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Introduction

The NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation (SSST)
took place on 26 April 2007 following the NAACL-HLT conference hosted by the University of
Rochester in New York. It was organized in response to growing interest in statistical, tree structured
models of relations between natural languages. Our hope was to bring together researchers working on
various aspects of this subject, and coming from various traditions. One way that the diversity of these
traditions can be seen is in their nomenclature: transduction grammars originated in formal language
theory (Lewis and Stearns 1968, Aho and Ullman 1969), and as interest in them was renewed in the
computational linguistics literature in the 1990s, they came to be also known as synchronous grammars.
Pushdown transducers and tree transducers, also introduced in the late 1960s, embody a less declarative,
rather more procedural view, but, in many cases, have transduction-grammar equivalents.

Another dimension of diversity is the variety of applications of synchronous/transduction grammars,
which is richly reflected in our workshop program. We selected fourteen papers, which include
papers on formal properties of synchronous/transduction grammars from both theoretical (Shieber) and
comparative experimental (Zhang and Gildea; Huang; Dreyer, Hall and Khudanpur) perspectives, and
papers applying synchronous/transduction grammars to machine translation as well as generation (Hall
and Némec) and semantic interpretation (Nesson and Shieber). The invited speaker for the workshop
was William C. Rounds of the University of Michigan, a pioneer of tree-transducer theory who was one
of the first to explore the usefulness of tree transducers for natural language.

The papers included a wide spectrum of experiments trying different tradeoffs between representational
adequacy versus efficiency. Some models adopted binary-rank ITG or inversion transduction grammar
constraints (Cherry and Lin; Huang; Dreyer, Hall and Khudanpur), while others permitted up to STAG
or synchronous tree-adjoining grammar expressiveness (Nesson and Shieber; Shieber), with others in
between at the SDTG or syntax directed transduction grammar a.k.a. SCFG or synchronous context-
free grammar level (Zhang, Zens and Ney; Zhang and Gildea). Transduction rules ranged from mildly
hierarchical, heavily lexical transduction rules on one hand (Cherry and Lin; Zhang, Zens and Ney;
Venkatapathy and Bangalore; Dreyer, Hall and Khudanpur), to abstract transduction rules emphasizing
compositional syntax on the other (Nesson and Shieber; Hall and Némec; Shieber).

A number of papers investigated machine learning techniques for inducing synchronous/transduction
grammars (Zhang, Zens and Ney; Cherry and Lin). Some of these focused on improving algorithms for
binarizing or reducing the rank of synchronous/transduction grammars (Zhang and Gildea; Huang). The
workshop also witnessed a number of papers proposing new ways of integrating tree structured models
into statistical methods in machine translation (Hopkins and Kuhn; Venkatapathy and Joshi; Bonneau-
Maynard, Allauzen, Déchelotte and Schwenk; Font Llitjés and Vogel; Owczarzak, van Genabith and
Way; Venkatapathy and Bangalore).

The Association for Machine Translation in the Americas sponsored $1000 in scholarships for several
students to attend the workshop. We thank AMTA for their generosity, and we also thank the Program
Committee for their extremely quick reviews.

Dekai Wu and David Chiang
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Chunk-Level Reordering of Source Language Sentences with
Automatically Learned Rules for Statistical Machine Trandation

Yuqgi Zhang and Richard Zens and Hermann Ney

Human Language Technology and Pattern Recognition
Lehrstuhl fur Informatik 6 — Computer Science Department
RWTH Aachen University, D-52056 Aachen, Germany

{yzhang,zens,néy@cs.rwth-aachen.de

Abstract 2003; Melamed, 2004; Graehl and Knight, 2004;
Galley et al., 2006). One approach makes use of
In this paper, we describe a source-  pitext grammars to parse both the source and tar-
side reordering method based on syntac- et Janguages. Another approach makes use of syn-
tic chunks for phrase-based statistical ma-  t4ctic information only in the target language. Note
chine translation. First, we shallow parse ¢ these models have radically different structures

the source language sentences. Then, ré- 5 parameterizations than phrase-based models for
ordering rules are automatically learned g\t

from source-side chunks and word align-

ments. During translation, the rules are

used to generate a reordering lattice for
each sentence. Experimental results are
reported for a Chinese-to-English task,

showing an improvement of 0.5%-1.8%

BLEU score absolute on various test sets
and better computational efficiency than

reordering during decoding. The exper-

iments also show that the reordering at
the chunk-level performs better than at the
POS-level.

Another kind of approaches is to use syntactic in-
formation in rescoring methods. (Koehn and Knight,
2003) apply a reranking approach to the sub-task
of noun-phrase translation. (Och et al., 2004) and
(Shen et al., 2004) describe the use of syntactic fea-
tures in reranking the output of a full translation sys-
tem, but the syntactic features give very small gains.

In this paper, we present a strategy to reorder
a source sentence using rules based on syntactic
chunks. Itis possible to integrate reordering rules di-
rectly into the search process, but here, we consider
a more modular approach: easy to exchange reorder-
ing strategy. To avoid hard decisions before SMT,
1 Introduction we generate a source-reordering lattice instead of a

In machine translation, reordering is one of the masingle reordered source sentence as input to the SMT

jor problems, since different languages have diﬁers_:ystem. Then, the decoder. gses the reordereq source
ent word order requirements. Many reordering cori@hguage model as.an additional feature function. .A
straints have been used for word reorderings, sud¢nguage model trained on the reordered source-side
as ITG constraints (Wu, 1996), IBM constraintsCh“nk_S glve.sas.core for each path in the lattice. The
(Berger et al., 1996) and local constraints (KanthaROVel ideas in this paper are:
et al., 2005). These approaches do not make use of
any linguistic knowledge.

Several methods have been proposed to use syn-
tactic information to handle the reordering problem, e representing linguistic chunks-reorderings in a
e.g. (Wu, 1997; Yamada and Knight, 2001; Gildea, lattice.

e reordering of the source sentence at the chunk
level,

1
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The rest of this paper is organized as follows. Sedng. (Crego and Marifio, 2006) integrate source-side
tion 2 presents a review of related work. In Secreordering into SMT decoding. They automatically
tions 3, we review the phrase-based translation sykearn rewrite patterns from word alignment and rep-
tem used in this work and propose the frameworkesent the patterns with POS tags. To our knowledge
of the new reordering method. In Section 4, we inho work is reported on the reordering with shallow
troduce the details of the reordering rules, how thegarsing.

are deflned and how to extract them. In Section 5, Decoding lattices were already used in (Zens et
we explain how to apply the rules and how to geng|., 2002; Kanthak et al., 2005). Those approaches

erate reordering lattice. In Section 6, we presenjised linguistically uninformed word-level reorder-
some results that show that the chunk-level sourgggs.

reordering is helpful for phrase-based statistical ma-
chine translation. Finally, we conclude this pape

5 system Overview
and discuss future work in Section 7. y

In this section, we will describe the phrase-based
SMT system which we use for the experiments.
Beside the reordering methods during decoding, abhen, we will give an outline of the extentions with
alternative approach is to reorder the input sourcd&e chunk-level source reordering model.

