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Abstract over all the classes that can occur in that position.

Resnik’'s model was proposed as a model of human
We present a cognitive model of inducing  learning of selectional preferences that made min-
verb selectional preferences from individ-  imal representational assumptions; it showed how
ual verb usages. The selectional preferences such preferences could be acquired from usage data
for each verb argument are represented as and an existing conceptual hierarchy. However, his
a probability distribution over the set of  and later computational models (see Section 2) have
semantic properties that the argument can properties that do not match with certain cognitive
possess—aemantic profile The seman- plausibility criteria for a child language acquisition
tic profiles yield verb-specific conceptual-  model. All these models use the training data in
izations of the arguments associated with a “batch mode”, and most of them use information
syntactic position. The proposed model can  theoretic measures that rely on total counts from a
learn appropriate verb profiles from a small  corpus. Therefore, it is not clear how the representa-
set of noisy training data, and can use them tion of selectional preferences could be updated in-
in simulating human plausibility judgments  crementally in these models as the person receives

and analyzing implicit object alternation. more data. Moreover, the assumption that children
_ have access to a full hierarchical representation of
1 Introduction semantic classes may be too strict. We propose an

géternative view in this paper which is more plausi-

Verbs have preferences for the semantic properti€s ™’ _ o
ble in the context of child language acquisition.

of the arguments filling a particular role. For ex-
ample, the verleatexpects that the object receiving In previous work (Alishahi and Stevenson, 2005),
its theme role will have the property of being edi-we have proposed a usage-based computational
ble, among others. Learning verb selectional preinodel of early verb learning that uses Bayesian clus-
erences is an important aspect of human languagering and prediction to model language acquisition
acquisition, and the acquired preferences have beand use. Individual verb usages are incrementally
shown to guide children’s expectations about misggrouped to form emergent classes of linguistic con-
ing or upcoming arguments in language comprehetructions that share semantic and syntactic proper-
sion (Nation et al., 2003). ties. We have shown that our Bayesian model can
Resnik (1996) introduced a statistical approacincrementally acquire a general conception of the
to learning and use of verb selectional preferencesemantic roles of predicates based only on expo-
In this framework, a semantic class hierarchy fosure to individual verb usages (Alishahi and Steven-
words is used, together with statistical tools, to inson, 2007). The model forms probabilistic associa-
duce a verb’s selectional preferences for a particiions between the semantic properties of arguments,
lar argument position in the form of a distributiontheir syntactic positions, and the semantic primitives
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of verbs. Our previous experiments demonstrategropriate to child language acquisition. Each argu-
that, initially, this probability distribution for an ar- ment contributes to the semantic profile of the verb
gument position yields verb-specific conceptualizathrough its (potentially large) set of semantic prop-
tions of the role associated with that position. As therties instead of its membership in a single class. As
model is exposed to more input, the verb-based rolésput to our model, we use an automatically parsed
gradually transform into more abstract representasorpus, which is very noisy. However, as a result of
tions that reflect the general properties of argumentsur novel representation, the model can induce and
across the observed verbs. use selectional preferences using a relatively small
A shortcoming of the model was that, becausset of noisy training data.
the prediction of the semantic roles was based only
on the groupings of verbs, it could not make use )2 Related Computational Models
verb-specific knowledge in generating expectations
about a particular verb’s arguments. That is, onc@ variety of computational models for verb selec-
it was exposed to a range of verbs, it no longer hai@onal preferences have been proposed, which use
access to the Verb_speciﬂc information, 0n|y to gerﬂiﬁerent statistical models to induce the preferences
eralizations over clusters of verbs. of each verb from corpus data. Most of these
In this paper, we propose a new version of oufodels, however, use the same representation for
model that, in addition to learning general seman¢erb selectional preferences: the preference can be
tic roles for constructions, can use its verb-specififnought of as a mapping, with respect to an argument
knowledge to predict intuitive selectional prefer-Position for a verb, of each class to a real number
ences for each verb argument position. We introdud&ight and Greiff, 2002). The induction of a verb’s
a new notion, averb semantic profileas a prob- preferences is, therefore, modeled as using a set of
ability distribution over the semantic properties ofraining data to estimate that number.
an argument for each verb. A verb semantic pro- Resnik (1996) defines the selectional preference
file is predicted from both the verb-based and thetrength of a verb as the divergence between two
construction-based knowledge that the model hagobability distributions: the prior probabilities of
learned through clustering, and reflects the proghe classes, and the posterior probabilities of the
erties of the arguments that are observed for thatasses given that verb. The selectional association
verb. Our proposed prediction model makes appr®f a verb with a class is also defined as the contribu-
priate generalizations over the observed propertieipn of that class to the total selectional preference
and captures expectations about previously unsegéifength. Resnik estimates the prior and posterior
arguments. probabilities based on the frequencies of each verb
As in other work on selectional preferences, th@nd its relevant argument in a corpus.
semantic properties that we use in our representa-Li and Abe (1998) model selectional preferences
tion of arguments are drawn from a standard lexef a verb (for an argument position) as a set of nodes
ical ontology (WordNet; Miller, 1990), but we do in the semantic class hierarchy with a probability
not require knowledge of the hierarchical structuralistribution over them. They use the Minimum De-
of the WordNet concepts. From the computationadcription Length (MDL) principle to find the best set
point of view, this makes use of an available refor each verb and argument based on the usages of
source, while from the cognitive view, this avoidsthat verb in the training data. Clark and Weir (2002)
ad hoc assumptions about the representation ofadso find an appropriate set of concept nodes to rep-
conceptual hierarchy. However, we do require somesent the selectional preferences for a verb, but do
properties to be more general (i.e., shared by mos® using ay? test over corpus frequencies mapped
words) than others, which eventually enables th# concepts to determine when to generalize from a
model to make appropriate generalizations. Othenode to its parent. Ciaramita and Johnson (2000)
wise, the selected semantic properties are not funse a Bayesian network with the same topology as
damental to the model, and could in the future b&/ordNet to estimate the probability distribution of
replaced with an approach that is deemed more athe relevant set of nodes in the hierarchy. Abney
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and Light (1999) use a different representational ap-
proach: they train a separate hidden Markov modelmer

