages: a candidate
translation gets acknowledged only if it uses ex-
actly the same lexicon as the reference translation.
Natural languages, however, are characterized by
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via a large number of syntactic, lexical and semantic
rewriting rules. Although BLEU has been shown
to correlate positively with human assessments at
the document level (Papineni et al., 2001), efforts to
improve state-of-the-art MT require that human as-
sessment be approximated at sentence level as well.
Researchers report the BLEU score at document
level in order to combat the sparseness of n-grams
in BLEU scoring. But, ultimately, document-level
MT evaluation has to be pinned down to the gran-
ularity of the sentence. Unfortunately, the corre-
lation between human assessment and BLEU score
at sentence level is extremely low (Liu et al., 2005,
2006). While acknowledging the appealing simplic-
ity of BLEU as a way to access one perspective of an
MT candidate translation’s quality, we observe the
following facts of n-gram based MT metrics. First,
they may not reflect the mechanism of how human
beings evaluate sentence translation quality. More
specifically, optimizing BLEU does not guarantee
the optimization of sentence quality approved by hu-
man assessors. Therefore, BLEU is likely to have
a low correlation with human assessment at sen-
tence level for most candidate translations. Second,
it is conceivable that human beings are more reli-
able ranking the quality of multiple candidate trans-
lations than assigning a numeric value to index the
quality of the candidate translation even with signif-
icant deliberation. Consequently, a more intuitive
approach for automatic MT evaluation is to repli-
cate the quality ranking ability of human assessors.
Thirdly, the BLEU score is elusive and hard to in-
terpret; for example, what can be concluded for a

Proceedings of the Second Workshop on Statistical Machine Translation, pages 240-247,
Prague, June 2007. (©2007 Association for Computational Linguistics



candidate translation’s quality if the BLEU score is
0.0168, particularly when we are aware that even
a human translation can receive an embarrassingly
low BLEU score? In light of the discussion above,
we propose an alternative scenario for MT evalua-
tion, where, instead of assigning a numeric score to
a candidate translation under evaluation, we predict
its rank with regard to its peer candidate translations.
This formulation of the MT evaluation task fills the
gap between an automatic scoring function and hu-
man MT evaluation practice. The results from the
current study will not only interest MT system eval-
uation moderators but will also inform the research
community about which features are useful in im-
proving the correlation between human rankings and
automatic rankings.

2 Problem Formulation

2.1 Data and Human Annotation Reliability

We use two data sets for the experiments:
the test data set from the LDC MTC corpus
(LDC2003T17") and the data set from the MT eval-
uation workshop at ACL05%. Both data sets are for
Chinese-English language pairs and each has four
reference translations and seven MT system transla-
tions as well as human assessments for fluency and
adequacy on a scale of 1 to 5, with 5 indicating the
best quality. For the LDC2003T17 data, human as-
sessments exist for only three MT systems; for the
ACLO0S5 workshop data, there are human assessments
for all seven MT systems. Table 1 summarizes the
information from these two data sets.

The Kappa scores (Cohen, 1960) for the human
assessment scores are negative, both for fluency and
adequacy, indicating that human beings are not con-
sistent when assigning quality scores to the candi-
date translations. We have much sympathy with a
concern expressed in (Turian, 2003) that “Automatic
MT evaluation cannot be faulted for poor correlation
with the human judges, when the judges do not cor-
relate well each other.”To determine whether human
assessor might be more consistent when ranking
pairs of sentences, we examined the “ranking con-
sistency score”of the human assessment data for the
LDC2003T17 data. For this consistency score, we

"http://www.ldc.upenn.edu/Catalog/
Zhttp://www.isi.edu/” cyl/MTSE2005/
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are only concerned with whether multiple judges are
consistent in terms of which sentence of the two sen-
tences is better: we are not concerned with the quan-
titative difference between judges. Since some sen-
tences are judged by three judges while others are
judged by only two judges, we calculated the consis-
tency scores under both circumstances, referred to as
“Consistent 2”’and “Consistent 3”’in the following ta-
ble. For “Consistent 2”, for every pair of sentences,
where sentence 1 is scored higher (or lower or equal)
than sentence 2 by both judges, then the two judges
are deemed consistent. For “Consistent 3”, the pro-
portion of sentences that achieved the above consis-
tency from triple judges is reported. Additionally,
we also considered a consistency rate that excludes
pairs for which only one judge says sentence 1 is bet-
ter and the other judge(s) say(s) sentence 2 is better.
We call these “Consistent 2 with tie”and “Consistent
3 with tie”. From the rank consistency scores in Ta-
ble 2, we observe that two annotators are more con-
sistent with the relative rankings for sentence pairs
than with the absolute quality scores. This finding
further supports the task of ranking MT candidate
sentences as more reliable than the one of classify-
ing the quality labels.

2.2 Ranking Over Classification and
Regression

As discussed in the previous section, it is difficult for
human assessors to perform MT candidate transla-
tion evaluation with fine granularity (e.g., using real-
valued numeric score). But humans’ assessments
are relatively reliable for judgments of quality rank-
ing using a coarser ordinal scale, as we have seen
above. Several approaches for automatically assign-
ing quality scores to candidate sentences are avail-
able, including classification, regression or ranking,
of which ranking is deemed to be a more appropri-
ate approach. Nominalize the quality scores and for-
mulating the task as a classification problem would
result in a loss of the ordinal information encoded
in the different scores. Additionally, the low Kappa
scores in the human annotation reliability analysis
reported above also confirms our previous specula-
tion that a classification approach is less appropriate.
Regression would be more reasonable than classifi-
cation because it preserves the ordinal information
in the quality labels, but it also inappropriately im-



Data Index MT Systems References Documents Sentences
LDC2003T17 7 4 100 878
ACLOS Workshop 7 4 100 919
Table 1: Data Sets Information
Inter-Judge Score Consistent Consistent Consistent Consistent
2 3 2 with Tie 3 with Tie
Ranking Consistency Score  45.3% 23.4% 92.6% 87.0%

Table 2: Ranking Consisteny Scores for LDC2003T17 Data

poses interval scaling onto the quality labels. In
contrast, ranking considers only the relative rank-
ing information from human labels and does not im-
pose any extra information onto the quality labels
assigned by human beings.

The specific research question addressed in this
paper is three-fold: First, in addition to investigating
the correlation between automatic numeric scoring
and human assessments, is ranking of peer candidate
translations an alternative way of examining correla-
tion that better suits the state of affairs of human an-
notation? Second, if the answer to the above ques-
tion is yes, can better correlation be achieved with
human assessment under the new task scenario? Fi-
nally, in addition to n-gram matching, which other
knowledge sources can combat and even improve
the rank order correlation? The process of rank-
ing is a crucial technique in Information Retrieval
(IR) where search engines rank web pages depend-
ing on their relevance to a query. In this work, sen-
tence level MT evaluation is considered as a ranking
problem. For all candidate translations of the same
source Chinese sentence, we predict their transla-
tion quality ranks. We evaluate the ranker by Spear-
man’s rank order correlation coefficient between hu-
man ranks and predicted ranks described by the fol-
lowing formula (Siegel,1956):

63 D2
N(NZ-1)

where D is the difference between each pair of ranks
and N is the number of candidates for ranking.

r=1—( ) (1)

3 Related Works

Papineni et al.(2001) pioneered the automatic MT
evaluation study, which scores translation quality via
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n-gram matching between the candidate and refer-
ence translations. Following the growing awareness
of the deficiency of n-gram based automatic MT
evaluation, many studies attempted to improve upon
n-gram based metrics (Zhou et al., 2006; Liu, et
al., 2005,2006) as well as propose ways to evaluate
MT evaluation metrics (Lin, et al. 2004). Previous
studies, however, have focused on MT evaluation at
the document level in order to fight n-gram sparse-
ness problem. While document level correlation
provides us with a general impression of the qual-
ity of an MT system, researchers desire to get more
informative diagnostic evaluation at sentence level
to improve the MT system instead of just an over-
all score that does not provide details. Recent years
have seen several studies investigating MT evalu-
ation at the sentence level (Liu et al., 2005,2006;
Quirk, 2004). The state-of-the-art sentence level
correlations reported in previous work between hu-
man assessments and automatic scoring are around
0.20. Kulesza et al.(2004) applied Support Vec-
tor Machine classification learning to sentence level
MT evaluation and reported improved correlation
with human judgment over BLEU. However, the
classification taxonomy in their work is binary, be-
ing either machine translation or human translation.
Additionally, as discussed above, the inconsistency
from the human annotators weakens the legitimacy
of the classification approach. Gamon et al.(2005)
reported a study of English to French sentence-level
MT evaluation without reference translations. In or-
der to improve on the correlation between human as-
sessments and the perplexity score alone, they com-
bined a perplexity score with a classification score
obtained from an SVM binary classifier distinguish-
ing machine-translated sentences from human trans-



lations. The results showed that even the combi-
nation of the above two scores cannot outperform
BLEU.

To sum up, very little consideration has been
taken in previous research as to which learning ap-
proach is better motivated and justified by the state
of affairs of human annotation reliability. Presum-
ably, research that endeavors to emulate human per-
formance on tasks that demontrate good inter-judge
reliability is most useful.

a learning approach that is better supported by
human annotation reliability can alleviate the noise
from human assessments and therefore achieve more
reliable correlations.

4 Experiments and Evaluation

4.1 Ranking SVM Learning Algorithm

Ranking peer candidate sentence translations is a
task in which the translation instances are classi-
fied into a number of ranks. This is a canonical or-
dinal regression scenario, which differs from stan-
dard classification and metric regression. For imple-
mentation, we use the Ranking SVM of SVMlight
(Joachims, 2004), which was originally developed
to rank the web pages returned upon a certain query
in search engines. Given an instance of a candidate
translation, Ranking SVM assigns it a score based
on:

Ux) =Wz (2)

where W represents a vector of weights (Xu et al.,
2005). The higher the value of U(x), the better X is as
a candidate translation. In an ordinal regression, the
values of U(x) are mapped into intervals correspond-
ing to the ordinal categories. An instance falling
into one interval is classified into the corresponding
translation quality. In ranking experiments, we use
the Ranking SVM scores to rank the candidate sen-
tences under evaluation.

