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Abstract tic space, not its generation or properties that exist

at a whole-network level.

Semantic networks have been used suc-
cessfully to explain access to the men-
tal lexicon. Topological analyses of these
networks have focused on acquisition and
generation. We extend this work to look
at models that distinguish semantic rela-

Topological analyses, looking at the statistical
regularities of whole semantic networks, can be
used to model phenomena not easily explained from
the smaller scale data found in human experiments.
These networks are typically formed from corpora,
expert compiled lexical resources, or human word-

association data.

Existing work has focused language acquisition
(Steyvers and Tenenbaum, 2005) and generation
(Cancho and Sél 2001). These models use the gen-
eral notion of semantiassociatiorwhich subsumes
all specific semantic relations, e.g. synonymy.

There is evidence that there are distinct cogni-
tive processes for different semantic relations (e.g.
Casenhiser, 2005). We perform a graph analysis
of synonymynearness of meaning, ahdmonymy
shared lexicalisation.

Semantic networks have played an important role in We find that synonymy and homonymy produce
the modelling of the organisation of lexical knowl-graphs that are topologically distinct from those pro-
edge. In these networks, words are connected lojuced using association. They still produce small-
graph edges based on their semantic relations. In neorld networks with short path lengths but lack
cent years, researchers have found that many semanale-free properties. Adding edges of different se-
tic networks aresmall-world scale-freenetworks, mantic relations, in particular hyponymy, produces
having a high degree of structure and a short distanggaphs more similar to the association networks. We
between nodes (Steyvers and Tenenbaum, 2005).argue our analyses consistent with other semantic
Early models were taxonomic and explained someetwork models where nodes of a common type
aspects of human reasoning (Collins and Quilliarghare edges of different types (e.g. Collins and Lof-
1969) (and are still used in artificial reasoning systus, 1975).
tems), but were replaced by models that focused on We further analyse the distributional model of lan-
general graph structures (e.g. Collins and Loftuguage acquisition. We find that it does not well
1975). These better modelled many observed phexplain whole-language acquisition, but provides a
nomena but explained only the searching of semamodel for synonym and homonym acquisition.

73

Proceedings of the Workshop on Cognitive Aspects of Computational Language Acquisition, pages 73-80,
Prague, Czech Republic, June 2007 (©)2007 Association for Computational Linguistics

tions. We find the scale-free properties
of association networks are not found in
synonymy-homonymy networks, and that
this is consistent with studies of childhood
acquisition of these relationships. We fur-
ther find that distributional models of lan-
guage acquisition display similar topolog-
ical properties to these networks.

1 Introduction



2 Graph Theory 2.1 Small-world Networks

Traditional network models assume that networks
are either completely random or completely regu-
lar. Many natural networks are somewhere between
these two extremes. Thesmall-world networks a
Edges and arcs can beeightedor unweighted have the high degree of clustering of a reguddtice
with weights indicating the relative strength or im-anCI the short average path length of a ra”dofn n_et-
work (Watts and Strogatz, 1998). The clustering is

portance of the edges. We will only consider un- dicative of it d the short path K
weighted, undirected networks. Although there i%n catlve o organisation, and € short paths make

evidence that semantic relations are both directear_l_ehaS'?r rlav_lgatlon.ﬁ_ ienc. | dt
(Tversky, 1977) and weighted (Collins and Loftus dec us e;mlg ctoe_ Icienty |('js usemeo measure
1975), we do not have access to this information iH]e egree of clustering around a venex

Our overview of graph theory follows Watts (1999).
A graph consists of a set of vertices(node$ and

a set ofedges or arcs, which join pairs of ver-
tices. Edges arendirectedand arcs aralirected

a consistent and meaningful format for all our re- IE(TV)|
sources. V= (kv)
Two vertices connected by an edge are called 2

ne?ghb_ours The degreek_of a vertex is the count where|E(T)| is the number of edges in the neigh-
of it neighbours. From this we measure the averaggyurhoodry and(%) is the total number of possible
degregk) for the graph and the degree distributioneqges inr,. The clustering coefficier® of a graph

P(k) for all values ofk. The degree distribution is js the average over the coefficients of all the vertices.
the probability of a vertex having a degriee

Theneighbourhood, of a vertexvis the setof all 2.2 The Scale of Networks
neighbours of/ not includingv. The neighbourhood Amaral et al. (2000) describe three classes of small
I's of a subgrapl$ is the set of all neighbours &, world networks based on their degree distributions:
not including the members &. Scale-free networksare characterised by their