1

=> neal, repast
for each verb, and the selectional preference is rep- => nutriment, nourishment, nutrition, sustenance,
. . . . . aliment, alimentation, victuals
resented as a probability distribution over words in- => food, nutrient
. => substance, matter
stead of semantic classes. => entity

. i i?zigr,z di nner party
3 The Bayesian Verb-Learning Model Py el gathering, social affair
=> gat hering, assenbl age

3.1 Overview of the Model => social group

=> group, grouping

Our mOdeI Iearns the SEt Cﬁrgument StrUCture dinner. {meal, repast, nutriment, nourishment, nutrition, sulztaaliment, alimentation,
framesfor each verb, and their grouping across verbs Vet oot uiert, sustae, mater oty e gtherg
into constructions An argument structure frame is
a set of features of a verb usage that are both syn-
tactic (the number of arguments, the syntactic paf-i9ure 1: Semantic properties fdinnerfrom Word-
tern of the usage) and semantic (the semantic prob'et
erties of the verb, the semantic properties of each
argument). The syntactic pattern indicates the worrocess. This process groups the new frame together
order of the verb and arguments. A construction i#ith an existing group of frames—a construction—
a grouping of individual frames which probabilisti-that probabilistically has the most similar semantic
cally share syntactic and semantic features, and forAfid syntactic properties to it. If no construction has
probabilistic associations across verb semantic propufficiently high probability for the new frame, then
erties, argument semantic properties, and syntacficl€w construction is created for it. We use the prob-
pattern. These groupings typically correspond tgbilistic model of Alishahi and Stevenson (2007) for
general constructions in the language such as tral@arning constructions, which is itself an adaptation
sitive, intransitive, and ditransitive. of a Bayesian model of human categorization pro-

For each verb, the model associates an argume?@sed by Anderson (1991). It is important to note
position with a probability distribution over a set ofthat the categories (i.e., constructions) are not prede-
semantic properties—a semantic profile. In doinéined, but rather are created according to the patterns
s0, the model uses the knowledge that it has learn&f Similarity over observed frames.
for that verb, as well as the grouping of frames for Grouping a frame” with other frames participat-
that verb into constructions. ing in constructionk is formulated as finding thé

