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Abstract

We compare three recent proposals adding
a topology to OT: McCarthy’sPersistent
OT, Smolensky’s ICS and Bı́ró’s SA-OT. To
test their learnability, constraint rankings are
learnt from SA-OT’s output. The errors in
the output, being more than mere noise, fol-
low from the topology. Thus, the learner has
to reconstructs hercompetencehaving ac-
cess only to the teacher’sperformance.

1 Introduction: topology and OT

The year 2006 witnessed the publication of sev-
eral novel approaches within Optimality Theory
(OT) (Prince and Smolensky, 1993 aka 2004) intro-
ducing some sort ofneighbourhood structure(topol-
ogy, geometry) on the candidate set. This idea has
been already present since the beginnings of OT but
its potentialities had never been really developed un-
til recently. The present paper examines the learn-
ability of such an enriched OT architecture.

Traditional Optimality Theory’s GEN function
generates a hugecandidate setfrom the underlying
form (UF) and then EVAL finds the candidatew that
optimises theHarmony functionH(w) on thisunre-
strictedcandidate set.H(w) is derived from the vi-
olation marks assigned by a ranked set of constraints
to w. The surface form SF corresponding to UF is
the (globally) optimal element ofGEN(UF):

SF(UF) = argoptw∈GEN(UF)H(w) (1)

Yet, already Prince and Smolensky
(1993/2004:94-95) mention the possibility of

restricting GEN, creating an alternative closer to
standard derivations. Based the iterative syllabifi-
cation in Imdlawn Tashlhiyt Berber, they suggest:
“some general procedure (Do-α) is allowed to
make a certain single modification to the input,
producing the candidate set of all possible outcomes
of such modification.” The outputs of Do-α are
“neighbours” of its input, so Do-α defines atopol-
ogy. Subsequently, EVAL finds the most harmonic
element of thisrestrictedcandidate set, which then
serves again as the input of Do-α. Repeating this
procedure again and again produces a sequence of
neighbouring candidates with increasing Harmony,
which converges toward the surface form.

Calling Do-α a restricted GEN, as opposed to the
freedom of analysis offered by the traditional GEN,
McCarthy (2006) develops this idea into thePer-
sistent OT architecture(aka. harmonic serialism,
cf. references in McCarthy 2006). He demonstrates
on concrete examples how repeating the GEN→
EVAL → GEN → EVAL →... cycle until reach-
ing somelocal optimum will produce a more restric-
tive language typology that conforms rather well to
observation. Importantly for our topic, learnabil-
ity, he claims that Persistent OT “can impose stricter
ranking requirements than classic OT because of the
need to ensure harmonic improvement in the inter-
mediate forms as well as the ultimate output”.

In two very different approaches, both based on
the traditional concept of GEN, Smolensky’sInte-
grated Connectionist/Symbolic(ICS) Cognitive Ar-
chitecture (Smolensky and Legendre, 2006) and
the strictly symbolicSimulated Annealing for Op-
timality Theory Algorithm(SA-OT) proposed by
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Bı́ró (2005a; 2005b; 2006a), usesimulated anneal-
ing to find the best candidatew in equation (1).
Simulated annealing performs a random walk on the
search space, moving to a similar (neighbouring) el-
ement in each step. Hence, it requires a topology on
the search space. In SA-OT this topology is directly
introduced on the candidate set, based on a linguis-
tically motivated symbolic representation. At the
same time, connectionist OT makes small changes in
the state of the network; so, to the extent that states
correspond to candidates, we obtain again a neigh-
bourhood relation on the candidate set.

Whoever introduces a neighbourhood structure
(or a restricted GEN) also introduceslocal optima:
candidates more harmonic than all their neighbours,
independently of whether they are globally opti-
mal. Importantly, each proposal is prone to be
stuck in local optima. McCarthy’s model repeats the
generation-evaluation cycle as long as the first local
optimum is not reached; whereas simulated anneal-
ing is a heuristic optimisation algorithm that some-
times fails to find the global optimum and returns
another local optimum. How do these proposals in-
fluence the OT “philosophy”?

