
Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 103–110,
Rochester, New York, April 2007. c©2007 Association for Computational Linguistics

Comparing Reordering Constraints for SMT
Using Efficient BLEU Oracle Computation

Markus Dreyer, Keith Hall, and Sanjeev Khudanpur
Center for Language and Speech Processing

Johns Hopkins University
3400 North Charles Street, Baltimore, MD 21218 USA
{dreyer,keith hall,khudanpur }@jhu.edu

Abstract

This paper describes a new method to
compare reordering constraints for Statis-
tical Machine Translation. We investi-
gate the best possible (oracle) BLEU score
achievable under different reordering con-
straints. Using dynamic programming, we
efficiently find a reordering that approxi-
mates the highest attainable BLEU score
given a reference and a set of reordering
constraints. We present an empirical eval-
uation of popular reordering constraints:
local constraints, the IBM constraints,
and the Inversion Transduction Grammar
(ITG) constraints. We present results for a
German-English translation task and show
that reordering under the ITG constraints
can improve over the baseline by more
than 7.5 BLEU points.

1 Introduction

Reordering the words and phrases of a foreign sen-
tence to obtain the target word order is a fundamen-
tal, and potentially the hardest, problem in machine
translation. The search space for all possible per-
mutations of a sentence is factorial in the number
of words/phrases; therefore a variety of models have
been proposed that constrain the set of possible per-
mutations by allowing certain reorderings while dis-
allowing others. Some models (Brown et al. (1996),
Kumar and Byrne (2005)) allow words to change
place with their local neighbors, but disallow global

reorderings. Other models (Wu (1997), Xiong et al.
(2006)) explicitly allow global reorderings, but do
not allow all possible permutations, including some
local permutations.

We present a novel technique to compare achiev-
able translation accuracies under different reorder-
ing constraints. While earlier work has trained and
tested instantiations of different reordering models
and then compared the translation results (Zens and
Ney, 2003) we provide a more general mechanism
to evaluate thepotentialefficacy of reordering con-
straints, independent of specific training paradigms.
Our technique attempts to answer the question:
What is the highestBLEU score that a given trans-
lation system could reach when using reordering
constraints X?Using this oracle approach, we ab-
stract away from issues that are not inherent in the
reordering constraints, but may nevertheless influ-
ence the comparison results, such as model and fea-
ture design, feature selection, or parameter estima-
tion. In fact, we compare several sets of reorder-
ing constraints empirically, but do not train them as
models. We merely decode by efficiently search-
ing over possible translations allowed by each model
and choosing the reordering that achieves the high-
est BLEU score.

We start by introducing popular reordering con-
straints (Section 2). Then, we present dynamic-
programming algorithms that find the highest-
scoring permutations of sentences under given re-
ordering constraints (Section 3). We use this tech-
nique to compare several reordering constraints em-
pirically. We combine a basic translation framework
with different reordering constraints (Section 4) and

103

present results on a German-English translation task
(Section 5). Finally, we offer an analysis of the
results and provide a review of related work (Sec-
tions 6–8).

2 Reordering Constraints

Reordering constraints restrict the movement of
words or phrases in order to reach or approximate
the word order of the target language. Some of
the constraints considered in this paper were origi-
nally proposed for reordering words, but we will de-
scribe all constraints in terms of reordering phrases.
Phrases are units of consecutive words read off a
phrase translation table.

2.1 Local Constraints

Local constraints allow phrases to swap with one
another only if they are adjacent or very close to
each other. Kumar and Byrne (2005) define two
local reordering models for their Translation Tem-
plate Model (TTM): In the first one, called MJ-1,
only adjacent phrases are allowed to swap, and the
movement has to be done within a window of 2. A
sequence consisting of three phrasesabccan there-
fore becomeacb or bac, but notcba. One phrase
can jump at most one phrase ahead and cannot take
part in more than one swap. In their second strategy,
called MJ-2, phrases are allowed to swap with their
immediate neighbor or with the phrase next to the
immediate neighbor; the maximum jump length is 2.
This allows for all six possible permutations ofabc.
The movement here has to take place within a win-
dow of 3 phrases. Therefore, a four-phrase sequence
abcdcannot be reordered tocadb, for example. MJ-
1 and MJ-2 are shown in Figure 1.