The distance between any two vertices is thedegree distribution decaying as a power law, having
shortest path lengthor the minimum number of a small number of vertices with many linksubg
edges that must be traversed, to reach the first froamd many vertices with few links. Networks in this
the second. Theharacteristic path lengtlt is the class include the internet (Faloutsos et al., 1999)
average distance between vertiéeShe diameter and semantic networks (Steyvers and Tenenbaum,
D of a graph is the maximum shortest path lengt2005).
between any two vertices. At moBXsteps are re-  Broad-scale networksare characterised by their
quired to reach any vertex from any other vertex butlegree distribution decaying as a power law fol-
on average, only. are required. lowed by a sharp cut-off. This class includes col-

For very large graphs, calculating the valueslfor laborative networks (Watts and Strogatz, 1998).
andD is computationally difficult. We instead sam-  Single-scale networksare characterised by fast
plen” < nnodes and find the mean valueslohnd decaying degree distribution, such exponential or
D across the samples. The diameter produced wiBaussian, in which hubs are scarce or nonexistent.
always be less than or equal to the true diameter. Wihis class includes power grids (Watts and Strogatz,
foundn’ = 100to be most efficient. 1998) and airport traffic (Amaral et al., 2000).

It is not a requirement that every vertex be reach- Amaral et al. (2000) model these differences us-
able from every other vertex and in these cases boithg a constrained preferential attachment model,
L andD will be infinite. In these cases we analysevhere new nodes prefer to attach to highly con-
the largest connected subgraph. nected nodes. Scale-free networks result when there

are no constraints. Broad-scale networks are pro-

"Here we follow Steyvers and Tenenbaum (2005) as it iguced when ageing and cost-to-add-link constraints
more commonly used in the cognitive science literature. Watts dded King it difficult d
(1999) defines the characteristic path length asntleglianof are added, making 1t more diticult to produce very

the means of shortest path lengths for each vertex. high degree hubs. Single-scale networks occur when
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these constraints are strengthened. This is one ofSigman and Cecchi (2002) investigate the struc-
several models for scale-free network generationire of WordNet to study the effects of nounal pol-
and different models will result in different internal ysemy on graph navigation. Beginning with synsets

structures and properties (Keller, 2005). and the hyponym tree, they find adding polysemy
both reduces the characteristic path length and in-
3 Semantics Networks creases the clustering coefficient, producing a small-

world network. They propose, citing word priming

Semantic networks represent the structure of hexperiments as evidence, that these changes in struc-
man knowledge through the connections of wordsure give polysemy a role in metaphoric thinking and
Collins and Quillian (1969) proposed a taxonomigyeneralisation by increasing the navigability of se-
representation of knowledge, where words are colmantic networks.
nected by hyponym relations, like in the WordNet Steyvers and Tenenbaum (2005) examine the
noun hierarchy (Fellbaum, 1998). While this strucgrowth of semantic networks using graphs formed
ture predicted human reaction times for verifyingrom several resources: the free association index
facts it allows only a limited portion of knowledge collected by Nelson et al. (1998), Wordnet and
to be expressed. Later models represented knowhe 1911 Roget’s thesaurus. All these produced
edge as semi-structured networks, and focused ggale-free networks, and, using an age of acquisi-
explaining performance in memory retrieval taskstion and frequency weighted preferential attache-
One such model ispreading-activationin which  ment model, show that this corresponds to age-of-
the degree to which a concept is able to be recalledégquisition norms for a small set of words. This is
related to its similarity both to other concepts in geneompared to networks produced by Latent Semantic
eral and to some particularimeor primes (Collins  Analysis (sA, Landauer and Dumais, 1997), and
and Loftus, 1975). In this way, if one is asked taconclude that.sa is an inadequate model for lan-
name ared vehicle, fire truck is more likely re- guage growth as it does not produce the same scale-
sponse thawar: while both are strongly associatedfree networks as their association models.
with vehicle, fire truck is more strongly associated
with red than iscar. 3.1 Synonymy and Homonymy

