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Abstract restricting GEN, creating an alternative closer to
_ standard derivations. Based the iterative syllabifi-

We compare three recent proposals adding  cation in Imdlawn Tashlhiyt Berber, they suggest:
a topology to OT: McCarthy'sPersistent “some general procedure (R9-is allowed to
OT, Smolensky's ICS and Bir6's SA-OT. To make 4 certain single modification to the input,
test their learnability, constraint rankings are gy cing the candidate set of all possible outcomes
learnt from SA-OT's output. The errors in ¢ gych modificatio. The outputs of Doa are
the output, being more than mere noise, fol-  «ngjghhours” of its input, so Der defines aopol-
low from the topology. Thus, the learner has o4y Subsequently, EVAL finds the most harmonic
to reconstructs hecompetencehaving ac- element of thigestrictedcandidate set, which then
cess only to the teachergrformance serves again as the input of Do- Repeating this
procedure again and again produces a sequence of
neighbouring candidates with increasing Harmony,
The year 2006 witnessed the publication of sewwhich converges toward the surface form.

eral novel approaches within Optimality Theory Calling Do a restricted GEN, as opposed to the
(OT) (Prince and Smolensky, 1993 aka 2004) introgeedom of analysis offered by the traditional GEN,
ducing some sort afeighbourhood structuréopol-  \ccarthy (2006) develops this idea into tiRer-
ogy, geometry) on the candidate set. This idea hagstent OT architecturdaka. harmonic serialism
been already present since the beginnings of OT bif references in McCarthy 2006). He demonstrates
its potentialities had never been really developed Uy concrete examples how repeating the GEN
til recently. The present paper examines the learfe\a| . GEN — EVAL —... cycle until reach-
ability of such an enriched OT architecture. ing someocal optimum will produce a more restric-
Traditional Optimality Theory’s GEN function tjye janguage typology that conforms rather well to
generates a hugendidate sefrom the underlying opservation. Importantly for our topic, learnabil-
form (UF) and then EVAL finds the candidaiethat jiy he claims that Persistent OT&n impose stricter
optimises thedarmony functiont (w) on thisunre-  anking requirements than classic OT because of the
stricted candidate sett (w) is derived from the Vi- heeq to ensure harmonic improvement in the inter-

olation marks assigned by a ranked set of constraintsegiate forms as well as the ultimate output
to w. The surface form SF corresponding to UF is

the (globally) optimal element GENUF):

1 Introduction: topology and OT

In two very different approaches, both based on
the traditional concept of GEN, Smolenskyigte-
B grated Connectionist/Symbol{¢CS) Cognitive Ar-
SHUF) = argopt, ccenur) H (w) @ Chitecture (Smolensky and Legendre, 2006) and
Yet, already Prince and  Smolenskythe strictly symbolicSimulated Annealing for Op-
(1993/2004:94-95) mention the possibility oftimality Theory Algorithm(SA-OT) proposed by
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Bir6 (2005a; 2005b; 2006a), usenulated anneal- 2 Walking in the candidate set

ing to find the best candidate in equation (1). _ _ _

Simulated annealing performs a random walk on thEII’St, we introduce the productllon algorithms (sec-
search space, moving to a similar (neighbouring) efion 2) and a toy grammar (section 3), before we can
ement in each step. Hence, it requires a topology g" the leaming algorithms (section 4).

the search space. In SA-OT this topology is directly Equation (1) defines Optimality Theory as an op-
introduced on the candidate set, based on a linguiimisation problem, but finding the optimal candi-
tically motivated symbolic representation. At thedate can be NP-hard (Eisner, 1997). Past solutions—
same time, connectionist OT makes small changes ffart parsing (Tesar and Smolensky, 2000; Kuhn,
the state of the network: so, to the extent that state$00) and finite state OT (see Biro (2006b) for an
correspond to candidates, we obtain again a neigRverview)—require conditions met by several, but
bourhood relation on the candidate set. not by all linguistic models. They are also “too per-