2.2 IBM Constraints

First introduced by Brown et al. (1996), the IBM
constraints are among the most well-known and
most widely used reordering paradigms. Transla-
tion is done from the beginning of the sentence to
the end, phrase by phrase; at each point in time, the
constraints allow one of the firstk still untranslated
phrases to be selected for translation (see Figure 1d,
for k=2). The IBM constraints are much less restric-
tive than local constraints. The first word of the in-
put, for example, can move all the way to the end,
independent of the value ofk. Typically, k is set to

4 (Zens and Ney, 2003). We write IBM withk=4 as
IBM(4). The IBM constraints are supersets of the
local constraints.

0 1
if

2
you

3
to-me

4
that

5
explain

6
could

(a) The sentence in foreign word order.

0

3you

1
if 4

if

you

2

to-me
5

to-me

7that

you

8
that

6

explain

to-me

9
explain

10could

that

11could

explain

(b) MJ-1

0 8
you

6

to-me

1if

9

if

60

to-me

you

7

if

you

3that

2
to-me

15

to-me

12that

10explain

4

to-me

5you

you

that
17

that

19

could
16explain

you

to-me
18explain

21

could

if

you

to-me

13explain

that
11

to-me

to-me

that

22

could

20
explain

that

that

could

that

explain

(c) MJ-2

0
6you

1
if 7

if

11to-me

you

2

to-me

12to-me

8
that

you

3
that

16

that

13
explain

you

4
explain

19explain

17

could

you

5could

21

could

you

if

15that

to-me

9

explain to-me

10could

to-me

if

18
explain

that

60
could

that

if
20

could

explain

if

(d) IBM(2)

Figure 1: The German word orderif you to-me that explain
could (’wenn Sie mir das erklären k̈onnten’) and all possible
reorderings under different constraints, represented as lattices.
None of these lattices contains the correct English orderif you
could explain that to-me. See also Table 1.

2.3 ITG Constraints

The Inversion Transduction Grammar (ITG) (Wu,
1997), a derivative of the Syntax Directed Trans-
duction Grammars (Aho and Ullman, 1972), con-
strains the possible permutations of the input string
by defining rewrite rules that indicate permutations
of the string. In particular, the ITG allows all per-
mutations defined by all binary branching struc-
tures where the children of any constituent may be
swapped in order. The ITG constraint is different
from the other reordering constraints presented in
that it is not based on finite-state operations. An

104

Model # perm. “Best” sentence n-gram precisions BLEU

MJ-1 13 if you that to-me could explain 100.0/66.7/20.0/0.0 0.0
MJ-2 52 to-me if you could explain that 100.0/83.3/60.0/50.0 70.71
IBM(2) 32 if to-me that you could explain 100.0/50.0/20.0/0.0 0.0
IBM(4) 384 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
IBM(4) (prune) 42 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
ITG 394 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
ITG (prune) 78 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0

Table 1: Illustrating example: The number of permutations (# perm.) that different reordering paradigms consider for the input
sequenceif you to-me that explain could, and the permutation with highest BLEU score. The sentence length is 7, but there are
only 6! possible permutations, since the phraseto-mecounts as one word during reordering. ITG (prune) is the ITG BLEU decoder
with the pruning settings we used in our experiments (beam threshold10−4). For comparison, IBM(4) (prune) is the lattice
BLEU decoder with the same pruning settings, but we use pruning only for ITG permutations in our experiments.

Figure 2: The exampleif
you to-me that explain could
and its reordering toif you
could explain that to-meus-
ing an ITG. The alignments
are added below the tree, and
the horizontal bars in the tree
indicate a swap.

ITG decoder runs in polynomial time and allows for
long-distance phrasal reordering. A phrase can, for
example, move from the first position in the input
to the last position in the output and vice versa, by
swapping the topmost node in the constructed bi-
nary tree. However, due to the binary bracketing
constraint, some permutations are not modeled. A
four-phrase sequenceabcdcannot be permuted into
cadbor bdac. Therefore, the ITG constraints are not
supersets of the IBM constraints. IBM(4), for exam-
ple, allowsabcdto be permuted intocadbandbdac.

3 Factored BLEU Computation
The different reordering strategies described allow
for different permutations and restrict the search
space in different ways. We are concerned with
the maximal achievable accuracy under given con-
straints, independent of feature design or parameter
estimation. This is what we call theoracleaccuracy
under the reordering constraints and it is computed
on a dataset with reference translations.