More recently, graph theoretic approaches hawhile there have been many studies using human
examined the topologies of various semantic nesubjects on the acquisition of particular semantic re-
works. Cancho and SBl(2001) examine graphs of lations, there have been no topological studies differ-
English modelled from the British National Corpus.entiating these from the general notion of semantic
Since co-occurrence is non-trivial — words in a senassociation This is interesting as psycholinguistic
tence must share some semantic content for the sestudies have shown that semantic relationships are
tence to be coherent — edges were formed betwedistinguishable (e.g. Casenhiser, 2005). Here we
adjacent words, with punctuation skipped. Twaonsidersynonymyandhomonymy
graphs were formed: one from all co-occurrences There are very few cases of true synonymy, where
and the other from only those co-occurrences wittwo words are substitutable in all contexts. Near-
a frequency greater than chance. Both models preynonymy, where two words share some close com-
duced scale-free networks. They find this modehon meaning, is more common. Sets of synonyms
compelling for word choice during speech, notcan be grouped together intgnsetsrepresenting a
ing function words are the most highly connectedcommon idea.
These give structure without conveying significant Homonymy occurs when a word has multiple
meaning, so can be omitted without rendering aneanings. Formally, homonymy is occurs when
sentence incoherent, but when unavailable rendemords do not share an etymological root (in lin-
speech non-fluent. This is consistent with work byuistics) or when the distinction between meanings
Albert et al. (2000) showing that scale-free networks coarse (in cognitive science). When the words
are tolerant to random deletion but sensitive to tashare a root or meanings are close, the relationship
geted removal of highly connected vertices. is calledpolysemy This distinction is significant
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in language acquisition, but as yet little research.1 Lexical Semantic Resources

has been performed on the learning of polySemeg v ica| resource for providing this information
(Casenhiser, 2005). Itis also significant for Natural, .o anyally constructed lexical semantic resources.
Language Processing. The effect of disambiguatinge \.ji| consider three: Roget's, WordNet and Moby
homonyms is mgrkedly different from polysemes in Roget's thesaurus is a common language the-
Information Retrieval (Stokoe, 2005). o saurus providing a hierarchy of synsets. Synsets
We do not have access to these distinctions, Jih the same general or overlapping meaning and
they are not available in most resources, nor agg, .+ of speech are collected into paragraphs. The
there techniques to automatically acquire these d'ﬁarts of speech covered are nouns, verbs, adjectives,
tinctions (Kilgarriff and Yallop, 2000). For simplic- 54yerhs, prepositions, phrases, pronouns, interjec-
ity, will conflate the categories under homonymy. jons conjunctions, and interrogatives. Paragraphs
There have been several studies into synonymyith similar meaning are collated by part of speech
and homonymy acquisition in children, and thesgg Jabeled categories. Categories are then collected
have shown that it lags behind vocabulary growthyio classes using a three-tiered hierarchy, with the
(Doherty and Perner, 1998; Garnham et al., 2000)qost general concept at the top. Where a word has
A child will associate botlrabbit andbunny with  geyeral senses, it will appear in several synsets. Sev-
the same concept, but before the age of four, MOgty| editions of Roget's have been released repre-
children have difficulty in choosing the wollinny  senting the change in language since the first edi-
if they have already been presented with the worgon, in 1852. The last freely available edition is the
rabbit. Similarly, a young child asked to pointto two 1911 which uses outdated vocabulary, but the global
pictures that have the same name but mean differqra,tpmogy has not changed with more recent editions
things will have difficulty, despite knowing each Of(OId, 2003). As our analysis is not concerned with
the things independently. the specifics of the vocabulary, this is the edition we
Despite this improvement with age, there aryjll use. It consists of a vocabulary of 29,460 nouns,
tendencies for language to avoid synonyms angs 173 verbs, 13,052 adjectives and 3,005 adverbs.
homonyms as a more general principle of economy \wordNet (Fellbaum, 1998) is an electronic lex-
(Casenhiser, 2005). This is balanced by the utility 6ta] database. Like Roget’s, it main unit of or-
ambiguous relations for mental navigation (Sigmaganisation is the synset, and a word with several
and Cecchi, 2002) which goes some way to explainsenses will appear in several synsets. These are di-
ing why they still play such a large role in languageyjiged into four parts of speech: nouns, verbs, ad-
jectives and adverbs. Synsets are connected by se-
4 The Topology of S_ynonymy and mantic relationships, e.g antonymy, hyponymy and
Homonymy Relations meronym. WordNet 2.1 provides a vocabulary of
117,097 nouns, 11,488 verbs, 22,141 adjectives and
For each of our resources we form a graph based 91',1601 adverbs.

