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Abstract

This paper describes a new method to
compare reordering constraints for Statis-
tical Machine Translation. We investi-
gate the best possible (oracle)®BJ score
achievable under different reordering con-
straints. Using dynamic programming, we
efficiently find a reordering that approxi-
mates the highest attainable.BJ score
given a reference and a set of reordering
constraints. We present an empirical eval-
uation of popular reordering constraints:
local constraints, the IBM constraints,
and the Inversion Transduction Grammar
(ITG) constraints. We present results for a
German-English translation task and show
that reordering under the ITG constraints
can improve over the baseline by more
than 7.5 B EU points.
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reorderings. Other models (Wu (1997), Xiong et al.
(2006)) explicitly allow global reorderings, but do
not allow all possible permutations, including some
local permutations.

We present a novel technique to compare achiev-
able translation accuracies under different reorder-
ing constraints. While earlier work has trained and
tested instantiations of different reordering models
and then compared the translation results (Zens and
Ney, 2003) we provide a more general mechanism
to evaluate theotentialefficacy of reordering con-
straints, independent of specific training paradigms.
Our technique attempts to answer the question:
What is the highesBLEU score that a given trans-
lation system could reach when using reordering
constraints X?Using this oracle approach, we ab-
stract away from issues that are not inherent in the
reordering constraints, but may nevertheless influ-
ence the comparison results, such as model and fea-
ture design, feature selection, or parameter estima-
tion. In fact, we compare several sets of reorder-
ing constraints empirically, but do not train them as
models. We merely decode by efficiently search-

Reordering the words and phrases of a foreign seHld over possible translations allowed by each model
tence to obtain the target word order is a fundamer@d choosing the reordering that achieves the high-
tal, and potentially the hardest, problem in machin@St BLEU score.

translation. The search space for all possible per- We start by introducing popular reordering con-

mutations of a sentence is factorial in the numbestraints (Section 2).

Then, we present dynamic-

of words/phrases; therefore a variety of models hay@rogramming algorithms that find the highest-

been proposed that constrain the set of possible paecoring permutations of sentences under given re-
mutations by allowing certain reorderings while dis-ordering constraints (Section 3). We use this tech-
allowing others. Some models (Brown et al. (1996)nique to compare several reordering constraints em-
Kumar and Byrne (2005)) allow words to changepirically. We combine a basic translation framework
place with their local neighbors, but disallow globalwith different reordering constraints (Section 4) and
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present results on a German-English translation tagk(Zens and Ney, 2003). We write IBM witt=4 as
(Section 5). Finally, we offer an analysis of thelBM(4). The IBM constraints are supersets of the
results and provide a review of related work (Seclocal constraints.

tions 6_8) if O you to-me that explain could O
: (1 2 3 4 5 6

2 Reordering Constraints (a) The sentence in foreign word order.

ou if explain
Reordering constraints restrict the movement of @i@y\~ () - ®
words or phrases in order to reach or approximate ome O™ O,
the word order of the target language. Some of 2 g

the constraints considered in this paper were origi- (b) MJ-1
nally proposed for reordering words, but we will de-
scribe all constraints in terms of reordering phrases.
Phrases are units of consecutive words read off a
phrase translation table.

2.1 Local Constraints

Local constraints allow phrases to swap with one
another only if they are adjacent or very close to
each other. Kumar and Byrne (2005) define two
local reordering models for their Translation Tem-
plate Model (TTM): In the first one, called MJ-1,
only adjacent phrases are allowed to swap, and the
movement has to be done within a window of 2. A
sequence consisting of three phraabs can there-

fore becomeacb or bac but notcba One phrase
can jump at most one phrase ahead and cannot take
part in more than one swap. In their second strategy,
called MJ-2, phrases are allowed to swap with their
immediate neighbor or with the phrase next to the (d) IBM(2)

immediate neighbor; the maximum jump length is 2, . . . .
This allows for al six possible permutationsatic 19412 11 The Germn wo craetyou e that expen
The movement here has to take place within a wineorderings under different constraints, represented as lattices.
dow of 3 phrases. Therefore, a four-phrase Sequen@gne of these lattices contains the correct English oifdeu
abcdcannot be reordered tadh for example. MJ- could explain that to-meSee also Table 1.