The semantic properties of words are taken frof¥ith the maximum probability givert
WordNet (version 2.0) as follows. We extract all the BestConstruction(F) = argmaX P(k|F) (1)

hypernyms (ancestors) for all the senses of the Wor\(/j\/herek ranges over the indices of all constructions,

and add all the words in the hypernym synsets to the.
with index O representing recognition of a new con-
list of the semantic properties. Figure 1 shows an ex-

ample of the hypernyms fatinner, and its resulting struction.
set of semantic propertiés. Using Bayes rule, and dropping(F') which is

constant for alk:
The following sections review basic properties
P(k)P(F|k)

of the model from Alishahi and Stevenson (2005, P(k|F) =
2007), and introduce extensions that give the model P(F)

its ability to make verb-based predictions. The prior probability,P(k), indicates the degree of
entrenchment of constructioy and is given by the

relative frequency of its frames over all observed

Each argument structure frame for an observed vefiymes. The posterior probability of a franfe is

usage is input to an incremental Bayesian clusteringcpressed in terms of the individual probabilities of
1We do not remove alternate spellings of a termin WordNetl,t_S fe_atures'_ which we assume are mdepen_d_e_‘nt, thus

this will be seen in the profiles in the results section. yielding a simple product of feature probabilities:
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and normalize the resulting probability over all pos-
P(F|k) = H P;(jlk) (3) sible sets of semantic properties in our lexicon.

i€ FrameFeatures

3.4 Predicting Semantic Profiles for Verbs

where j is the value of thet" feature of F, and .
J We represent the selectional preferences of a verb

P;(jlk) is the probability of displaying valug on g ) . .
’(‘7|k).ls. ° P ity Isplaying vaiug for an argument position as a semantic profile, which
features within constructionk. Given the focus here .
a probability distribution over all the semantic

on semantic profiles, we next focus on the calcula>

tion of the probabilities of semantic properties. properties. To p_re_:dlct the profile of a yev:bfor
an argument positiomrg, we need to estimate the

3.3 Probabilities of Semantic Properties probability of each semantic properfyseparately:
The probability in equation (3) of valugfor feature Py () Z Py (4, klv) (6)
1 in constructionk is estimated using a smoothed
version of this maximum likelihood formula: x ZP ks 0) Payg (], v)
count”(j) A ’ e
Pi(jlk) = ————= (4) , . .
ng Here,j ranges over all the possible semantic proper-

whereny is the number of frames participating inties that an argument can have, &nnges over all

constructionk, and count?(j) is the number of constructions. The prior probability of having verb

those with valug for features:. in constructionk, or P(k, v), takes into account two
For most featureSpountf(j) is calculated by important factors: the relative entrenchment of the

simply counting those members of constructibn constructionk, and the (smoothed) frequency with

whose value for featuré exactly matcheg. How- whichv participates irk.

ever, for the semantic properties of words, counting The posterior probabilityP,,, (j|k,v) is calcu-

only the number of exact matches between the sdtgted analogously t&;(j|k) in equation (4), but lim-

is too strict, since even highly similar words veryiting the count of matching features to those frames

rarely have the exact same set of properties. Wa & that contairw:

instead use the following Jaccard similarity score verb_count®,  (j,v)

to measure the overlap between the set of semantic ~ Purg(j|k,v) = (7

properties,Sg, of a particular argument in the frame Mo

to be clustered, and the set of semantic propertie¢hereny, is the number of frames for part|C|pat—

S, of the same argument in a member frame of &g in constructionk, andverb_count?,, (j,v) is

construction: the number of those with semantic propeytyor
sem_score(Sp, S),) = [SF N S| (5) argumentary. We use a smoothed version of the
’ |SF U Sk above formula, where the relative frequency of each

For example, assume that the new frafmeepre- property; among all nouns is used as the smoothing
sents a usage dbhn ate cake In the construction factor.
that we are considering for inclusion &f, one of
the member frames represents a usag®laf got
water. We must compare the semantic properties df one of our experiments, we need to measure the
the corresponding argumertakeandwater. compatibility of a particular noun for an argument
cake  {baked goods,food,solid,substance,matter,entity positionarg of some verty. That is, we need to es-
water.  {liquid,fluid,food,nutrient,substance,matter,ertity  timate how much the semantic propertiesnofon-
The intersection of the two sets{#od, substance, form to the acquired semqn_t!c profile offor ary-
We formulate the compatibility as the conditional

matter, entity, yielding asem_score of . " ) )
In general, to calculate the conditional probabiIit))orcmabmty of observing: as an argumentry of v:

for the set of semantic properties, we setint? () compatibility (v, n) = l0g(Parg (juv))  (8)
in equation (4) to the sum of theem_score’s for
the new frame and every member of construction
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where j,, is the set of the semantic properties foreach verb usage in a sentence, we construct a frame
word n, and P, (j,|v) is estimated as in equa- by recording the verb in root form, the number of
tion (7). However, sinceg,, here is a set of prop- the arguments for that verb, and the syntactic pattern
erties (as opposed t¢ in equation (7) being a of the verb usage (i.e., the word order of the verb
single property),verb_count];rg in equation (7) and the arguments). We also record in the frame the
should be modified as described in Section 3.FZemantic properties of the verb and each of the ar-
we set verb_countfjrg(jn,v) to the sum of the gument heads (each noun is also converted to root
sem_score’s (equation (5)) forj,, and every frame form); these properties are extracted from WordNet
of v that participates in constructidn (as discussed in Section 3.1 and illustrated in Fig-
ure 1). This process results in 16,300 frames which
serve as input data to our learning model.