Whoever introduces a neighbourhood structurfect’, not leaving room for performance errors and
(or a restricted GEN) also introductscal optima ~ computationally too demanding, hence cognitively
candidates more harmonic than all their neighbourg0t plausible. —Alternative approaches are heuris-
independently of whether they are globally Opti_tic optimization techniques: genetic algorithms and
mal. Importantly, each proposal is prone to b&imulated annealing.
stuck in local optima. McCarthy’s model repeats the These heuristic algorithms do not always find the
generation-evaluation cycle as long as the first loc4globally) optimal candidate, but are simple and still
optimum is not reached; whereas simulated annedfficient because they exploit the structure of the
ing is a heuristic optimisation algorithm that somecandidate set. This structure is realized hyeégh-
times fails to find the global optimum and returngoourhood relation for each candidate there exists
another local optimum. How do these proposals ir2 SetNei ghbour s(w), the set of the neighbours
fluence the OT “philosophy”? of w. It is often supposed that neighbours differ

For McCarthy, the first local optimum reachedonly minimally, whatever this means. The neigh-

from UF is the grammatical form (the surface formbourhood relation is usually symmetric, irreflexive
predicted by the linguistic competence model), s@nd results in a connected structure (any two candi-
he rejects equation (1). Yet, Smolensky and Birgates are connected by a finite chain of neighbours).
keep the basic idea of OT as in (1), and Bir6 (2005b; The topology (neighbourhood structure) opens
2006a) shows the errors made by simulated annedlhe possibility to a (randomyvalk on the candi-
ing can mimic performance errors (such as stresiate set: a seriesy, wi, ws, ..., wr, such that for
shift in fast speech). So mainstream Optimalityll 0 < ¢ < L, candidatew;; is w; or a neigh-
Theory remains the model of linguistic competenceyour of w;. (Candidatewy will be called winit, and
whereas its cognitively motivated, though imperfectvz, will be wfina, henceforth.) Genetic algorithms
implementation with simulated annealing becomestart with a random population afi,i;’s, and em-
a model of linguistic performance. Or, as Bird putploy OT’s EVAL function to reach a population of
it, a model of the dynamic language production prowsina’'s dominated by the (globally) optimal candi-
cess in the brain. (See also Smolensky and Legedate(s) (Turkel, 1994). In what follows, however,
dre (2006), vol. 1, pp. 227-229.) we focus on algorithms using a single walk only.

In the present paper we test the learnability of an The simplest algorithmgradient descentcomes
OT grammar enriched with a neighbourhood strudn two flavours. The version on Fig. 1 defineg,
ture. To be more precise, we focus on the latter ags the best element of st; } UNei ghbour s (w;).
proaches: how can a learner acquire a grammar, thatuns as long as; differs fromw;, and is deter-
is, the constraint hierarchy defining the Harmonyninistic for eachw,i;. Prince and Smolensky’s and
function H (w), if the learning data are produced byMcCarthy’s serial evaluation does exactly thigxjt
a performance model prone to make errors? Whatis the underlying form, Daex (the restricted GEN)
the consequence of seeing errors not simply as mereeates the sdtw} U Nei ghbour s(w), and EVAL
noise, but as the result of a specific mechanism? finds its best element.
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ALGORI THM Gr adi ent Descent: Ol with restricted GEN

W= winit;
r epeat
w_prev := w
w ;= nost _harnoni c_el ement ( {w_prev} U Nei ghbours(w_prev) );
until w = w_prev
return w # wis an approximation to the optinmal solution

Figure 1: Gradient Descent: iterated Optimality Theonjveatrestricted GEN (Dav).