For McCarthy, the first local optimum reached
from UF is the grammatical form (the surface form
predicted by the linguistic competence model), so
he rejects equation (1). Yet, Smolensky and Bı́ró
keep the basic idea of OT as in (1), and Bı́ró (2005b;
2006a) shows the errors made by simulated anneal-
ing can mimic performance errors (such as stress
shift in fast speech). So mainstream Optimality
Theory remains the model of linguistic competence,
whereas its cognitively motivated, though imperfect
implementation with simulated annealing becomes
a model of linguistic performance. Or, as Bı́ró puts
it, a model of the dynamic language production pro-
cess in the brain. (See also Smolensky and Legen-
dre (2006), vol. 1, pp. 227-229.)

In the present paper we test the learnability of an
OT grammar enriched with a neighbourhood struc-
ture. To be more precise, we focus on the latter ap-
proaches: how can a learner acquire a grammar, that
is, the constraint hierarchy defining the Harmony
functionH(w), if the learning data are produced by
a performance model prone to make errors? What is
the consequence of seeing errors not simply as mere
noise, but as the result of a specific mechanism?

2 Walking in the candidate set

First, we introduce the production algorithms (sec-
tion 2) and a toy grammar (section 3), before we can
run the learning algorithms (section 4).

Equation (1) defines Optimality Theory as an op-
timisation problem, but finding the optimal candi-
date can be NP-hard (Eisner, 1997). Past solutions—
chart parsing (Tesar and Smolensky, 2000; Kuhn,
2000) and finite state OT (see Biro (2006b) for an
overview)—require conditions met by several, but
not by all linguistic models. They are also “too per-
fect”, not leaving room for performance errors and
computationally too demanding, hence cognitively
not plausible. Alternative approaches are heuris-
tic optimization techniques: genetic algorithms and
simulated annealing.

These heuristic algorithms do not always find the
(globally) optimal candidate, but are simple and still
efficient because they exploit the structure of the
candidate set. This structure is realized by aneigh-
bourhood relation: for each candidatew there exists
a setNeighbours(w), the set of the neighbours
of w. It is often supposed that neighbours differ
only minimally, whatever this means. The neigh-
bourhood relation is usually symmetric, irreflexive
and results in a connected structure (any two candi-
dates are connected by a finite chain of neighbours).

The topology (neighbourhood structure) opens
the possibility to a (random)walk on the candi-
date set: a seriesw0, w1, w2, ..., wL such that for
all 0 ≤ i < L, candidatewi+1 is wi or a neigh-
bour ofwi. (Candidatew0 will be calledwinit , and
wL will be wfinal, henceforth.) Genetic algorithms
start with a random population ofwinit ’s, and em-
ploy OT’s EVAL function to reach a population of
wfinal’s dominated by the (globally) optimal candi-
date(s) (Turkel, 1994). In what follows, however,
we focus on algorithms using a single walk only.

The simplest algorithm,gradient descent, comes
in two flavours. The version on Fig. 1 defineswi+1

as the best element of set{wi}∪Neighbours(wi).
It runs as long aswi+1 differs fromwi, and is deter-
ministic for eachwinit . Prince and Smolensky’s and
McCarthy’s serial evaluation does exactly this:winit

is the underlying form, Do-α (the restricted GEN)
creates the set{w} ∪Neighbours(w), and EVAL
finds its best element.
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ALGORITHM Gradient Descent: OT with restricted GEN
w := w_init;
repeat

w_prev := w;
w := most_harmonic_element( {w_prev} U Neighbours(w_prev) );

until w = w_prev
return w # w is an approximation to the optimal solution

Figure 1: Gradient Descent: iterated Optimality Theory with a restricted GEN (Do-α).