!n the following sections, we first describe the traln—4_2 Formation of Semantic Profiles for Verbs
ing data for our model. In accordance with other

computational models, we focus here on the verpfter training our model on the above data, we use
preferences for the direct object positNext, we equation (7) to predict the semantic profile of the di-
provide a qualitative analysis of our model throug€ct object position for a range of verbs. Some of
examination of the semantic profiles for a numbethese verbs, such agrite andsing have strong se-
of verbs. We then evaluate our model through twégctional preferences, whereas others, suctvarst
tasks of simulating verb-argument plausibility judg-2nd put. can take a wide range of nouns as direct

ment, and analyzing the implicit object alternationobject (as confirmed by Resnik’s (1996) estimated

4 Experimental Results

following Resnik (1996§ strength of selectional preference for these verbs).
o The semantic profiles fowrite and sing are dis-
4.1 The Training Data played in Figure 2, and the profiles faantandput

In earlier work (Alishahi and Stevenson, 2005are displayed in Figure 3. (Due to limited space, we
2007), we used a method to automatically genera@ly include the 25 properties that have the highest
training data with the same distributional propertieprobability in each profile.)
as the input children receive. However, this relies on Because we extract the semantic properties of
manually-compiled data about verbs and their argywvords from WordNet, which has a hierarchical
ment structure frames from the CHILDES databasstructure, the properties that come from nodes in
(MacWhinney, 1995). To evaluate the new versioithe higher levels of the hierarchy (sucheaity and
of our model for the task of learning selectional prefabstractior) appear as the semantic property for a
erences, we need a wide selection of verbs and th&ry large set of words, whereas the properties that
arguments that is impractical to compile by hand. come from the leaves in the hierarchy are specific to
The training data for our experiments here ar@ small set of words. Therefore, the general prop-
generated as follows. We use 20,000 sentencégties are more likely to be associated with a higher
randomly selected from the British National Cor-probability in the semantic profiles for most verbs.
pus (BNC)? automatically parsed using the CollinsIn fact, a closer look at the semantic profiles\ant
parser (Collins, 1999), and further processed witBndput reveals that the top portion of the semantic
TGrep2® and an NP-head extraction softwd&r€&or profile for these verbs consists solely of such gen-
mwledge, the only work that considers selectionaﬁaral properties that arg ?hared among a large group
preferences of subjects and prepositional phrases assveit a Of words. However, this is not the case for the more
rect objects is Brockmann and Lapata (2003). restrictive verbs. The semantic profiles farte and
3Computational models of verb selectional preference hav;

been evaluated through disambiguation tasks (Li and Abe§mgShOW thatthe specific properties that these verbs

1998; Abney and Light, 1999; Ciaramita and Johnson, 200(§:,lemand from their direct object appear amongst the
Clark and Weir, 2002), but for to evaluate our cognitive mipde highest-ranked properties, even though only a small

the4exp§r|ments from Resnik (1996) are the most interesting set of words share these properties (eagntent,
http://www.natcorp.ox.ac.uk