ALGORI THM Random zed G adi ent Descent

w:=winit ;
r epeat
Random y select w fromthe set Nei ghbours(w);
if (w not |less harnmonic than w) t hen W= W
until stopping condition = true
return w # wis an approximation to the optinmal solution

Figure 2: Randomized Gradient Descent

The second version ofgradient descentis troduces a novel algorithm (SA-OT, Figure 4) to
stochastic (Figure 2). In step, a ran- guarantee the principle dftrict dominationin the
dom w’ € Neighbours(w;) is chosen us- constraint ranking. The latter stays on the purely
ing some pre-defined probability distribution onsymbolic level familiar to the linguist, but does not
Nei ghbour s(w;) (often a constant function). If always display the convergence property of tradi-
neighbourw’ is not worse thamw;, then the next el- tional simulated annealing.
ementw; 1 of the random walk will bew’; other- Temperature in the SA-OT Algorithm is a pair
wise, w; 41 is w;. The stopping condition requires (K, ¢) with ¢ > 0, and is diminished in two, em-
the number of iterations reach some value, or theedded loops. Similarly, the difference in the target
average improvement of the target function in théunction (Harmony) is not a single real number but a
last few steps drop below a threshold. The output isair (C, d). HereC' is thefatal constraint the high-
wrinal, @ local optimum if the walk is long enough. est ranked constraint by whiely andw’ behave dif-

Simulated annealingFig. 3) plays with this sec- ferently, whiled is the difference of the violations of
ond theme to increase the chance of finding thehis constraint. (FoH (w;) = H(w') let the differ-
global optimum and avoid unwanted local optimaence beg0,0).) Each constraint is assigned a real-
The idea is the same, butif is worse thanv;, then valued rank (most often an integer; we shall call it
there is still a chance to move td. Thetransition aK-valug such that a higher ranked constraint has
probability of moving tow’ depends on the target a higher K-value than a lower ranked constraint (hi-
function E at w; andw’, and on ‘temperaturel”:  erarchies are fully ranked). The K-value of the fatal
P(w; — w'|T) = exp (‘M) Using a constraint corresponds to the first component of the

temperature, and the second component of the dif-
'theference in the target function corresponds to the sec-

cooling schedulelnitially the system easily climbs ©Nd component of the temperature. The transition

larger hills, but later it can only descend valleys. ImProbability fromw; to its neighbour’ is 1if w’ is
portantly, the probabilitywsina is globally optimal not less h_armomc; _thamz-; othgr_vvse, the originally
converges td as the number of iterations grows. €XPonential transition probability becomes

But the target function is not real-valued in Op-
timality Theory, so how can we calculate the tran- _
sition probability? ICS (Smolensky and Legendre, if K-value of C< K
2006) approximates OT’s harmony function with aP (wi — w'| (K,t)) = ¢ e~¢ if K-value of C= K
real-valued target function, while Bir6 (2006a) in- 0 if K-value of C> K
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randomr, we move tow’ iff r < P(w; — w'|T)
Temperaturdl” is gradually decreased following

—_
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ALGORI THM Si nul at ed Anneal i ng

w:=winit ; T := T_nmax
r epeat
CHOOSE randomw in Nei ghbours(w);
Delta := E(wW) - E(wW;
if ( Delta <0) t hen W= W;
el se # move to W with transition probability P(Delta; T) = exp(-Delta/T):

generate randomr uniformy in range (0,1);
i f (r <exp(-Delta/ T) ) t hen wW:i=Ww,;
T := al pha(T); # decrease T according to sone cooling schedul e
until stopping condition = true
return w # wis an approximation to the minimal solution

Figure 3:Minimizinga real-valued energy functiafi(w) with simulated annealing.

Again,w; 1 isw’ if the random number generated does the same word finally. Two more constraints

between0 and1 is less than this transition proba-sum up the number of dissimilar and similar pairs of

bility; otherwisew;1 = w;. Birdo (2006a, Chapt. adjacent phonemes. Let;, be theith phoneme in

2-3) argues that this definition fits best the underlystringw, and letlb] = 1if b is true andb] = 0 if bis

ing idea behind both OT and simulated annealing. false; then we haveP + 2 markedness constraints:
In the next part of the paper we focus on SA-O

’ ; L1 —

and return to the other algorithms afterwards only| O non(w) =3 ;% [we) = n]
No-initial-n:  nin(w) = [we) =n
Assimilate: as@w) =) 0 [we) #F wig)