ALGORITHM Randomized Gradient Descent
w := w_init ;
repeat

Randomly select w’ from the set Neighbours(w);
if (w’ not less harmonic than w) then w := w’;

until stopping condition = true
return w # w is an approximation to the optimal solution

Figure 2: Randomized Gradient Descent

The second version ofgradient descent is
stochastic (Figure 2). In stepi, a ran-
dom w′ ∈ Neighbours(wi) is chosen us-
ing some pre-defined probability distribution on
Neighbours(wi) (often a constant function). If
neighbourw′ is not worse thanwi, then the next el-
ementwi+1 of the random walk will bew′; other-
wise, wi+1 is wi. The stopping condition requires
the number of iterations reach some value, or the
average improvement of the target function in the
last few steps drop below a threshold. The output is
wfinal, a local optimum if the walk is long enough.

Simulated annealing(Fig. 3) plays with this sec-
ond theme to increase the chance of finding the
global optimum and avoid unwanted local optima.
The idea is the same, but ifw′ is worse thanwi, then
there is still a chance to move tow′. The transition
probability of moving tow′ depends on the target
function E at wi andw′, and on ‘temperature’T :

P (wi → w′|T ) = exp
(

−E(w′)−E(wi)
T

)

. Using a

randomr, we move tow′ iff r < P (wi → w′|T ).
TemperatureT is gradually decreased following the
cooling schedule. Initially the system easily climbs
larger hills, but later it can only descend valleys. Im-
portantly, the probabilitywfinal is globally optimal
converges to1 as the number of iterations grows.

But the target function is not real-valued in Op-
timality Theory, so how can we calculate the tran-
sition probability? ICS (Smolensky and Legendre,
2006) approximates OT’s harmony function with a
real-valued target function, while Bı́ró (2006a) in-

troduces a novel algorithm (SA-OT, Figure 4) to
guarantee the principle ofstrict dominationin the
constraint ranking. The latter stays on the purely
symbolic level familiar to the linguist, but does not
always display the convergence property of tradi-
tional simulated annealing.

Temperature in the SA-OT Algorithm is a pair
(K, t) with t > 0, and is diminished in two, em-
bedded loops. Similarly, the difference in the target
function (Harmony) is not a single real number but a
pair (C, d). HereC is thefatal constraint, the high-
est ranked constraint by whichwi andw′ behave dif-
ferently, whiled is the difference of the violations of
this constraint. (ForH(wi) = H(w′) let the differ-
ence be(0, 0).) Each constraint is assigned a real-
valued rank (most often an integer; we shall call it
a K-value) such that a higher ranked constraint has
a higher K-value than a lower ranked constraint (hi-
erarchies are fully ranked). The K-value of the fatal
constraint corresponds to the first component of the
temperature, and the second component of the dif-
ference in the target function corresponds to the sec-
ond component of the temperature. The transition
probability fromwi to its neighbourw′ is 1 if w′ is
not less harmonic thanwi; otherwise, the originally
exponential transition probability becomes

P
(

wi → w′| (K, t)
)

=











1 if K-value of C< K

e−
d

t if K-value of C= K

0 if K-value of C> K
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ALGORITHM Simulated Annealing
w := w_init ; T := T_max ;
repeat

CHOOSE random w’ in Neighbours(w);
Delta := E(w’) - E(w);
if ( Delta < 0 ) then w := w’;
else # move to w’ with transition probability P(Delta;T) = exp(-Delta/T):

generate random r uniformly in range (0,1);
if ( r < exp(-Delta / T) ) then w := w’;

T := alpha(T); # decrease T according to some cooling schedule
until stopping condition = true
return w # w is an approximation to the minimal solution

Figure 3:Minimizinga real-valued energy functionE(w) with simulated annealing.

Again,wi+1 is w′ if the random numberr generated
between0 and1 is less than this transition proba-
bility; otherwisewi+1 = wi. Bı́ró (2006a, Chapt.
2-3) argues that this definition fits best the underly-
ing idea behind both OT and simulated annealing.

In the next part of the paper we focus on SA-OT,
and return to the other algorithms afterwards only.