1 and MJ-2 are shown in Figure 1.

2.2 IBM Constraints 2.3 ITG Constraints

First introduced by Brown et al. (1996), the IBMThe Inversion Transduction Grammar (ITG) (Wu,

constraints are among the most well-known and997), a derivative of the Syntax Directed Trans-
most widely used reordering paradigms. Transladuction Grammars (Aho and Uliman, 1972), con-
tion is done from the beginning of the sentence tstrains the possible permutations of the input string
the end, phrase by phrase; at each point in time, thy defining rewrite rules that indicate permutations
constraints allow one of the firétstill untranslated of the string. In particular, the ITG allows all per-

phrases to be selected for translation (see Figure Idutations defined by all binary branching struc-
for k=2). The IBM constraints are much less restrictures where the children of any constituent may be
tive than local constraints. The first word of the in-swapped in order. The ITG constraint is different
put, for example, can move all the way to the endrom the other reordering constraints presented in
independent of the value &t Typically, k is setto that it is not based on finite-state operations. An
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| Model | # perm. | “Best’sentence |  n-gram precisions | BLEU |

MJ-1 13 || if you that to-me could explain ~ 100.0/66.7/20.0/0.0 0.0
MJ-2 52 || to-me if you could explain that  100.0/83.3/60.0/50.0 | 70.71
IBM(2) 32 || if to-me that you could explain ~ 100.0/50.0/20.0/0.0 0.0
IBM(4) 384 || if you could explain that to-me 100.0/100.0/200.0/100.0 100.0
IBM(4) (prune) 42 || if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
ITG 394 || if you could explain that to-mg 100.0/100.0/100.0/100.0 100.0
ITG (prune) 78 || if you could explain that to-mg 100.0/100.0/100.0/100.0 100.0

Table 1: lllustrating example: The number of permutations (# perm.) that different reordering paradigms consider for the input
sequenceéf you to-me that explain cou)dind the permutation with highest.Bu score. The sentence length is 7, but there are
only 6! possible permutations, since the phrimsenecounts as one word during reordering. ITG (prune) is the ITiG Bdecoder

with the pruning settings we used in our experiments (beam threditolt). For comparison, IBM(4) (prune) is the lattice
BLEU decoder with the same pruning settings, but we use pruning only for ITG permutations in our experiments.

ing tested can be expressed as a special dynamic-
Figure 2: The exampleif programming decoder which, when applied to an
you tﬁ;”;g;:‘;érie;‘g'?c'i? ;85"’ unreordered hypothesis, searches the space of per-
could explain that to-mes- ~ Mutations defined by the reordering constraints and
ing an ITG. The alignments  returns the highest-scoring permutation. We employ
f‘hr: ﬁgﬁzegn?;'%";rtshient{ﬁg'tfened this strategy for the ITG reorderings (Section 3.2).
if you could explain that to-me _ indicate a swap. For the other reordering constraints, we employ a
more generic strategy: Given the set of reorder-
] o ing constraints, all permutations of an unreordered
ITG decoder runs in polynomial time and allows for, g 1ation candidate are precomputed and explicitly
long-distance phrasal reordering. A phrase can, fQLosented as a lattice. This lattice is passed as in-
example, move from the first pOSItIOI’\'In the |nputput to a Dijkstra-style decoder (Section 3.1) which
to the last position in the output and vice versa, by, arses it and finds the solution that reachest the
swapping the topmost node in the constructed bh'ighest REU scorel
nary tree. However, due to the binary bracketing
constraint, some permutations are not modeled. A1 Dijkstra BLEU Decoder
four-phrase sequenabcdcannot be permuted into The Dijkstra-style decoder takes as input a lattice in

cadborbdac Therefore, the ITG constraints are nOtWhich each path represents one possible permutation
supersets of the IBM constraints. IBM(4), for exam

. of an unreordered hypothesis under a given reorder-
ple, allowsabedto be permuted intoadbandbdac ing paradigm, as in Figure 1. It traverses the lat-

3 Factored BLEU Computation tice and finds the solution that has the highest ap-
\groximate B EU score, given the reference. The

if you to-me that explain could

The different reordering strategies described allo ) : . .
ynamic-programming algorithm divides the prob-

for different permutations and restrict the searc L into subproblems that are solved independent
space in different ways. We are concerned wit >U0p . . pendenty,
the solutions of which contribute to the solutions

the maximal achievable accuracy under given con-

straints, independent of feature design or paramet%? other subproblems. The general procedure is

estimation. This is what we call theracleaccuracy sketched in Figure 3: for each subpath of the fat-

under the reordering constraints and it is computetcllCe containing the precomputed permutations, we

. . store the three most recently attached words (Fig-
on a dataset with reference translations.
We now describe algorithms that can be used !For both strategies, several unreordered translation candi-
to find such oracle translations among unreorderetjtes do not have to be regarded separately, but can be repre-
. . . sented as a weighted lattice and be used as input to the special
translation candidates. There are two equwalera@

) ) i namic program or to the process that precomputes possible
strategies: The reordering constraints that are bgermutations.
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B([0, k,len + 1, wa, w3, Wnew)) = max ( getbleu( [0, 7, len, wy, wa, w3], [j, k, Wnew] ) ) (@D)
w1

function getbleu( [0, 7, len, w1, wa, ws], [j, k, Wnew] ) :=
updatengrams0, j, k, len, w1, wa, w3, Wnew ) ;

4 2)
i ngrams([0, k, len + 1, w2, w3, Wnew)) _
returnexp <4 ngl log < Pp—— ;

Figure 3:Top: The BLEU score is used as inside score for a subpath fromiOwith the rightmost wordsvs, w3, Wnew iN the
Dijkstra decoderBottom: Pseudo code for a functigget _bleu which updates the n-gram matches ngrafns ), ngrams(....),
ngrams(...), ngrams(...) for the resulting subpath in a hash tafilek, len + 1, w2, w3, wnew] @and returns its approximate
BLEU score.

("you" "could" "explain®) ("could","explain","that")
6/4/2/1 7/5/3/2

(if" "your "couldr)
513/1/0 explain "@ that @
could L —]

("to","me","if") ("me""if" "you") —> that
\»

(" "to" "me) 3/10/0 4/2/0/0
, 107,"me
2/1/0/0 it /@ you /1;< that
to-me L—] AL explan
(o ) [ Jou \
0/0/0/0 ~—
| i

Figure 4: Three right-most words and n-gram matches: This shows the best path for the MJ-2 reordériymudb-me that
explain could along with the words stored at each state and the progressively updated n-gram matches. Thetduthpattyou
could explain thahas 7 unigram matches, 5 bigram, 3 trigram, and 2 fourgram matches. See the full MJ-2 lattice in Figure 1c.

ure 4). A context of three words is needed to comscores. We call this the DijkstraLBu decoder.
pute fourgram precisions used in the &) score.
Starting from the start state, we recursively extend-2 TG BLEU Decoder
a subpath word by word, following the paths inFor the ITG reordering constraints, we use a dy-
the lattice. Whenever we extend the path by @aamic program that computes the permutations im-
word to the right we incorporate that word and us@licitly. It takes only the unreordered hypothesis
update _ngrams to update the four n-gram countsas input and creates the possible reorderings under
for the subpath. The functiarpdate _ngrams has the ITG constraints during decoding, as it creates
access to the reference strirand stores the updateda parse chart. The algorithm is similar to a CKY
n-gram counts for the resulting path in a hash tdbleparsing algorithm in that it proceeds bottom-up and
The inside score of each subpath is the approximag@mbines smaller constituents into larger ones re-
BLEU score, calculated as the average of the fowursively. Figure 5 contains details of the algo-
n-gram log precisions. An n-gram precision is alyithm. The ITG B.Eu decoder stores the three left-
ways the number of n-gram matches divided by theost and the three rightmost words in each con-
length len of the path minugn — 1). A path of stituent. A constituent from position to posi-
length 4 with 2 bigram matches, for example, hagon &, with w,, w,, and w. as leftmost words,
a bigram precision of/3. This method is similarto and w,, wy, w, as rightmost words is written as
Dijkstra’s algorithm (Dijkstra, 1959) composed with[i, k, (wq, wp, w.), (ws, wy, w,)]. Such a constituent
a fourgram finite-state language model, where thean be built by straight or inverted rules. Using an
scoring is done using n-gram counts and precisianverted rule means swapping the order of the chil-
dren in the built constituent. The successive bottom-
" 2Multiple reference strings can be used if available. up combinations of adjacent constituents resultin hi-
3An epsilon value oft *° is used for zero precisions. erarchical binary bracketing with swapped and non-
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) _ By ([4, k; (wa, wp, we), (wa, wy, wy)])
Pt w wm o) = (0G5 vl ) @
Bes([is b, (Was wo, we), (W, wy, wy)]) =
[] k, (waa Wy, 'LUC), (wx/>wy’a wz’)] ) (4)