the relations between lexical items. This differs to , .
the earlier work of Sigman and Cecchi (2002), wh The Moby thesaurus provides synonymy lists
' or over 30,000 words, with a total vocabulary of

use synsets as vertices, and Steyvers and Tenenb ,263 words. These lists are not distinguished by

(2005) who use both lexical items and synsets.. - . S
This is motivated largelv b ¢ automati part of speech. A separate file is supplied containing
11Is 1S motivated fargely by our automatic ac- speech mappings for words in the vocabu-

quisition techniques, and also by human studies, in .

which w 1 onlv directl relationshios b ary. We extracted separate synonym lists for nouns,

N chwe %a ?I'hy Iec y”access te 6;.0 Stl ps everbs, adjectives and adverbs using this list com-

Ween woras. IS a1S0 allows Us 1o AITeCtly COMyy 0y \yith WordNet part of speech informatién.

pare rtestou:(r:]es wh%r]e V,:Ie leavz' Tformart]lon ?bo'ﬁis produces a vocabulary of 42,821 nouns, 11,957
SYNsets 1o those without. € distinguish parts q erbs, 16,825 adjectives and 3,572 adverbs.

speech as disambiguation across them is relatively . )
easy psychologically (Casenhiser, 2005) and com- Table 1 presents the statistics for the largest con

putationally (e.g. Ratnaparkhi, 1996). 2http://aspell.sourceforge.net/wl/
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Roget’s WordNet Moby

Noun Verb Adj Adv Noun Verb Adj  Adv Noun Verb Adj Adv
n 15,517 8,060 6,327 626 11,746 6,506 4,786 62 42,819 11,934 16,784 3501
(k) 8.97 8.46 7.40 7.17 4.58 6.34 516 497 3465 5198 39.26 16.07
L 6.5 6.0 6.4 10.5 9.8 6.0 9.5 5.6 37 31 34 3.7
D 21.4 17 17 31 27 15.3 26.4 14 9.6 9.8 9.3 9.8
C 0.74 0.68 0.69 0.77 0.63 0.62 0.66 0.57 0.60 0.49 0.57 0.55
L, 47 45 4.6 35 6.3 5.0 5.9 3.3 34 2.8 2.9 3.2
D, 8.5 8.4 9.0 7 13.3 10.1 11.8 8 55 5 5 6
C, | 0.00051 0.0011 0.0012 0.00900.00036 0.00099 0.00094 0.0280.00081 0.0043 0.0023 0.0047

Table 1: Topological statistics for nouns, verbs, adjectives and adverbs for our three gold standard resources

o R D " Roget's —— WordNet Roget’s
wO]rv?I\Let ——————— Hyp | Synset Para Cat
Random n | 11,746 118,264 15,517 27,989 29,431
01 T E ® | 458 6.61| 897 26.84 140.36
L 9.8 63| 65 4.3 2.9
_ D 27 164| 214 126 7
S oo 1 C 0.63 0.74| 074 085 086

Table 2: Effect of adding hyponym relations

0.001 E
i granularity of the synonymy relations presented, as
indicated by the characteristic path length. WordNet
1000 has fine grained synsets and the smallest characteris-
k tic path length, while Moby has coarse grained syn-
onyms and the largest characteristic path length.

le-04 L
10000

Figure 1: Degree distributions for nouns
4.2 Synonymy-Like Relations

n_ected subgraph_ for th_e f_our parts of speech CorI‘—Taving seen that synonymy and homonymy alone
S|de_red, a'of‘g with statistics for random grz_alphs Ogio not produce scale-free networks, we investigate
equivalent size and average degree (subscyipin the synonymy-like relations dfyponymyand topic
all cases the clustering coefficient is Signiﬁcantlyrelatedness Hyponymy is the 1S-A class subsump-
higher thgn_that for the random graph. While th(?ion relationship and occurs between noun synsets in
characteristic path length and dlameter_are Iarg?/(/ordNet. Topic relatedness occurs in the grouping
than for' the random graphs, they are_stlll sho_rt "éf synsets in Roget's in paragraphs and categories.
comparison to an equivalent latice. This, combine Table 2 compares adding hyponym edges to the
with the high clustering coefficient, indicates thatgraph of WordNet nouns and increasing the gran-
they are producing small-world networks. The dl'ularity of Roget's synsets using edges between all
ameter is Iarggr S.tI|| than for the rar_1don_1 graphs. To\ivords in a paragraph or category. Adding hyponymy
get_her_these !ndlcate_a more Ia_tt_lce like St.ruc.tu.rerEIations increases the connectivity of the graph sig-
which is consistent with the intuition that d'SS'm"nificantIy and there are no longer any disconnected
!ar_ words are unlikely to share similar words. Thissubgraphs. At the same time the diameter is nearly
S |n.dependent of part of speec.h.. _ halved and characteristic path length reduce one
Figure 1 shows the degree distributions for nounspird, but average degree only increases by one third.
and for a random graph plotted on log-log axesrg achieving the same reduction in path length and
Other parts of speech produce equivalent graphgiameter by the granularity of Roget's requires the
These clearly show that we have not produced scalgyerage degree to increase by nearly three times.
free networks as we are not seeing straight line Figyre 2 shows the degree distributions when hy-
power law d|§tr|butlons. Instead we are seeing Whadonyms are added to WordNet nouns and the granu-
is closer to single- or broad-scale distributions. larity of Roget's is increased. Roget's category level
The differences in the graphs is explained by thgraph is omitted for clarity. We can see that the orig-
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Roget’s
Paragraph -------
WordNet --------

