
Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 25–32,
Rochester, New York, April 2007. c©2007 Association for Computational Linguistics

Factorization of Synchronous Context-Free Grammars in Linear Time

Hao Zhang and Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627

Abstract

Factoring a Synchronous Context-Free
Grammar into an equivalent grammar with
a smaller number of nonterminals in each
rule enables synchronous parsing algo-
rithms of lower complexity. The prob-
lem can be formalized as searching for the
tree-decomposition of a given permutation
with the minimal branching factor. In this
paper, by modifying the algorithm of Uno
and Yagiura (2000) for the closely related
problem of finding all common intervals
of two permutations, we achieve a linear
time algorithm for the permutation factor-
ization problem. We also use the algo-
rithm to analyze the maximum SCFG rule
length needed to cover hand-aligned data
from various language pairs.

1 Introduction

A number of recent syntax-based approaches to
statistical machine translation make use of Syn-
chronous Context Free Grammar (SCFG) as the un-
derlying model of translational equivalence. Wu
(1997)’s Inversion Transduction Grammar, as well
as tree-transformation models of translation such as
Yamada and Knight (2001), Galley et al. (2004), and
Chiang (2005) all fall into this category.

A crucial question for efficient computation in ap-
proaches based on SCFG is the length of the gram-
mar rules. Grammars with longer rules can represent
a larger set of reorderings between languages (Aho

and Ullman, 1972), but also require greater compu-
tational complexity for word alignment algorithms
based on synchronous parsing (Satta and Peserico,
2005). Grammar rules extracted from large paral-
lel corpora by systems such as Galley et al. (2004)
can be quite large, and Wellington et al. (2006) ar-
gue that complex rules are necessary by analyzing
the coverage of gold-standard word alignments from
different language pairs by various grammars.

However, parsing complexity depends not only
on rule length, but also on the specific permutations
represented by the individual rules. It may be possi-
ble to factor an SCFG with maximum rule length
n into a simpler grammar with a maximum ofk
nonterminals in any one rule, if not alln! permuta-
tions appear in the rules. Zhang et al. (2006) discuss
methods for binarizing SCFGs, ignoring the non-
binarizable grammars; in Section 2 we discuss the
generalized problem of factoring tok-ary grammars
for anyk and formalize the problem as permutation
factorization in Section 3.

In Section 4, we describe anO(k · n) left-to-
right shift-reduce algorithm for analyzing permuta-
tions that can bek-arized. Its time complexity be-
comesO(n2) when k is not specified beforehand
and the minimalk is to be discovered. Instead of
linearly shifting in one number at a time, Gildea
et al. (2006) employ a balanced binary tree as the
control structure, producing an algorithm similar in
spirit to merge-sort with a reduced time complex-
ity of O(n log n). However, both algorithms rely
on reduction tests on emerging spans which involve
redundancies with the spans that have already been
tested.

25

Uno and Yagiura (2000) describe a clever algo-
rithm for the problem of finding all common inter-
vals of two permutations in timeO(n + K), where
K is the number of common intervals, which can
itself be Ω(n2). In Section 5, we adapt their ap-
proach to the problem of factoring SCFGs, and show
that, given this problem definition, running time can
be improved toO(n), the optimum given the time
needed to read the input permutation.

The methodology in Wellington et al. (2006) mea-
sures the complexity of word alignment using the
number of gaps that are necessary for their syn-
chronous parser which allows discontinuous spans
to succeed in parsing. In Section 6, we provide a
more direct measurement using the minimal branch-
ing factor yielded by the permutation factorization
algorithm.

2 Synchronous CFG and Synchronous
Parsing

We begin by describing the synchronous CFG for-
malism, which is more rigorously defined by Aho
and Ullman (1972) and Satta and Peserico (2005).

We adopt the SCFG notation of Satta and Peserico
(2005). Superscriptindices in the right-hand side of
grammar rules:

X → X
(1)
1 ...X(n)

n , X
(π(1))
π(1) ...X

(π(n))
π(n)

indicate that the nonterminals with the same index
are linked across the two languages, and will eventu-
ally be rewritten by the same rule application. Each
Xi is a variable which can take the value of any non-
terminal in the grammar.

We say an SCFG isn-ary if and only if the max-
imum number of co-indexed nonterminals, i.e. the
longest permutation contained in the set of rules, is
of sizen.