To experiment with, we now introduce an abstraipjssimilate:  digw) = ziL_—O?[w(i) = W)

grammar that mimics real phonological ones.
Let the set of candidates generated by GEN for Grammars also include faithfulness constraints

any input be{0, 1, ..., P — 1}X, the set of strings of Punishing divergences from a reference string

length I over an alphabet aP phonemes. We shall usually the input. Ours sums up the distance of the

candidatew if and only if a single minimal oper- L1

ation (abasic step transformsw into w’. A min- FAITH (w) = > i2g d(o(), w(i))

imal operation naturally fitting the structure of theWhere d(a,b) = min((a — b) mod P,(b — a)

candidates is to change one phoneme only. In of, 4 P)) is the minimal number of basic steps trans-

der to obtain a more interesting search space andlj(slrming phoneme: into b. In our case, faithfulness

order to meet some general principles—the neigqé also the number of differing binary features.
bourhood relation should be symmetric, yielding a To illustrate SA-OT, we shall use gramit
connected graph but be minimal—a basic step can ’ '

only change the value of a phonemeloyodulo P. H: no0 > ass>> Faith,—gog > nil >

For instance, in thé, = P = 4 case, neighbours of nio > ni2 > ni3 > nfo > nfl > nf2 >

0123 are among other$123, 3123, 0133 and0120, nf3 > no3> no2> nol> dis

but not1223, 2123 or 0323. If the four phonemes are

represented as a pair of binary features= [——|, A quick check proves that the global optimum
1 = [+—], 2 = [++] and3 = [—+]), then this basic is candidate3333, but there are many other local
step alters exactly one feature. optima: 1111, 2222, 3311, 1333, etc. Table 1

We also need constraints. Constraint Noeunts shows the frequencies of the outputs as a function
the occurrences of phoneme (0 < n < P) oft _step,all other parameters kept unchanged.
in the candidate (i.e., assigns one violation mark Several characteristics of SA-OT can be observed.
per phonemer). Constraint No-initial punishes For hight _st ep, the thirteen local optima{(, 3}*
phonemen word initially only, whereas No-finak:  and 2222) are all produced, but as the number of
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ALGORI THM Si nul at ed Annealing for Optimality Theory
w:=winit ;
for K=K mx to K min step Kstep
for t =t _max to t_mn step t_step
CHOOSE randomw in Nei ghbours(w);
COWARE wW to w C:= fatal constraint

di=Cqw) - qw;

if d<=0then w:=w;
el se w:=WwW wth transition probability
P(C,d;Kt) =1 , if Kvalue(CQ < K
= exp(-d/t) , if K-value(C) =K
=0 if K-value(CQ > K
end-f or
end- f or
return w # wis an approximtion to the optinmal solution

Figure 4: The Simulated Annealing for Optimality Theory Atghm (SA-OT).

iterations increases (parameterst ep drops), the versed, but the performance stays the same. This re-
probability of finding the globally optimal candidate sembles two native speakers whose divergent gram-
grows. In many grammars (e.g., nil and ni3 movecdhars are revealed only when they judge differently
to between no0 and ass 1), the global optimum forms otherwise produced by both.

is the only output for small _st ep values. YetH We suppose that the learner employs the same
also yieldsirregular forms 1111 and2222 are not SA-OT parameter setting. The acquisition of the
globally optimal but their frequencies grow togetheharameters is deferred to future work, because this
with the frequency 08333. task is not part of language acquisition but of social
acculturation: given a grammar, how can one learn
which situation requires what speed rate or what
lgvel of care in production? Consequently, fine-

hierarchy, the SA-OT Algorithm produces Ioerfor_tuning the output frequencies, which can be done

mance forms, including the grammatical one (th& fine-tuning the parameters (suchtast ep) and

global optimum), but possibly also irregular formsn©t the grammar, is not our goal here. But language