4.2 Features
We experiment with three different knowledge

sources in our ranking experiments:

1. N-gram matching between the candidate trans-
lation and the reference translation, for which
we use BLEU scores calculated by the NIST
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script with smoothing® to avoid undefined log
probabilities for zero n-gram probabilities.

2. Dependency relation matching between the
candidate translation and the reference transla-
tion.

3. The log of the perplexity score of the candidate
translation, where the perplexity score is ob-
tained from a local language model trained on
all sentences in the four reference translations
using CMU SLM toolkit. The n-gram order is
the default trigram.

4.2.1 N-gram matching feature

N-gram matching is certainly an important cri-
terion in some cases for evaluating the translation
quality of a candidate translation. We use the BLEU
score calculated by the BLEU score script from
NIST for this feature.

As has been observed by many researchers,
BLEU fails to capture any non n-gram based match-
ing between the reference and candidate transla-
tions. We carried out a pair-wise experiment on
four reference translations from the LDC2003T17
test data, where we took one reference sentence as
the reference and the other three references as can-
didate translations. Presumably, since the candidate
sentences are near-optimal translations, the BLEU
scores obtained in such a way should be close to
1. But our analysis shows a mean BLEU of only
0.1456398, with a standard deviation of 0.1522381,
which means that BLEU is not very predictive of
sentence level evaluation. The BLEU score is, how-
ever, still informative in judging the average MT
system’s translation.

4.2.2 Dependency Structure Matching

Dependency relation information has been widely
used in Machine Translation in recent years. Fox
(2002) reported that dependency trees correspond
better across translation pairs than constituent trees.
The information summarization community has also
seen successful implementation of ideas similar to
the depedency structure. Zhou et al.(2005) and Hovy
et al.(2005) reported using Basic Elements (BE) in
text summarization and its evaluation. In the current

3We added an extremely small number to both matched n-
grams and total number of n-grams.



paper, we match a candidate translation with a ref-
erence translation on the following five dependency
structure (DS) types:

Agent - Verb

Verb - Patient

Modified Noun - Modifier
Modified Verb - Modifier
Preposition - Object

Besides the consideration of the presence of cer-
tain lexical items, DS captures information as to
how the lexical items are assembled into a good sen-
tence. By using their dependency relation match for
ranking the quality of peer translations, we assume
that the dependency structure in the source language
should be well preserved in the target language and
that multiple translations of the same source sen-
tence should significantly share dependency struc-
tures. Liu et al.(2005) make use of dependency
structure in sentence level machine translation eval-
uation in the form of headword chains, which are
lexicalized dependency relations. We propose that
unlexicalized dependency relations can also be in-
formative. Previous research has shown that key de-
pendency relations tend to have a strong correspon-
dence between Chinese and English (Zhou et al.,
2001). More than 80 % of subject-verb, adjective-
noun and adverb-verb dependency relations were
able to be mapped, although verb-object DS map-
ping is weaker at a rate of 64.8%. In our paper, we
considered three levels of matching for dependency
relation triplets, where a triplet consists of the DS
type and the two lexical items as the arguments.

We used an in-house dependency parser to extract
the dependency relations from the sentences. Figure
1 illustrates how dependency relation matching can
go beyond n-gram matching. We calculated 15 DS
scores for each sentence correponding to the counts
of match for the 5 DS types at the 3 different levels.

4.2.3 Reference language model (RLM) feature

Statistical Language Modeling (SLM) is a key
component in Statistical Machine Translation. The
most dominant technology in SLM is n-gram mod-
els, which are typically trained on a large corpus
for applications such as SMT and speech recogni-
tion. Depending on the size of the corpora used
to train the language model, a language model can
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Type match: Dependency relation type match without lexical information
ref (DR, arg1~arg2) cand (DR, arg1~arg2

Partial match: Dependency relation match plus match of one argument
ref (DR, arg1~arg2) cand (DR, arg1~arg2)

Full match: Dependency relation match plus match of both arguments
ref (DR, arg1~arg2) cand (DR, arg1~arg2)

Sl

Figure 1: Dependency Relation Matching Scheme

Prep.— Pobj (in — 1992}
Tsub— verb {Council — open}

ModAdv —verb [successively—open)

verb — Tobj {open — fourteen)

e = Tsub—wverb {Council — gawve)
/" In 1992, the State Council successively opened fourteen border
cities to foreigners. Thess included Heihe, Pingxiang, Huichun,
Yining, and Ruil. Meanwhile, the State Council also gave its
approvalto these dities to establish fourteen border zones for
econotmic cooperation
\an~1992 @ mmmun Cnun:n(a) npened(?)\MndAdv~suc:ess\
(7)Tabj~cities(10)~bord

| verb — Tobj {gave — approval)
Prep. — Pobj {to — cities]

Tsub — verb (Council — gave]
verb — Tobj (establish — zones)

\\)\ArﬂA«mM:mnmm(ﬁﬁ)~cnnpevsnm £y
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\_ Attrib~e conomic (37) ~cacperation s (38)
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1) aub~Yining 1 B)-gav e(ZB)IT s Moanwhile (21 - gave 2B s
ub~Council(24)~ gave(ZE)\Tnhrappmva\(ZE) yave(26][Pobj~cities (3
1)~0(29)[T 36 3 P

/" <seq i4=4» State Council successively authorized Hei Ho River,

Pingxiang ik 1992, Hunchun, Yining, Ruill and so an 14 frontiers
cities far fareign apening city, sinultaneously also authorized these
cities o be setup 14 frantiers economic cooperations area. <seg>
[Tsub~Councilid

4(6)Tobj~Pingxiang (10)-auth orized (5 Fobj~Ruil(15)in (11 )|Pabj-c
ities(21)~ nma)u:nh city (251 151(22)|MndAdv~s\multar\enus\y(ZE)
)| )IT obi~citie S(30)~a
Uthorize d(2 ;" i 8)~up(34]] 2.(39)~</3
eg>(40)|AdA g(1)~Councilid)|Adj #[2)~Council(4)
|AdjAttrib~c5 @, (13)~Ruili(1 5)| AdjAtrb~Tore g n(23)~city [25) [AdjAttn
A-city 25)AdiAtt peration:

ation.(39)~for(3
- /,

\

Prep. — Pobj {for — operation)

AdjAttrib — noun {economic — operation)

E8)IA)
/

Tsub— verb {Council — authorize] _,.PM
ModAdv —verb (successively — authorize) . PM
verb — Tobj {authorize — Pingxiang)

Prep. — Pobj {for — cities) —p PM

ModAdv —verb (simultaneously — authorize)
ModAdv —verb (ak o — authorize)

verb — Tobj {authorize — cities)

AdjAttrib — noun {opening — city)

AdjAttrib — noun {economic — operation) —p FM

Figure 2: An Example - A Sentence Gets Credits for
Dependency Relation Matching



be tuned to reflect n-gram probabilities for both a
narrowed scope as well as a general scope covering
the distribution of n-gram probabilities of the whole
language. In the BLEU calculation, the candidate
sentence is evaluated against an extremely local lan-
guage model of merely the reference sentence. We
speculate that a language model that stands in be-
tween such an immediate local language model and
the large general English language model could help
capture the variation of lexical and even structural
selections in the translations by using information
beyond the scope of the local sentence. Addition-
ally, this language model could represent the style
of a certain group of translators in a certain domain
on the genre of news articles. To pursue such a lan-
guage model, we explore a language model that is
trained on all sentences in the four references. We
obtain the perplexity score of each candidate sen-
tence based on the reference language model. The
perplexity score obtained this way reflects the de-
gree to which a candidate translation can be gen-
erated from the n-gram probability distribution of
the whole collection of sentences in the four refer-
ences. It adds new information to BLEU because it
not only compares the candidate sentence to its cor-
responding reference sentence but also reaches out
to other sentences in the current document and other
documents on the same topics. We choose perplex-
ity over the language model score because the per-
plexity score is normalized with regard to the length
of the sentence; that is, it does not favor sentences of
relatively shorter length.

In our ranking experiments, for training, both the
seven MT translations and the four reference trans-
lations of the same source sentence are evaluated
as “candidate” translations, and then each of these
eleven sentences is evaluated against the four ref-
erence sentences in turn. The BLEU score of each
of these sentences is calculated with multiple refer-
ences. Each dependency score is the average score
of the four references. For the reference language
model feature, the perplexity score is used for each
sentence.

Conceptually, the reference language model and
dependency structure features are more relevant to
the fluency of the sentence than to the adequacy.
Because the candidate sentences’ adequacy scores
are based on arbitrary reference sentences out of the
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Feature Set  Mean Corr Corr Var
BLEU 0.3590644 0.0076498
DS 0.4002753 0.0061299
PERP 0.4273000 0.0014043
BLEU+DS  0.4128991 0.0027576
BLEU+PERP 0.4288112 0.0013783
PERP+DS 0.4313611 0.0014594
All 0.4310457 0.0014494

Table 3: Training and Testing on Within-year Data
(Test on 7 MT and 4 Human)

four references in the human assessment data, we
decided to focus on fluency ranking for this paper.
The ranking scenario and features can easily be gen-
eralized to adequacy evaluation: the full and partial
match dependency structure features are relevant to
adeqgaucy too. The high correlation between ade-
quacy and fluency scores from human assessments
(both pearson and spearman correlations are 0.67)
also indicates that the same features will achieve im-
provements for adequacy evaluation.

4.3 Sentence Ranking on Within-year Data

In the first experiment, we performed the ranking
experiment on the ACLOS5 workshop data and test on
the same data set. We did three-fold cross-validation
on two different test scenarios. On the first sce-
nario, we tested the ranking models on the seven MT
system output sentences and the four human refer-
ence sentences. It is widely agreed upon among re-
searchers that a good evalutation metric should rank
reference translation as higher than machine trans-
lation (Lin et al., 2004). We include the four hu-
man reference sentences into the ranking to test the
ranker’s ability to discriminate optimal translations
from poor ones. For the second scenario, we test
the ranking models on only the seven MT system
output sentences. Because the quality differences
across the seven system translations are more subtle,
we are particularly interested in the ranking quality
on those sentences. Tables 3 and 4 summarize the
results from both scenarios.