®http://tedlab.mit.edfr™ dr/Tgrep2 saneh Fazly helped us in using the above-mentioned tools for
®The software was provided to us by Eric Joanis, and Afgenerating our input corpora.
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write sing want put
(0.024) abstraction (0.020) abstraction (0.016) entity (0.015) entity
(0.022) entity (0.015) relation (0.015) object (0.015) object
(0.021) location (0.015) communication (0.015) physical object (0.013) physical object
(0.020) substance (0.015) social relation (0.014) abstraction (0.013) abstraction
(0.019) destination (0.013) act (0.013) act (0.011) wunit
(0.018) relation (0.013) human action (0.012) human action (0.011) whole
(0.015) communication (0.013) human activity (0.012) human activity (0.011) whole thing
(0.015) social relation (0.013) auditory (0.012) relation (0.011) artifact
(0.013) content communication (0.011) unit (0.011) artefact
(0.011) message (0.012) music (0.011) whole (0.010) act
(0.011) subject matter (0.010) entity (0.011) whole thing (0.009) relation
(0.011) written (0.010) piece (0.011) artifact (0.008) human action
communication (0.009) composition (0.011) artefact (0.008) human activity
(0.011) written (0.009) musical (0.008) communication (0.008) communication
language composition (0.008) social relation (0.008) social relation
(0.010) object (0.009) opus (0.008) activity (0.007) substance
(0.010) physical object (0.009) piece of music (0.007) cause (0.007) content
(0.010)  writing (0.009) psychological (0.007) state (0.007) instrumentality
(0.010) goal feature (0.007) instrumentality (0.007) instrumentatior]
(0.010) unit (0.008) cognition (0.007) instrumentatior (0.007) measure
(0.009) whole (0.008) knowledge (0.007) event (0.006) amount
(0.009) whole thing (0.008) noesis (0.006) being (0.006) quantity
(0.009) artifact (0.008) activity (0.006) living thing (0.006) cause
(0.009) artefact (0.008) content (0.006) animate thing (0.006) causal agent
(0.009) state (0.008) grouping (0.006) organism (0.006) causal agency
(0.009) amount (0.008) group
(0.009) measure (0.008) amount . . .
(0.008) measure Figure 3: Semantic profiles efantand put for the

direct object position.
Figure 2: Semantic profiles @frite andsingfor the
direct object position. 4.3 Verb-Argument Plausibility Judgments

Holmes et al. (1989) evaluate verb argument plau-
) o ] sibility by asking human subjects to rate sentences
message, written communication, written 1anguaggy . The mechanic warned the drivand The me-

' f(_)r write, anc_l gudltory comm_unlcatlon, MUSIC, chanic warned the engineResnik (1996) used this
musical composition, opus, for sing). data to assess the performance of his model by com-
The examination of the semantic profiles for fairlyparing its judgments of selectional fit against the
frequent verbs in the training data shows that ouplausibility ratings elicited from human subjects. He
model can use the verb usages to predict an apprshowed that his selectional association measure for
priate semantic profile for each verb. When prea verb and its direct object can be used to select the
sented with a novel verb (for which no verb-basednore plausible verb-noun pair among the two (e.g.,

information is available), equation (7) predicts a se<warn,driver> vs. <warn,engine- in the previous
mantic profile which reflects the relative frequenciegxample). That is, a higher selectional association
of the semantic properties among all words (due tbetween the verb and one of the nouns compared to
the smoothing factor added to equation (7)), moduhe other noun indicates that the former is the more
lated by the prior probability of each construction.plausible pair. Resnik (1996) used the Brown corpus
The predicted profile is displayed in Figure 4. Itas training data, and showed that his model arrives
shows similarities with the profiles favantandput  at the correct ordering of more and less plausible ar-
in Figure 3, but the general properties in this profilguments in 11 of the 16 cases.
have an even higher probability. Since the profile for We repeated this experiment, using the same 16
the novel verb is predicted in the absence of any evpairs of verb-noun combinations. For each pair of
dence (i.e., verb usage) in the training data, we latetv, n,> and <v,ns>, we calculate the compati-
use it as the base for estimating other verbs’ strengthility measure using equation (8); these values are
of selectional preference. shown in Figure 5. (Note that because these are
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A novel verb Verb Plausible Implausible
(0.021) entity see friend -30.50 method -32.14
(0.017) object read article -32.76 fashion  -33.33
(0.017) physical object find label -32.05 fever -33.3d
(0.015) abstraction hear story -32.11 issue -32.40
(0.010) act write letter -31.37 market -32.46
(0.010) human action urge daughter -36.73 contrast -35.64
(0.010) human activity warn driver -33.68 engine -34.42
(0.010) unit judge contest -39.05 climate -38.23
(0.009) whole teach language -45.64 distance -45]11
(0.009) whole thing show sample -31.75 travel -31.42
(0.009) artifact expect visit -33.88 mouth -32.87
(0.009) artefact answer request -31.89 tragedy -33.95
(0.009) being recognize author -32.53  pocket -32.62
(0.009) living thing repeat comment -33.80 journal -33.97
(0.009) animate thing understand concept -32.25 session  -32.93
(0.009) organism remember  reply -33.79 smoke -34.29
(0.008) cause
(0.008)  causal agent Figure 5: Compatibility scores for plausible vs. im-
Eg:gggg fg:f%'nagency plausible verb-noun pairs.
(0.008) person
(0.008) individual
Eg'gggg ngggggy particular relationship between the verb and its argu-
(0.008) mortal ment. In particular, for verbs that participate in the