We now describe algorithms that can be used
to find such oracle translations among unreordered
translation candidates. There are two equivalent
strategies: The reordering constraints that are be-

ing tested can be expressed as a special dynamic-
programming decoder which, when applied to an
unreordered hypothesis, searches the space of per-
mutations defined by the reordering constraints and
returns the highest-scoring permutation. We employ
this strategy for the ITG reorderings (Section 3.2).
For the other reordering constraints, we employ a
more generic strategy: Given the set of reorder-
ing constraints, all permutations of an unreordered
translation candidate are precomputed and explicitly
represented as a lattice. This lattice is passed as in-
put to a Dijkstra-style decoder (Section 3.1) which
traverses it and finds the solution that reachest the
highest BLEU score.1

3.1 Dijkstra B LEU Decoder

The Dijkstra-style decoder takes as input a lattice in
which each path represents one possible permutation
of an unreordered hypothesis under a given reorder-
ing paradigm, as in Figure 1. It traverses the lat-
tice and finds the solution that has the highest ap-
proximate BLEU score, given the reference. The
dynamic-programming algorithm divides the prob-
lem into subproblems that are solved independently,
the solutions of which contribute to the solutions
of other subproblems. The general procedure is
sketched in Figure 3: for each subpath of the lat-
tice containing the precomputed permutations, we
store the three most recently attached words (Fig-

1For both strategies, several unreordered translation candi-
dates do not have to be regarded separately, but can be repre-
sented as a weighted lattice and be used as input to the special
dynamic program or to the process that precomputes possible
permutations.

105

β([0, k, len + 1, w2, w3, wnew]) = max
w1

(get bleu([0, j, len, w1, w2, w3], [j, k, wnew])) (1)

function getbleu([0, j, len, w1, w2, w3], [j, k, wnew]) :=
updatengrams(0, j, k, len, w1, w2, w3, wnew) ;

returnexp

(
1
4

4∑
n=1

log

(
ngramsi([0, k, len + 1, w2, w3, wnew])

len − n + 1

))
;

(2)

Figure 3:Top: The BLEU score is used as inside score for a subpath from 0 tok with the rightmost wordsw2, w3, wnew in the
Dijkstra decoder.Bottom: Pseudo code for a functionget bleu which updates the n-gram matches ngrams1(. . .), ngrams2(. . .),
ngrams3(. . .), ngrams4(. . .) for the resulting subpath in a hash table[0, k, len + 1, w2, w3, wnew] and returns its approximate
BLEU score.

("","","")
0/0/0/0

("","to","me")
2/1/0/0

("to","me","if")
3/1/0/0

("me","if","you")
4/2/0/0

("if","you","could")
5/3/1/0

("you","could","explain")
6/4/2/1

("could","explain","that")
7/5/3/2

0

6
to-me

if

you

7if

you

15
you

19
could

that

explain

20explain

that

22
that

Figure 4: Three right-most words and n-gram matches: This shows the best path for the MJ-2 reordering ofif you to-me that
explain could, along with the words stored at each state and the progressively updated n-gram matches. The full pathto-me if you
could explain thathas 7 unigram matches, 5 bigram, 3 trigram, and 2 fourgram matches. See the full MJ-2 lattice in Figure 1c.

ure 4). A context of three words is needed to com-
pute fourgram precisions used in the BLEU score.
Starting from the start state, we recursively extend
a subpath word by word, following the paths in
the lattice. Whenever we extend the path by a
word to the right we incorporate that word and use
update ngrams to update the four n-gram counts
for the subpath. The functionupdate ngrams has
access to the reference string2 and stores the updated
n-gram counts for the resulting path in a hash table.3

The inside score of each subpath is the approximate
BLEU score, calculated as the average of the four
n-gram log precisions. An n-gram precision is al-
ways the number of n-gram matches divided by the
length len of the path minus(n − 1). A path of
length 4 with 2 bigram matches, for example, has
a bigram precision of2/3. This method is similar to
Dijkstra’s algorithm (Dijkstra, 1959) composed with
a fourgram finite-state language model, where the
scoring is done using n-gram counts and precision

2Multiple reference strings can be used if available.
3An epsilon value of1−10 is used for zero precisions.

scores. We call this the Dijkstra BLEU decoder.