and performance errors. The exact distribution dd€@rners do not seem to do i, either.
pends on the parameters of the algorithm, which Learning algorithms in Optimality Theory belong
arenot part of the grammar, but related to externafo two families: off-line and on-line algorithms. Off-
(physical, biological, pragmatic or sociolinguistic)line algorithms, the prototype of which Recur-
factors, for instance, to speech rate. sive Constraint Demotio(RCD) (Tesar, 1995; Tesar
Our task of learning grammarcan be formulated and Smolensky, 2000), first collect the data and then
thus: given the output distribution of SA-OT basechttempt to build a hierarchy consistent with them.
on the target OT hierarchy (thrget grammay, On-line algorithms, such as Error Driven Constraint
the learner seeks a hierarchy that produces a sinkemotion (ECDC) (Tesar, 1995; Tesar and Smolen-
lar performance distribution using the same SA-OBKY, 2000) and Gradual Learning Algorithm (GLA)
Algorithm. (See Yang (2002) on grammar learningBoersma, 1997; Boersma and Hayes, 2001), start
as parameter setting in general.) Without any inforwith an initial hierarchy and gradually alter it based
mation on grammatica“ty’ her goa] is not to mimicon diSCfepanCies between the Iearning data and the
competence, not to find a hierarchy with the sam@ata produced by the learner’s current hierarchy.
globaloptima. The grammar learnt can diverge from Since infants gather statistical data on their
the target hierarchy, as long as their performance mother tongue-to-be already in pre-linguistic stages
comparable (see also Apoussidou (2007), p. 203)Saffran et al., 1996; Gervain et al., submitted), an
For instance, if nil and ni3 change place in grameff-line algorithm created our initial grammar. Then,
marH, the grammaticality of 111 and3333 are re- on-line learning refined it, modelling child language
85
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| output |

t step=1

| t step=01 [ t.step=0.01 [t_step=0.001|

3333

0.11744+ 0.0016

0.2074+ 0.0108

0.27154 0.0077

0.31074+ 0.0032

1111

0.1163+ 0.0021

0.2184+ 0.0067

0.2821+ 0.0058

0.3068+ 0.0058

2222

0.1153+ 0.0024

0.2993+ 0.0092

0.37874 0.0045

0.3602+ 0.0091

1133

0.0453+ 0.0018

0.04854+ 0.0038

0.03284+ 0.0006

0.0105+ 0.0014

3311

0.04364+ 0.0035

0.04744 0.0054

0.03444+ 0.0021

0.01144 0.0016

others

0.5608

0.1776

< 0.0002

Table 1: Outputs of SA-OT for hierarcly. “Others” are twelve forms, each with a frequency between 2%
and 8% fort _st ep = 1, and lower than 4.5% far _st ep = 0.1. (Forms produced in 8% of the cases at
t step = 1 are not produced if st ep = 0.01!) An experiment consisted of running 4096 simulations
and counting relative frequencies; each cell contains thamand standard deviation of three experiments.

development. (Although on-line algorithms requird was a neighbour ofv. To avoid the noise present
virtual production only, not necessarily uttered inin real-life data, we considered only's with a fre-
communication, we suppose the two go togetherquency higher thar/N, where N was the number
We defer for future work issues as parsing hiddepf learning data. Applying then RCD resulted in a
structures, learning underlying forms and biases fdrierarchy that produced the observed local optima—
ranking markedness above faithfulness. and most often also many others, depending on the
random constraint ranking in a stratum. These un-
wanted local optima suggest a new explanation of

o . . some “child speech forms”.
We first implemented Recursive Constraint Demo- P ) o ]
Therefore, more information is necessary to find

tion with SA-OT. To begin with, RCD createsmn- _

ner/loser table in which rows correspond to pairs (€ target hierarchy. As leamers do not use nega-
(w,1) such that winnem is a learning datum, and tive evidence (Pinker, 1984), we did not try to re-
loser is less harmonic thamw. Columnwinner Move extralocal optima directly. Yet, the learners do