implicit object alternation, the omitted object must
Figure 4: Semantic profile of a novel verb for thebe in some sense inferable typical for that verb
direct object position. (Levin, 1993, among others).
Resnik (1996) used his model of selectional pref-

erences to analyze implicit object alternations, and
log-probabilities and therefore negative numbersgwed a relationship between his measure of se-
a lower absolute value ofompatibility(v,n) |ectional preference strength and the notion of typ-
shows a better compatibility between the verb icajity of an object. He calculated this measure
and the argument.) For example <see,friend o1 two groups of Alternating and Non-alternating
has a higher compatibility score (-30.50) thanerhs and showed that, on average, the Alternating
<see,method (-32.14). Similar to Resnik, our yerhs have a higher strength of selectional prefer-
model detects 11 plausible pairs out of 16. Howgnce for the direct object than the Non-alternating

ever, these results are reached with @ much smallgg hs However, there was no threshold separating
training corpus (around 500,000 words), compareghe two groups of verbs.

to the Brown corpus used by Resnik (1996) which 1, repeat Resnik's experiment, we need a mea-

contains one m_illion words. Moreover, whereas thg ra of how “strongly constraining” a semantic pro-
Brown corpus is tagged and parsed manually, thQe js. We can do this by measuring the similarity
portion of the BNC that we use is parsed automaggqyeen the semantic profile we generate for the ob-
ically, and as a result our training data is very noiSYe of 4 particular verb and some “default” notion of
Nonetheless, the model achieves the same level §fs argument for that position across all verbs. We
accuracy in distinguishing plausible verb-argumenise the semantic profile predicted for the object po-
pairs from implausible ones. sition of a novel verb, shown earlier in Figure 4, as
the default profile for that argument position. Be-
cause this profile is predicted in the absence of any
In English, some inherently transitive verbs can apevidence in the training data, it makes the minimum
pear with or without their direct objects (e.dghn assumptions about the properties of the argument
ate his dinneras well asJohn at@, but others can- and thus serves as a suitable default. We then assume
not (e.g.,Mary made a cakdut not*Mary madg. that verbs with weaker selectional preferences have
Itis argued that implicit object alternations involve asemantic profiles more similar to the default profile
47
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Alternating verbs || Non-alternating verbs profiles during the course of learning, and compare
write 0.61 hang 0.56 it with child d for diff d
sing 0.67 wear 071 it Wlt child c ata for di _erent. age groups, as we do
drink 0.67 say 0.75 with semantic roles (Alishahi and Stevenson, 2007).
Sf;ty 8;2 gﬁffv'J 8-;3 We have shown that the model can predict appropri-
pour 0.76 make 0.78 ate semantic profiles for a variety of verbs, and use
watch 0.77 hit 0.78 these profiles to simulate human judgments of verb-
pack 0.78 open 0.81 il ; ; ;
cteal 0.80 (ke 0.83 argumen_t plau5|b|I|ty, using a small and highly noisy
push 0.80 see 0.87 set of training data. The model can also use the pro-
Callll 8-28 |lk<§ 8-2; files to measure verb-argument compatibility, which
pu . ge . . . . .. . .
explain 0.81 find 0.87 was used in analyzing the implicit object alternation.
read 0.82 give 0.88 f
hear 0.87 bring 0.89 References

want 0.89 Abney, S. and Light, M. (1999). Hiding a semantic hierarchy
put 0.90 in a Markov model. IrProc. of the ACL Workshop on Unsu-
Mean: 0.76 Mean: 0.81 pervised Learning in Natural Language Processing

Alishahi, A. and Stevenson, S. (2005). A probabilistic maide
Figure 6: Similarity with the base profile for Alter-  early argument structure acquisition. Rnoc. of the CogSci
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based model for learning general properties of semantic
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. : S nderson, J. R. (1991). The adaptive nature of human catego-
cosine measure to estimate the similarity betweef rization. Psychological Reviev®8(3):409-429.
two profilesp andg:

% Brockmann, C. and Lapata, M. (2003). Evaluating and com-
cosine(p, q) = _pPxq 9) bining approaches to selectional preference acquisitlan.
el < lall Proc. of the EACL 2003
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The similarity values for the Alternating and Non- biguity: Learning verb selectional preference with Bagasi
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