3.2 ITG BLEU Decoder

For the ITG reordering constraints, we use a dy-
namic program that computes the permutations im-
plicitly. It takes only the unreordered hypothesis
as input and creates the possible reorderings under
the ITG constraints during decoding, as it creates
a parse chart. The algorithm is similar to a CKY
parsing algorithm in that it proceeds bottom-up and
combines smaller constituents into larger ones re-
cursively. Figure 5 contains details of the algo-
rithm. The ITG BLEU decoder stores the three left-
most and the three rightmost words in each con-
stituent. A constituent from positioni to posi-
tion k, with wa, wb, and wc as leftmost words,
and wx, wy, wz as rightmost words is written as
[i, k, (wa, wb, wc), (wx, wy, wz)]. Such a constituent
can be built by straight or inverted rules. Using an
inverted rule means swapping the order of the chil-
dren in the built constituent. The successive bottom-
up combinations of adjacent constituents result in hi-
erarchical binary bracketing with swapped and non-

106

β ([i, k, (wa, wb, wc), (wx, wy, wz)]) = max
(

β() ([i, k, (wa, wb, wc), (wx, wy, wz)]) ,

β<> ([i, k, (wa, wb, wc), (wx, wy, wz)])

)
(3)

β<>([i, k, (wa, wb, wc), (wx, wy, wz)]) =

max
j,wa′ ,wb′ ,wc′ ,wx′ ,wy′ ,wz′

(
get bleu

([
j, k, (wa, wb, wc), (wx′ , wy′ , wz′)

]
,

[i, j, (wa′ , wb′ , wc′), (wx, wy, wz)]

))
(4)

Figure 5:Equations for the ITG oracle BLEU decoder.[i, k, (wa, wb, wc), (wx, wy, wz)] is a constituent fromi to k with leftmost
wordswa,wb,wc and rightmost wordswx,wy,wz. Top: A constituent can be built with a straight or a swapped rule. Bottom: A
swapped rule. Theget bleu function can be adapted from Figure 3

swapped constituents. Our ITG BLEU decoder uses
standard beam search pruning. As in Zens and Ney
(2003), phrases are not broken up, but every phrase
is, at the beginning of reordering, stored in the chart
as one lexical token together with the precomputed
n-gram matches and the n-gram precision score.

In addition to standard ITG we run experiments
with a constrained ITG, in which we impose a bound
ρ on the maximum length of reordered constituents,
measured in phrases. If the combined length of two
constituents exceeds this bound they can only be
combined in the given monotone order. Experiments
with this ITG variant give insight into the effect that
various long-distance reorderings have on the final
BLEU scores (see Table 3). Such bounds are also
effective speedup techniques(Eisner and Tromble,
2006).

3.3 BLEU Approximations

BLEU is defined to use themodifiedn-gram preci-
sion, which means that a correct n-gram that oc-
curs once in the reference, but several times in the
system translation will be counted only once as
correct. The other occurrences are clipped. We
do not include this global feature since we want
a dynamic-programming solution with polynomial
size and runtime. The decoder processes subprob-
lems independently; words are attached locally and
stored only as boundary words of covered paths/
constituents. Therefore we cannot discount a locally
attached word that has already been attached else-
where to an alternative path/constituent. However,
clipping affects most heavily the unigram scores
which are constant, like the length of the sentence.4

4Since the sentence lengths are constant for all reorderings
of a given sentence we can in our experiments also ignore the
brevity penalty which cancels out. If the input consists of sev-

We also adopt the approximation that treats every
sentence with its reference as a separate corpus (Till-
mann and Zhang, 2006) so that ngram counts are not
accumulated, and parallel processing of sentences
becomes possible. Due to these two approximations,
our method is not guaranteed to find the best reorder-
ing defined by the reordering constraints. However,
we have found on our heldout data that an oracle
that does not accumulate n-gram counts is only min-
imally worse than an oracle that does accumulate
them (up to 0.25 BLEU points).5 If, in addition,
clipping is ignored, the resulting oracle stays virtu-
ally the same, at most 0.02 BLEU points worse than
the oracle found otherwise. All results in this paper
are computed with the original BLEU formula on the
sentences found by the oracle algorithms.

4 Creating a Monotone Translation
Baseline

To compare the reordering constraints under ora-
cle conditions we first obtain unreordered candi-
date translations from a simple baseline translation
model. For each reordering paradigm, we take the
candidate translations, get the best oracle reorder-
ings under the given reordering constraints and pick
the best sentence according to the BLEU score.