markscontains the constraints that are more severefP!I€Ct statistical information. Accordingly, we en-
violated by the winner than by the loser, and vicefiched the winner/loser table with paita, /) such
versa for columrioser marks Subsequently, RCD thatw was a form observed significantly more fre-
builds the hierarchy from top. It repeatedly collectduently thari; I's were observed forms and the extra
the constraints not yet ranked that do not occur 48¢@! optima. (A difference in frequency was signifi-
winner marks. If no such constraint exists, then thgant if it was higher thaw/y.) The assumption that
learning data are inconsistent. These constraints dfgduency reflects harmony is based on the heuris-
then added to the next stratum of the hierarchy in icS of SA-OT, but is far not always true. So RCD
random order, while the rows in the table containing€cgnised this new table often to be inconsistent.
them as loser marks are deleted (because these row&nriching the table could also be done gradually,
have been accounted for by the hierarchy). adding a new pair only if enough errors have sup-
Given the complexity of the learning data IOrO_ported it Error-Selective LearningTessier (2007).
duced by SA-OT, it is an advantage of RCD thatf he pair is then removed if it proves inconsistent
it recognises inconsistent data. But how to collec¥ith stronger pairs (pairs supported by more errors,
the winner-loser pairs for the table? The learner h&¥ Pairs of observed forms and their neighbours).
no information concerning the grammaticality of the Yet, we instead turned to real on-line algorithms,
learning data, and only knows that the forms pronamely to Boersma’s Gradual Learning Algorithm
duced are local optima for the target (unknown) hi{GLA) (Boersma, 1997). Error Driven Constraint
erarchy and the universal (hence, known) topologypemotionis not robust, and gets stuck for incon-
Thus, we constructed the winner-loser table from allistent data.) Similarly to Error-Selective Learn-
pairs (w, ) such thatw was an observed form, anding, GLA accumulates gradually the arguments for
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reranking two constraints. The GLA Algorithm as-the learning datum; then the constraint promotions
signs a real-valuetank r to each constraint, so thatand demotions miss the point. Moreover, unlike
a higher ranked constraint has a higherThen, in in Stochastic OT, these misguided moves might be
each learning step the learning datum (the winnerpore frequent than the opposite moves.
is compared to the output produced by the learner’s Still, the system performed well with our gram-
actual hierarchy (the loser). Every constraint’s ranknar 7. Although the initial grammars returned by
is decreased by a small value (the plasticity) if th&RCD included local optima (“child speech forms”,
winner violates it more than the loser, and it is ine.g.,0000), learning with GLA brought the learner’s
creased by the same value if the loser has more \erformance most often closer to the teacher’s. Still,
olations than the winner. Often—still, not alwaysfinal hierarchies could be very diverse, with different
(Pater, 2005)—these small steps accumulate to cogtobal optima and frequency distributions.
verge towards the correct constraint ranking. In another experiment the initial ranking was the
When producing an output (the winner) for thetarget hierarchy. Then, 13 runs returned the target
target hierarchy and another one (the loser) for théistribution with some small changes in the hierar-
learner’s hierarchy, Boersma uses Stochastic Qdhy; in five cases the frequencies changed slightly,
(Boersma, 1997). But one can also employ tradibut twice the distribution became qualitatively dif-
tional OT evaluation, whereas we used SA-OT withlferent (e.g.2222 not appearing).
t _step = 0.1. The learner's actual hierarchy in
GLA is stored by the real-valued ranks So the 4.2 Learning in other architectures

fatal constr.amt in the core _Of SA-OT (Fig. 4) is Learning in the ICS architecture involves similar
the consiraint that has the highesimong the con- problems to those encountered with SA-OT. The
. - . D ,
straints assigning different violations to andw’. |eamer is faced again with performance forms that
(A random one of ther_n,_lf more constraints have thg local optima and not always better than unat-
same r-values, but this is very rare.). The K-valueggieq forms. The learning differs exclusively as a
were thefloor of thg r-valueg. (Note the possibil- consequence of the connectionist implementation.
ity of more constraints having the same K-value.) | McCarthy’s Persistent OT, the learner only