max <getb|eu< 0 ) )
jvwalvwb/vw(:/ vww/’wy/awz/ [27 ]7 (wa/ I wb/ I wC’)? (w$7 wy> wz)]

Figure 5:Equations for the ITG oracleiB:u decoder]i, k, (wa, ws, we), (W, wy, w, )] is a constituent from to k with leftmost
wordswg,wy,w. and rightmost wordsv, ,wy,,w.. Top: A constituent can be built with a straight or a swapped rule. Bottom: A
swapped rule. Thget _bleu function can be adapted from Figure 3

swapped constituents. Our ITG.Bu decoder uses We also adopt the approximation that treats every
standard beam search pruning. As in Zens and Negntence with its reference as a separate corpus (Till-
(2003), phrases are not broken up, but every phrasgann and Zhang, 2006) so that ngram counts are not
is, at the beginning of reordering, stored in the chadgccumulated, and parallel processing of sentences
as one lexical token together with the precomputebdecomes possible. Due to these two approximations,
n-gram matches and the n-gram precision score. our method is not guaranteed to find the best reorder-

In addition to standard ITG we run experimentsng defined by the reordering constraints. However,
with a constrained ITG, in which we impose a boundve have found on our heldout data that an oracle
p on the maximum length of reordered constituentghat does not accumulate n-gram counts is only min-
measured in phrases. If the combined length of twimnally worse than an oracle that does accumulate
constituents exceeds this bound they can only beem (up to 0.25 BEU points)® If, in addition,
combined in the given monotone order. Experimentslipping is ignored, the resulting oracle stays virtu-
with this ITG variant give insight into the effect thatally the same, at most 0.02LBuU points worse than
various long-distance reorderings have on the finslhe oracle found otherwise. All results in this paper
BLEU scores (see Table 3). Such bounds are alsge computed with the originaltBu formula on the
effective speedup technigues(Eisner and Tromblegntences found by the oracle algorithms.

2006). _ )
4 Creating a Monotone Translation

3.3 BLEU Approximations Baseline

BLEU is defined to use thenodifiedn-gram preci- To compare the reordering constraints under ora-
sion, which means that a correct n-gram that 0Gge conditions we first obtain unreordered candi-
curs once in the reference, but several times in thgyte translations from a simple baseline translation
system translation will be counted only once aghodel. For each reordering paradigm, we take the
correct. The other occurrences are clipped. Weandidate translations, get the best oracle reorder-
do not include this global feature since we wanfngs under the given reordering constraints and pick
a dynamic-programming solution with polynomialthe pest sentence according to theeB score.

size and runtime. The decoder processes subprob-the paseline translation system is created using
lems independently; words are attached locally angkopapilistic word-to-word and phrase-to-phrase ta-
stored only as boundary words of covered path _ _
constituents. Therefore we cannot discount a localfj/?! aslglnézrr'fgz of difte f;tkleeenp%';stfzgﬁ ;?'lelg;&epa:igi revty
attached word that has already been attached elsgched phrases.

where to an alternative path/constituent. However, °The accumulating oracle algorithm makes a greedy deci-
Cllpplng aﬁ;ects most heaVIIy the Unlgram Score$|0n for every sentence given the ngram counts so far accumu-

: ) ated (Zens and Ney, 2005). The result of such a greedy or-
which are constant, like the length of the sentehceacle method may depend on the order of the input sentences.

- We tried 100 shuffles of these and received 100 very simi-
“Since the sentence lengths are constant for all reorderinggr results, with a variance of under 0.0068) points. The

of a given sentence we can in our experiments also ignore th®n-accumulating oracles use an epsilon value?) for zero

brevity penalty which cancels out. If the input consists of seveounts.
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bles. Using the translation probabilities, we creatand Figure 6 show the resulting.Bu scores for dif-

a lattice that contains word and phrase translatiorisrent sentence lengths. Table 3 shows results of the
for every substring of the source sentence. The réFG runs with different length bounds The aver-
sulting lattice is made of English words and phrasesage phrase length in the candidate translations of the
of different lengths. Every word or phrase translatest set is 1.42 words.

tion probabilityp is a mixture ofp(f|e) andp(el f). Oracle decodings under the ITG and under
We discard short phrase translations exponentiallBM(4) constraints were up to 1000 times slower
by a parameter that is trained on heldout data. Inseihan under the other tested oracle reordering meth-
tions and deletions are handled exclusively by theds in our implementations. Among the faster meth-
use of a phrase table: an insertion takes place wherds, decoding under MJ-2 constraints was up to 40%
ever the English side of a phrase translation is longéaster than under IBM(2) constraints in our imple-
than the foreign side (e.g. Engliginesidential can- mentation.

didate for GermanPrasidentschaftskandidatand
vice versa for deletions (e.gwe discussedior wir
haben diskutiejt Gaps or discontinuous phrases
are not handled. The baseline decoder outputs the 45 1 N\
n-best paths through the lattice according to the lat- |
tice score$, marking consecutive phrases so that the
oracle reordering algorithms can recognize them and
keep them together. Note that the baseline system is 01
trained on real data, while the reordering constraints 25 |
that we want to test are not trained.

35 r

BLEU

20

5 Empirical Comparison of Reordering 5 10 15 20 25 30 35 40
Constraints Sentence length

We use the monotone translation baseline model and

the oracle BEU_computatlpn to evaluate dlﬁe_rent Figure 6: Reordering oracle scores for different sentence
popular reordering strategies. We now describe thgngths. See also Table 2.

experimental settings. The word and phrase transla-

tion probabilities of the baseline model are trained

on the Europarl German-English training set, using Discussion

GIZA++ and the Pharaoh phrase extraction algo- o )

fithm. For testing we use the NAACL 2006 SMT 1he empirical results show that reordering un-
Shared Task test data. For each sentence of the t4§f Sufficiently permissive constraints can improve
set, a lattice is created in the way described in Se@ Monotone baseline oracle by more than 7.5
tion 4, with parameters optimized on a small heldodBLEY Points. This gap between choosing the best
set’ For each sentence, the 1000-best candidates &reordered sentences versus choosing the best op-
cording to the lattice scores are extracted. We takinally reordered sentences is small for short sen-
the 10-best oracle candidates, according to the rdfnces and widens dramatically (more than nine
erence, and use aLBU decoder to create the bestBLEU Points) for longer sentences. _
permutation of each of them and pick the best one. 1h€ ITG constraints and the I1BM(4) constraints
Using this procedure, we make sure that we get tHpth give very hlg_h oracle tra_mslatlon accuracies on
highest-scoring unreordered candidates and chod&¥ German-English translation task. Overall, their

the best one among their oracle reorderings. TableBL-EU scores are about 2 to more than 4 points bet-

_— _ _ _ ter than the BEU scores of the best other meth-
o \é/ﬁi;ig ?Z%B??htforward adaption of Algorithm 3in Huangy s, This gap between the two highest-scoring con-
"We fill the initial phrase and word lattice with the 20 bestStraints and the other methods becomes bigger as

candidates, using phrases of 3 or less words. the sentence lengths grow and is greater than 4
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\6(\(5{(\ e“\e(\
\e(\c,e ’\\86\6
= °© BLEU (NIST) scores