3 A string grammar

To experiment with, we now introduce an abstract
grammar that mimics real phonological ones.

Let the set of candidates generated by GEN for
any input be{0, 1, ..., P − 1}L, the set of strings of
lengthL over an alphabet ofP phonemes. We shall
useL = P = 4. Candidatew′ is a neighbour of
candidatew if and only if a single minimal oper-
ation (abasic step) transformsw into w′. A min-
imal operation naturally fitting the structure of the
candidates is to change one phoneme only. In or-
der to obtain a more interesting search space and in
order to meet some general principles—the neigh-
bourhood relation should be symmetric, yielding a
connected graph but be minimal—a basic step can
only change the value of a phoneme by1 moduloP .
For instance, in theL = P = 4 case, neighbours of
0123 are among others1123, 3123, 0133 and0120,
but not1223, 2123 or0323. If the four phonemes are
represented as a pair of binary features (0 = [−−],
1 = [+−], 2 = [++] and3 = [−+]), then this basic
step alters exactly one feature.

We also need constraints. Constraint No-n counts
the occurrences of phonemen (0 ≤ n < P )
in the candidate (i.e., assigns one violation mark
per phonemen). Constraint No-initial-n punishes
phonemen word initially only, whereas No-final-n

does the same word finally. Two more constraints
sum up the number of dissimilar and similar pairs of
adjacent phonemes. Letw(i) be theith phoneme in
stringw, and let[b] = 1 if b is true and[b] = 0 if b is
false; then we have3P + 2 markedness constraints:

No-n: non(w) =
∑

L−1
i=0 [w(i) = n]

No-initial-n: nin(w) = [w(0) = n]

No-final-n: nfn(w) = [w(L−1) = n]

Assimilate: ass(w) =
∑

L−2
i=0 [w(i) 6= w(i+1)]

Dissimilate: dis(w) =
∑

L−2
i=0 [w(i) = w(i+1)]

Grammars also include faithfulness constraints
punishing divergences from a reference stringσ,
usually the input. Ours sums up the distance of the
phonemes inw from the corresponding ones inσ:

FAITH σ(w) =
∑

L−1
i=0 d(σ(i), w(i))

where d(a, b) = min((a − b) mod P, (b − a)
mod P )) is the minimal number of basic steps trans-
forming phonemea into b. In our case, faithfulness
is also the number of differing binary features.

To illustrate SA-OT, we shall use grammarH:

H: no0≫ ass≫ Faithσ=0000 ≫ ni1 ≫
ni0≫ ni2≫ ni3≫ nf0≫ nf1≫ nf2≫
nf3≫ no3≫ no2≫ no1≫ dis

A quick check proves that the global optimum
is candidate3333, but there are many other local
optima: 1111, 2222, 3311, 1333, etc. Table 1
shows the frequencies of the outputs as a function
of t step, all other parameters kept unchanged.

Several characteristics of SA-OT can be observed.
For hight step, the thirteen local optima ({1, 3}4
and 2222) are all produced, but as the number of
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ALGORITHM Simulated Annealing for Optimality Theory
w := w_init ;
for K = K_max to K_min step K_step

for t = t_max to t_min step t_step
CHOOSE random w’ in Neighbours(w);
COMPARE w’ to w: C := fatal constraint

d := C(w’) - C(w);
if d <= 0 then w := w’;
else w := w’ with transition probability

P(C,d;K,t) = 1 , if K-value(C) < K
= exp(-d/t) , if K-value(C) = K
= 0 , if K-value(C) > K

end-for
end-for
return w # w is an approximation to the optimal solution

Figure 4: The Simulated Annealing for Optimality Theory Algorithm (SA-OT).

iterations increases (parametert step drops), the
probability of finding the globally optimal candidate
grows. In many grammars (e.g., ni1 and ni3 moved
to between no0 and ass inH), the global optimum
is the only output for smallt step values. Yet,H
also yieldsirregular forms: 1111 and2222 are not
globally optimal but their frequencies grow together
with the frequency of3333.