sentence to match the word order of the target sen-

tence. 3.1 The Baseline Phrase-based SMT System

Some reordering methods are carried out on syn-

tactic source trees. (Collins et al., 2005) describg] stafistical machine translation, we are given a

a method for reordering German for German-to§°urce_ language senten.d@f = fi i o
is to be translated into a target language sen-

English translation, where six transformations ar&"h'Ch p ;
applied to the surface string of the parsed sourd§Cee1 = €1---¢i...er. Among all possible tar-
sentence. (Xia and McCord, 2004) propose an aFg_e_zt Iangugge sentences_,_ we will choose the sentence
proach for translation from French-to-English. Thié’vIth the highest probability:

approach automatically extracts rewrite patterns by

2 Related Work

parsing the source and target sides of the training é{ = argmax {Pr(e{|f{)} (1)
corpus. These rewrite patterns can be applied to any Lej
input source sentence so that the rewritten source = argmax {Pr(el)- Pr(f{le])} (2)
and target sentences have similar word order. Both Lej

methods need a parser to generate trees of source
sentences and are applied only as a preprocessifhbis decomposition into two knowledge sources
step. is known as the source-channel approach to sta-
Another kind of source reordering methods betistical machine translation (Brown et al., 1990).
sides full parsing is based on Part-Of-Speech (PO$) allows an independent modeling of the target
tags or word classes. (Costa-jussa and Fonollodanguage modePr(e{) and the translation model
2006) view the source reordering as a translatiof’r(f{lef). The target language model describes
task that translate the source language into a réhe well-formedness of the target language sentence.
ordered source language. Then, the reordered sourtee translation model links the source language sen-
sentence is taken as the single input to the standdnce to the target language sentence. difgenax
SMT system. operation denotes the search problem, i.e., the gen-
(Chen et al., 2006) automatically extract rulegration of the output sentence in the target language.
from word alignments. These rules are defined at A generalization of the classical source-channel
the POS level and the scores of matching rules aepproach is the direct modeling of the posterior
used as additional feature functions during rescoprobability Pr(ef|f{). Using a log-linear model

2



. Standard Translation Proces
(Och and Ney, 2002), we obtain: Translation Process with Source Reordering

M I rJ )
exp (A dmf(e], 1)) CSouroe toxt semtences

> exp (Sh A 1))
et
| @ ety s
The denominator represents a normalization factor . .

that depends only on the source sentefiteThere-

. . . ¢
fore, we can omit it during the search process. As a | smT system SMT system

decision rule, we obtain:

Figure 1: lllustration of the translation process with

The log-linear model has the advantage that adg@d without source reordering.

tional modelsh(-) can be easily integrated into the

overall system. The model scaling factdr%f.arg for the reordering methods, because the source sen-

trained according to the maximum entropy principletences are always given. Syntactic reordering on tar-

e.g., using the GIS algorithm. Alternatively, one cayet language is difficult, since the methods will de-

train them with respect to the final translation qualit)grade much because of the errors in hypothesis.

measured py an error c_riterion (Och, 2003). ~ We apply reordering at the syntactic chunk level
The log-linear model is a natural framework to inyhich can been seen as an intermediate level be-

tegrate many models. The baseline system uses fjgsen full parsing and POS tagging. Figure 1 shows
following models: the differences between the new translation frame-

Pr(eflf{) =

translation output

M
¢l = argmax {Z )\mhm(e{,f{)} 4
m=1

I
Ie;

« phrase translation model work and the standard translation process. A re-
ordering lattice replaces the original source sentence
e phrase count features as the input to the translation system. The use of a

lattice avoids hard decisions before translation. To
generate the reordering lattice, the source sentence is
word and phrase penalty first POS tagged and chunk parsed. Then, reorder-
ing rules are applied to the chunks to generate the
reordering lattice.

distortion model (assigning costs based on the Reordering rules are the key information for
jump width) source reordering. They are automatically learned

_ _ _from the training data. The details of these two mod-
All the experiments in the paper are evaluated with;jes will be introduced in Section 5.

out rescoring. More details about the baseline sys-
tem can be found in (Mauser et al., 2006) 4 Reordering Rules

word-based translation model

target language model (6-gram)

3.2 Source Sentence Reordering Framework  There has been much work on learning and apply-

Encouraged by the work of (Xiaand McCord, 2004)ng reordering rules on source language, such as
and (Crego and Marifio, 2006), we also reorder th@NieRen and Ney, 2001; Xia and McCord, 2004;
source language side. Compared to reordering @wollins et al., 2005; Chen et al., 2006; Crego and
the target language side, one advantage is the effiftarifio, 2006; Popovic and Ney, 2006). The re-
ciency since the reordering lattice can be translateatdering rules could be composed of words, POS
monotonically as in (Zens et al., 2002). Another adtags or syntactic tags of phrases. In our work, a rule
vantage is that there is correct sentence informatiaa composed of chunk tags and POS tags. There is

3



e e e

Table 1. Examples of reordering rulesh4: chunk ] m ]
and POS tag sequenads: permutation ) | ] -
no. | Ihs rhs - = m
1. NPy PP us ng 0123 ] || [ ]
2. | NPy PP, uz ns 3012 o o > o o > o - >
3. | DNPy NP, VP 012 INPFLf2] [NPf3f4]  [NPFLf2] [NPf3fa] [NPfLf2] [NPf3f4]
4. | DNPyNP, VP, 102 @) ®) ©
5. | DNFy NPymy 012 Figure 2: lllustration of three kinds of phrases:
6. DNP(]N.PlTTLQCLdg 3012 .
. DNP- NP J 43012 (a)monotone phrase, (b)reordering phrase, (c)cross
: 0 Y11 Th2 ads v phrase. The black box is a word-to-word alignment.

The gray box is a chunk-to-word alignment.

no hierarchical structure in a rule.
Here,j, denotes the position of the first source word
4.1 Definition of Reordering Rules in k" chunk. The new alignment is : m from

First, we show some rule examples in Table 1. A reZ0Urce chunks to target words. It also meapss a
ordering rule consists of a left-hand-sidé«) and a S€t Of positions of target words.

right-hand-side i(hs). The left-hand-side is a syn- We apply the standard phrase extraction algorithm
tactic rule (chunk or POS tags), while the right(Zens etal., 2002) tF{*, ¢{, a{'). Discarding the
hand-side is the reordering positions of the rule. Dif¢r0Ss phrases, we keep the other phrases as rules. In
ferent rules can share the same left-hand-side, sugffross phrase, at least two chunk-word alignments
as rules no.1, 2 and no. 3, 4. The rules record overlap on the target language side. An example
not only thereal reordered chunk sequence, but als@f @ €ross phrase is illustrated in Figure 2(c). Fig-
the monotone chunk sequences, like ng.3 and Ure 2(a) and (b) illustrate the phrases for reordering

5. Note that the same tag sequence can appear miiles, which could be monotone phrases or reorder-

tiple times according to different contexts, such a9 phrases.
DNPy NP, ma#01 2inrules no.5, 6, 7. _ ) _
5 Reordering Lattice Generation

4.2 Extraction of Reordering Rules .
5.1 Parsing the Source Sentence

The extraction of reordering rules is based on th$ _ N .
. he first step of chunk parsing is word segmentation.
word alignment and the source sentence chunks

Here, we train word alignments in both directionsThen’ a POS tagger is usually needed for further

with GIZA++ (Och and Ney, 2003). To get align- syntactic analysis. In our experiments, we use the

ment with high accuracy, we use the intersectioﬁOOI of'lnst. of Computing T,?Ch" Chinese Lexical
alignment here. Analysis System (ICTCLAS)” (Zhang et al., 2003),

. . .which does the two tasks in one pass.
For a given word-aligned sentence pair _ . ,

J oI 7o Referring to the description of the chunking task
(f{,e1,af), the source word sequencé; is . . . .