The experimental results in the above tables con-
veyed several important messages: in the ranking
setup, for both the MT and human mixed output and
MT only output scenarios, we have a significantly



Feature Set  Mean Corr Corr Var
BLEU 0.2913541 0.0324386
DS 0.3058766 0.0226442
PERP 0.2921684 0.0210605
BLEU+DS  0.315106 0.0206144
BLEU+PERP 0.2954833 0.0211094
PERP+DS 0.3067157 0.0217037
All 0.305248 0.0218777

Table 4: Training and Testing on Within-year Data
(Test on MT only)

improved correlation between human scoring and
automatic ranking at sentence level compared to the
state-of-the-art sentence level correlation for fluency
score of approximately 0.202 found previously (Liu
et al., 2006). When the ranking task is performed on
a mixture of MT sentences and human translations,
dependency structure and reference language model
perplexity scores sequentially improve on BLEU in
increasing the correlation. When the ranking task
is performed only on MT system output sentences,
dependency structure still significantly outperforms
BLEU in increasing the correlation, and the refer-
ence language model, even trained on a small num-
ber of sentences, demonstrates utility equal to that
of BLEU. The dependency structure feature proves
to have robust utility in informing fluency quality
in both scenarios, even with noise from the depen-
dency parser, likely because a dependency triplet
with inaccurate arguments is still rewarded as a type
match or partial match. Additionally, the feature is
reward-based and not penalty-based. We only re-
ward matches and do not penalize mismatches, such
that the impact of the noise from the MT system and
the dependency parser is weakened.

4.4 Sentence Ranking on Across-year Data

It is trivial to retrain the ranking model and test on
a new year’s data. But we speculate that a model
trained from a different data set can have almost the
same ranking power as a model trained on the same
data set. Therefore, we conducted an experiment
where we trained the ranking model on the ACL
2005 workshop data and test on the LDC2003T17
data. We do not need to retrain the ranking SVM
model; we only need to retrain the reference lan-
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Feature Set  Mean Corr Corr Var
BLEU 0.3133257 0.1957059
DS 0.4896355 0.0727430
PERP 0.4582005 0.0542485
BLEU+DS  0.4907745 0.0678395
BLEU+PERP 0.4577449 0.0563994
PERP+DS 0.4709567 0.0549708
All 0.4707289 0.0565538

Table 5: Training and Testing on Across-year Data
(test on 3 MT plus 1 human)

guage model on the multiple references from the
new year’s data to obtain the perplexity scores.
Because LDC2003T17 has human assessments for
only three MT systems, we test on the three system
outputs plus a human translation chosen randomly
from the four reference translations. The results in
Table 5 show an encouraging rank order correlation
with human assessments. Similar to training and
testing on within-year data, both dependency struc-
ture and perplexity scores achieve higher correlation
than the BLEU score. Combining BLEU and depen-
dency structure achieves the best correlation.

4.5 Document Level Ranking Testing

Previously, most researchers working on MT evalu-
ation studied the correlation between automatic met-
ric and human assessment on the granularity of the
document to mitigate n-gram sparseness. Presum-
ably, good correlation at sentence level should lead
to good correlation at document level but not vice
versa. Table 6 reports the correlations using the
model trained on the 2005 workshop data and tested
on the 100 documents of the LDC 2003 data. Com-
paring these correlations with the correlations re-
ported in the previous section, we see that using the
same model, the document level rank order corre-
lation is substantially higher than the sentence level
correlation, with the dependency structure showing
the highest utility.

5 Conclusion and Future Work

The current study proposes to formulate MT evalu-
ation as a ranking problem. We believe that a reli-
able ranker can inform the improvement of BLEU
for a better automatic scoring function. Ranking in-



Feature Set  Mean Corr Corr Var
BLEU 0.543 0.0853
DS 0.685 0.0723
PERP 0.575 0.0778
BLEU+DS  0.639 0.0773
BLEU+PERP 0.567 0.0785
PERP+DS 0.597 0.0861
All 0.599 0.0849

Table 6: Document Level Ranking Testing Results

formation could also be integrated into tuning pro-
cess to better inform the optimization of weights of
the different factors for SMT models. Our ranking
experiments show a better correlation with human
assessments at sentence level for fluency score com-
pared to the previous non-ranking scenario, even
with BLEU as the baseline feature. On top of BLEU,
both the dependency structure and reference lan-
guage model have shown encouraging utility for dif-
ferent testing scenarios. Looking toward the fu-
ture work, more features could be explored, e.g., a
parsing-based score of each candidate sentence and
better engineering for dependency triplet extraction.
Additionally, the entire research community on MT
evaluation would benefit from a systematic and de-
tailed analysis of real data that can provide a quanti-
tative breakdown of the proportions of different “op-
erations” needed to rewrite one sentence to another.
Such an effort will guide MT evaluation researchers
to decide which features to focus on.
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sentence? Conversely, would knowing the correct
Abstract translation for the DTPs improve the system’s
translation for the rest of the sentence?
This paper studies the impact that difficult-to-  In this work, we model difficulty as a meas-
translate source-language phrases might haueement with respect to a particular MT system.
on the machine translation process. We formWe further assume that the degree of difficultyof
late the notion of difficulty as a measurableohrase is directly correlated with the quality loé¢ t
guantity; we show that a classifier can bdéranslation produced by the MT system, which can
trained to predict whether a phrase might bkee approximated using an automatic evaluation
difficult to translate; and we develop a framemetric, such as BLEU (Papineni et al., 2002). Us-
work that makes use of the classifier and exng this formulation of difficulty, we build a
ternal resources (such as human translators)ftamework that augments an off-the-shelf phrase-
improve the overall translation quality.based MT system with a DTP classifier that we
Through experimental work, we verify that bydeveloped. We explore the three questions in a set
isolating difficult-to-translate phrases andof experiments, using the framework as a testbed.
processing them as special cases, their nega- In the first experiment, we verify that our pro-
tive impact on the translation of the rest of thgosed difficulty measurement is sensible. The sec-
sentences can be reduced. ond experiment evaluates the classifier's accuracy
in predicting whether a source phrase is a DTP.
For that, we train a binary SVM classifier via a
1 Introduction series of lexical and system dependent features.
The third is an oracle study in which the DTPs are
For translators, not all source sentences areetteaperfectly identified and human translations are ob-
equal. Some are straight-forward enough to hgined. These human-translated phrases are then
automatically translated by_ a machine, while othe{gsed to constrain the MT system as it translates th
may stump even professional human translatoligst of the sentence. We evaluate the translation
Similarly, within a single sentence there may bguality of the entire sentence and also the phéts t
some phrases that are more difficult to translaige not translated by humans. Finally, the frame-
than others. The focus of this paper is on identifyyork is evaluated as a whole. Results from our
ing Difficult-to-Translate Phrase¢DTPs) within a experiments suggest that improved handling of
source sentence and determining their impact @irps will have a positive impact the overall MT
the translation process. We investigate three quesistput quality. Moreover, we find the SVM-
tions: (1) how should we formalize the notion ofrained DTP classifier to have a promising rate of
difficulty as a measurable quantity over an appregccuracy, and that the incorporation of DTP infor-
priately defined phrasal unit? (2) To what level ofyation can improve the outputs of the underlying
accuracy can we automatically identify DTPs? (3T system. Specifically, we achieve an improve-
To what extent do DTPs affect an MT system'ment of translation quality for non-difficult seg-
performance on other (not-as-difficult) parts of th
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ments of a sentence when the DTPs are translatgddssifier, the score can be in various format$suc

by humans. as class probablity, confidence measure, etc. In
o our SVM based classifier, the score is the distance
2 Motivation from the margin.

There are several reasons for investigating ways to @i az... & ... ak... an
identify DTPs. For instance, it can help to find

better training examples in an active learning
framework; it can be used to coordinate outputs of
multiple translation systems; or it can be used as
means of error analysis for MT system

development. It can also be used as a pre-
processing step, an alternative to post-editingr F

many languages, MT output requires post-
translation editing that can be cumbersome task for

Phrase Extraction

low quality outputs, long sentences, complicated A A
structures and idioms. Pre-translation might be 1 1= = et
viewed as a kind of preventive medicine; that is, a Phrase Difficulty

system might produce an overall better output if it
were not thwarted by some small portion of the
input. By identifying DTPs and passing those cases a a ﬁ a
off to an expensive translation resource (e.g. 1d2.4. 6 ... Gkel.. En
humans) first, we might avoid problems further !
down the MT pipeline. Moreover, pre-translation Human
might not always have to be performed by humans. Translation
What is considered difficult for one system might
not be difficult for another system; thus, pre- €j... em|
translation might also be conducted using multiple i

MT systems.

Classifier

MT System
3 Our Approach I

Figure 1 presents the overall dataflow of our €1 92-----Ep

system. The input is a source sentenae.(am), . . ; ; }
from which DTP candidates are proposed. Becau Figure 1: An overview of our translation frame

the DTPs will have to be translated by humans as

independent units, we limit the set of possible The chosen phrase;(a. a) is translated by a
phrases to be syntactically meaningful unitS, ,man .. en). We cbnstrain the underlying

Therefore, the framework requires a sourc Jhrase-based MT system (Koehn, 2088)hat its
language syntactic parser or chunker. In this pap coding of the source sentence must contain the

we parse the source sentence with an off-the-sh man translation for the DTP. In the following

syntactic parsefBikel, 2002). From the parse trees bsections, we describe how we develop the DTP

produced for the source sentence, every constitu Ussifier with machine learnina techniques and
whose string span is between 25% and 75% of t% . 'Ng q .
full sentence length is considered a DTP candidatﬁ%w we constrain the underlying MT system with

Additionally we have a tree node depth constrain uman translated DTPs.

that requires the constituent to be at least twog 4 Training the DTP Classifier

levels above the tree’s yield and two levels below

the root. These two constraints ensure that ﬂ@ven a phrase in the source |anguage’ the DTP

extracted phrases have balanced lengths. classifier extracts a set of features from it arel p
We apply the classifier on each candidate anglcts whether it igifficult or not based on its fea-

select the one labeled as difficult with the highesure values. We use an SVM classsifier in this work.

classification score. Depending on the underlying/e train the SVM-Light implementation of the
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algorithm (Joachims 1999). To train the classjfiematches with references, assigning a score of zero
we need to tackle two challenges. First, we needto an entire phrase if no higher-ordered n-gram
develop some appropriate training data becauswtches were found against the references. How-
there is no corpus with annotated DTPs. Seconelver, some phrases with a score of 0 might have
we need to determine a set of predictive featuresore matches in the lower-ordered n-grams than

for the classifier. other phrases (and thus ought to be considered
“easier”). A comparison of the relative changes in
Development of the Gold Standard BLEU scores while holding out a phrase from the