4 Learning grammar from performance

To summarise, given a grammar, that is, a constraint
hierarchy, the SA-OT Algorithm produces perfor-
mance forms, including the grammatical one (the
global optimum), but possibly also irregular forms
and performance errors. The exact distribution de-
pends on the parameters of the algorithm, which
arenot part of the grammar, but related to external
(physical, biological, pragmatic or sociolinguistic)
factors, for instance, to speech rate.

Our task of learning agrammarcan be formulated
thus: given the output distribution of SA-OT based
on the target OT hierarchy (thetarget grammar),
the learner seeks a hierarchy that produces a simi-
lar performance distribution using the same SA-OT
Algorithm. (See Yang (2002) on grammar learning
as parameter setting in general.) Without any infor-
mation on grammaticality, her goal is not to mimic
competence, not to find a hierarchy with the same
globaloptima. The grammar learnt can diverge from
the target hierarchy, as long as their performance is
comparable (see also Apoussidou (2007), p. 203).
For instance, if ni1 and ni3 change place in gram-
marH, the grammaticality of1111 and3333 are re-

versed, but the performance stays the same. This re-
sembles two native speakers whose divergent gram-
mars are revealed only when they judge differently
forms otherwise produced by both.

We suppose that the learner employs the same
SA-OT parameter setting. The acquisition of the
parameters is deferred to future work, because this
task is not part of language acquisition but of social
acculturation: given a grammar, how can one learn
which situation requires what speed rate or what
level of care in production? Consequently, fine-
tuning the output frequencies, which can be done
by fine-tuning the parameters (such ast step) and
not the grammar, is not our goal here. But language
learners do not seem to do it, either.

Learning algorithms in Optimality Theory belong
to two families: off-line and on-line algorithms. Off-
line algorithms, the prototype of which isRecur-
sive Constraint Demotion(RCD) (Tesar, 1995; Tesar
and Smolensky, 2000), first collect the data and then
attempt to build a hierarchy consistent with them.
On-line algorithms, such as Error Driven Constraint
Demotion (ECDC) (Tesar, 1995; Tesar and Smolen-
sky, 2000) and Gradual Learning Algorithm (GLA)
(Boersma, 1997; Boersma and Hayes, 2001), start
with an initial hierarchy and gradually alter it based
on discrepancies between the learning data and the
data produced by the learner’s current hierarchy.

Since infants gather statistical data on their
mother tongue-to-be already in pre-linguistic stages
(Saffran et al., 1996; Gervain et al., submitted), an
off-line algorithm created our initial grammar. Then,
on-line learning refined it, modelling child language
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output t step = 1 t step = 0.1 t step = 0.01 t step = 0.001

3333 0.1174± 0.0016 0.2074± 0.0108 0.2715± 0.0077 0.3107± 0.0032
1111 0.1163± 0.0021 0.2184± 0.0067 0.2821± 0.0058 0.3068± 0.0058
2222 0.1153± 0.0024 0.2993± 0.0092 0.3787± 0.0045 0.3602± 0.0091
1133 0.0453± 0.0018 0.0485± 0.0038 0.0328± 0.0006 0.0105± 0.0014
3311 0.0436± 0.0035 0.0474± 0.0054 0.0344± 0.0021 0.0114± 0.0016
others 0.5608 0.1776 < 0.0002 –

Table 1: Outputs of SA-OT for hierarchyH. “Others” are twelve forms, each with a frequency between 2%
and 8% fort step = 1, and lower than 4.5% fort step = 0.1. (Forms produced in 8% of the cases at
t step = 1 are not produced ift step = 0.01!) An experiment consisted of running 4096 simulations
and counting relative frequencies; each cell contains the mean and standard deviation of three experiments.

development. (Although on-line algorithms require
virtual production only, not necessarily uttered in
communication, we suppose the two go together.)
We defer for future work issues as parsing hidden
structures, learning underlying forms and biases for
ranking markedness above faithfulness.