Given a synchronous CFG and a pair of input
strings, we can apply a generalized CYK-style bot-
tom up chart parser to build synchronous parse
trees over the string pair. Wu (1997) demonstrates
the case of binary SCFG parsing, where six string
boundary variables, three for each language as in
monolingual CFG parsing, interact with each other,
yielding an O(N6) dynamic programming algo-
rithm, whereN is the string length, assuming the
two paired strings are comparable in length. For an

n-ary SCFG, the parsing complexity can be as high
asO(Nn+4). The reason is even if we binarize on
one side to maintain3 indices, for many unfriendly
permutations, at mostn + 1 boundary variables in
the other language are necessary.

The fact that this bound is exponential in the rule
lengthn suggests that it is advantageous to reduce
the length of grammar rules as much as possible.
This paper focuses on converting an SCFG to the
equivalent grammar with smallest possible maxi-
mum rule size. The algorithm processes each rule
in the input grammar independently, and determines
whether the rule can be factored into smaller SCFG
rules by analyzing the rule’s permutationπ.

As an example, given the input rule:

[X → A(1)B(2)C(3)D(4)E(5)F (6)G(7),

X → E(5)G(7)D(4)F (6)C(3)A(1)B(2)] (1)

we consider the associated permutation:

(5, 7, 4, 6, 3, 1, 2)

We determine that this permutation can be fac-
tored into the following permutation tree:

(2,1)

(2,1)

(2,4,1,3)

5 7 4 6

3

(1,2)

1 2

We define permutation trees formally in the next
section, but note here that nodes in the tree corre-
spond to subsets of nonterminals that form a sin-
gle continuous span in both languages, as shown by
the shaded regions in the permutation matrix above.
This tree can be converted into a set of output rules
that are generatively equivalent to the original rule:

[X → X
(1)
1 X

(2)
2 , X → X

(2)
2 X

(1)
1]

[X1 → A(1)B(2), X1 → A(1)B(2)]

[X2 → C(1)X
(2)
3 , X2 → X

(2)
3 C(1)]

[X3 → D(1)E(2)F (3)G(4),

X3 → E(2)G(4)D(1)F (3)]

whereX1, X2 andX3 are new nonterminals used to
represent the intermediate states in which the syn-
chronous nodes are combined. The factorized gram-
mar is only larger than the original grammar by a
constant factor.

26

3 Permutation Trees

We define the notion of permutation structure in this
section. We define apermuted sequence as a per-
mutation ofn (n ≥ 1) consecutive natural numbers.

A permuted sequence is said to bek-ary parsable
if either of the following conditions holds:

1. The permuted sequence only has one number.

2. It has more than one number and can be seg-
mented intok′ (k ≥ k′ ≥ 2) permuted se-
quences each of which isk-ary parsable, and
the k′ subsequences are arranged in an order
identified by one of thek′! permutations ofk′.

This is a recursive definition, and we call the cor-
responding recursive structure over the entire se-
quence ak-ary permutation tree.

Our goal is to find out thek-ary permutation tree
for a given permutation, wherek is minimized.

4 Shift-reduce on Permutations

In this section, we present anO(n · k) algorithm
which can be viewed as a need-to-be-optimized ver-
sion of the linear time algorithm to be presented in
the next section.

The algorithm is based on a shift-reduce parser,
which maintains a stack for subsequences that have
been discovered so far and loops over shift and re-
duce steps:

1. Shift the next number in the input permutation
onto the stack.

2. Go down the stack from the top to the bottom.
Whenever the topm subsequences satisfy the
partition property, which says the total length
of them (k ≥ m ≥ 2) subsequences minus1
is equal to the difference between the smallest
number and the largest number contained in the
m segments, make a reduction by gluing the
m segments into one subsequence and restart
reducing from the top of the new stack. Stop
when no reduction is possible.

3. If there are remaining numbers in the input per-
mutation, go to 1.

When we exit from the loop, if the height of the stack
is 1, the input permutation ofn has been reduced to

Stack Input Operation
5, 7, 4, 6, 3, 1, 2 shift

5 7, 4, 6, 3, 1, 2 shift
5, 7 4, 6, 3, 1, 2 shift
5, 7, 4 6, 3, 1, 2 shift
5, 7, 4, 6 3, 1, 2 reduce by (2,4,1,3)
[4...7] 3, 1, 2 shift
[4...7], 3 1, 2 reduce by (2,1)
[3...7] 1, 2 shift
[3...7], 1 2 shift
[3...7], 1, 2 reduce by (1,2)
[3...7], [1...2] reduce by (2,1)
[1...7]

Table 1: The execution trace of the shift-reduce
parser on the input permutation5, 7, 4, 6, 3, 1, 2.

a linear sequence of1 to n, and parsing is success-
ful. Otherwise, the input permutation ofn cannot be
parsed into ak-ary permutation tree.

An example execution trace of the algorithm is
shown in Table 1.

The partition property is a sufficient and neces-
sary condition for the topm subsequences to be re-
ducible. In order to check if the property holds, we
need to compute the sum of the lengths of subse-
quences under consideration and the difference be-
tween the largest and smallest number in the cov-
ered region. We can incrementally compute both
along with each step going down the stack. Ifm

is bounded byk, we needO(k) operations for each
item shifted onto the stack. So, the algorithm runs in
O(n · k).

We might also wish to compute the minimumk
for which k-arization can be successful on an input
permutation ofn. We can simply keep doing reduc-
tion tests for every possible top region of the stack
while going deeper in the stack to find the minimal
reduction. In the worst case, each time we go down
to the bottom of the increasingly higher stack with-
out a successful reduction. Thus, inO(n2), we can
find the minimumk-arization.

5 Linear Time Factorization

In this section, we show a linear time algorithm
which shares the left-to-right and bottom-up control
structure but uses more book-keeping operations to
reduce unnecessary reduction attempts. The reason
that our previous algorithm is asymptoticallyO(n2)

27

is that whenever a new number is shifted in, we have
to try out every possible new span ending at the new
number. Do we need to try every possible span? Let
us start with a motivating example. The permuted
sequence(5, 7, 4, 6) in Table 1 can only be reduced
as a whole block. However, in the last algorithm,
when4 is shifted in, we make an unsuccessful at-
tempt for the span on(7, 4), knowing we are miss-
ing 5, which will not appear when we expand the
span no matter how much further to the right. Yet
we repeat the same mistake to try on7 when6 is
scanned in by attempting on(7, 4, 6). Such wasteful
checks result in the quadratic behavior of the algo-
rithm. The way the following algorithm differs from
and outperforms the previous algorithm is exactly
that it crosses out impossible candidates for reduc-
tions such as7 in the example as early as possible.

Now we state our problem mathematically. We
define a function whose value indicates the re-
ducibility of each pair of positions(x, y) (1 ≤ x ≤

y ≤ n):

f(x, y) = u(x, y)− l(x, y)− (y − x)

where

l(x, y) = min
i∈[x,y]

π(i)

u(x, y) = max
i∈[x,y]

π(i)

l records the minimum of the numbers that are
permuted to from the positions in the region[x, y].
u records the maximum. Figure 1 provides the vi-
sualization ofu, l, andf for the example permuta-
tion (5, 7, 4, 6, 3, 1, 2). u andl can be visualized as
stairs. u goes up from the right end to the left.l
goes down. f is non-negative, but not monotonic
in general. We can make a reduction on(x, y) if
and only if f(x, y) = 0. This is the mathemati-
cal statement of the partition property in step 2 of
the shift-reduce algorithm.u andl can be computed
incrementally from smaller spans to larger spans to
guaranteeO(1) operations for computingf on each
new span of[x, y] as long as we go bottom up. In the
new algorithm, we will reduce the size of the search
space of candidate position pairs(x, y) to be linear
in n so that the whole algorithm isO(n).

The algorithm has two main ideas:

• We filter x’s to maintain the invariant that
f(x, y) (x ≤ y) is monotonically decreasing
with respect tox, over iterations ony (from 1
to n), so that any remaining values ofx corre-
sponding to valid reductions are clustered at the
point wheref tails off to zero. To put it another
way, we never have to test invalid reductions,
because the valid reductions have been sorted
together for us.

• We make greedy reductions as in the shift-
reduce algorithm.

In the new algorithm, we use a doubly linked list,
instead of a stack, as the data structure that stores
the candidatex’s to allow for more flexible main-
taining operations. The steps of the algorithm are as
follows:

1. Increase the left-to-right indexy by one and ap-
pend it to the right end of the list.

2. Find thepivot x∗ in the list which is minimum
(leftmost) amongx satisfying eitheru(x, y −

1) < u(x, y) (exclusively) orl(x, y − 1) >

l(x, y).

3. Remove thosex’s that yield even smaller
u(x, y − 1) than u(x∗, y − 1) or even larger
l(x, y − 1) than l(x∗, y − 1). Thosex’s must
be on the right ofx∗ if they exist. They must
form a sub-list extending to the right end of the
originalx list.

4. Denote thex which is immediately to the left
of x∗ asx′. Repeatedly remove allx’s such that
f(x, y) > f(x′, y) wherex is at the left end of
the sub-list ofx’s starting fromx∗ extending to
the right.

5. Go down the pruned list from the right end, out-
put (x, y) until f(x, y) > 0. Removex’s such
thatf(x, y) = 0, sparing the smallestx which
is the leftmost among all suchx’s on the list.

6. If there are remaining numbers in the input per-
mutation, go to 1.

The tricks lie in step 3 and step 4, where bad can-
didatex’s are filtered out. We use the following di-
agram to help readers understand the parts ofx-list
that the two steps are filtering on.

28

x1, ..., x
′,

step 4
︷ ︸︸ ︷

x∗, ..., xi, ..., xj , ..., xk
︸ ︷︷ ︸

step 3

, y

The steps from 2 to 4 are the operations that main-
tain the monotonic invariant which makes the reduc-
tions in step 5 as trivial as performing output. The
stack-based shift-reduce algorithm has the same top-
level structure, but lacks steps 2 to 4 so that in step 5
we have to winnow the entire list. Both algorithms
scan left to right and examine potential reduction
spans by extending the left endpoint from right to
left given a right endpoint.

5.1 Example Execution Trace

An example of the algorithm’s execution is shown
in Figure 1. The evolution ofu(x, y), l(x, y), and
f(x, y) is displayed for increasingy’s (from 2 to 7).
To identify reducible spans, we can check the plot of
f(x, y) to locate the(x, y) pairs that yield zero. The
pivots found by step 2 of the algorithm are marked
with ∗’s on thex-axis in the plot foru andl. Thex’s
that are filtered out by step 3 or 4 are marked with
horizontal bars across. We want to point out the in-
teresting steps. Wheny = 3, x∗ = 1, x = 2 needs
to be crossed out by step 3 in the algorithm. When
y = 4, x∗ = 3, x = 3 itself is to be deleted by step 4
in the algorithm.x = 4 is removed at step 5 because
it is the right end in the first reduction. On the other
hand,x = 4 is also a bad starting point for future
reductions. Notice that we also removex = 5 at
step 6, which can be a good starting point for reduc-
tions. But we exclude it from further considerations,
because we want left-most reductions.

5.2 Correctness

Now we explain why the algorithm works. Both al-
gorithms are greedy in the sense that at each scan
point we exhaustively reduce all candidate spans to
the leftmost possible point. It can be shown that
greediness is safe for parsing permutations.

What we need to show is how the monotonic in-
variant holds and is valid. Now we sketch the proof.
We want to show for allxi remaining on the list,
f(xi, y) ≥ f(xi+1, y). Wheny = 1, it is trivially
true. Now we do the induction ony step by case
analysis:

Case 1: If xi < xi+1 < x∗, then f(xi, y) −
f(xi, y − 1) = −1. The reason is ifxi is on the
left of x∗, bothu(xi, y) andl(xi, y) are not changed
from they − 1-th step, so the only difference is that
y−xi has increased by one. Graphically, thef curve
extending to the left ofx∗ shifts down a unit of1. So,
the monotonic property still holds to the left ofx∗.

Case 2: If x∗ ≤ xi < xi+1, then f(xi, y) −
f(xi, y − 1) = c (c ≥ 0). The reason is that after
executing step 3 in the algorithm, the remainingxi’s
have either theiru(xi, y) shifted up uniformly with
l(xi, y) being unchanged, or the symmetric case that
l(xi, y) is shifted down uniformly without changing
u(xi, y). In both cases, the difference betweenu and
l increases by at least one unit to offset the one unit
increase ofy − xi. The result is that thef curve ex-
tending fromx∗ to the right shifts up or remains the
same.

Case 3: So the half curve off on the left ofx∗ is
shifting down and the half right curve on the right is
shifting up, making it necessary to consider the case
that xi is on the left andxi+1 on the right. Fortu-
nately, step 4 in the algorithm deals with this case
explicitly by cutting down the head of the right half
curve to smooth the whole curve into a monotoni-
cally decreasing one.

We still need one last piece for the proof, i.e., the
validity of pruning. Is it possible we winnow off
goodx’s that will become useful in later stages of
y? The answer is no. The values we remove in step
3 and 4 are similar to the points indexing into the
second and third numbers in the permuted sequence
(5, 7, 4, 6). Any span starting from these two points
will not be reducible because the element5 is miss-
ing.1

To summarize, we remove impossible left bound-
aries and keep good ones, resulting in the mono-
tonicity of f function which in turn makes safe
greedy reductions fast.

5.3 Implementation and Time Analysis

We use a doubly linked list to implement both theu

and l functions, where list element includes a span
of x values (shaded rectangles in Figure 1). Both
lists can be doubly linked with the list ofx’s so that

1Uno and Yagiura (2000) prove the validity of step 3 and
step 4 rigorously.

29

we can access theu function andl function atO(1)
time for eachx. At the same time, if we search for
x based onu or l, we can follow the stair functions,
skipping many intermediatex’s.

The total number of operations that occur at step
4 and step 5 isO(n) since these steps just involve
removing nodes on thex list, and onlyn nodes are
created in total over the entire algorithm. To find
x∗, we scan back from the right end ofu list or l

list. Due to step 3, eachu (and l) element that we
scan over is removed at this iteration. So the total
number of operations accountable to step 2 and step
3 is bounded by the maximum number of nodes ever
created on theu andl lists, which is alson.

5.4 Related Work

Our algorithm is based on an algorithm for finding
all common intervals of two permutations (Uno and
Yagiura, 2000). The difference2 is in step 5, where
we remove the embedded reduciblex’s and keep
only the leftmost one; their algorithm will keep all of
the reduciblex’s for future considerations so that in
the example the number3 will be able to involve in
both the reduction([4−7], 3) and(3, [1−2]). In the
worst case, their algorithm will output a quadratic
number of reducible spans, making the whole algo-
rithm O(n2). Our algorithm isO(n) in the worst
case. We can also generate all common intervals by
transforming the permutation tree output by our al-
gorithm.

However, we are not the first to specialize the Uno
and Yagiura algorithm to produce tree structures for
permutations. Bui-Xuan et al. (2005) reached a lin-
ear time algorithm in the definition framework of
PQ trees. PQ trees represent families of permuta-
tions that can be created by composing operations
of scrambling subsequences according to any per-
mutation (P nodes) and concatenating subsequences
in order (Q nodes). Our definition of permutation
tree can be thought of as a more specific version of a
PQ tree, where the nodes are all labeled with a spe-
cific permutation which is not decomposable.

2The original Uno and Yagiura algorithm also has the minor
difference that the scan point goes from right to left.

6 Experiments on Analyzing Word
Alignments

We apply the factorization algorithm to analyzing
word alignments in this section. Wellington et al.
(2006) indicate the necessity of introducing discon-
tinuous spans for synchronous parsing to match up
with human-annotated word alignment data. The
number of discontinuous spans reflects the struc-
tural complexity of the synchronous rules that are
involved in building the synchronous trees for the
given alignments. However, the more direct and de-
tailed analysis would be on the branching factors of
the synchronous trees for the aligned data.

Since human-aligned data has many-to-one word
links, it is necessary to modify the alignments into
one-to-one. Wellington et al. (2006) treat many-to-
one word links disjunctively in their synchronous
parser. We also commit to one of the many-one links
by extracting a maximum match (Cormen et al.,
1990) from the bipartite graph of the alignment. In
other words, we abstract away the alternative links
in the given alignment while capturing the backbone
using the maximum number of word links.

We use the same alignment data for the five
language pairs Chinese/English, Romanian/English,
Hindi/English, Spanish/English, and French/English
(Wellington et al., 2006). In Table 2, we report the
number of sentences that arek-ary parsable but not
k − 1-ary parsable for increasingk’s. Our analysis
reveals that the permutations that are accountable for
non-ITG alignments include higher order permuta-
tions such as(3, 1, 5, 2, 4), albeit sparsely seen.

We also look at the number of terminals the non-
binary synchronous nodes can cover. We are in-
terested in doing so, because this can tell us how
general these unfriendly rules are. Wellington et al.
(2006) did a similar analysis on the English-English
bitext. They found out the majority of non-ITG
parsable cases are not local in the sense that phrases
of length up to 10 are not helpful in covering the
gaps. We analyzed the translation data for the five
language pairs instead. Our result differs. The right-
most column in Table 2 shows that only a tiny per-
cent of the non-ITG cases are significant in the sense
that we can not deal with them through phrases or
tree-flattening within windows of size 10.

30

y = 2:

1
*

1
2

2

3

3

4

4

5

5

6

6

7

7

u, l

x
1

0
2

1

3

2

4

3

5

4

6

5

7

6

f

x

y = 3:

1
*

1
2−

2

3

3

4

4

5

5

6

6

7

7

u, l

x
1

0
2

1

3

2

4

3

5

4

6

5

7

6

f

x

y = 4:

(1
1

2−

2

3−

*

3

4)

4

5

5

6

6

7

7

u, l

x
1

0
2

1

3

2

4

3

5

4

6

5

7

6

f

x

y = 5:

((1

*

1
2−

2

3−

3

4−)

4

5)

5

6

6

7

7

u, l

x
1

0
2

1

3

2

4

3

5

4

6

5

7

6

f

x

y = 6:

((1

*

1
2−

2

3−

3

4−)

4

5)

5

6

6

7

7

u, l

x
1

0
2

1

3

2

4

3

5

4

6

5

7

6

f

x

y = 7:

(((1
1

2−

2

3−

3

4−)

4

5)

5

(6

*

6

7))

7

u, l

x
1

0
2

1

3

2

4

3

5

4

6

5

7

6

f

x

Figure 1: Evolution ofu(x, y), l(x, y), and f(x, y) as y goes from 2 to 7 for the permutation
(5, 7, 4, 6, 3, 1, 2). We use∗ under thex-axis to indicate thex∗’s that are pivots in the algorithm. Use-
lessx’s are crossed out.x’s that contribute to reductions are marked with either(on its left or) on its right.
For thef function, we use solid boxes to plot the values of remainingx’s on the list but also show the other
f values for completeness.

31

Branching Factor
1 2 4 5 6 7 10 ≥ 4 (and covering> 10 words)

Chinese/English 451 30 4 5 1 7(1.4%)
Romanian/English 195 4 0
Hindi/English 3 85 1 1 0
Spanish/English 195 4 1(0.5%)
French/English 425 9 9 3 1 6(1.3%)

Table 2: Distribution of branching factors for synchronous trees on various language pairs.

7 Conclusion

We present a linear time algorithm for factorizing
anyn-ary SCFG rule into a set ofk-ary rules where
k is minimized. The algorithm speeds up an easy-
to-understand shift-reduce algorithm, by avoiding
unnecessary reduction attempts while maintaining
the left-to-right bottom-up control structure. Em-
pirically, we provide a complexity analysis of word
alignments based on the concept of minimal branch-
ing factor.

References

Albert V. Aho and Jeffery D. Ullman. 1972.The The-
ory of Parsing, Translation, and Compiling, volume 1.
Prentice-Hall, Englewood Cliffs, NJ.

Binh Minh Bui-Xuan, Michel Habib, and Christophe
Paul. 2005. Revisiting T. Uno and M. Yagiura’s algo-
rithm. In The 16th Annual International Symposium
on Algorithms and Computation (ISAAC’05), pages
146–155.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProceedings of
the 43rd Annual Conference of the Association for
Computational Linguistics (ACL-05), pages 263–270,
Ann Arbor, Michigan.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. 1990.Introduction to algorithms. MIT Press,
Cambridge, MA.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? InPro-
ceedings of the Human Language Technology Confer-
ence/North American Chapter of the Association for
Computational Linguistics (HLT/NAACL).

Daniel Gildea, Giorgio Satta, and Hao Zhang. 2006. Fac-
toring synchronous grammars by sorting. InProceed-
ings of the International Conference on Computational
Linguistics/Association for Computational Linguistics
(COLING/ACL-06) Poster Session, Sydney.

Giorgio Satta and Enoch Peserico. 2005. Some com-
putational complexity results for synchronous context-
free grammars. InProceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing
(HLT/EMNLP), pages 803–810, Vancouver, Canada,
October.

Takeaki Uno and Mutsunori Yagiura. 2000. Fast algo-
rithms to enumerate all common intervals of two per-
mutations.Algorithmica, 26(2):290–309.

Benjamin Wellington, Sonjia Waxmonsky, and I. Dan
Melamed. 2006. Empirical lower bounds on the
complexity of translational equivalence. InProceed-
ings of the International Conference on Computational
Linguistics/Association for Computational Linguistics
(COLING/ACL-06).

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. InProceedings of the
39th Annual Conference of the Association for Com-
putational Linguistics (ACL-01), Toulouse, France.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translation. InProceedings of the Human Lan-
guage Technology Conference/North American Chap-
ter of the Association for Computational Linguistics
(HLT/NAACL).

32