) ) o ] COrpus gives us a more sensitive measurement than
Unlike the typical SVM training scenario, labeledyjrectly computing BLEU for each phrase.
training examples of DTPs do not exist. Manual

creation of such data requires deep understandipgatures
of the linguistics differences of source and target
languages and also deep knowledge about the NBy analyzing the training corpus, we have found
system and its training data. Such resources d@ features that are indicative of DTPs. Some
not accessible to us. Instead, we construct thee ghrase-level feature values are computed as an av-
standard automatically. We make the strong asrage of the feature values of the individual words
sumption that difficulty is directly correlated toThe following first four features use some prob-
translation quality and that translation qualityn caabilities that are collected from a parallel data a
be approximately measured by automatic metriagord alignments. Such a resource does not exist at
such as BLEU. We have two resource requiréhe time of testing. Instead we use the history of
ments — a sentence-aligned parallel corpus (diffeihe source words (estimated from the large parallel
ent from the data used to train the underlying M€orpus) to predict the feature value.
system), and a syntactic parser for the source land) Average probability of word alignment
guage. The procedure for creating the gold staorossings: word alignment crossings are indicative
dard data is as follows: of word order differences and generally structural
1. Each source sentence is parsed. difference across two languages. We collect word
2. Phrase translations are extracted from the palgnment crossing statistics from the training-cor
allel corpus. Specifically, we generate wordpus to estimate the crossing probability for each
alignments using GIZA++ (Och 2001) in bothword in a new source phrase. For example the
directions and combine them using the refinedrabic wordrhl has 67% probability of alignment
methodology (Och and Ney 2003), and thenrossing (word movement across English). These
we applied Koehn’s toolkit (2004) to extractprobabilities are then averaged into one value for
parallel phrases. We have relaxed the lengthe entire phrase.
constraints of the toolkit to ensure the extrac- (Il) Average probability of translation ambi-
tion of long phrases (as long as 16 words).  guity: words that have multiple equally-likely
3. Parallel phrases whose source parts are rteanslations contribute to translation ambiguity.
well-formed constituents are filtered out. For example a word that has 4 different transla-
4. The source phrases are translated by the undéons with similar frequencies tends to be more
lying MT system, and a baseline BLEU scoreambiguous than a word that has one dominant
is computed over this set of MT outputs. translation. We collect statistics about the lelica
5. To label each source phrase, we remove th@anslational ambiguities from the training corpus
phrase and its translation from the MT outpuand lexical translation tables and use them to pre-
and calculate the set's new BLEU score. lflict the ambiguity of each word in a new source
new-score is greater than the baseline score plirase. The score for the phrase is the average of
some threshold value (a tunable parameter), vilee scores for the individual words.
label the phrase afifficult, otherwise we label  (lll) Average probability of POS tag changes:
it asnot difficult Change of a word’'s POS tagging is an indication
Rather than directly calculating the BLEU scoref deep structural differences between the source
for each phrase, we performed the round-robiphrase and the target phrase. Using the POS tag-
procedure described in steps 4 and 5 becaugieg information for both sides of the training cor
BLEU is not reliable for short phrases. BLEU igus, we learn the probability that each source
calculated as a geometric mean over n-gramord’'s POS gets changed after the translation. To
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overcome data sparseness, we only look at the cslan indication of the level of error that is intro
lapsed version of POS tags on both sides of tleiced in the early parts of the phrase translation.
corpus. The phrase’s score is the average the indi
vidual word probabilities. 3.2 ConstrainingtheMT System

(IV) Average praobability of null alignments: _ )
In many cases null alignments of the source wordhce human translations have been obtalne(_j for
are indicative of the weakness of information abodf€ DTPs, we want the MT system to only consider
the word. This feature is similar to average ambfutput candidates that contain the human transla-
guity probability. The difference is that we uke t tions. The additional knoyvledge can be used b_y_the
probability of null alignments instead of lexicalPhrase-based system without any code modifica-
probabilities. tion. Figure 2 shows the data-flow for this process

(V-IX) Normalized number of unknown First, we append the pre-trained phrase-translation
words, content words, numbers, punctuations: table with the DTPs and their human translations
For each of these features we normalize the couth @ probability of 1.0. We also include the hu-
(e.g.. unknown words) with the length of thehan translations for the DTPs as training data for
phrase. The normalization of the features helps th€ language model to ensure that the phrase vo-
classifier to not have length preference for theabulary is familiar to the decoder and relax the
phrases. phrase distortion parameter that the decoder can

(X) Number of proper nouns; Named entities include all phrase translations with any length in
tend to create translation difficulty, due to theith€ decoding. Thus, candidates that contain the
diversity of spellings and also domain differenceduman translations for the DTPs will score higher
We use the number of proper nouns to estimate tABd be chosen by the decoder.
occurrence of the named entities in the phrase.

(XI Depth of the subtree: The feature is used as ~rm
a measure of syntactic complexity of the phrase. a1 az... @i... kst 9

For example continuous right branching of the

y

parse tree which adds to the depth of the subtree Human
can be indicative of a complex or ambiguous struc- Translation
ture that might be difficult to translate.

(XIl) Constituency type of the phrase. We
observe that the different types of constituents
have varied effects on the translations of the Pparallel
phrase. For example prepositional phrases tend to  Corpus
belong to difficult phrases.

(X111) Constituency type of the parent phrase
(XIV) Constituency types of the children
nodes of the phrase: We form a set from the chil-

dren nodes of the phrase (on the parse tree).
(XV) Length of the phrase: The feature is
based on the number of the words in the phrase.
(XVI) Proportional length of the phrase: The etez..[ei... em|.. &
proportion of the length of the phrase to the lBngtFigure 2: Human translations for the DTPs can be
of the sentence. As this proportion gets lardes, tincorporated into the MT system’s phrase table and
contextual effect on the translation of the phradanguage model.
becomes less.
(XVIl) Distancefrom the start of thesentence 4  Experiments
and: Phrases that are further away from the start of _ _ _
the sentence tend to not be translated as weliaduelhe goal of these four experiments is to gain a bet
compounding translational errors. ter understanding of the DTPs and their impact on
(XVIIl) Distance from a learned trandation the translation process. All our studies are con-
phrase: The feature measure the number of wordducted for Arabic-to-English MT. We formed a

before reaching a learned phrase. In other waordsPne-million word parallel text out of two corpora
released by the Linguistic Data Consortium: Ara-

8j ... ak=>€j ... ém /
Phrase Table/ -
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bic News Translation Text Part 1 and Arabic Eng- 4.2 Evaluation of the DTP Classifier
lish Parallel News Part 1. The majority of theadat
was used to train the underlying phrase-based M¥e now perform a local evaluation of the trained
system. We reserve 2000 sentences for develdpIP classifier for its classification accuracy. €Th
ment and experimentation. Half of these are usétgssifier is trained as an SVM using a linear ker-
for the training and evaluation of the DTP classit€l. The “gold standard” phrases from the section
fier (Sections 4.1 and 4.2); the other half is usetil are split into three groups: 2013 instances are
for translation experiments on the rest of th&sed as training data for the classifier; 100 in-
framework (Sections 4.3 and 4.4). stances are used for development (e.g., parameter
In both cases, translation phrases are extractétning and feature engineering); and 200 instances
from the sentences and assigned “gold standar@re used as test instances. The test set hasiah eq
labels according to the procedure described in Segumber of difficult and non-difficult phrases (50%
tion 3.1. It is necessary to keep two separate- dafaseline accuracy).
sets because the later experiments make use of thén order to optimize the accuracy of classifica-
trained DTP classifier. tion, we used a development set for feature engi-
For the two translation experiments, we also fadkeering and trying various SVM kernels and asso-
a practical obstacle: we do not have an army 6fated parameters. For the feature engineering
human translators at our disposal to translate tR@rt, we used the all-but-one heuristic to test the
identified phrases. To make the studies possib@(,)ntribution of each individual feature. Table 2
we rely on a pre-translated parallel corpus to sim@resents the most and least contributing four fea-
late the process of asking a human to translatetwges that we used in our classification. Among
phrase. That is, we use the phrase extractionitoolkarious features, we observed that the syntactic
to find translation phrases corresponding to eadfatures are the most contributing sources of in-
DTP candidate (note that the data used for this efermation for our classification.
periment is separate from the main parallel corpus
used to train the MT system, so the system hag h&ast Useful Features | Most Useful Features

knowledge about these translations). Ft1: Align Crossing Ft 2: Lexical Ambiguity
Ft 8: Count of Nums Ft 11: Depth of subtree
4.1 Automatic Labeling of DTP Ft:9: Count of Puncs Ft 12: Const type of Rhr

L _ _ Ft 10: Count of NNPs Ft 13: Const type of Rar
In this first experiment, we verify whether ouUrTapie2: The most and least useful features
method for creating positive and negative labeled

examples of DTPs (as described in Section 3.1) isThe DTP classifier achieves an average accu-
sound. Out of 2013 extracted phrases, we found racy of 71.5%, using 10 fold cross validation on
949 positive instances (DTPs) and 1064 negatiYge test set.

instances. The difficult phrases have an average

length of 8.8 words while the other phrases have a3 Study on the effect of DTPs

average length of 7.8 words We measured the

BLEU scores for the MT outputs for both groupd his experiment concentrates on the second half of

of phrases (Table 1). the framework: that of constraining the MT system
to use human-translations for the DTPs. Our objec-
\ Experiment BLEU Score tive is to assess to what degree do the DTPs nega-
\ DTPs 14.34 tively impact the MT process. We compare the MT
| Non-DTPs 61.22 outputs of two groups of sentences. Group | is
Table 1: Isolated Translation of the selected ingin made up of 242 sentences that contain the most
phrases difficult to translate phrases in the 1000 sentence

) __we reserved for this study. Group Il is a control
The large gap between the translation qualitiegoup made up of 242 sentences with the least dif-
of the two phrase groups suggests that the DTRgult to translate phrases. The DTPs make up
are indeed much more “difficult” than the otherphout 9% of word counts in the above 484 sen-
phrases. tences. We follow the procedure described in Sec-
tion 3.1 to identify and score all the phrasessthu

! Arabic words are tokenized and lemmatized by Riskra-
bic Toolset (Diab 2004).
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this experiment can be considered an oracle stuaynsistent with our conjecture that pre-translating

We compare four scenarios: difficult phrases may be helpful.