4.1 Learning SA-OT

We first implemented Recursive Constraint Demo-
tion with SA-OT. To begin with, RCD creates awin-
ner/loser table, in which rows correspond to pairs
(w, l) such that winnerw is a learning datum, and
loser l is less harmonic thanw. Column winner
markscontains the constraints that are more severely
violated by the winner than by the loser, and vice-
versa for columnloser marks. Subsequently, RCD
builds the hierarchy from top. It repeatedly collects
the constraints not yet ranked that do not occur as
winner marks. If no such constraint exists, then the
learning data are inconsistent. These constraints are
then added to the next stratum of the hierarchy in a
random order, while the rows in the table containing
them as loser marks are deleted (because these rows
have been accounted for by the hierarchy).

Given the complexity of the learning data pro-
duced by SA-OT, it is an advantage of RCD that
it recognises inconsistent data. But how to collect
the winner-loser pairs for the table? The learner has
no information concerning the grammaticality of the
learning data, and only knows that the forms pro-
duced are local optima for the target (unknown) hi-
erarchy and the universal (hence, known) topology.
Thus, we constructed the winner-loser table from all
pairs(w, l) such thatw was an observed form, and

l was a neighbour ofw. To avoid the noise present
in real-life data, we considered onlyw’s with a fre-
quency higher than

√
N , whereN was the number

of learning data. Applying then RCD resulted in a
hierarchy that produced the observed local optima—
and most often also many others, depending on the
random constraint ranking in a stratum. These un-
wanted local optima suggest a new explanation of
some “child speech forms”.

Therefore, more information is necessary to find
the target hierarchy. As learners do not use nega-
tive evidence (Pinker, 1984), we did not try to re-
move extra local optima directly. Yet, the learners do
collect statistical information. Accordingly, we en-
riched the winner/loser table with pairs(w, l) such
that w was a form observed significantly more fre-
quently thanl; l’s were observed forms and the extra
local optima. (A difference in frequency was signifi-
cant if it was higher than

√
N .) The assumption that

frequency reflects harmony is based on the heuris-
tics of SA-OT, but is far not always true. So RCD
recognised this new table often to be inconsistent.

Enriching the table could also be done gradually,
adding a new pair only if enough errors have sup-
ported it (Error-Selective Learning, Tessier (2007).
The pair is then removed if it proves inconsistent
with stronger pairs (pairs supported by more errors,
or pairs of observed forms and their neighbours).

Yet, we instead turned to real on-line algorithms,
namely to Boersma’s Gradual Learning Algorithm
(GLA) (Boersma, 1997). (Error Driven Constraint
Demotion is not robust, and gets stuck for incon-
sistent data.) Similarly to Error-Selective Learn-
ing, GLA accumulates gradually the arguments for
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reranking two constraints. The GLA Algorithm as-
signs a real-valuedrank r to each constraint, so that
a higher ranked constraint has a higherr. Then, in
each learning step the learning datum (the winner)
is compared to the output produced by the learner’s
actual hierarchy (the loser). Every constraint’s rank
is decreased by a small value (the plasticity) if the
winner violates it more than the loser, and it is in-
creased by the same value if the loser has more vi-
olations than the winner. Often—still, not always
(Pater, 2005)—these small steps accumulate to con-
verge towards the correct constraint ranking.

When producing an output (the winner) for the
target hierarchy and another one (the loser) for the
learner’s hierarchy, Boersma uses Stochastic OT
(Boersma, 1997). But one can also employ tradi-
tional OT evaluation, whereas we used SA-OT with
t step = 0.1. The learner’s actual hierarchy in
GLA is stored by the real-valued ranksr. So the
fatal constraint in the core of SA-OT (Fig. 4) is
the constraint that has the highestr among the con-
straints assigning different violations tow andw′.
(A random one of them, if more constraints have the
same r-values, but this is very rare.). The K-values
were thefloor of the r-values. (Note the possibil-
ity of more constraints having the same K-value.)
The r-values could also be directly the K-values; but
since parametersK max,K min andK step are in-
tegers, this would cause the temperature not enter
the domains of the constraints, which would skip an
important part of simulated annealing.