ITG (prune)| IBM, k=4 | IBM, k=2 MJ-2 MJ-1 | No reordering
1-5 61 | 48.21(5.35)| 48.21(5.35) | 48.21(5.35) | 48.21(5.35) | 48.21(5.35) 48.17(5.68)
6-10 | 230 | 43.83(6.75) | 43.71(6.74) | 41.94(6.68) | 42.50(6.71) | 40.85(6.66) 39.21(6.99)
11-15| 440| 33.66(6.71) | 33.37(6.71) | 31.23(6.62) | 31.49(6.64) | 29.67(6.56) 28.21(6.76)
16-20| 447 | 30.47(6.66) | 29.99(6.65) | 27.00(6.52) | 27.06(6.50) | 25.15(6.45) 23.34(6.52)
21-25| 454 || 30.13(6.80) | 29.83(6.79) | 27.21(6.67) | 27.22(6.65) | 25.46(6.58) 23.32(6.63)
26-30| 399 | 26.85(6.42) | 26.36(6.42) | 22.79(6.25) | 22.47(6.22) | 20.38(6.12) 18.31(6.11)
31-35| 298 || 28.11(6.45) | 27.47(6.43) | 23.79(6.25) | 23.28(6.21) | 21.09(6.12) 18.94(6.06)
36-40| 242 || 27.65(6.37) | 26.97(6.35) | 23.31(6.19) | 22.73(6.16) | 20.70(6.06) 18.22(5.94)
1-40 | 2571 || 29.63(7.48) | 29.17(7.46) | 26.07(7.24) | 25.89(7.22) | 23.95(7.08) 21.89(7.07)

Table 2: BLEu and NIST results for different reordering methods on binned sentence lengths. The ITG results are, unlike the
other results, with pruning (beait®~*). The BLEU results are plotted in Figure 6. All results are computed with the original
BLEU formula on the sentences found by the oracle algorithms.

BLEU scores for sentences longer than 30 sentencesen. [| p=0 | p=5 [ p=10 | p=20 | p=30 | p=40 |
This advantage in translation accuracy comes Withog_301] 1831 | 24.07 | 26.40 | 26.79 | 26.85| 26.85
high computational cost, as mentioned above. 31-351| 1894 | 2510 | 27.21 | 28.00| 28.09 | 28.11

Among the computationally more lightweight re-| 3640 || 18.22 | 24.46 | 26.66 | 27.53 | 27.64| 27.65
ordering methods tested, IBM(2) and MJ-2 are veryoe 40 || 18.49 | 24.74 | 26.74 | 27.41| 27.50 | 27.51
close to each other in translation accuracy, wit
IBM(2) obtaining slightly better scores on longerTable 3:BLEu results of ITGs that are constrained to reorder-
sentences. while MJ-2 is more efficient. MJ-1 idngs not exceeding a certain span lengthResults shown for

' . . . . different sentence lengths.

less successful in reordering, improving the mono-
tone baseline by only about 2.5 Bu points at best,
but is the best choice if speed is an issue.

As described above, the reorderings defined by,ations. zens and Ney (2005) describe a dynamic-

the local constraints MJ-l_and MJ-2 are subsets ‘bfrogramming algorithm in which at every state the
IBM(2) and IBM(3). We did not test IBM(3), but ,ymper of n-gram matches is stored, along with a

the values can be interpolated between IBM(2) angljtiset that contains all words from the reference
IBM(4). The ITG constraints do not belong in thisihat have not yet been matched. This makes it pos-
family of finite-state contraints; they allow reorder-gjpje 1o compute thenodifiedngram precision, but
ings that none of the other methods allow, and vicg,g search space is exponential. Tillmann and Zhang
versa. The fact that ITG constraints can reach suc@o%) use a Beu oracle decoder for discrimina-
high translation accuracies supports the findings if\e training of a local reordering model. No de-
Zens et al. (2004_) and is an empirical validation of5is apout the algorithm are given. Zens and Ney
the ITG hypothesis. _ (2003) perform a comparison of different reorder-
The experiments with the constrained ITG show,q strategies. Their study differs from ours in that
the effect of reorderings spanning different lengthg,ey yse reordering models trained on real data and
(see Table 3). While most reorderings are shorinay therefore be influenced by feature selection,
distance {5 phrases) a lot of improvements can still) 3 rameter estimation and other training-specific is-
be obtained whep is increased from length 510 10 ges.  In our study, only the baseline translation
and even from 10 to 20 phrases. model is trained on data. Zens et al. (2004) con-
duct a study similar to Zens and Ney (2003) and note
that the results for the ITG reordering constraints
There exist related algorithms that search the spaweere quite dependent on the very simple probability
of reorderings and computeLBU oracle approxi- model used. Our study avoids this issue by using the

7 Related Work
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