The r-values could also be directly the K-values; bUlEnows that the observed form is a local optimum

since pargmetewsmax, Km nandK_st ep are in- i. e, itis better than all its neighbours. Then, she has
tegers, th_'s would cause t.he temperature not' ent&; find a path backwards, from the surface form to
_the domains of thg constraints, Wh_'Ch would skip athe underlying form, such that in each step the can-
important part of simulated annealing. didate closer to the SF is better than all other neigh-

ISlrr;;Iadr_I% to Stochastic OT, our mod_el al?OGd'S'bours of the candidate closer to the UF. Hence, the
played dilierent convergence properties o I‘Aproblem is more complex, but it results in a similar

Quite often, GLA rerank.ed its initigl h.ierarchy (thewinnerlloser table of locally close candidates.
output of RCD) into a hierarchy yielding the same

or a similar _output distributign to that pr_oduced by5 Conclusion and future work
the target hierarchy. The simulated child’s perfor-
mance converged towards the parent’'s performancéle have tested the learnability of an OT grammar
and “child speech forms” were dropped gradually. enriched with a neighbourhood structure. The learn-
In other cases, however, the GLA algorithming data were produced by a performance model
turned the performance worse. The reason for thétiz., SA-OT), so the learner only had access to the
might be more than the fact that GLA does not alteacher'sperformance But by knowing the mecha-
ways converge. Increasing or decreasing the conism distorting production, she still could learn the
straints’ rank by a plasticity in GLA is done in or- targetcompetencenore or less. (Minor differences
der to make the winners gradually better and then competence are possible, as long as the perfor-
losers worse. But in SA-OT the learner’s hierarchynance is very similar.) She made use of the struc-
can produce a form that is indeed more harmoniture (the topology) of the candidate set, but also of
(but not a local optimum) for the target ranking tharthe observed error patterns. Future work may exploit
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the fact that different parameter settings of SA-OPaul Boersma. 1997. How we learn variation, option-
yield different distributions. ality, and probability. Proceedings of the Institute of

Not correctly reconstructed grammars often lead ~Nonetic Sciences, Amsterdam (IF2):43-58.
to different grammaticality judgements, but also t@ason Eisner. 1997. Efficient generation in primitive op-
quantitative differences in the performance distribu- timality theory. InProc. of the 35th Annual Meeting of
tion, despite the qualitative similarity. This fact can g‘iéssoc'a“oa”lg’rgf:z%mﬁ“tj‘t.'g”al Linguistics and 8th

. r . ages — , Madaria.

explain diachronic changes and why some grammars L pag
are evolutionarily more stable than others. Judit Gervain, Marina Nespor, Reiko Mazuka, Ryota

Inaccuratereconstruction as opposed to exact Horie, and Jacques Mehler. submitted. Bootstrapping
learning is similar to what Dan Sperber and oth- word ?rder- " prefy)gcal '-n-fanff: ahj?panese"ta“an

_ _ - cross-linguistic studyCognitive Psychology
ers said about symbolic-cultural system$he tacit . o _
knowledge of a participant in a symbolic-culturafonas Kuhn. 2000. Processing optimality-theoretic syn-
system is neither taught nor learned by rote. Rather ?X bx\(':nl_tegge?_\"ed f(hart pars'g%g n§6?enerat'on' In
- ’ roc. -38, Hongkongpages —367.
each new participant [...]reconstructsthe rules
which govern the symbolic-cultural system in quesE- ﬂ%@%&ﬁgﬁ- acn(‘)jnﬁggt?r:;’\éo'\gﬁ%%:"Zﬁdlgﬁl?are
tion. These reconstructions may differ considerably, : I -
'’ Cambridge University Press, Cambridge, UK.
depending upon such factors as the personal his- J Y _ 9 _
tory of the individual in question. Consequently, theJO'I‘E” él.quga;thly. 5?0“‘/3\) ses_”a'”tttﬁf %”?'ys'lsl-: In
g e - . . Bakovic et al., editoMondering at the Natural Fe-

proqsf:ts of eaf:h individual’s symbolic meghanlsm cundity of Things: Essays in Honor of A. Pripgages
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