0.1 F Hyponym - - 0.1 .

P(k)
P(k)

0.001 | - . 0.001 |

le04 | Vo g e-04 | —
le-05 I L L L le-05 I L L L
1 10 100 1000 10000 1 10 100 1000 10000
k k
Figure 2: Degree distributions adding hyponym re- Figure 3: Degree distributions of Jaccard

lations to nouns

inally broad le struct f the Roget's distrib wide as document (Landauer and Dumais, 1997)
Inally broad-scale structure of the Roget's distribug <o A< grammatical dependencies (Grefenstette,

tion is tending to have a more gaussian distributiori994) The distance between words in this space ap-
The addition of hyponyms produces a power law dis-___." L

roximates the similarity measured by synonymy.
tribution fork > 10 of P(k) ~ k=17, P y y synonymy

. . We use the noun similarities produced by Gor-
Additional constraints on attachment reduce thﬁ1an and Curran (2006) using theeighted Jac-

albllltzogg netv_:_/:)]rks d.;fo be sczle:{-free (Amaral ®lcard measure and thetest weight and grammat-
al. ) € difierence DEween Synonymyre| relations extracted from their ARGE corpus,

homonymy networks and association networks “de method found to perform best against their gold-

be explained by this. .Steyvers and Tenenbaug‘{andard evaluation. Only words with a corpus fre-
(2005) propose a plausible attachment model 1q uency higher than 100 are included. This method
their association networks which has no additiona} comparable to that used irsa, although using

constraint function. If we use the tendency for lan; rammatical relations as context produces similar-

guages to avoid lexical ambiguity from synonym ity much more like synonymy than those taken at a

agd homony_Ty asé a coSstra(ljmt tol the detcnor:ho ocument level (Kilgarriff and Yallop, 2000).
eages we will produce broad-scale NEIWOTKS ratner pisyipytional similarity produces a list of vocab-

th:;n sr::ale-free n_etwc.)rks..l , dd ulary words, their similar neighbours and the sim-
S hyponymy Is primarily semantic and does noharity to the neighbours. These lists approximate

produce lexical ambigu“y’ addin_g hyponym e_dge§ynonymy by measuring substitutability in context,
weakens the constraint on a_m_blgwty, pmduc'“g 4nd do not only find synonyms as near neighbours
scale—freg ne_twork. Generalising synonymy 0 IN55 hoth antonyms and hyponyms are frequently sub-
clude tgplcallty weakens the constramts, but at thgtitutable in a grammatical context (Weeds, 2003).
same time reduces preference in attachment. T'rl‘?om this we generate graphs by taking eitherkhe

results of this is the gaussian-like distribution Withnearest neighbours to each wotdNN), or by us-

very few low degree nodes. The difference bet\’\“:"eirﬁg; a threshold. To produce a threshold we take the

this thesaurus based topicality and that found in thﬁean similarity of th&" neighbour of all words (-
man association data is that human association deﬁﬁ) We compare both these methods

only includes the most similar words. Figure 3 compares the degree distributions of