The baseline translation system is created using
probabilistic word-to-word and phrase-to-phrase ta-

eral sentences of different lengths (see fn. 1) then the brevity
penalty can be built in by keeping track of length ratios of at-
tached phrases.

5The accumulating oracle algorithm makes a greedy deci-
sion for every sentence given the ngram counts so far accumu-
lated (Zens and Ney, 2005). The result of such a greedy or-
acle method may depend on the order of the input sentences.
We tried 100 shuffles of these and received 100 very simi-
lar results, with a variance of under 0.006 BLEU points. The
non-accumulating oracles use an epsilon value (1−10) for zero
counts.

107

bles. Using the translation probabilities, we create
a lattice that contains word and phrase translations
for every substring of the source sentence. The re-
sulting lattice is made of English words and phrases
of different lengths. Every word or phrase transla-
tion probabilityp is a mixture ofp(f |e) andp(e|f).
We discard short phrase translations exponentially
by a parameter that is trained on heldout data. Inser-
tions and deletions are handled exclusively by the
use of a phrase table: an insertion takes place wher-
ever the English side of a phrase translation is longer
than the foreign side (e.g. Englishpresidential can-
didate for GermanPräsidentschaftskandidat), and
vice versa for deletions (e.g.we discussedfor wir
haben diskutiert). Gaps or discontinuous phrases
are not handled. The baseline decoder outputs the
n-best paths through the lattice according to the lat-
tice scores6, marking consecutive phrases so that the
oracle reordering algorithms can recognize them and
keep them together. Note that the baseline system is
trained on real data, while the reordering constraints
that we want to test are not trained.

5 Empirical Comparison of Reordering
Constraints

We use the monotone translation baseline model and
the oracle BLEU computation to evaluate different
popular reordering strategies. We now describe the
experimental settings. The word and phrase transla-
tion probabilities of the baseline model are trained
on the Europarl German-English training set, using
GIZA++ and the Pharaoh phrase extraction algo-
rithm. For testing we use the NAACL 2006 SMT
Shared Task test data. For each sentence of the test
set, a lattice is created in the way described in Sec-
tion 4, with parameters optimized on a small heldout
set.7 For each sentence, the 1000-best candidates ac-
cording to the lattice scores are extracted. We take
the 10-best oracle candidates, according to the ref-
erence, and use a BLEU decoder to create the best
permutation of each of them and pick the best one.
Using this procedure, we make sure that we get the
highest-scoring unreordered candidates and choose
the best one among their oracle reorderings. Table 2

6We use a straightforward adaption of Algorithm 3 in Huang
and Chiang (2005)

7We fill the initial phrase and word lattice with the 20 best
candidates, using phrases of 3 or less words.

and Figure 6 show the resulting BLEU scores for dif-
ferent sentence lengths. Table 3 shows results of the
ITG runs with different length boundsρ. The aver-
age phrase length in the candidate translations of the
test set is 1.42 words.

Oracle decodings under the ITG and under
IBM(4) constraints were up to 1000 times slower
than under the other tested oracle reordering meth-
ods in our implementations. Among the faster meth-
ods, decoding under MJ-2 constraints was up to 40%
faster than under IBM(2) constraints in our imple-
mentation.

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40

B
L

E
U

Sentence length

ITG
IBM, k=4
IBM, k=2

MJ-2
MJ-1

Baseline

Figure 6: Reordering oracle scores for different sentence
lengths. See also Table 2.

6 Discussion

The empirical results show that reordering un-
der sufficiently permissive constraints can improve
a monotone baseline oracle by more than 7.5
BLEU points. This gap between choosing the best
unreordered sentences versus choosing the best op-
timally reordered sentences is small for short sen-
tences and widens dramatically (more than nine
BLEU points) for longer sentences.

The ITG constraints and the IBM(4) constraints
both give very high oracle translation accuracies on
the German-English translation task. Overall, their
BLEU scores are about 2 to more than 4 points bet-
ter than the BLEU scores of the best other meth-
ods. This gap between the two highest-scoring con-
straints and the other methods becomes bigger as
the sentence lengths grow and is greater than 4

108

Sentence length

of test sentences

BLEU (NIST) scores
ITG (prune) IBM, k=4 IBM, k=2 MJ-2 MJ-1 No reordering

1–5 61 48.21(5.35) 48.21(5.35) 48.21(5.35) 48.21(5.35) 48.21(5.35) 48.17(5.68)

6–10 230 43.83(6.75) 43.71(6.74) 41.94(6.68) 42.50(6.71) 40.85(6.66) 39.21(6.99)

11–15 440 33.66(6.71) 33.37(6.71) 31.23(6.62) 31.49(6.64) 29.67(6.56) 28.21(6.76)

16–20 447 30.47(6.66) 29.99(6.65) 27.00(6.52) 27.06(6.50) 25.15(6.45) 23.34(6.52)

21–25 454 30.13(6.80) 29.83(6.79) 27.21(6.67) 27.22(6.65) 25.46(6.58) 23.32(6.63)

26–30 399 26.85(6.42) 26.36(6.42) 22.79(6.25) 22.47(6.22) 20.38(6.12) 18.31(6.11)

31–35 298 28.11(6.45) 27.47(6.43) 23.79(6.25) 23.28(6.21) 21.09(6.12) 18.94(6.06)

36–40 242 27.65(6.37) 26.97(6.35) 23.31(6.19) 22.73(6.16) 20.70(6.06) 18.22(5.94)

1–40 2571 29.63(7.48) 29.17(7.46) 26.07(7.24) 25.89(7.22) 23.95(7.08) 21.89(7.07)

Table 2: BLEU and NIST results for different reordering methods on binned sentence lengths. The ITG results are, unlike the
other results, with pruning (beam10−4). The BLEU results are plotted in Figure 6. All results are computed with the original
BLEU formula on the sentences found by the oracle algorithms.

BLEU scores for sentences longer than 30 sentences.
This advantage in translation accuracy comes with
high computational cost, as mentioned above.

Among the computationally more lightweight re-
ordering methods tested, IBM(2) and MJ-2 are very
close to each other in translation accuracy, with
IBM(2) obtaining slightly better scores on longer
sentences, while MJ-2 is more efficient. MJ-1 is
less successful in reordering, improving the mono-
tone baseline by only about 2.5 BLEU points at best,
but is the best choice if speed is an issue.

As described above, the reorderings defined by
the local constraints MJ-1 and MJ-2 are subsets of
IBM(2) and IBM(3). We did not test IBM(3), but
the values can be interpolated between IBM(2) and
IBM(4). The ITG constraints do not belong in this
family of finite-state contraints; they allow reorder-
ings that none of the other methods allow, and vice
versa. The fact that ITG constraints can reach such
high translation accuracies supports the findings in
Zens et al. (2004) and is an empirical validation of
the ITG hypothesis.

The experiments with the constrained ITG show
the effect of reorderings spanning different lengths
(see Table 3). While most reorderings are short-
distance (<5 phrases) a lot of improvements can still
be obtained whenρ is increased from length 5 to 10
and even from 10 to 20 phrases.

7 Related Work

There exist related algorithms that search the space
of reorderings and compute BLEU oracle approxi-

Len. ρ=0 ρ=5 ρ=10 ρ=20 ρ=30 ρ=40

26–30 18.31 24.07 26.40 26.79 26.85 26.85

31–35 18.94 25.10 27.21 28.00 28.09 28.11

36–40 18.22 24.46 26.66 27.53 27.64 27.65

26–40 18.49 24.74 26.74 27.41 27.50 27.51

Table 3:BLEU results of ITGs that are constrained to reorder-
ings not exceeding a certain span lengthρ. Results shown for
different sentence lengths.

mations. Zens and Ney (2005) describe a dynamic-
programming algorithm in which at every state the
number of n-gram matches is stored, along with a
multiset that contains all words from the reference
that have not yet been matched. This makes it pos-
sible to compute themodifiedngram precision, but
the search space is exponential. Tillmann and Zhang
(2006) use a BLEU oracle decoder for discrimina-
tive training of a local reordering model. No de-
tails about the algorithm are given. Zens and Ney
(2003) perform a comparison of different reorder-
ing strategies. Their study differs from ours in that
they use reordering models trained on real data and
may therefore be influenced by feature selection,
parameter estimation and other training-specific is-
sues. In our study, only the baseline translation
model is trained on data. Zens et al. (2004) con-
duct a study similar to Zens and Ney (2003) and note
that the results for the ITG reordering constraints
were quite dependent on the very simple probability
model used. Our study avoids this issue by using the

109

BLEU oracle approach. In Wellington et al. (2006),
hand-aligned data are used to compare the standard
ITG constraints to ITGs that allow gaps.

8 Conclusions

We have presented a training-independent method
to compare different reordering constraints for ma-
chine translation. Given a sentence in foreign word
order, its reference translation(s) and reordering
constraints, our dynamic-programming algorithms
efficiently find the oracle reordering that has the ap-
proximately highest BLEU score. This allows eval-
uating different reordering constraints experimen-
tally, but abstracting away from specific features,
the probability model or training methods of the re-
ordering strategies. The presented method evaluates
the theoretical capabilities of reordering constraints,
as opposed to more arbitrary accuracies of specifi-
cally trained instances of reordering models.

Using our oracle method, we presented an em-
pirical evaluation of different reordering constraints
for a German-English translation task. The results
show that a good reordering of a given monotone
translation can improve the translation quality dra-
matically. Both short- and long-distance reorderings
contribute to the BLEU score improvements, which
are generally greater for longer sentences. Reorder-
ing constraints that allow global reorderings tend
to reach better oracles scores than ones that search
more locally. The ITG constraints and the IBM(4)
constraints both give the highest oracle scores.

The presented BLEU decoder algorithms can be
useful in many ways: They can generally help de-
cide what reordering constraints to choose for a
given translation system. They can be used for
discriminative training of reordering models (Till-
mann and Zhang, 2006). Furthermore, they can help
detecting insufficient parameterization or incapable
training algorithms: If two trained reordering model
instances show similar performances on a given task,
but the oracle scores differ greatly then the training
methods might not be optimal.

Acknowledgments

This work was partially supported by the National
Science Foundation via an ITR grant (No 0121285),
the Defense Advanced Research Projects Agency

via a GALE contract (No HR0011-06-2-0001), and
the Office of Naval Research via a MURI grant (No
N00014-01-1-0685). We thank Jason Eisner, David
Smith, Roy Tromble and the anonymous reviewers
for helpful comments and suggestions.

References
A. V. Aho and J. D. Ullman. 1972.The Theory of Parsing,

Translation, and Compiling. Prentice Hall.

A.L. Berger P. F. Brown, S. A. Della Pietra, V. J. Della Pietra,
J. R. Gillett, J. D. Lafferty, R. L. Mercer, H. Printz, and
L. Ures. 1996. Language translation apparatus and method
using context-based translation models. United States Patent
No. 5,510,981.

E.W. Dijkstra. 1959. A note on two problems in connexion
with graphs.Numerische Mathematik., 1:269–271.

J. Eisner and R. W. Tromble. 2006. Local search with very
large-scale neighborhoods for optimal permutations in Ma-
chine Translation. InProc. of the Workshop on Computa-
tionally Hard Problems and Joint Inference, New York.

L. Huang and D. Chiang. 2005. Betterk-best parsing. InProc.
of IWPT, Vancouver, B.C., Canada.

S. Kumar and W. Byrne. 2005. Local phrase reordering
models for Statistical Machine Translation. InProc. of
HLT/EMNLP, pages 161–168, Vancouver, B.C., Canada.

C. Tillmann and T. Zhang. 2006. A discriminative global train-
ing algorithm for Statistical MT. InProc. of ACL, pages
721–728, Sydney, Australia.

B. Wellington, S. Waxmonsky, and D. Melamed. 2006. Empir-
ical lower bounds on the complexity of translational equiv-
alence. InProc. of COLING-ACL, pages 977–984, Sydney,
Australia.

D. Wu. 1997. Stochastic inversion transduction grammars and
bilingual parsing of parallel corpora.Computational Lin-
guistics, 23(3):377–404.

D. Xiong, Q. Liu, and S. Lin. 2006. Maximum entropy based
phrase reordering model for Statistical Machine Translation.
In Proc. of COLING-ACL, pages 521–528, Sydney, Aus-
tralia.

R. Zens and H. Ney. 2003. A comparative study on reordering
constraints in Statistical Machine Translation. InProc. of
ACL, pages 144–151, Sapporo, Japan.

R. Zens and H. Ney. 2005. Word graphs for Statistical Machine
Translation. InProc. of the ACL Workshop on Building and
Using Parallel Texts, pages 191–198, Ann Arbor, MI.

R. Zens, H. Ney, T. Watanabe, and E. Sumita. 2004. Reorder-
ing constraints for phrase-based Statistical Machine Transla-
tion. In Proc. of CoLing, pages 205–211, Geneva.

110