1. Addingphrasetrandationsfor Group I: MT A more interesting question is whether the hu-
system is constrained using the method desan translations still provide any benefit once we
scribed in Section 3.2 to incorporate humafactor out their direct contributions to the in@gea
translations of the pre-identified DTPs inin BLEU scores. To answer this question, we com-
Group |2 pute the BLEU scores for the outputs again, this

2. Adding phrase translations for Group Il: time filtering out all 484 identified phrases from
MT system is constrained to use human tranfhe evaluation. In other words in this experiment
lations for the identified (non-difficult) phraseswe focus on the part of the sentence that is rot la
in Group Il beled and does include any human translations.

3. Adding trandations for random phrases. Table 4 presents the results.
randomly replace 242 phrases from either

Group | or Group 1l. Experiment BLEU
4. Adding trandations for classifier labeled Baseline (no human trans) 23.0
DTPs. human translations for phrases that our w/ translated DTPs (Group I) 25.4
trained classifier has identified as DTPs from w/ translated non-DTPs (Group II) 23.9
both Group | and Group II. w/ translated phrases (random) 24|5
w/ translated phrases (classifier) 25.1

All of the above scenarios are evaluated on Teable 4: BLEU scores for the translation outputs ex
combined set of 484 sentences (group 1 + group 2jding the 484 (DTP and non-DTP) phrases.

This set up normalizes the relative difficulty of . _
each grouping. The largest gain (2.4 BLEU increment from

If the DTPs negatively impact the MT processt,)aseline) occurs when all and only the DTPs were
we would expect to see a greater improvemeHlanSlated-_ In contrast, replacing phrases from
when Group | phrases are translated by humafoup 1l did not improve the BLEU score very
than when Group Il phrases are translated uch. These results suggest that better handling of
humans. TPs will have a positive effec.t on the overall MT

The baseline for the comparisons is to evalual¥0ocess. We also note that using our SVM-trained
the outputs of the MT system without using anglassmer to identify the_ DTPs, the constrained MT
human translations. This results in a BLEU scorgyStém’s outputs obtained a BLEU score that is
of 24.0. When human translations are used, tfearly as high as if a perfect classifier was used.

BLEU score of the dataset increases, as shown in )
Table 3. 4.4  Full evaluation of the framework

This final experiment evaluates the complete

Experiment BLEU ) framework as described in Section 3. The setup of

Ev?frilhnnsela(tg?j %uTrgzn(g?ng)) ) :fg E this stud_y is_similar to that of the previous sewti

W/ translated non-DTPs (Group I 33' =S The main d|fferer_1ce is _that now, we rely on the

Wl translated phrases (random) 35' 1 classmt'ar' to predict which phrase would be the
- ' most difficult to translate and use human transla-

w/ translated phrases (classifier) 37.0

tions for those phrases.

Out of 1000 sentences, 356 have been identified
to contain DTPs (that are in the phrase extraction
list). In other words, only 356 sentences hold DTPs
While it is unsurprising that the inclusion ofthat we can find their human translations through

human translations increases the overall BLEBNrase projection. For the remaining sentences, we

score, this comparison shows that the boost §9 NOtuse any human translation.
sharper when more DTPs are translated. This is

Table 3: A comparison of BLEU scores for the ensieé
of sentences under the constraints of using huraas-t
lations for different types of phrases.

2 In this study, because the sentences are frormatming
parallel corpus, we can extract human translatibrectly
from the corpus.
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Table 5 presents the increase in BLEU scordsss dependency to the whole sentence structure
when human translations for the 356 DTPs amnd can be translated independently. Our classifi-
used. As expected the BLEU score increases, ladtion relies on syntactic features that are impor-
the improvement is less dramatic than in the previant source of information about the MT difficulty
ous experiment because most sentences are and also are useful for further error tracking {rea

changed. sons behind the difficulty). Our classification is
performed as a pre-translation step, so it does not
Experiment BLEU rely on the output of the MT system for a test sen-
Baseline (no human trans) 24.9  tence; instead, it uses a parallel training cogmas
w/ human translations 29.0 the characteristics of the underlying MT system
Table 5: Entire Corpus level evaluation (1000 sen- (e.g: p_hrase translations, lexical probabilities).
tences) when replacing DTPs in the hit list Confidence measures have been used for error

correction and interactive MT systems. Ueffing

_ _ and Ney (2005) employed confidence measures
Table 6 summarizes the experimental results fjthin a trans-type-style interactive MT system. |

the subset of the 356 sentences. The first twe roweir system, the MT system iteratively generates
compare the translation quality at the sentengge translation and the human translator accepts a
level (similar to Table 3); the next two rows COMpart of the proposed translation by typing one or
pare the translation quality of the non-DTP partgore prefix characters. The system regenerates a
(similar to Table 4). Rows 1 and 3 are conditionge\ translation based on the human prefix input
when we do not use human translation; and rowsad word level confidence measures. In contrast,
and 4 are conditions when we replace DTPs wift,r proposed usage of human knowledge is for
their associated human translations. ~The iMransiation at the phrase level. We use syntactic
provements of the BLEU score for the hit list arestrictions to make the extracted phrases meaning-
similar to the results we have previously seen.  fy| and easy to translate in isolation. In other

words, by the usage of our framework trans-type

Experiment on 356 sentences | BLEU systems can use human knowledge at the phrase
Baseline: full sent. 25.1 Jevel for the most difficult segments of a sentence
w/ human translation: full sent. 37.6  Additionally by the usage of our framework, the
Baseline: discount DTPs 26.0  MT system performs the decoding task only once.
w/ human translation: discount 27.8 The idea of isolated phrase translation has been
DTPs explored successfully in MT community. Koehn

Table 6: Evaluation of the subset of 356 senterimetht 5 Knight (2003) used isolated translation of NP
ot i rsahon epoomer o See, . and PP phrases and merge them wih the piase
P ' based MT system to translate the complete sen-
tence. In our work, instead of focusing on specifi
5 Related Work type of phrases (NP or PP), we focus on isolated

Our work is related to the problem of confidenc&anslation of difficult phrases with an aim to im-
estimation for MT (Blatz et. al. 2004; Zen and Neyprove the translation quality of non-difficult seg-
2006). The confidence me?ure is a score for fents too.

grams generated by a decodeFhe measure is .

based on the features like lexical probabilitie€ Conclusionand FutureWork

(word posterior), phrase translation probabilitie
N-best translation hypothesis, etc. Our DTP claséfve have presented an MT framework that makes

fication differs from the confidence measuring irﬁsi sl?':t eagg:}'r%gaér:p;ggatgﬂr?g%év\%ficﬂzﬁaes
several aspects: one of the main purposes of SVM-based phrase classifier that finds the seg-
classification of DTPS is to optimize the usage ent of a sentence that is most difficult to trans-

ide r rces. T we f n classifi- o . o
outside resources. To do so, we focus on class ate. Our classifier achieves a promising 71.5%

cation of phrases which are syntactically meaning- curacy. By asking external sources (such as hu-

ful, because those syntactic constituent units ha an translators) to pre-translate these DTPs and
using them to constrain the MT process, we im-

3 Most of the confidence estimation measures arar@grams
(word level measures).
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prove the system outputs for the other parts of the Chapter of the Association for Computational Lin-
sentences. guistics (EACL), Trento, Italy.

~ We plan to extend this work in several diréCyiona Diab, Kadri Hacioglu, and Daniel Jurafsky. 200
tions. First, our framework can be augmented to Automatic tagging of Arabic text: From raw text to

include multiple MT systems. We expect different base phrase chunkk Proceeding of NAACL-HLT
systems will have difficulties with different con- 2004 Boston, MA.

structs, anq thus they may support each other, a":'ﬁ]l)rsten Joachims, Making large-Scale SVM Learning
thus reducing the need to ask human translators fofpractical, Advances in Kernel Methods - Support
help with the difficult phrases. Second, our cutren vector Learning, B. Schélkopf and C. Burges and A.
metric for phrasal difficulty depends on BLEU. Smola (ed.), MIT-Press, 1999.

Considering the recent debates about the shortcom{. :
. . ilipp Koehn. 2004. Pharaoh: a beam search decoder
ings of the BLEU score (Callison-Burch et. al. for phrase-based statistical machine translatiod-mo

2006), we are interested in applying alternative o|s |n proceedings of the Sixth Conference of the As-
metrics such a Meteor (Banerjee and Lavie 2005). gqciation for Machine Translation in the Americas

Third, we believe that there is more room for im- pages 115-124
provement and extension of our classification fe Shilipp Koehn and Kevin Knight. 2003. Feature-rich

tures. Specifically, we believe that our syntacti statistical translation of noun phrasesPhoceedings

analysis of source sentences can be improved byof 41st the Annual Meeting on Association for Com-

including richer parsing features_,. Finally, the putational Linguistics (ACL-2003pages 311-318.
framework can also be used to diagnose recurrin

problems in the MT system. We are currently de='
veloping methods for improving the translation of
the difficult phrases for the phrase-based MT sy&ranz. Och and Hermann Ney. 2003. A systematic

anz Och, 2001, “Giza++: Training of statisticarts-
lation model”: http://www.fjoch.com/GIZA++.html

tem used in our experiments. comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51
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Abstract

Evaluation results recently reported by
Callison-Burch et al. (2006) and Koehn and
Monz (2006), revealed that, in certain cases,
the BLEU metric may not be a reliable MT
quality indicator. This happens, for in-
stance, when the systems under evaluation
are based on different paradigms, and there-
fore, do not share the same lexicon. The
reason is that, while MT quality aspects are
diverse, BLEU limits its scope to the lex-
ical dimension. In this work, we suggest
using metrics which take into account lin-
guistic features at more abstract levels. We
provide experimental results showing that
metrics based on deeper linguistic informa-
tion (syntactic/shallow-semantic) are able to
produce more reliable system rankings than
metrics based on lexical matching alone,
specially when the systems under evaluation
are of a different nature.