Similarly to Stochastic OT, our model also dis-
played different convergence properties of GLA.
Quite often, GLA reranked its initial hierarchy (the
output of RCD) into a hierarchy yielding the same
or a similar output distribution to that produced by
the target hierarchy. The simulated child’s perfor-
mance converged towards the parent’s performance,
and “child speech forms” were dropped gradually.

In other cases, however, the GLA algorithm
turned the performance worse. The reason for that
might be more than the fact that GLA does not al-
ways converge. Increasing or decreasing the con-
straints’ rank by a plasticity in GLA is done in or-
der to make the winners gradually better and the
losers worse. But in SA-OT the learner’s hierarchy
can produce a form that is indeed more harmonic
(but not a local optimum) for the target ranking than

the learning datum; then the constraint promotions
and demotions miss the point. Moreover, unlike
in Stochastic OT, these misguided moves might be
more frequent than the opposite moves.

Still, the system performed well with our gram-
marH. Although the initial grammars returned by
RCD included local optima (“child speech forms”,
e.g.,0000), learning with GLA brought the learner’s
performance most often closer to the teacher’s. Still,
final hierarchies could be very diverse, with different
global optima and frequency distributions.

In another experiment the initial ranking was the
target hierarchy. Then, 13 runs returned the target
distribution with some small changes in the hierar-
chy; in five cases the frequencies changed slightly,
but twice the distribution became qualitatively dif-
ferent (e.g.,2222 not appearing).

4.2 Learning in other architectures

Learning in the ICS architecture involves similar
problems to those encountered with SA-OT. The
learner is faced again with performance forms that
are local optima and not always better than unat-
tested forms. The learning differs exclusively as a
consequence of the connectionist implementation.

In McCarthy’s Persistent OT, the learner only
knows that the observed form is a local optimum,
i. e., it is better than all its neighbours. Then, she has
to find a path backwards, from the surface form to
the underlying form, such that in each step the can-
didate closer to the SF is better than all other neigh-
bours of the candidate closer to the UF. Hence, the
problem is more complex, but it results in a similar
winner/loser table of locally close candidates.

5 Conclusion and future work

We have tested the learnability of an OT grammar
enriched with a neighbourhood structure. The learn-
ing data were produced by a performance model
(viz., SA-OT), so the learner only had access to the
teacher’sperformance. But by knowing the mecha-
nism distorting production, she still could learn the
targetcompetencemore or less. (Minor differences
in competence are possible, as long as the perfor-
mance is very similar.) She made use of the struc-
ture (the topology) of the candidate set, but also of
the observed error patterns. Future work may exploit
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the fact that different parameter settings of SA-OT
yield different distributions.

Not correctly reconstructed grammars often lead
to different grammaticality judgements, but also to
quantitative differences in the performance distribu-
tion, despite the qualitative similarity. This fact can
explain diachronic changes and why some grammars
are evolutionarily more stable than others.

Inaccuratereconstruction, as opposed to exact
learning, is similar to what Dan Sperber and oth-
ers said about symbolic-cultural systems: “The tacit
knowledge of a participant in a symbolic-cultural
system is neither taught nor learned by rote. Rather
each new participant [...] reconstructsthe rules
which govern the symbolic-cultural system in ques-
tion. These reconstructions may differ considerably,
depending upon such factors as the personal his-
tory of the individual in question. Consequently, the
products of each individual’s symbolic mechanism
are idiosyncratic to some extent.” (Lawson and Mc-
Cauley, 1990, p. 68, italics are original). This obser-
vation has been used to argue that cultural learning
is different from language learning; now we turn the
table and claim that acquiring a language is indeed
similar in this respect to learning a culture.
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