; . in CoNLL-2000, instead of English, a Chinese
first parsed into a chunk sequené¥‘. Accord- : .
. . T chunker is processed and evaluated. Each word is
ingly, the word-to-word alignment; is changed ianed a chunk t hich contains th fth
to a chunk-to-word alignmen&! which is the a;sngl:le ac udn”B??,wthlc f_cotn amj fetrr:am;:ok ©
combination of the target words aligned to the” l:in,,l,,t]}/pe anh ih or (Z_lrsthworh Ok _e]:_hc ug
source words in a chunk. It is defined as: an or gac other word in ?C unx. The

chunk tag is used for tokens which are not part of

N . ) L any chunk. We use the maximum entropy tool YAS-
a = {ili = a; N j € [ji, jr+1 — 1]} y Py

http://www.cnts.ua.ac.be/conll2000/chunking/
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Figure 3: Example of applying rules. The left part is the usdds. The right part is the generated new
orders of source words.

MET? to learn the chunking model. The model isble reorderings’ and is given a weightV. In this
based on a combination of word and POS tags. Sinpaper, the weight is computed using a source lan-
specific training and test data are not available fayuage modep(S’). The weight is used directly in
Chinese chunking, we convert subtrees of the Chihe decoder, integrated into Equatiot). There is
nese treebank (LDC2005T01) into chunks. As theralso a scaling factor for this weight, which is op-
are many ways to choose a subtree, we uses the miimized together with other scaling factors on the
imum subtree with the following constraints: development data. The probability of the reordered
source sentence is calculated as follows: for a re-

ordered source sentencgws...w,, the trigram lan-
e the children of a subtree are all leaves. guage model is:

e a subtree has more than one child,

Compared to chunking of English as in CoNLL- N

2000, thgre are more chunk typex! (nstead of6) p(8) = H (W | W3, Wn—1) (5)
and no single-word chunks. These two aspects make
chunking for Chinese harder.

n=1

Beside a word N-gram language model, a POS tag

5.2 Applying Reordering Rules N-gram model or a chunk tag N-gram model could
First, we search the reordering rules, in which thée used as well.
chunk sequence matches any tag sequence in the inin this paper, we use a word trigram model. The
put sentence. A source sentence has many patim®del is trained on reordered training source sen-
generated by the rules . For aword uncovered by angnces. A training source sentence is parsed into
rules, its POS tag is used. Each path correspondsdhunks. In the same way as described in Section
one sentence permutation. 4.2, word-to-word alignments is converted to chunk-

The left part of the Figure 3 shows seven possible-word alignments. We reorder the source chunks
coverages, the right part is the reordering for eacto monotonize the chunk-to-word alignments. The
coverage. Some of the reorderings are identical, likehunk boundaries are kept when this reordering is
the permutations in line 1, 3 and 5. That is becausgone.
one word sequence is memorized by several rules in
different contexts. 6 Experiments

5.3 Lattice Weighting 6.1 Chunking Result

All reorderings of an input sentencg are com- In this section, we report results for chunk parsing.
pressed and stored in a lattice. Each path is a pos3ihe annotation of the data is derived from the Chi-

2http://www-i6.informatik.rwth-aachen.de/web/Softwar nese treebank (LDC2005T01). The corpus is split
findex.html into two parts: 1000 sentences are randomly se-



Table 2: Statistics of training and test corpus foifable 4: Statistics of training and test corpora for the

chunk parsing. IWSLT tasks.
train test | | Chinese| English |

sentences 17785| 1000 Train Sentences 40k
words 486 468| 21851 Words| 308k | 377k

chunks 105773] 4680 Dev Sentences 489
words out of chunkg 244 416| 10282 Words| 5478 | 6008

Test Sentences 500
IWSLTO04 Words| 3866 \ 3581

Table 3: Chunk parsing result on 1000 sentences. | Test Sentencek 506
accuracy| precision| recall | F-measure IWSLTOS Words| 3652 | 3579

74.51% 65.2% | 61.5% 63.3 Test Sentences 500

IWSLTO06 Words| 5846 \ -

lected as test data. The remaining part is used for
training. The corpus is from the newswire domain. rules. A development corpus is used to optimize the

Table 2 shows the corpus statistics. For the 4 68graling factors for the BLEU score. The English text
chunks in the test set, the chunker has found 4 418 processed using a tokenizer. The Chinese text pro-
chunks, of which 2879 are correct. Following thecessing uses word segmentation with the ICTCLAS
criteria of CoNLL-2000, the chunker is evaluategs€gmenter (Zhang et al., 2003). The translation is
using the F-score, which is a combination of preevaluated case-insensitive and without punctuation
cision and recall. The result is shown in Table 3. marks.

The accuracy is evaluated at the word level, the The translation results are presented in Table 5.
other three metrics are evaluated at the chunk levelhe baseline system is a non-monotone translation
The results at the chunk level are worse than at tHfg/stem, in which the decoder does reordering on
word level, because a chunk is counted as corretite target language side. Compared to the base-
only if the chunk tag and the chunk boundaries arthe system, the source reordering method improves

both correct. the BLEU score by.5% — 1.8% absolute. It also
_ achieves a better WER. Note that the used chun-
6.2 Translation Results ker here is out-of-domaif. An improvement is

For the translation experiments, we report the twachieved even with a low F-measure for chunking.
accuracy measures BLEU (Papineni et al., 20080, we could hope that larger improvement is possi-
and NIST (Doddington, 2002) as well as the twdle using a high-accuracy chunker.
error rates word error rate (WER) and position- Though the inputis a lattice, the source reordering
independent word error rate (PER). is still faster than the reordering during decoding,
We perform translation experiments on the Ba€.0. for the IWSLT 2006 test set, the baseline system
sic Traveling Expression Corpus (BTEC) for thetook 17.5 minutes and the source reordering system
Chinese-English task. It is a speech translation tagR0ok 12.3 minutes. The result also indicates that the
in the domain of tourism-related information. Wenon-monotone decoding hurts the performance in a
report results on the IWSLT 2004, 2005 and 200&ource reordering framework. A similar conclusion
evaluation test sets. There are 16 reference trari§-also presented in (Xia and McCord, 2004).
lations for the IWSLT 2004 and 2005 tasks and 7 Additional experiments we carried out to compare
reference translations for the IWSLT 2006 task. ~POS-level and chunk-level reorderings. We delete
Table 4 shows the corpus statistics of the task. e chunk information and keep the POS tags. Then,
training corpus is used to train the translation model, s ~n ke

’ ) 3The chunker is trained on newswire data, but the test data
the language model and to obtain the reordering from the tourism domain.
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Table 5: Translation performance for the Chinese-EngW8BLLT task
| | WER[%] | PER[%] | NIST | BLEU[%] |

IWSLTO4 baseline| 47.3 38.2 7.78 39.1
source reordering  46.3 37.2 7.70 40.9

IWSLTO5 baseline| 45.0 37.3 7.40 41.8
source reordering  44.6 36.8 7.51 42.3

IWSLTO6 baseline| 67.4 50.0 6.65 22.4
source reordering  65.6 50.4 6.46 23.3

source reordering+non-monotone decoger 66.5 50.3 6.52 22.4

oor chunker, the chunk-level source reordering is

Table 6: Translation performance of reordering . .
till helpful for a state-of-the-art statistical transla-

methods on IWSLT 2004 test set

WER | PER| NIST | BLEU tion system and it has better performance than the
[%] | [%] [%6] POS-level source reordering and target-side reorder-
[Baseline] 473 [382] 7.78] 391 | "%

There are some directions for future work. First,
we would like to try this method on larger data sets
and other language pairs. Second, we are going to
improve the chunking accuracy. Third, we would
educe the number of rules and prune the lattice.