Introduction

}@lsi.upc.edu

disagreement between system rankings provided by
human assessors and those produced bystEy
metric (Papineni et al., 2001). In particular, they
noted that when the systems under evaluation are
of a different nature (e.g., rule-based vs. statistical,
human-aided vs. fully automatical, et®@) EU may

not be a reliable MT quality indicator. The reason is
that BLEU favours MT systems which share the ex-
pected reference lexicon (e.g., statistical systems),
and penalizes those which use a different one.

Indeed, the underlying cause is much simpler. In
general, lexical similarity is nor a sufficient neither
a necessary condition so that two sentences convey
the same meaning. On the contrary, natural lan-
guages are expressive and ambiguous at different
levels. Consequently, the similarity between two
sentences may involve different dimensions. In this
work, we hypothesize that, in order to ‘fairly’ evalu-
ate MT systems based on different paradigms, simi-
larities at more abstract linguistic levels must be an-
alyzed. For that purpose, we have compiled a rich
set of metrics operating at the lexical, syntactic and
shallow-semantic levels (see Section 2). We present

Most metrics used in the context of Automatic Ma-a comparative study on the behavior of several met-
chine Translation (MT) Evaluation are based omic representatives from each linguistic level in the
the assumption théacceptable’translations tend to context of some of the cases reported by Koehn and
share the lexicon (i.e., word forms) in a predefined/lonz (2006) and Callison-Burch et al. (2006) (see
set of manual reference translations. This assum@ection 3). We show that metrics based on deeper
tion works well in many cases. However, severalinguistic information (syntactic/shallow-semantic)
results in recent MT evaluation campaigns have caate able to produce more reliable system rankings
some doubts on its general validity. For instancehan those produced by metrics which limit their
Callison-Burch et al. (2006) and Koehn and Monzcope to the lexical dimension, specially when the
(2006) reported and analyzed several cases of stroagstems under evaluation are of a different nature.
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2 A Heterogeneous Metric Set LE may consist, in its turn, of one or more LEs,

. . which we call ‘items’ inside the LE. For instance, a
For our experiments, we have compiled a represen-

. . . LT phrase’ LE may consist of ‘phrase’ items, ‘part-of-
tative set of metrics at different linguistic levels. , ; ) -
. : sdpeech (PoS) items, ‘word form’ items, etc. Iltems
We have resorted to several existing metrics, an o .
may be also combinations of LEs. For instance, a
we have also developed new ones. Below, we groy

them according to the level at which they operate. Bhrase LE may be seen as a sequence of ‘word-

form:PoS’ items.

2.1 Lexical Similarity 2.2.2  Similarity Measures

Most of the current metrics operate at the lexical \we are interested in comparing linguistic struc-
level. We have selected 7 representatives from difyres, and linguistic units. LEs allow for compar-
ferent families which have been shown to obtaifsons at different granularity levels, and from dif-
high levels of correlation with human assessmentsigrent viewpoints. For instance, we might compare
BLEU We use the default accumulated score up tthe semantic structure of two sentences (i.e., which
the level of 4-grams (Papineni et al., 2001).  actions, semantic arguments and adjuncts exist) or

NIST We use the default accumulated score up t4€ Might compare lexical units according to the se-
the level of 5-grams (Doddington, 2002). mantic role they play inside the sentence. For that
’ purpose, we use two very simple kinds of similarity

measures over LEsOverlapping’ and‘Matching’.
We provide a general definition:

GTM We set to 1 the value of the parame-
ter (Melamed et al., 2003).

METEOR We run all modules: ‘exact’, ‘porter-
_stem’, ‘wn.stem’ and ‘wnsynonymy’, in that OVverlapping between items inside LEs, according

order (Banerjee and Lavie, 2005). to their type. Formally:

ROUGE We used the ROUGE-S* variant (skip bi- > counthy,(ist)
grams with no max-gap-length). Stemming is Overlapping(t) = et (wp)
enabled (Lin and Och, 2004a). > countres(iyt)

i€itemst (ref)

MWER We usel — mWER (Niefien et al., 2000). wheret is the LE typé, items;(s) refers to the
MPER We usel — mPER (Tillmann et al., 1997). set of items occurring inside LEs of tygen

Let us note thaROUGE and METEOR may con- sentences, count,.r(i,t) denotes the number
sider stemming (i.e., morphological variations). Ad- ~ of times item: appears in the reference trans-
ditionally, METEOR may perform a lookup for syn- lation inside a LE of type, andcounty, (i, t)
onyms in WordNet (Fellbaum, 1998). denotes the number of timgsappears in the

. S candidate translation inside a LE of tyfpdim-

2.2 Beyond Lexical Similarity ited by the number of timesappears in the ref-

Modeling linguistic features at levels further than erence translation inside a LE of typeThus,
the lexical level requires the usage of more complex  ‘Overlapping’ provides a rough measure of the
linguistic structures. We have defined what we call ~ proportion of items inside elements of a cer-
‘linguistic elements(LES). tain type which have been ‘successfully’ trans-
lated. We also introduce a coarser metdoer-

2:2.1 Linguistic Elements lapping(*)’ , which considers the uniformly aver-

I__Es are linguistic units, structures, pr relation- aged ‘overlapping’ over all types:
ships, such that a sentence may be partially seen as a 1
‘bag’ of LEs. Possible kinds of LEs are: word forms, Overlapping(x) = ] > Overlapping|(t)

teT

parts-of-speech, dependency relationships, syntactic
phrases, named entities, semantic roles, etc. Each whereT is the set of types.
LAll metrics used in this work are publicly available inside  2LE types vary according to the specific LE class. For in-

the 1Qut Framework (Giménez and Amigo, 2008)ttp:// stance, in the case of Named Entities types may be ‘PER’ (i.e.
www.Isi.upc.edu/"nlp/IQMT person), ‘LOC’ (i.e., location), ‘ORG’ (i.e., organizatij etc.

257



Matching between items inside LEs, according to

notes:

2.3

Metrics based on shallow parsingSP’) analyze
similarities at the level of PoS-tagging, lemmati-
zation, and base phrase chunking.

reflects the successfully translated proportion
of noun phrases. We also introduce a coarser
metric, ‘SP-O.-* which considers the average
overlapping over all chunk types.

their type. Its definition is analogous to the
‘Overlapping’ definition, but in this case the
relative order of the items is important. All
items inside the same element are considered as
a single unit (i.e., a sequence in left-to-right or- At @ more abstract level, we use theiST
der). In other words, we are computing the prometric (Doddington, 2002) to compute accumu-
portion of ‘fu”y’ translated e|ement5, accord_latEd/indiVidual Scores over sequences of:

ing to their type. We also introduce a coarser | emmas -sp-NIST(i)-n

metric, ‘Matching(*)’ , which considers the uni-

_ Parts-of-speech sP-NIST(i),-n
formly averaged ‘Matching’ over all types.

Base phrase chunkssP-NIST(i).-n

For instance'sP-NIST,;-5' corresponds to the accu-
‘Overlapping’ and ‘Matching’ operate on the mulated NIST score for lemmagrams up to length

assumption of a single reference translatiorb, whereassp-NISTi,-5' corresponds to the individ-
The extension to the multi-reference setting isial NIST score for PoS 5-grams.

computed by assigning the maximum value at-
tained over all human references individuaIIy.2
‘ . ‘ . We have incorporated, with minor modifications,

Overlapping’ and ‘Matching’ are general met- some of the syntactic metrics described by Liu and

rles. We may apply them to .sp.ecmc SCeNaro%igea (2005) and Amigo et al. (2006) based on de-
by defining the class of linguistic elements an%endency and constituency parsing
items to be used. Below, we instantiate these '

measures over several particular cases. 2.4.1 On Dependency Parsing (DP)

‘DP’ metrics capture similarities between depen-
dency trees associated to automatic and reference
translations. Dependency trees are provided by the
MINIPAR dependency parser (Lin, 1998). Similari-
Outputs anfhs are captured from different viewpoints:

.4 Syntactic Similarity

Shallow Syntactic Similarity

references are automatically annotated using state-

of-the-art tools.
are provided by thevmtool package (Giménez and
Marguez, 2004), and base phrase chunking is pro-
vided by thephreco software (Carreras et al., 2005).
Tag sets for English are derived from the Penn Tree-
bank (Marcus et al., 1993).

We instantiate ‘Overlapping’ over parts-of-speech
and chunk types. The goal is to capture the propor-
tion of lexical items correctly translated, according
to their shallow syntactic realization:

PoS-tagging and lemmatizatiomp-HWC(i)-1 This metric corresponds to the HWC
metric presented by Liu and Gildea (2005). All
head-word chains are retrieved. The fraction of
matching head-word chains of a given length,
‘I', is computed. We have slightly modified
this metric in order to distinguish three differ-
ent variants according to the type of items head-
word chains may consist of:

Lexical forms —DP-HWC(i) -l
Grammatical categoriesBP-HWC(i) .-
Grammatical relationships BP-HWC() -1

SP-O,-t Lexical overlapping according to theg-

of-speech . For instance:SP-0,-NN’ roughly
reflects the proportion of correctly translated
singular nouns. We also introduce a coarser
metric, ‘SP-0,-* which computes average
overlapping over all parts-of-speech.

SP-O.-t Lexical overlapping according to the

chunk type t'. For instance;spP-O.-NP’ roughly

258

Average accumulated scores up to a given chain
length may be used as well. For instance,
‘DP-HWCi, -4’ retrieves the proportion of match-
ing length-4 word-chains, whereds-HWC -

4’ retrieves average accumulated proportion of
matching word-chains up to length-4. Anal-
ogously, ‘DP-HWC .-4’, and‘DP-HWC ,.-4' com-



pute average accumulated proportion of cate2.5 Shallow-Semantic Similarity

gory/relationship chains up to length-4. We have designed two new families of metrics, ‘NE’
and ‘SR’, which are intended to capture similari-

DP-0,|0.|O,. These metrics correspond exactly tajes over Named Entities (NEs) and Semantic Roles
the LEVEL, GRAM and TREE metrics intro- (SRs), respectively.

duced by Amigb et al. (2006).

DP-O;-l Overlapping between words hanging
at level 7', or deeper.

2.5.1 On Named Entities (NE)

‘NE’ metrics analyze similarities between auto-
matic and reference translations by comparing the
DP-Oc-t Overlapping between wordtirectly ~ NEs which occur in them. Sentences are automati-

hangingfrom terminal nodes (i.e. gram- cally annotated using thBIOS package (Surdeanu
matical @tegories) of typet'. et al., 2005). BIOS requires at the input shallow
DP-O,-t Overlapping between words ruledparsed text, which is obtained as described in Sec-
by non-terminal nodes (i.e. grammaticaltion 2.3. See the list of NE types in Table 1.
relationships) of typet'.

[ Type | Description |
. . ORG Organization

Nod&_a types are dgterm.med b)_/ grammatical cat- per Person
egories and relationships defined layNIPAR. LOC Location
For instance:DP-0,-s’ reflects lexical overlap- | MISC Miscellaneous

ina betw bt ft L biead (0] Not-a-NE
ping between Su_ rees o ype_ s’ (subjecp- DATE Temporal expressions
o.-A reflects lexical overlapping between ter-| NUM Numerical expressions

minal nodes of type ‘A’ (Adjective/Adverbs). | ANGLE_.QUANTITY
. . DISTANCE QUANTITY
DP-0-4' reflects lexical overlapping between| gizg quaNTITY Quantities

nodes hanging at level 4 or deeper. Addition{ SPEEDQUANTITY

: : i TEMPERATUREQUANTITY
ally, we consider three coarser metri@s( 0, WEIGHT QUANTITY

*, ‘DP-O.-* and‘DP-0,-*) which correspond [VETHOD
to the uniformly averaged values over all lev-| MONEY

els, categories, and relationships, respectively. ';é';%‘éﬁﬁ'f Other
PROJECT

SYSTEM

2.4.2 On Constituency Parsing (CP)

‘CP’ metrics capture similarities between con- Table 1: Named Entity types.
stituency parse trees associated to automatic and . .
reference translations. Constituency trees are pro- Ve define two types of metrics:

vided by the Charniak-Johnson’s Max-Ent rerankingyg-0,-¢ Lexical overlapping between NEs accord-
parser (Charniak and Johnson, 2005). ing to their typet. For instanceNE-O.-PER' re-
flects lexical overlapping between NEs of type
CP-STM(i)-I This metric corresponds to the STM ‘PER’ (i.e., person), which provides a rough es-
metric presented by Liu and Gildea (2005). timate of the successfully translated proportion
All syntactic subpaths in the candidate and the  of person names. ThRE-O.-* metric consid-
reference trees are retrieved. The fraction of ers the average lexical overlapping over all NE
matching subpaths of a given length;, ‘is types. This metric includes the NE type ‘O’
computed. For instancegP-STMI-5' retrieves (i.e., Not-a-NE). We introduce another variant,
the proportion of length-5 matching subpaths.  ‘NE-O.-** , which considers only actual NEs.

Average accumulated scores may be computegE-M7, -t Lexical matching between NEs accord-

as well. For instancecP-STM-9' retrieves av- ing to their typet. For instance:NE-M.-LOC’
erage accumulated proportion of matching sub-  reflects the proportion of fully translated NEs
paths up to length-9. of type ‘LOC’ (i.e., location). TheNE-M.-*
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metric considers the average lexical matchin@R-O,. This metric reflects ‘role overlapping’, i.e..
over all NE types, this time excluding type ‘O'. overlapping between semantic roles indepen-

_ dently from their lexical realization.
Other authors have measured MT quality over

NEs in the recent literature. In particular, the- Note that in the same sentence several verbs, with
M.+ metric is similar to theNee' metric defined their respective SRs, may co-occur. However, the
by Reeder et al. (2001). metrics described above do not distinguish between
SRs associated to different verbs. In order to account
2.5.2 On Semantic Roles (SR) for such a distinction we introduce a more restric-

‘SR’ metrics analyze similarities between autotive version of these metricssR-M,..-t', ‘SR-O,.-t,
matic and reference translations by comparing ther-n,.,-* , ‘SrR-0,.-*, and‘sr-0..,’), which require
SRs (i.e., arguments and adjuncts) which occur i8Rs to be associated to the same verb.
them. Sentences are automatically annotated using
the swiRL package (Marquez et al., 2005). This3 EXperimental Work

package requires at the input shallow parsed text e tnis section, we study the behavior of some
riched with NEs, which is obtained as described iQ)f the metrics described in Section 2, according

Section 2.5.1. See the list of SR types in Table 2. 5 he linguistic level at which they operate. We

[Type [ Description | have _selected a set of coarse-grained metrl_c vari-
A0 ants (i.e., accumulated/average scores over linguis-
Al tic units and structures of different kinds\We ana-

A2 arguments associated with a verb predicdte,
A3 defined in the PropBank Frames scheme lyze some of thg cases reported by Koehn and_M_onz
Ad (2006) and Callison-Burch et al. (2006). We distin-
A5 guish different evaluation contexts. In Section 3.1,
AA Causative agent ; ;
AM-ADV | Adverbial (general-purpose) adjunct We. study Fhe case of .a S.mgle rgference .tranSIatlon
AM-CAU | Causal adjunct being available. In principle, this scenario should
AM-DIR | Directional adjuknct diminish the reliability of metrics based on lexical
AM-DIS Discourse marker ; :
AM-EXT | Extent adjunct r_natc.hlrllg alone, and favou_r metrics based on deeper
AM-LOC | Locative adjunct linguistic features. In Section 3.2, we study the case
ﬁm-mgg magnler Sl_dluntct of several reference translations available. This sce-
- Oodal aqjunc . . _ .
AM-NEG | Negation marker nario should aIIewate_ the deﬂuenmes_caused by_ the
AM-PNC | Purpose and reason adjunct shallowness of metrics based on lexical matching.
AM-PRD | Predication adjunct We also analyze separately the case'tmfimoge-
AM-REC | Reciprocal adjunct , . I bei fth
AM-TMP | Temporal adjunct neous’systems (i.e., all systems being of t e same
nature), and the case ‘tieterogenoussystems (i.e.,
Table 2: Semantic Roles. there exist systems based on different paradigms).

As to the metric meta-evaluation criterion, the two
most prominent criteria are:

SR_Or_t Lexical Over|apping between SRs accord.Human Acceptablllty Metrics are evaluated on the

We define three types of metrics:

ing to their typet. For instance'SR-0,-A0’ re- basis of correlation with human evaluators.
flects lexical overlapping between ‘A0’ argu- Human Likeness Metrics are evaluated in terms of
ments. ‘SR-0,.-* considers the average lexical descriptive power, i.e., their ability to distin-
overlapping over all SR types. guish between human and automatic transla-

SR-M,-t Lexical matching between SRs accord-  tions (Linand Och, 2004b; Amigo et al., 2005).
ing to their typet. For instance, the met- Inour case, metrics are evaluated on the basis of

ric ‘SR-M,-AM-MOD’ reflects the proportion of ‘Human Acceptability’. Specifically, we use Pear-
fully translated modal adjuncts. Th&r-M,-+  Son correlation coefficients between metric scores

metric considers the average lexical matching 3when computing ‘lexical’ overlapping/matching, we use
over all SR types. lemmas instead of word forms.
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and the average sum of adequacy and fluency as- _ frzen dezen
. Level Metric in out in out
sessments at the document level. The reason fis 1-PER 0731 06410571046
that meta-evaluation based on ‘Human Likeness’ re- 1-WER 0.73| 0.73| 0.32| 0.38
- Tahili : BLEU 0.71| 0.87 || 0.60 | 0.67
quires the ayallablllty of heterogenous test beds (|.e.,|_exical NIST 072l 082 |l 026 | 063
representative sets of automatic outputs and human GTM 084|086l 0121 0.70
references), which, unfortunately, is not the case of METEOR 0.92] 0.95| 0.76 | 0.81
all the tasks under study. First, because most transla- ROUGE 085] 089 0.65] 0.79
i : tatistical. S d b . i SPO,* 0.81] 0.88] 0.64[ 0.71
ion systems are statistical. Second, because in mos SPO.-* 081 089l 065! 075
cases only one reference translation is available. | Shallow | SP-NIST-5 || 0.75| 0.81| 0.56 | 0.64
Syntactic | SP-NIST,-5 || 0.75| 0.91 || 0.77 | 0.77
3.1 Single-reference Scenario SPNISE-5 || 073 088 0.71] 0.54
DP-HWC,-4 [ 0.76 | 0.88 ]| 0.64 [ 0.74
We use some of the test beds corresponding to Bg'nng 8-32 g-gg 8-8? 8-32
the“NAACL 2006 Workshop on Statistical Machine| gyniactic | Dp-0,-* 087 | 094l 0.84| 084
Translation” (WMT 2006)YKoehn and Monz, 2006). DP-O.-* 0.91| 0.95| 0.88| 0.87
Since linguistic features described in Section 2 are DP-Or-* 0.871 097 091 0.88
far impl ted onlv for th ¢ Enalish b CP-STM-9 || 0.93| 0.95 || 0.93 | 0.87
so far implemented only for the case of English b NESL S80 1 079 T 093 T 063
ing the target language, among the 12 translatign NE-O,-* 0.79 | 0.76 || 0.91| 0.59
tasks available, we studied only the 6 tasks corre- g‘g-}%-’f 8-2% 8-82 8-82 8-;2
sponding to the Forelgn-tq-Engll_sh direction. A sin1 spaiiow SRO,* 089 095l 083! 090
gle reference translation is available. System out-Semantic | SRO. 0.95| 0.85| 0.80| 0.75
puts consist of 2000 and 1064 sentences for the ‘in- SR-M;-* 0.771 092 0.72| 0.85
q v and ‘out-of-d 7 test bed ivel SR-O,.-* 0.81| 0.93 | 0.76 | 0.94
omain’ and ‘out-of-domain’ test beds, respectively| SRO... 084! 093l 0811 092

In each case, human assessments on adequacy and

fluency are available for a subset of systems and sefable 4: WMT 2006. Evaluation of Heterogeneous
tences. Table 3 shows the number of sentences &ystems. French-to-English (fr2en) / German-to-
sessed in each case. Each sentence was evaludt@glish (de2en), in-domain and out-of-domain.