these. Usingk-NN produces a degree distribution
that is close to a Gaussian, where &sNN pro-
Lexical semantic resources can be automatically educes a distribution much more like that of our ex-
tracted using distributional similarity. Here wordspert compiled resources. This is unsurprising when
are projected into a vector space using the contextise distribution of distributional distances is consid-
in which they appear as axes. Contexts can be ased. Some words will have many near neighbours,
78
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[ Roget's WordNet Hyp k-NN  *Kk-NN ! E T T T T  ordNet ———
n 15517 11,746 118,264 35592 19,642 - e,
(k) 8.97 4,58 6.61 8.26  13.86 P e Ey: J—
L 6.5 9.8 6.3 6.2 6.4 OLE E
D 21.4 27 16.4 12 25.6 F
C 0.74 0.63 0.74 0.18 037 -
= 001 E
Table 3: Comparing nouns in expert and distribu- g
tional resources I
0.001 3 4
and other few. In the first cask;sNN will fail to in- i
. . . le-04 L L L
clude some near neighbours, and in the second will 1 10 100 1000 10000

include some distant neighbours that are note se- k
mantically related. This result is consistent between
k = 5and 50. Introduction of random edges from

the noise of distant neighbours reduces the diameter

and missing near neighbours reduces the clusterifyPothesised that distributional techniques are mod-
coefficient (Table 3) eling the acquisition of synonyms and homonyms,

rather than all semantic relationships.

In Table 3 we also compare these to noun syn- This is g turth q b . tal
onymy in Roget’s, and to synonymy and hyponym)%. di 'S |s;hg|:/en ur 't'e ' Cr? hence y experlmenta
in WordNet. Distributional similarity (kK-NN) pro- INdings that acquisition ol homonyms occurs at a

duces a network with similar degree, characteristig'g?retm ratl';]e :oﬂ:he acqws(,jlpf?n oftvocabrllj 'afy' Th;S
path length and diameter. The clustering coefficie pdica esth at there ar?I |_er|eq mec r:ljnllsms_ or
is much less than that from expert resources, is st farning Iné meaning of fexical 1tems and fearning

several orders of magnitude larger than an equivale f relate the meanings of lexical items. Any whole-
random graph (Table 1) anguage model would then be composed of a com-

Figure 4 compares a distributional network to r]etmon set of lexical items related by disparate rela-
tions, such as synonymy, homonymy and hyponymy.
works WordNet and Moby. We can see the sam ynonymy. ymy yponymy

broad-scale in the distributional and synonym ne&—i oés(ggﬁir?s r(::ccli i Olfstu[;refsl)c;\re))d by spreading activa

works, and a distinct difference with the scale-free It is unfortunate that there is a lack of data

Wor:Nzt. hy.[;on.ym (I:hs.trlt.nlutl.on.d. ibution is si with which to validate this model, or our constraint
The distributional similarity distribution is sim- model, empirically. This should not prevent further

llar to that found in networks formed fromsa analysis of network models that distiguish semantic
by Steyvers and Tene_nbaum (2005_)' SteYVefS a'?glations, so long as this limitation is understood.
Tenenbaum hypothesise that the distributions pro-

dl_Jceq byLsA might be due more to frequengy dis-6 Conclusion
tribution effects that correct language modelling.

In light of our analysis of synonymy relations, Semantic networks have been used successfully to
we propose a new explanation. Given that: disexplain access to the mental lexicon. We use both
tributional similarity has been shown to approx-expert-compiled and automatically extracted seman-
imate the semantic similarity in synonymy rela-tic resources, we compare the networks formed from
tions found in thesaurus type resources (Currasemantic association and synonymy and homonymy.
2004); distributional similarity produces networksThese relations produce small-world networks, but
with similar statistical properties to those formed bydo not share the same scale-free properties as for se-
synonym and homonymy relations; and, the synmantic association.
onym and homonymy relations found in thesauri We find that this difference can be explained using
produce networks with different statistical propera constrained attachment model informed by child-
ties to those found in the association networks anahood language acquisition experiments. It is also
ysed by Steyvers and Tenenbaum; it can be plausibpyedicted by spreading-activation theories of seman-
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tic access where a common set of lexical items i%ames Gorman and James R. Curran. 2006. Scaling distribu-

connected by a disparate set of relations. We further tional similarity to large corpora. IRroceedings of the 44th
. L . . Annual Meeting of the Association for Computational Lin-
find that distributional models of language acquisi- gyistics Sydney, Australia, 17-21 July.

tion produce relations that approximate synonymy

. . _Gregory Grefenstette. 1994xplorations in Automatic The-
and networks topologically similar to synonymy saurus DiscoveryKluwer Academic Publishers, Boston.
homonymy networks.
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