POS| 469 | 37.5| 7.38 | 39.7
Chunk| 46.3 | 37.2| 7.70 | 40.9

Table 7: Lattice information for the Chinese—Eninshr

IWSLT 2004 test data
avg. density|| used | translation

pro sent || rules | time [min/sec] This material is partly based upon work sup-
POS 15.7 6868 7:08 ported by the Defense Advanced Research Projects

Chunk 8.2 3685 3:47 Agency (DARPA) under Contract No. HR0011-06-
C-0023, and was partially funded by the Deutsche
Forschungsgemeinschaft (DFG) under the project

we rerun the source reordering system on the IWSLStatistische Textubersetzung” (Ne572/5)

2004 test set. The translation results are shown in

Table 6. Though the accuracy of chunking is lowg eferences

the chunk-level method gets better results than POS- _ )

- A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1986.
level method. With POS tags, we get more reorder- maximum entropy approach to natural language processing.
ing rules and more paths in the lattice, since the sen- Computational Linguistics22(1):39—72, March.

tence length is longer than with chunks. The Stati%. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra,
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Abstract

We present a proposal for the structure
of noun phrases in Synchronous Tree-
Adjoining Grammar (STAG) syntax and
semantics that permits an elegant and uni-
form analysis of a variety of phenom-
ena, including quantifier scope and ex-
traction phenomena such as wh-questions
with both moved and in-place wh-words,
pied-piping, stranding of prepositions, and
topicalization. The tight coupling be-
tween syntax and semantics enforced by
the STAG helps to illuminate the critical
relationships and filter out analyses that
may be appealing for either syntax or se-
mantics alone but do not allow for a mean-
ingful relationship between them.

1 Introduction

Nesson and Shieber (2006) showed how a now-
standard variant of the tree-adjoining grammar
(TAG) formalism (multi-component, multiple ad-
junction, finite-feature-based TAG), when synchro-
nized, leads to a natural analysis of the syntax-
semantics relation, including handling of syntactic
movement phenomena such as wh questions and rel-
ativization, semantic “movement” phenomena such
as quantification, quantifier scope ambiguity, and
even their interactions as found in pied-piped rela-
tive clauses.! phenomena were previously viewed

I'This work was supported in part by grant IIS-0329089 from
the National Science Foundation.
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as problematic for TAG analyses, leading to the hy-
pothesizing of various extensions to the TAG for-
malism (Kallmeyer and Romero, 2004, and work
cited therein). Independently, Han (2006a) devel-
oped a similar synchronous TAG analysis of pied-
piping, providing evidence for the naturalness of the
analysis.

Here, we update the analyses of noun phrases
found in the previous works in one simple way,
again with no additional formal TAG innovations,
and show that it allows a further coverage of extrac-
tion and quantification phenomena as well as in-situ
wh-phrases and topicalization. We emphasize that
no novel formal devices are postulated to achieve
this increased coverage — just a simple, natural and
uniform change to the canonical structure of NPs
and their semantics.

A word may be useful on the pertinence of this
work in a workshop on “syntax and structure in ma-
chine translation”, above and beyond the intrinsic
importance of exploring the “applications of [syn-
chronous/transduction grammars] to related areas
including. . . formal semantics” underlying the work-
shop. Tree-structured mappings are advocated for
machine translation systems because they allow for
the expression of generalizations about relationships
between languages more accurately and effectively.
Evidence for this benefit ought to be found in the
ability of the formalisms to characterize the primi-
tive linguistic relationships as well, in particular, the
form-meaning relationship for a natural language.
The present work is part of a general program to
explore the suitability of synchronous grammars for
expressing this primary linguistic relationship. Inso-

Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 9-16,
Rochester, New York, April 2007. (©2007 Association for Computational Linguistics



far as it is successful, it lends credence to the use of
these formal tools for a variety of language process-
ing tasks, including MT. Insofar as it reveals insuffi-
ciencies in the formalism, it may lead to insights in
the design or deployment of alternative systems.

We present a proposal for the structure of noun
phrases in Synchronous Tree-Adjoining Grammar
(STAG) syntax and semantics that permits an elegant
and uniform analysis of a variety of phenomena, in-
cluding quantifier scope and extraction phenomena
such as wh-questions with both moved and in-situ
wh-words, pied-piping, stranding of prepositions,
and topicalization. Furthermore, the tight coupling
between syntax and semantics enforced by grammar
synchronization helps to illuminate the critical rela-
tionships and filter out analyses that may be appeal-
ing for either syntax or semantics alone but do not
allow for a meaningful relationship between them.

We begin in Section 2 with a brief review of syn-
chronous TAG and its application to English syntax
and semantics. In Section 3, we present an analysis
of quantifier scope that elucidates the relationship
between the syntactic and semantic structures and
explains an anomaly of previously proposed analy-
ses. We apply the underlying idea from Section 3
to wh-questions in Section 4, showing that an al-
teration of the standard TAG syntax analysis of wh-
questions produces the same derived trees while also
elegantly modeling in-place wh-words. In Section 5
we present a challenging case for STAG syntax and
semantics, the stranding of prepositions. This case
is particularly difficult because the syntactic analy-
ses suggested by previous work in STAG syntax do
not encapsulate the relationships that appear neces-
sary for the semantics. Our proposed analysis falls
out naturally from the revision to the syntax of wh-
words and respects both Frank’s Condition on Ele-
mentary Tree Minimality (CETM) and the seman-
tic relationships in the construction. In Section 6
we give an analysis of topicalization that also fol-
lows from the underlying ideas of the earlier analy-
ses. We summarize the main ideas of the analysis in
Section 7.

2 Introduction to Synchronous TAG

A tree-adjoining grammar (TAG) consists of a
set of elementary tree structures of arbitrary depth,
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Figure 1: Example TAG substitution and adjunction.

which are combined with two operations, substitu-
tion and adjunction. Internal nodes in the elementary
trees are labeled with a nonterminal symbol. Fron-
tier nodes may be labeled with either terminal sym-
bols or nonterminal symbols annotated with one of
the diacritics | or *. The | diacritic marks a frontier
nonterminal node as a substitution node, the target
of the substitution operation. The substitution op-
eration occurs when an elementary tree rooted in a
nonterminal symbol A replaces a substitution node
with the same nonterminal symbol.

Auxiliary trees are elementary trees in which the
root and a frontier node, called the foot node and
distinguished by the diacritic *, are labeled with the
same nonterminal A. The adjunction operation in-
volves splicing an auxiliary tree in at an internal
node in an elementary tree also labeled with non-
terminal A. Trees without a foot node, intended for
substitution rather than adjunction into other trees,
are called initial trees. Examples of the substitu-
tion and adjunction operations on sample elemen-
tary trees are shown in Figure 1. For further infor-
mation, refer to Joshi and Schabes (1997).

Synchronous TAG (Shieber, 1994; Shieber and
Schabes, 1990) extends TAG by taking the elemen-
tary structures to be pairs of TAG trees with links
between particular nodes in those trees. Derivation
proceeds as in TAG except that all operations must
be paired. That is, a tree can only be substituted or
adjoined at a node if its pair is simultaneously sub-
stituted or adjoined at a linked node. We notate the
links by using boxed indices [ marking linked nodes.
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Figure 2: An English syntax/semantics STAG fragment (a), derived tree pair (b), and derivation tree (c) for

the sentence “John apparently likes Mary.”

As first described by Shieber and Schabes (1990),
STAG can be used to provide a semantics for a TAG
syntactic analysis by taking the tree pairs to repre-
sent a syntactic analysis synchronized with a seman-
tic analysis.

For example, Figure 2(a) contains a sample En-
glish syntax/semantics grammar fragment that can
be used to analyze the sentence “John apparently
likes Mary”. The node labels we use in the seman-
tics correspond to the semantic types of the phrases
they dominate.

Figure 2(c) shows the derivation tree for the sen-
tence. Substitutions are notated with a solid line and
adjunctions are notated with a dashed line. Each link
in the derivation tree specifies a link number in the
elementary tree pair, providing the location at which
the operations take place. In this case, the tree pairs
for the noun phrases John and Mary substitute into
the likes tree pair at links [ and [, respectively. The
word apparently adjoins at link p. The tree pair so
derived is shown in Figure 2(b). The resulting se-
mantic representation can be read off the right-hand
derived tree by treating the leftmost child of a node
as a functor and its siblings as its arguments. Our
sample sentence thus results in the semantic repre-
sentation apparently(likes(john,mary)).

3 Quantifier Scope

We start by reviewing the prior approach to quan-
tifier semantics in synchronous TAG. Consider the
sentence “Everyone likes someone.” We would like
to allow both the reading where some takes scope
over every and the reading where every takes scope
over some. We start with the proposal of Shieber and
Schabes (1990), which used multi-component TAG
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for the semantic portion of a synchronous TAG.
Each quantified noun phrase has a two-component
tree set as its semantics. One component introduces
the variable quantified over in the scope of the quan-
tifier; the other adjoins over the scope to provide the
quantifier and restriction. Williford (1993) explored
the use of multiple adjunction (Schabes and Shieber,
1993) to achieve scope ambiguity. Since the scope
components of subject and object noun phrases
adjoin at the same location in the semantic tree,
they give rise to a systematic ambiguity as to which
dominates the other in the derived tree, reflecting
the semantic scope ambiguity of the sentence; the
derivation tree itself is therefore a scope neutral
representation.  Previous work by Han (2006a;
2006b) and Nesson and Shieber (2006) describe
this approach in detail, showing its applicability to
a range of semantic phenomena.

A range of research has proceeded in an alter-
native line of using complex-feature-based TAG —
rather than synchronous TAG — for TAG seman-
tics (Kallmeyer and Romero, 2004, and work cited
therein). Semantic representations are carried in fea-
tures associated with nodes. Nonetheless, multi-
component TAG with separate trees for bound po-
sition and scope is used here too. However, the two
trees are syntactic trees, the quantified NP tree and a
vestigial S tree, respectively. (An example is shown
in Figure 6.) In such analyses, the single-node aux-
iliary S tree is used for the scope part of the syntax
in order to get the desired relationship between the
quantifier and the quantified expression in features
threaded through the derivation tree and hence in the
semantics.

The present analysis marries these two ap-



/N

NP every z t Ty NP some%
Dﬁi (e, f ymz e Det Ny g (e,t)ym ¥
CV(‘)ry a‘: some

/S\ /M
Det N V NP (e t) x s‘omc% I
A T P WA
. | N |
every one likes some one

]
Yy
t N
/]\ BRI
,/ \~
every some

N 9 t

/\

Pl- likes €[4
thb

likes (b)

person

N

person

>

T
person likes ¢ x

Figure 3: The elementary tree pairs (a), derivation tree (b), and derived trees (c) for the sentence “Everyone
likes someone”. Note that the derivation tree is a scope neutral representation: depending on whether every
or some adjoins higher, we obtain different semantic derived trees and scope orderings.

proaches. Like the previous STAG work, we pro-
pose a solution in which a multi-component tree set
provides semantics for quantified phrases, with mul-
tiple adjunction providing scope ambiguity. Like
the complex-feature-based approach, we reflect the
multi-component structure in the syntax as well. It
is this single change in the analysis that makes pos-
sible the coverage of the wide range of phenomena
we describe here.

Combining these two approaches, we give both
the syntactic and semantic trees for quantifiers two
parts, as depicted in Figure 3(a). In the semantics,
the top part corresponds to the scope of the quan-
tifier and attaches where the quantifier takes scope.
The bottom part corresponds to the bound variable
of the quantifier. By multiply adjoining the scope
parts of the semantic trees of the quantifiers at the
same location in the likes tree, we generate both
available scope readings of the sentence.”> Corre-
spondingly on the syntax side, an NP tree provides
the content of the noun phrase with a vestigial S tree
available as well. Prior to the analyses given in this
paper, the use of two trees in the quantifier syntax
was an arbitrary stipulation used to make the seman-
tic analysis possible. The pairing of the upper tree

ZNesson and Shieber (2006) provide a more in-depth expla-
nation of the multiple-adjunction-driven approach to scope neu-
trality in STAG.
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in the syntax with the scope tree in the semantics
explicitly demonstrates their relationship and leads
naturally to the exploration of non-degenerate upper
trees in the syntax that we explore in this paper.

In order to use these multi-component quantifiers,
we change the links in the elementary trees for verbs
to allow a single link to indicate two positions in
the syntax and semantics where a tree pair can ad-
join, as shown in Figure 3(a). We add four-way
links and drop the two-way links used by the un-
quantified noun phrases in the first example. This
choice forces all noun phrase tree pairs to be multi-
component in the syntax and semantics. Essentially,
all noun phrases are “lifted” a la Montague. We ex-
plore the consequences of this in Section 6.

We turn now to the ramifications of this new
syntactico-semantic STAG representation, showing
its utility for a range of phenomena.

4 Wh-questions

The structure we propose for quantifiers suggests a
new possibility for the TAG analysis of wh-words.
We propose to simply treat wh-words as regular
noun phrases by making them a multi-component
tree set with an auxiliary tree that adjoins at the root
of the verb tree and contains the lexical content and
an initial tree with an empty frontier that substitutes
at the argument position. This syntactic tree set can
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Figure 4: Elementary tree pairs for who and which. The left and middle tree sets are the syntactic alternatives
used to model wh-movement and in-situ wh-words. The tree sets on the right provide the semantics.
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Figure 5: Traditional elementary trees for the verb
likes. Using a revised, elementary syntax tree set for
wh-words like who, only the left tree is necessary.

be paired with a multi-component semantic tree set
that has an auxiliary tree containing the scope part
and an initial tree that contains the bound variable.
Wh-questions with the wh-word in place can be ele-
gantly modeled with an alternative syntactic tree set
in which the auxiliary tree has no lexical content and
the wh-word is on the frontier of the initial tree that
substitutes into the argument position. The seman-
tic tree sets for both syntactic variations is the same.
These trees are shown in Figure 4.

Besides the incorporation of a semantics, the ba-
sic analyses for wh-questions familiar from TAG
syntax are otherwise unchanged because the top
piece of the syntax tree set still ends up at the root of
the main verb in sentences such as the following:

(1) Who likes Mary?
who(x, likes(mary, x))

(2) Which person does John like??
which(x, person(x), likes(x, john))

3The presence of do-support in wh-questions can be handled
independently using a feature on the NP node into which the
bottom part of the wh-word tree pair substitutes that governs
whether and where a do tree adjoins.
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(3) Which person does Bill think John likes?
which(x, person(x),thinks(bill,likes(x, john)))

(4) Who does each person like?
who(x,each(y, person(y),likes(x,y)))
each(y, person(y),who(x,likes(x,y)))

Note that in Sentence 3 thinks is not constrained
to appear to the right of who in the syntax, because
thinks and who both adjoin at the same location in
the syntax. However, we can use a feature to force
embedding verbs to adjoin lower than wh-words.
The same situation exists in Sentence 4, though only
in the semantics; the order of words in the syntax
is well-defined but the multiple adjunction of the
scope of who and the scope of each underspecifies
the scope ordering between them. Both scope or-
derings are indeed arguably valid. Again, the pref-
erences for certain orderings can be regulated us-
ing a feature. These issues highlight the many open
questions about how to combine quantification and
wh-terms, but also provides a first step towards their
analysis within a concise STAG construction.

Our approach has several distinct advantages.
First, it allows wh-words to be analyzed in a way that
is uniform with the analysis of other noun phrases
and allows us to simplify the lexical entries for
verbs. In the traditional TAG analysis, wh-words
substitute into specialized lexical trees for verbs that
add an additional frontier node for the wh-word and
abstract over one of the arguments of the verb by
adding an empty terminal node at the frontier. Our
revision to the elementary trees for wh-words allows
us to remove several tree pairs from the elementary
tree sets for verbs such as like. Instead of requir-
ing an elementary tree pair for declarative sentences
and an additional elementary tree for each argument
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Figure 6: Kallmeyer and Scheffler’s syntactic analy-
sis for Sentence 6.

that can be replaced by a fronted wh-word to form a
question (as shown in Figure 5), we can use just the
single declarative sentence elementary tree.

Second, it provides a simple and elegant char-
acterization of the syntax and semantics of wh-
movement and the relationship between fronted and
in-place wh-words. Using the alternative syntax tree
set given in Figure 4 we model in-place use of wh-
words as in Sentence 5 while still maintaining the
usual semantic analysis:

(5) John likes who?
who(x, likes(x, john))

5 Stranded Prepositions

Sentence 6 presents a particularly challenging case
for TAG semantics. The problem arises because who
must contribute its bound variable, x, to the noun
phrase “a picture of x”. However, in the standard
syntactic analysis who substitutes into the likes tree,
and in any reasonable semantic analysis, who takes
scope at the root of the likes tree.

(6) Who does John like a picture of?

who(x,a(y, and(picture(y),of (x,y)),
likes(john,y)))

Kallmeyer and Scheffler (2004) propose a syntac-
tic analysis in which ““a picture of”” adjoins into the
syntactic tree for “likes”. The syntax for this anal-
ysis is shown for comparison in Figure 6.  As-
sociated with the syntactic analysis is a semantic
analysis, which differs from ours in that all of the
semantic computation is accomplished by use of
a flexible set of features that are associated with
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nodes in the syntactic trees. This analysis main-
tains Frank’s Constraint on Elementary Tree Min-
imality (CETM) if one analyzes the prepositional
phrase as a complement of picture but it does so at
the expense of a straightforward compositional se-
mantics.* The source of the problem is that who
contributes its bound variable to likes to form an
intermediate semantics who(x, likes(john,x)), then
a picture of combines non-compositionally to form
the complete semantics given in Sentence 6.

Kroch (1989) describes the intuition eschewing
this analysis: “The problem is that under such a
derivation, the preposed wh-phrase changes its the-
matic role with each adjunction and the interpreta-
tion of the derived tree is not a simple function of the
interpretations of its component elementary trees.”
When we consider the semantics of the two sen-
tences, the anomaly of this analysis becomes appar-
ent. In the first sentence the entity liked by John is
referred to by the variable contributed by who. In the
second sentence John likes an entirely different en-
tity: the entity referred to by the variable contributed
by a. Kallmeyer and Scheffler obtain the correct se-
mantics by making use of non-local TAG operations
to have the scope part of a adjoin into likes to cap-
ture the semantics of the likes proposition and em-
ploying a feature-based mechanism for swapping the
variables as necessary.

Our revision to the syntax of wh-words provides
an alternative way of maintaining the CETM that of-
fers a much simpler semantic analysis. The details
of the analysis are given in Figure 7. We adjoin who
into the preposition of at link @ where it contributes
both variable and scope. The tree pair for of at-
taches to a at link [, thus allowing the scope parts
of the quantifier a and the wh-word who to end up
taking scope over the main verb as in the analysis of
prepositional phrases given by Nesson and Shieber
(2006). It also places all the bound variables in the
correct propositions without use of non-local opera-
tions or additional manipulation. A diagram of the
derived syntax and semantics is given in Figure 8.

4In addition to suggesting a non-compositional seman-
tics, their syntactic analysis makes use of non-local multi-
component TAG in order to achieve the necessary semantic rela-
tionships. Although their use of non-local TAG may be benign
in terms of complexity, our analysis is set-local. Our proposal
therefore simplifies the syntactic analysis while also bringing it
in line with a straightforward, compositional semantics.
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The insight that allows us to mod.el 1n-p1a.ce Wh- Mary N‘p e‘ D‘et N= N‘p <€7 ¢
words extends to an elegant analysis of topicaliza- ¢ Mary J J J

tion as well. The vestigial S, tree that we added
to the tree set for the syntax of every noun phrase
need not always be contentless. Just as we moved
the wh-word who from the top tree in its set to the
bottom tree to model in-situ wh-words, we can move
the lexical content of noun phrases to the top tree in
their sets to model topicalization. For instance, the
alternative tree pair for Mary shown in Figure 9 pro-
vides for an analysis of the sentence

(7) Mary, John likes.
likes(mary,john)

The analysis interacts properly with that for prepo-
sition stranding, so that the sentence
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Figure 9: Alternative tree pairs for Mary and a that
model topicalization.

(8) A picture of Mary, John likes.
a(x, and(picture(x), of(mary,x)), likes(x,john))

follows from the tree pair for a in the same figure.

7 Conclusion

In this paper we have proposed a uniform change
to the structure of noun phrases in the STAG
syntactico-semantic grammar. The formal tools we
avail ourselves of comprise synchronous TAG with



set-local multicomponent adjunction and multiple
adjunction. Nothing more is required.

All noun phrases now have a uniform multi-
component structure in both the syntax and the
semantics. In the semantics the top part corresponds
to the scope-giving piece provided by the noun
phrase and the bottom part to the bound variable
or simple noun-phrase meaning. In the syntax, the
top part corresponds to the lexical material that
should appear moved to the edge of the sentence or
clause; the bottom part corresponds to the lexical
material that will fill an argument position of some
head. By moving lexical material among the pieces
of the multi-component set in the syntax, we can
simply model phenomena like in-place wh-words
and topicalization.

Making the top parts of wh-word tree sets into
auxiliary trees allows them to adjoin not just to the
main verb but also to heads of modifying clauses,
such as prepositional phrases. This allows us to
handle more complex sentences like Sentence 6
without violating either the CETM or going beyond
simple compositional semantics. In order to allow
the scope-giving part of the wh-word to percolate
up to the root of the semantics of the main verb,
each tree set that it adjoins into on its way must
also have a scope part in the semantics to which
it can adjoin. Scope carriers, such as prepositions,
are therefore also multi-component in the semantics
with a top node to which scope-givers can adjoin.
One nice property of this analysis is that it predicts
the observed facts about disallowed scope orderings
in sentences that have three quantifiers, one of
which is in a modifying clause. The scope part of
the quantifier of the modified clause and the scope
part of the quantifier of the modifying clause form
an indivisible set as the derivation proceeds so that
when they adjoin multiply with the scope part of the
unmodified clause, that quantifier cannot intervene
between them.

Our synchronous grammar treatment of the
syntax-semantic relation with TAG is at least as
simple and arguably more accurate than previous
TAG proposals, offering treatments of such phe-
nomena as in-situ wh-words, stranded prepositions,
and topicalization.
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Abstract

We present a phrasal inversion trans-
duction grammar as an alternative to
joint phrasal translation models. This
syntactic model is similar to its flat-
string phrasal predecessors, but admits
polynomial-time algorithms for Viterbi
alignment and EM training. We demon-
strate that the consistency constraints that
allow flat phrasal models to scale also help
ITG algorithms, producing an 80-times
faster inside-outside algorithm. We also
show that the phrasal translation tables
produced by the ITG are superior to those
of the flat joint phrasal model, producing
up to a 2.5 point improvement in BLEU
score. Finally, we explore, for the first
time, the utility of a joint phrasal transla-
tion model as a word alignment method.

1 Introduction

Statistical machine translation benefits greatly from
considering more than one word at a time. One
can put forward any number of non-compositional
translations to support this point, such as the col-
loquial Canadian French-English pair, (Wo les mo-
teurs, Hold your horses), where no clear word-to-
word connection can be drawn. Nearly all cur-
rent decoding methods have shifted to phrasal rep-
resentations, gaining the ability to handle non-
compositional translations, but also allowing the de-
coder to memorize phenomena such as monolingual
agreement and short-range movement, taking pres-
sure off of language and distortion models.
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Despite the success of phrasal decoders, knowl-
edge acquisition for translation generally begins
with a word-level analysis of the training text, tak-
ing the form of a word alignment. Attempts to apply
the same statistical analysis used at the word level
in a phrasal setting have met with limited success,
held back by the sheer size of phrasal alignment
space. Hybrid methods that combine well-founded
statistical analysis with high-confidence word-level
alignments have made some headway (Birch et al.,
2006), but suffer from the daunting task of heuris-
tically exploring a still very large alignment space.
In the meantime, synchronous parsing methods effi-
ciently process the same bitext phrases while build-
ing their bilingual constituents, but continue to be
employed primarily for word-to-word analysis (Wu,
1997). In this paper we unify the probability models
for phrasal translation with the algorithms for syn-
chronous parsing, harnessing the benefits of both
to create a statistically and algorithmically well-
founded method for phrasal analysis of bitext.

Section 2 begins by outlining the phrase extrac-
tion system we intend to replace and the two meth-
ods we combine to do so: the joint phrasal transla-
tion model (JPTM) and inversion transduction gram-
mar (ITG). Section 3 describes our proposed solu-
tion, a phrasal ITG. Section 4 describes how to ap-
ply our phrasal ITG, both as a translation model and
as a phrasal word-aligner. Section 5 tests our system
in both these capacities, while Section 6 concludes.

2 Background
2.1 Phrase Table Extraction

Phrasal decoders require a phrase table (Koehn et
al., 2003), which contains bilingual phrase pairs and

Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 17-24,
Rochester, New York, April 2007. (©2007 Association for Computational Linguistics



scores indicating their utility. The surface heuris-
tic is the most popular method for phrase-table con-
struction. It extracts all consistent phrase pairs from
word-aligned bitext (Koehn et al., 2003). The word
alignment provides bilingual links, indicating trans-
lation relationships between words. Consistency is
defined so that alignment links are never broken by
phrase boundaries. For each token w in a consistent
phrase pair p, all tokens linked to w by the alignment
must also be included in p. Each consistent phrase
pair is counted as occurring once per sentence pair.
The scores for the extracted phrase pairs are pro-
vided by normalizing these flat counts according to
common English or Foreign components, producing
the conditional distributions p( f|€) and p(e|f).

The surface heuristic can define consistency ac-
cording to any word alignment; but most often, the
alignment is provided by GIZA++ (Och and Ney,
2003). This alignment system is powered by the
IBM translation models (Brown et al., 1993), in
which one sentence generates the other. These mod-
els produce only one-to-many alignments: each gen-
erated token can participate in at most one link.
Many-to-many alignments can be created by com-
bining two GIZA++ alignments, one where English
generates Foreign and another with those roles re-
versed (Och and Ney, 2003). Combination ap-
proaches begin with the intersection of the two
alignments, and add links from the union heuris-
tically. The grow-diag-final (GDF) combination
heuristic (Koehn et al., 2003) adds links so that each
new link connects a previously unlinked token.

2.2 Joint phrasal translation model

The IBM models that power GIZA++ are trained
with Expectation Maximization (Dempster et al.,
1977), or EM, on sentence-aligned bitext. A transla-
tion model assigns probabilities to alignments; these
alignment distributions are used to count translation
events, which are then used to estimate new parame-
ters for the translation model. Sampling is employed
when the alignment distributions cannot be calcu-
lated efficiently. This statistically-motivated process
is much more appealing than the flat counting de-
scribed in Section 2.1, but it does not directly in-
clude phrases.

The joint phrasal translation model (Marcu and
Wong, 2002), or JPTM, applies the same statistical
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techniques from the IBM models in a phrasal setting.
The JPTM is designed according to a generative pro-
cess where both languages are generated simultane-
ously. First, a bag of concepts, or cepts, C' is gener-
ated. Each ¢; € C corresponds to a bilingual phrase
pair, ¢; = (€, f;). These contiguous phrases are
permuted in each language to create two sequences
of phrases. Initially, Marcu and Wong assume that
the number of cepts, as well as the phrase orderings,
are drawn from uniform distributions. That leaves
a joint translation distribution p(&;, f;) to determine
which phrase pairs are selected. Given a lexicon of
possible cepts and a predicate L(E, F,C) that de-
termines if a bag of cepts C' can be bilingually per-
muted to create the sentence pair (F, F'), the proba-
bility of a sentence pair is:

>

{CIL(E,F,C)}

p(E, F) [[rE. ] O

c,eC
If left unconstrained, (1) will consider every phrasal
segmentation of F and F, and every alignment be-
tween those phrases. Later, a distortion model based
on absolute token positions is added to (1).

The JPTM faces several problems when scaling
up to large training sets:

1. The alignment space enumerated by the sum
in (1) is huge, far larger than the one-to-many
space explored by GIZA++.

2. The translation distribution p(e, f) will cover
all co-occurring phrases observed in the bitext.
This is far too large to fit in main memory, and
can be unwieldly for storage on disk.

3. Given a non-uniform p(€, f), there is no effi-
cient algorithm to compute the expectation of
phrase pair counts required for EM, or to find
the most likely phrasal alignment.

Marcu and Wong (2002) address point 2 with a lexi-
con constraint; monolingual phrases that are above
a length threshold or below a frequency threshold
are excluded from the lexicon. Point 3 is handled
by hill-climbing to a likely phrasal alignment and
sampling around it. However, point 1 remains unad-
dressed, which prevents the model from scaling to
large data sets.

Birch et al. (2006) handle point 1 directly by re-
ducing the size of the alignment space. This is



accomplished by constraining the JPTM to only
use phrase pairs that are consistent with a high-
confidence word alignment, which is provided by
GIZA++ intersection. We refer to this constrained
JPTM as a C-JPTM. This strikes an interesting
middle ground between the surface heuristic de-
scribed in Section 2.1 and the JPTM. Like the sur-
face heuristic, a word alignment is used to limit the
phrase pairs considered, but the C-JPTM reasons
about distributions over phrasal alignments, instead
of taking flat counts. The consistency constraint al-
lows them to scale their C-JPTM up to 700,000 sen-
tence pairs. With this constraint in place, the use of
hill-climbing and sampling during EM training be-
comes one of the largest remaining weaknesses of
the C-JPTM.

2.3 Inversion Transduction Grammar

Like the JPTM, stochastic synchronous grammars
provide a generative process to produce a sentence
and its translation simultaneously. Inversion trans-
duction grammar (Wu, 1997), or ITG, is a well-
studied synchronous grammar formalism. Terminal
productions of the form A — e/f produce a to-
ken in each stream, or a token in one stream with
the null symbol ) in the other. To allow for move-
ment during translation, non-terminal productions
can be either straight or inverted. Straight produc-
tions, with their non-terminals inside square brack-
ets [...], produce their symbols in the given order in
both streams. Inverted productions, indicated by an-
gled brackets (. . .), are output in reverse order in the
Foreign stream only.

The work described here uses the binary bracket-
ing ITG, which has a single non-terminal:

A —[AA] | (AA) |e/f )

This grammar admits an efficient bitext parsing al-
gorithm, and holds no language-specific biases.

(2) cannot represent all possible permutations of
concepts that may occur during translation, because
some permutations will require discontinuous con-
stituents (Melamed, 2003). This ITG constraint is
characterized by the two forbidden structures shown
in Figure 1 (Wu, 1997). Empirical studies suggest
that only a small percentage of human translations
violate these constraints (Cherry and Lin, 2006).
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Figure 1: The two ITG forbidden structures.
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Figure 2: Three ways in which a phrasal ITG can
analyze a multi-word span or phrase.

Stochastic ITGs are parameterized like their
PCFG counterparts (Wu, 1997); productions
A — X are assigned probability Pr(X|A). These
parameters can be learned from sentence-aligned bi-
text using the EM algorithm. The expectation task
of counting productions weighted by their probabil-
ity is handled with dynamic programming, using the
inside-outside algorithm extended to bitext (Zhang
and Gildea, 2004).

3 ITG as a Phrasal Translation Model

This paper introduces a phrasal ITG; in doing so,
we combine ITG with the JPTM. ITG parsing al-
gorithms consider every possible two-dimensional
span of bitext, each corresponding to a bilingual
phrase pair. Each multi-token span is analyzed in
terms of how it could be built from smaller spans us-
ing a straight or inverted production, as is illustrated
in Figures 2 (a) and (b). To extend ITG to a phrasal
setting, we add a third option for span analysis: that
the span under consideration might have been drawn
directly from the lexicon. This option can be added
to our grammar by altering the definition of a termi-
nal production to include phrases: A — &/f. This
third option is shown in Figure 2 (c). The model
implied by this extended grammar is trained using
inside-outside and EM.

Our approach differs from previous attempts to
use ITGs for phrasal bitext analysis. Wu (1997)
used a binary bracketing ITG to segment a sen-



tence while simultaneously word-aligning it to its
translation, but the model was trained heuristically
with a fixed segmentation. Vilar and Vidal (2005)
used ITG-like dynamic programming to drive both
training and alignment for their recursive translation
model, but they employed a conditional model that
did not maintain a phrasal lexicon. Instead, they
scored phrase pairs using IBM Model 1.

Our phrasal ITG is quite similar to the JPTM.
Both models are trained with EM, and both em-
ploy generative stories that create a sentence and its
translation simultaneously. The similarities become
more apparent when we consider the canonical-form
binary-bracketing ITG (Wu, 1997) shown here:

S— A|B|C
A— [AB]|[BB]|[CBH]|
ac) Bel o
B — (AA) [ (BA)[(CA) |
(AC) | (BC) | {CC)
C— e/f

(3) is employed in place of (2) to reduce redundant
alignments and clean up EM expectations.! More
importantly for our purposes, it introduces a preter-
minal C, which generates all phrase pairs or cepts.
When (3) is parameterized as a stochastic ITG, the
conditional distribution p(e/f|C) is equivalent to
the JPTM’s p(€, f); both are joint distributions over
all possible phrase pairs. The distributions condi-
tioned on the remaining three non-terminals assign
probability to concept movement by tracking inver-
sions. Like the JPTM’s distortion model, these pa-
rameters grade each movement decision indepen-
dently. With terminal productions producing cepts,
and inversions measuring distortion, our phrasal ITG
is essentially a variation on the JPTM with an alter-
nate distortion model.

Our phrasal ITG has two main advantages over
the JPTM. Most significantly, we gain polynomial-
time algorithms for both Viterbi alignment and EM
expectation, through the use of ITG parsing and
inside-outside algorithms. These phrasal ITG algo-
rithms are no more expensive asymptotically than
their word-to-word counterparts, since each poten-
tial phrase needs to be analyzed anyway during

'If the null symbol § is included among the terminals, then
redundant parses will still occur, but far less frequently.
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constituent construction. We hypothesize that us-
ing these methods in place of heuristic search and
sampling will improve the phrasal translation model
learned by EM. Also, we can easily incorporate links
to () by including the symbol among our terminals.
To minimize redundancy, we allow only single to-
kens, not phrases, to align to (). The JPTM does not
allow links to ().

The phrasal ITG also introduces two new compli-
cations. ITG Viterbi and inside-outside algorithms
have polynomial complexity, but that polynomial is
O(n®), where n is the length of the longer sentence
in the pair. This is too slow to train on large data
sets without massive parallelization. