
Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 41–48,
Rochester, New York, April 2007. c©2007 Association for Computational Linguistics

Machine Translation as Tree Labeling

Mark Hopkins
Department of Linguistics

University of Potsdam, Germany
hopkins@ling.uni-potsdam.de

Jonas Kuhn
Department of Linguistics

University of Potsdam, Germany
kuhn@ling.uni-potsdam.de

Abstract

We present the main ideas behind a new
syntax-based machine translation system,
based on reducing the machine translation
task to a tree-labeling task. This tree la-
beling is further reduced to a sequence of
decisions (of four varieties), which can be
discriminatively trained. The optimal tree
labeling (i.e. translation) is then found
through a simple depth-first branch-and-
bound search. An early system founded
on these ideas has been shown to be
competitive with Pharaoh when both are
trained on a small subsection of the Eu-
roparl corpus.

1 Motivation

Statistical machine translation has, for a while now,
been dominated by the phrase-based translation par-
adigm (Och and Ney, 2003). In this paradigm,
sentences are translated from a source language to
a target language through the repeated substitution
of contiguous word sequences (“phrases”) from the
source language for word sequences in the target
language. Training of the phrase translation model
builds on top of a standard statistical word align-
ment over the training corpus for identifying corre-
sponding word blocks, assuming no further linguis-
tic analysis of the source or target language. In de-
coding, these systems then typically rely on n-gram
language models and simple statistical reordering
models to shuffle the phrases into an order that is
coherent in the target language.

There are limits to what such an approach can ul-
timately achieve. Machine translation based on a

deeper analysis of the syntactic structure of a sen-
tence has long been identified as a desirable objec-
tive in principle (consider (Wu, 1997; Yamada and
Knight, 2001)). However, attempts to retrofit syn-
tactic information into the phrase-based paradigm
have not met with enormous success (Koehn et al.,
2003; Och et al., 2003)1, and purely phrase-based
machine translation systems continue to outperform
these syntax/phrase-based hybrids.

In this work, we try to make a fresh start with
syntax-based machine translation, discarding the
phrase-based paradigm and designing a machine
translation system from the ground up, using syntax
as our central guiding star. Evaluation with BLEU
and a detailed manual error analysis of our nascent
system show that this new approach might well have
the potential to finally realize some of the promises
of syntax.

2 Problem Formulation

We want to build a system that can learn to translate
sentences from a source language to a destination
language. As our first step, we will assume that the
system will be learning from a corpus consisting of
triples 〈f, e, a〉, where: (i)f is a sentence from our
source language, which is parsed (the words of the
sentence and the nodes of the parse tree may or may
not be annotated with auxiliary information), (ii)e is
a gold-standard translation of sentencef (the words
of sentencee may or may not be annotated with aux-
iliary information), and (iii)a is an automatically-
generated word alignment (e.g. via GIZA++) be-
tween source sentencef and destination sentencee.

1(Chiang, 2005) also reports that with his hierarchical gen-
eralization of the phrase-based approach, the addition of parser
information doesn’t lead to any improvements.

41

Figure 1: Example translation object.

Let us refer to these triples astranslation objects.
The learning task is: using the training data, pro-

duce a scoring functionP that assigns a score to
every translation object〈f, e, a〉, such that this scor-
ing function assigns a high score to good transla-
tions, and a low score to poor ones. The decoding
task is: given scoring functionP and an arbitrary
sentencef from the source language, find transla-
tion object〈f, e, a〉 that maximizesP (〈f, e, a〉).

To facilitate matters, we will map translation ob-
jects to an alternate representation. In (Galley et al.,
2003), the authors give a semantics to every trans-
lation object by associating each with an annotated
parse tree (hereafter called aGHKM tree) represent-
ing a specific theory about how the source sentence
was translated into the destination sentence.

In Figure 1, we show an example translation ob-
ject and in Figure 2, we show its associated GHKM
tree. The GHKM tree is simply the parse treef of
the translation object, annotated with rules (hereafter
referred to asGHKM rules). We will not describe in
depth the mapping process from translation object to
GHKM tree. Suffice it to say that the alignment in-
duces a set of intuitive translation rules. Essentially,
a rule like: “not 1→ ne 1 pas” (see Figure 2) means:
if we see the word “not” in English, followed by a
phrase already translated into French, then translate
the entire thing as the word “ne” + the translated
phrase + the word “pas.” A parse tree node gets la-
beled with one of these rules if, roughly speaking,
its span is still contiguous when projected (via the
alignment) into the target language.

Formally, what is a GHKM tree? Define arule el-
ementas a string or an indexed variable (e.g.x1,
x4, x32). A GHKM rule of rank k (where k is
a non-negative integer) is a pair〈Rs, Rd〉, where
source listRs anddestination listRd are both lists
of rule elements, such that each variable ofXk ,

{x1, x2, ..., xk} appears exactly once inRs and ex-
actly once inRd. Moreover, inRs, the variables ap-
pear in ascending order. In Figure 2, some of the
tree nodes are annotated with GHKM rules. For
clarity, we use a simplified notation. For instance,
rule 〈〈x1, x2, x3〉, 〈x3, “,” , x1, x2〉〉 is represented as
“1 2 3→ 3 , 1 2”. We have also labeled the nodes
with roman numerals. When we want to refer to a
particular node in later examples, we will refer to it,
e.g., ast(i) or t(vii).

A rule node is a tree node annotated with a
GHKM rule (for instance, nodest(i) or t(v) of Fig-
ure 2, but not nodet(iv)). A tree nodet2 is reachable
from tree nodet1 iff node t2 is a proper descendant
of nodet1 and there is no rule node (not including
nodest1, t2) on the path from nodet1 to nodet2.

Define thesuccessor listof a tree nodet as the list
of rule nodes and leaves reachable fromt (ordered in
left-to-right depth-first search order). For Figure 2,
the successor list of nodet(i) is 〈t(ii), t(v), t(xiii)〉,
and the successor list of nodet(v) is 〈t(vii), t(viii)〉.
Therule node successor listof a tree node is its suc-
cessor list, with all non-rule nodes removed.

Define thesignatureof a parse tree nodet as the
result of taking its successor list, replacing thejth
rule node with variablexj , and replacing every non-
rule node with its word label (observe that all non-
rule nodes in the successor list are parse tree leaves,
and therefore they have word labels). For Figure 2,
the signature of nodet(i) is 〈x1, x2, x3〉, and the sig-
nature of nodet(v) is 〈“am”, x1〉.

Notice that the signature of every rule node in Fig-
ure 2 coincides with the source list of its GHKM
rule. This is no accident, but rather a requirement.
Define a GHKM tree nodeas a parse tree node
whose children are all GHKM tree nodes, and whose
GHKM rule’s source list is equivalent to its signa-
ture (if the node is a rule node).

Given these definitions, we can proceed to define
how a GHKM tree expresses a translation theory.
Suppose we have a listS = 〈s1, ..., sk〉 of strings.
Define thesubstitutionof string listS into rule ele-

42

Figure 2: GHKM tree equivalent of example translation object. The light gray nodes are rule nodes of the
GHKM tree.

mentr as:

r[S] =
� si if r is indexed varxi

r otherwise

Notice that this operation always produces a
string. Define the substitution of string listS into
rule element listR = 〈r1, ..., rj〉 as:

R[S] = concat(r1[S], r2[S], ..., rj [S])

where concat(s1, ..., sk) is the spaced concatenation
of stringss1, ..., sk (e.g., concat(“hi”, “there”) =
“hi there”). This operation also produces a string.

Finally, define thetranslationof GHKM tree node
t as:

τ(t) , Rd[〈τ(t1), ..., τ(tk)〉]

where〈t1, ..., tk〉 is the rule node successor list of
GHKM tree nodet.

For Figure 2, the rule node successor list of node
t(viii) is 〈t(xi)〉. So:

τ(t(viii)) = 〈“ne”, x1, “pas”〉[〈τ(t(xi))〉]

= 〈“ne”, x1, “pas”〉[〈“vais”〉]

= “ne vais pas”

A similar derivation gives us:

τ(t(i)) = “aujourd’hui , je ne vais pas”

In this way, every GHKM tree encodes a transla-
tion. Given this interpretation of a translation object,
the task of machine translation becomes something
concrete: label the nodes of a parsed source sentence
with a good set of GHKM rules.

3 Probabilistic Approach

To achieve this “good” labeling of GHKM rules,
we will define a probabilistic generative modelP

of GHKM trees, which will serve as our scoring
function. We would like to depart from the stan-
dard probabilistic approach of most phrase-based
translators, which employ very simple probability
models to enable polynomial-time decoding. In-
stead, we will use an alternative probabilistic ap-
proach (anassignment process), which sacrifices
polynomial-time guarantees in favor of a more flexi-
ble and powerful model. This sacrifice of guaranteed
polynomial-time decoding does not entail the sacri-
fice of good running time in practice.

3.1 Assignment Processes

An assignment process builds a sequence of vari-
able assignments (called anassignment history) by
repeatedly iterating the following steps. First, it re-
quests a variable name (sayx22) from a so-named
variable generator. It takes this variable name
and the assignment history built so far and com-
presses this information into a set of features (say
{f2, f6, f80}) using a feature function. These fea-
tures are then mapped to a probability distribution by
a function (sayp7) requested from a so-nameddistri-
bution generator. The iteration ends by assigning to
the chosen variable a value (sayv4) drawn from this
distribution. In the above running example, the iter-
ation assignsv4 to x22, which was drawn according
to distributionp7({f2, f6, f80}). The process ends
when the variable generator produces the reserved
token STOP instead of a variable name. At this

43

Var Assignment Distribution Features
x23 true p4 {}
x7 “the” p10 {f12, f102}
x8 blue p2 {f5, f55}
x51 red p2 {f5, f15, f50}
x19 7.29 p5 {f2}
x30 false p4 {f2, f5, f7}
x1 “man” p10 {f1, f2, f12}

x102 blue p2 {f1, f55, f56}

Figure 3: A example assignment history generated
by an assignment process.

point, the assignment history built so far (like the
example in Figure 3) is returned.

Formally, define avariable signatureas a pair
Σ = 〈X, V 〉, whereX is a set of variable names
andV is a set of values. Define avariable assign-
mentof signature〈X, V 〉 as a pair〈x, v〉, for vari-
ablex ∈ X and valuev ∈ V . Define anassignment
historyof signatureΣ as an ordered list of variable
assignments ofΣ. The notationH(Σ) represents the
set of all assignment histories of signatureΣ.

We define afeature functionof signatureΣ =
〈X, V 〉 as a functionf that maps every pair of set
X ×H(Σ) to a set of assignments (calledfeatures)
of an auxiliary variable signatureΣf .

We define anassignment processof signature
Σ = 〈X, V 〉 as a tuple〈f, P, gx, gp〉, where: (i)f is
a feature function ofΣ, (ii) P = {p1, ..., pk} is a fi-
nite set ofk functions (called thefeature-conditional
distributions) that map each feature set inrange(f)
to a probability distribution overV , (iii) gx is a func-
tion (called thevariable generator) mapping each
assignment history in the setH(Σ) to either a vari-
able name inX or the reserved tokenSTOP , and
(iv) gp is a function (called thedistribution gener-
ator) mapping each assignment history in the set
H(Σ) to a positive integer between1 andk.

An assignment process probabilistically generates
an assignment history of signatureΣ in the follow-
ing way:

1. h← empty list

2. Do untilgx(h) = STOP :

(a) Letx = gx(h) and letj = gp(h).

(b) Draw valuev probabilistically from distri-
butionpj(f(x, h)).

(c) Append assignment〈x, v〉 to historyh.

3. Return historyh.

3.2 Training

Given all components of an assignment process
of signatureΣ except for the setP of feature-
conditional distributions, the training task is to learn
P from a training corpus of assignment histories of
signatureΣ. This can be achieved straightforwardly
by taking the feature vectors generated by a partic-
ular distribution and using them to discriminatively
learn the distribution. For instance, say that our cor-
pus consists of the single history given in Figure??.
To learn distributionp2, we simply take the three
variable assignments produced byp2 and feed these
feature vectors to a generic discriminative learner.
We prefer learners that produce distributions (rather
than hard classifiers) as output, but this is not re-
quired.

3.3 Decoding

Notice that an assignment process of signatureΣ in-
duces a probability distribution over the setH(Σ) of
all assignment histories ofΣ. The decoding ques-
tion is: given a partial assignment historyh, what
is the most probable completion of the history, ac-
cording to this induced distribution? We will use
the natural naive search space for this question. The
nodes of this search space are the assignment his-
tories of H(Σ). The children of the search node
representing historyh are those histories that can be
generated fromh in one iteration of the assignment
process. The value of a search node is the proba-
bility of its assignment history (according to the as-
signment process). To decode, we begin at the node
representing historyh, and search for the highest-
value descendant that represents a complete assign-
ment history (i.e. an assignment history terminated
by theSTOP token).

This is, potentially, a very large and intractible
search space. However, if most assignment deci-
sions can be made with relative confidence, then the
great majority of search nodes have values which
are inferior to those of the best solutions. The
standard search technique ofdepth-first branch-and-
bound searchtakes advantage of search spaces with
this particular characteristic by first finding greedy
good-quality solutions and using their values to opti-
mally prune a significant portion of the search space.

44

Figure 4: Partial GHKM tree, after rule nodes have been identified (light gray). Notice that once we identify
the rule node, the rule left-hand sides are already determined.

Depth-first branch-and-bound search has the follow-
ing advantage: it finds a good (suboptimal) solution
in linear time and continually improves on this solu-
tion until it finds the optimal. Thus it can be run ei-
ther as an optimal decoder or as a heuristic decoder,
since we can interrupt its execution at any time to get
the best solution found so far. Additionally, it takes
only linear space to run.

4 Generative Model

We now return to where we left off at the end of Sec-
tion 2, and devise an assignment process that pro-
duces a GHKM tree from an unlabeled parse tree.
This will give us a quality measure that we can use
to produce a “good” labeling of a given parse tree
with GHKM rules (i.e., the probability of such a la-
beling according to the assignment process).

The simplest assignment process would have a
variable for each node of the parse tree, and these
variables would all be assigned by the same feature-
conditional distribution over the space of all possible
GHKM rules. The problem with such a formulation
is that such a distribution would be inachievably dif-
ficult to learn. We want an assignment process in
which all variables can take only a very small num-
ber of possible values, because it will be much eas-
ier to learn distributions over such variables. This
means we need to break down the process of con-
structing a GHKM rule into simpler steps.

Our assignment process will begin by sequen-
tially assigning a set of boolean variables (which we
will call rule node indicator variables), one for each
node in the parse tree. For parse tree nodet, we de-
note its corresponding rule node indicator variable

xr
t . Variablexr

t is assignedtrue iff the parse tree
nodet will be a rule node in the GHKM tree.

In Figure 3.3, we show a partial GHKM tree af-
ter these assignments are made. The key thing to
observe is that, after this sequence of boolean deci-
sions, the LHS of every rule in the tree is already
determined! To complete the tree, all we need to do
is to fill in their right-hand sides.

Again, we could create variables to do this di-
rectly, i.e. have a variable for each rule whose do-
main is the space of possible right-hand sides for its
established left-hand sides. But this is still a wide-
open decision, so we will break it down further.

For each rule, we will begin by choosing the
templateof its RHS, which is a RHS in which
all sequences of variables are replaced with an
empty slot into which variables can later be placed.
For instance, the template of〈“ne”, x1, “pas”〉 is
〈“ne”, X, “pas”〉 and the template of〈x3, “,” , x1, x2〉
is 〈X, “,” , X〉, where X represents the empty slots.

Once the template is chosen, it simply needs to be
filled with the variables from the LHS. To do so, we
process the LHS variables, one by one. By default,
they are placed to the right of the previously placed
variable (the first variable is placed in the first slot).
We repeatedly offer the option to push the variable
to the right until the option is declined or it is no
longer possible to push it further right. If the vari-
able was not pushed right at all, we repeatedly offer
the option to push the variable to the left until the
option is declined or it is no longer possible to push
it further left. Figure 4 shows this generative story
in action for the rule RHS〈x3, “,” , x1, x2〉.

These are all of the decisions we need to make

45

Decision to make Decision RHS so far
RHS template? X , X X , X
default placement of var 1 1 , X

push var 1 right? yes X , 1
default placement of var 2 X , 1 2

push var 2 left? no X , 1 2
default placement of var 3 X , 1 2 3

push var 3 left? yes X , 1 3 2
push var 3 left? yes X , 3 1 2
push var 3 left? yes 3 , 1 2

Figure 5: Trace of the generative story for the right-
hand side of a GHKM rule.

in order to label a parse tree with GHKM rules. No-
tice that, aside from the template decisions, all of the
decisions are binary (i.e. feasible to learn discrimi-
natively). Even the template decisions are not terri-
bly large-domain, if we maintain a separate feature-
conditional distribution for each LHS template. For
instance, if the LHS template is〈“not” , X〉, then
RHS template〈“ne”, X, “pas”〉 and a few other se-
lect candidates should bear most of the probability
mass.

5 Evaluation

In this section, we evaluate a preliminary English-
to-German translation system based on the ideas
outlined in this paper. We first present a quantia-
tive comparison with the phrase-based approach, us-
ing the BLEU metric; then we discuss two con-
crete translation examples as a preliminary qualita-
tive evaluation. Finally, we present a detailed man-
ual error analysis.

Our data was a subset of the Europarl corpus con-
sisting of sentences of lengths ranging from 8 to 17
words. Our training corpus contained 50000 sen-
tences and our test corpus contained 300 sentences.
We also had a small number of reserved sentences
for development. The English sentences were parsed
using the Bikel parser (Bikel, 2004), and the sen-
tences were aligned with GIZA++ (Och and Ney,
2000). We used the WEKA machine learning pack-
age (Witten and Frank, 2005) to train the distribu-
tions (specifically, we used model trees).

For comparison, we also trained and evaluated
Pharaoh (Koehn, 2005) on this limited corpus, us-
ing Pharaoh’s default parameters. Pharaoh achieved
a BLEU score of 11.17 on the test set, whereas our

system achieved a BLEU score of 11.52. What is
notable here is not the scores themselves (low due to
the size of the training corpus). However our system
managed to perform comparably with Pharaoh in a
very early stage of its development, with rudimen-
tary features and without the benefit of an n-gram
language model.

Let’s take a closer look at the sentences produced
by our system, to gain some insight as to its current
strengths and weaknesses.

Starting with the English sentence (note that all
data is lowercase):

i agree with the spirit of those amendments .

Our system produces:

ich
I

stimme
vote

die
the.FEM

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

zu
to

.

.

The GHKM tree is depicted in Figure 5. The key
feature of this translation is how the English phrase
“agree with” is translated as the German “stimme
... zu” construction. Such a feat is difficult to pro-
duce consistently with a purely phrase-based sys-
tem, as phrases of arbitrary length can be placed be-
tween the words “stimme” and “zu”, as we can see
happening in this particular example. By contrast,
Pharaoh opts for the following (somewhat less de-
sirable) translation:

ich
I

stimme
vote

mit
with

dem
the.MASC

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

.

.

A weakness in our system is also evident here.
The German noun “Geist” is masculine, thus our
system uses the wrong article (a problem that
Pharaoh, with its embedded n-gram language model,
does not encounter).

In general, it seems that our system is superior to
Pharaoh at figuring out the proper way to arrange the
words of the output sentence, and inferior to Pharaoh
at finding what the actual translation of those words
should be.

Consider the English sentence:

we shall submit a proposal along these lines before
the end of this year .

46

Figure 6: GHKM tree output for the first test sentence.

Here we have an example of a double verb: “shall
submit.” In German, the second verb should go at
the end of the sentence, and this is achieved by our
system (translating “shall” as “werden”, and “sub-
mit” as “vorlegen”).

wir
we

werden
will

eine
a.FEM

vorschlag
proposal.MASC

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

die
the.FEM

ende
end.NEUT

dieser
this.FEM

jahres
year.NEUT

vorlegen
submit

.

.

Pharaoh does not manage this (translating “sub-
mit” as “unterbreiten” and placing it mid-sentence).

werden
will

wir
we

unterbreiten
submit

eine
a

vorschlag
proposal

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

ende
end

dieser
this.FEM

jahr
year.NEUT

.

.

It is worth noting that while our system gets the
word order of the output system right, it makes sev-
eral agreement mistakes and (like Pharaoh) doesn’t
get the translation of “along these lines” right.

To have a more systematic basis for comparison,
we did a manual error analysis for 100 sentences
from the test set. A native speaker of German (in the
present pilot study one of the authors) determined
the editing steps required to transform the system
output into an acceptable translation – both in terms
of fluency and adequacy of translation. In order to
avoid a bias for our system, we randomized the pre-
sentation of output from one of the two systems.

We defined the following basic types of edits, with
further subdistinctions depending on the word type:
ADD , DELETE, CHANGE andMOVE. A special type
TRANSLATE-untranslated was assumed for untrans-
lated source words in the output. For theCHANGE,
more fine-grained distinctions were made.2 A sin-
gle MOVE operation was assumed to displace an en-
tire phrase; the distance of the movement in terms
of the number of words was calculated. The table in
Figure 7 shows the edits required for correcting the
output of the two systems on 100 sentences.

We again observe that our system, which is at
an early stage of development and contrary to the
Pharaoh system does not include an n-gram lan-
guage model trained on a large corpus, already
yields promising results. The higher proportion
of CHANGE operations, in particularCHANGE-
inflection andCHANGE-function-word edits is pre-
sumably a direct consequence of providing a lan-
guage model or not. An interesting observation is
that our system currently tends to overtranslate, i.e.,
redundantly produce several translations for a word,
which leads to the need ofDELETE operations. The
Pharaoh system had a tendency to undertranslate, of-
ten with crucial words missing.

2CHANGE-inflection: keeping the lemma and category the
same, e.g. taken→ takes; CHANGE-part-of-speech: choos-
ing a different derivational form, e.g.,judged→ judgement;
CHANGE-function-word: e.g.,in → from; CHANGE-content-
word: e.g.,opinion→ consensus.

47

TL-MT Pharaoh
ADD-function-word 40 49
ADD-content-word 17 35
ADD-punctuation 12 13
ADD (total) 69 97
DELETE-function-word 37 18
DELETE-content-word 22 10
DELETE-punctuation 13 15
DELETE-untranslated 2 1
DELETE (total) 74 44
CHANGE-content-word 24 19
CHANGE-function-word 44 26
CHANGE-inflection 101 80
CHANGE-part-of-speech 4 10
CHANGE (total) 173 135
TRANSLATE-untranslated 34 1
MOVE (distance)

1 16 17
2 12 16
3 13 11
4 3 6
≥ 5 7 5

MOVE (total) 51 55
TOTAL # EDITS 401 332
edits-per-word ratio 0.342 0.295

Figure 7: Edits required for an acceptable system
output, based on 100 test sentences.

6 Discussion

In describing this pilot project, we have attempted
to give a “big picture” view of the essential ideas
behind our system. To avoid obscuring the presen-
tation, we have avoided many of the implementation
details, in particular our choice of features. There
are exactly four types of decisions that we need to
train: (1) whether a parse tree node should be a rule
node, (2) the RHS template of a rule, (3) whether a
rule variable should be pushed left, and (4) whether
a rule variable should be pushed right. For each of
these decisions, there are a number of possible fea-
tures that suggest themselves. For instance, recall
that in German, typically the second verb of a double
verb (such as “shall submit” or “can do”) gets placed
at the end of the sentence or clause. So when the
system is considering whether to push a rule’s noun
phrase to the left, past an existing verb, it would be
useful for it to consider (as a feature) whether that
verb is the first or second verb of its clause.

This system was designed to be very flexible with
the kind of information that it can exploit as fea-
tures. Essentially any aspect of the parse tree, or
of previous decisions that have been taken by the

assignment process, can be used. Furthermore, we
can mark-up the parse tree with any auxiliary infor-
mation that might be beneficial, like noun gender or
verb cases. The current implementation has hardly
begun to explore these possibilities, containing only
features pertaining to aspects of the parse tree.

Even in these early stages of development, the
system shows promise in using syntactic informa-
tion flexibly and effectively for machine translation.
We hope to develop the system into a competitive
alternative to phrase-based approaches.

References
Daniel M. Bikel. 2004. Intricacies of Collins’ parsing model.

Computational Linguistics, 30(4):479–511.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. InProceedings of ACL, pages
263–270.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2003. What’s in a translation rule? InProc. NAACL.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Sta-
tistical phrase-based translation. InProceedings of the Hu-
man Language Technology Conference 2003 (HLT-NAACL
2003), Edmonton, Canada.

Philipp Koehn. 2005. Pharaoh: a beam search decoder for
phrase-based statistical machine translation models. InPro-
ceedings of the Sixth Conference of the Association for Ma-
chine Translation in the Americas, pages 115–124.

F. J. Och and H. Ney. 2000. Improved statistical alignment
models. InProc. ACL, pages 440–447, Hongkong, China,
October.

Franz Josef Och and Hermann Ney. 2003. A systematic com-
parison of various statistical alignment models.Computa-
tional Linguistics, 29(1):19–51.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada,
A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, Viren
Jain, Z.Jin, and D. Radev. 2003. Syntax for statistical ma-
chine translation. Technical report, Center for Language and
Speech Processing, Johns Hopkins University, Baltimore.
Summer Workshop Final Report.

Ian H. Witten and Eibe Frank. 2005.Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

Dekai Wu. 1997. Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora.Computational
Linguistics, 23(3):377–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based statis-
tical translation model. InProceedings of the 39th Annual
Meeting of the Association for Computational Linguistics,
pages 523–530.

48