by two different human judges. System scores have

been obtained by averaging over all sentence scores. ,
y ging Although the four cases are different, we have

identified several regularities. For instan@,EU

n out Sys
French-to-English | 2,247 | 1,274 || 11/14 and, in general, all metrics based on lexical match-
German-to-English | 2,401 | 1,535 || 10/12 ; ; N
Spanish-to-English | 1944 | 1.070 [ 11/15 ing alone, exceptMETEOR, obtain significantly

lower levels of correlation than metrics based on
Table 3: WMT 2006. ‘in’ and ‘out’ columns deeper linguistic similarities. The problem with lex-
show the number of sentences assessed for the ‘igal metrics is that they are unable to capture the ac-
domain’ and ‘out-of-domain’ subtasks. The ‘sys’tual quality of the ‘Systran’ system. Interestingly,
column shows the number of systems counting oMETEOR obtains a higher correlation, which, in
human assessments with respect to the total numidbe case of French-to-English, rivals the top-scoring
of systems which presented to each task. metrics based on deeper linguistic features. The rea-
son, however, does not seem to be related to its ad-
ditional linguistic operations (i.e., stemming or syn-
onymy lookup), but rather to theETEOR matching

In four of the six translation tasks under study, albtrategy itself (unigram precision/recall).
the systems are statistical exc&pystran’, which is Metrics at the shallow syntactic level are in the
rule-based. This is the case of the German/Frenchame range of lexical metrics. At the properly
to-English in-domain/out-of-domain tasks. Table 4yntactic level, metrics obtain in most cases high
shows correlation with human assessments for sonserrelation coefficients. However, theP-HWC, -4’
metric representatives at different linguistic levels. metric, which, although from the viewpoint of de-

Evaluation of Heterogeneous Systems
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pendency relationships, still considers only lexical eszen

. . . . Level Metric in out
matching, obtains a lower level of correlation. This 1-PER 0821078
reinforces the idea that metrics based on rewarding 1-WER 0.88 | 0.83

. i ; ) BLEU 0.89 | 0.87
!ong n-grams matchings may not be a reliable qual Lexical NIST 088 | 084
ity indicator in these cases. GTM 0.86 | 0.80

At the level of shallow semantics, while ‘NE’ METEOR 0.84| 0.81
metrics are not equally useful in all cases, ‘SR’ met- ROUGE 089 | 0.83
: focti For inst lati SPO,~* 0.887 0.80
rics prove very effective. For instance, correlation SPO.-* 089 | 08a
attained bysr-0.-* reveals that it is important to Shallow | SP-NIST-5 || 0.88 | 0.85
translate lexical items according to the semantic role Syntactic | SP-NIST,-5 || 0.85| 0.86

SP-NIST.-5 0.84| 0.83

they play inside the sentence. Moreover, correlation SPAwWC 2 T 0941083
attained by thesr-, -~ metric is a clear indication DP-HWC.-4 || 0.91 | 0.87
that in order to achieve a high quality, it is impor- | DP-HWGC.-4 |1 0.91 | 0.88
‘ ) ‘ ) - Syntactic | DP-O;-* 091 | 0.84

tant to ‘fully’ translate ‘whole’ semantic structures DP-O,.-* 088 | 083
(i.e., arguments/adjuncts). The existence of all the DP-O,.-* 0.88 | 0.84
semantic structuressR-0,’), specially associated to CP-STM9 || 0.89] 0.86
PR : NE-M.—~* 0.75] 0.76

the same verbgr-0,.,’), is also important. NE.O, .+ o7 | 071
: NE-O,-** 0.88 | 0.80
Evaluation of Homogeneous Systems SRA.* 086 | 0.82
In the two remaining tasks, Spanish-to-English Shallow | SRO,-* 0.92 | 0.92
in-domain/out-of-domain, all the systems are sta- Semantic gs_OM" P 8'33 8'33
tistical. Table 5 shows correlation with human as- SRO, % 0.91 | 0.92
sessments for some metric representatives. In this SRO 091] 091

case,BLEU proves very effective, both in-domain Table 5: WMT 2006. Evaluation of Homogeneous

and out-of-domain. Indeed, all metrics based on lexs . . ] .
) . L ; . Systems. Spanish-to-English (es2en), in-domain
ical matching obtain high levels of correlation with :

and out-of-domain.

human assessments. However, still metrics based on

deeper linguistic analysis attain in most cases higher

correlation coefficients, although not as significanthpon a subjective manual evaluation based on ade-
higher as in the case of heterogeneous systems. quacy and fluency for a subset of 266 sentences (i.e.,
1596 sentences were assessed). Each sentence was
evaluated by two different human judges. System
We study the case reported by Callison-Burch aicores have been obtained by averaging over all sen-
al. (2006) in the context of the Arabic-to-Englishtence scores.

exercise of the2005 NIST MT Evaluation Cam-  Taple 6 shows the level of correlation with hu-
paign™ (Le and Przybocki, 2005). In this case allnan assessments for some metric representatives
systems are statistical biiinearB’, a human-aided (see ‘ALL’ column). In this case, lexical metrics
MT system (Callison-Burch, 2005). Five referencgptain extremely low levels of correlation. Again,
translations are available. System outputs consist gfe problem is that lexical metrics are unable to cap-
1056 sentences. We obtained permissitmuse 7 tyre the actual quality of ‘LinearB'. At the shallow
system outputs. For six of these systems we countegntactic level, only metrics which do not consider
 “hitp://www.nist.gov/speech/tests/ any lexical information ‘6P-NIST,-5" and ‘SP-NIST,-
summaries/2005/mt05.htm 5') attain a significantly higher quality. At the prop-
__°Due to data confidentiality, we contacted each participangyly syntactic level, all metrics attain a higher corre-
individually and asked for permission to use their data. Anu : . . .

ber of groups and companies responded positively: Univelation. At the shallow semantic level, again, while

sity of Southern California Information Sciences Instt@SI), ‘NE’ metrics are not specially useful, ‘SR’ metrics
University of Maryland (UMD), Johns Hopkins University & .

University of Cambridge (JHU-CU), IBM, University of Edin- prove very effective. ) )
burgh, MITRE and LinearB. On the other hand, if we remove ‘LinearB’ (see

3.2 Multiple-reference Scenario
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ar2en stance, the following set could be used:

Level Metric ALL | SMT
1-PER 0.351 0.75 { ‘DP-HWC,-4', ‘DP-O.-*, ‘DP- O;-*', ‘DP- O,-*, ‘CP-
1-WER -0.50 | 0.69 . ,‘ ,
BLEU 0.06 | 0.83 STM-9', "SRO,-*, ‘SR-Or" }
Lexical g'TS,\I 8'8‘31 8'8% All these metrics are among the top-scoring in all
ROUGE -0.17 | 0.81 the translation tasks studied. However, none of these
METEOR 0.05]| 0.86 metrics provides, in isolation, ‘global’ measure of
gggp:: 8-22 8-23 quality. Indeed, all these metrics focus ‘partial’
Shallow | SP-NIST-5 0.04| 082 aspects of quality. We believe that, in order to per-
Syntactic | SP-NIST,-5 0.42 | 0.89 form ‘global’ evaluations, different quality dimen-
SP-NIST.-5 0.44 | 0.68 : : - -
Ty sions should be integrated into a single measure of
DP-HWG-4 | 080| 075 quality. With that purpose, we are currently explor-
DP-HWC.-4 | 0.88| 0.86 ing several metric combination strategies. Prelim-
Syntactic ngl'i 8-% 8-99"1‘ inary results, based on theUEEN measure inside
DP-O.-* 072 | 0.93 the QARLA Framework (Amigo et al., 2005), indi-
CP-STM-9 0.74| 0.95 cate that metrics at different linguistic levels may be
NE-M.-* 0.33| 0.78 robustly combined.
NE-O. -+ 004 | o081 xperimental results also show that metrics re-
SR-M,.-* 0.72| 0.96 quiring linguistic analysis seem very robust against
Shallow | SRO,-* 0.61| 0.87 parsing errors committed by automatic linguistic
Semantic | SR-O, 0.66 | 0.75
SR-M, ,-* 0.68| 097 processors, at least at the document level. That
SR-Op-* 0.47| 0.84 is very interesting, taking into account that, while
SRO,, 0.46| 0.81 reference translations are supposedly well formed,

Table 6: NIST 2005. Arabic-to-English (ar2en) ex_that is not always the case of automatic translations.
ercise. ‘ALL’ refers to the evaluation of all SystemS_However, it remains pending to test the behaviour at

‘SMT" refers to the evaluation of statistical systemd!® sentence level, which could be very useful for er-
alone (i.e., removing ‘LinearB’). ror analysis. Moreover, relying on automatic proces-

sors implies two other important limitations. First,

these tools are not available for all languages. Sec-
‘SMT’ column), lexical metrics attain a much higherond, usually they are too slow to allow for massive
correlation, in the same range of metrics based aQaluations, as required, for instance, in the case of
deeper linguistic information. However, still met-system development. In the future, we plan to incor-
rics based on syntactic parsing, and semantic rolgserate more accurate, and possibly faster, linguistic
exhibit a slightly higher quality. processors, also for languages other than English, as

. they become publicly available.
4 Conclusions y P y

We have presented a comparative study on thAeCknowledgements

behavior of a wide set of metrics for automaticThis research has been funded by the Span-
MT evaluation at different linguistic levels (lexical, ish Ministry of Education and Science, projects
shallow-syntactic, syntactic, and shallow-semantidppenMT (TIN2006-15307-C03-02) and TRAN-
under different scenarios. We have shown, througBRAM (TIN2004-07925-C03-02). We are recog-
empirical evidence, that linguistic features at mora@ized as a Quality Research Group (2005 SGR-
abstract levels may provide more reliable systeri0130) by DURSI, the Research Department of the
rankings, specially when the systems under eval@atalan Government. Authors are thankful to the
ation do not share the same lexicon. WMT organizers for providing such valuable test
We strongly believe that future MT evaluationbeds. Authors are also thankful to Audrey Le (from
campaigns should benefit from these results, by ilNIST), and to the 2005 NIST MT Evaluation Cam-
cluding metrics at different linguistic levels. For in-paign participants who agreed to share their system
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outputs and human assessments for the purposeafdrey Le and Mark Przybocki. 2005. NIST 2005 ma-

this research.

Chin-Yew Lin and Franz Josef Och.
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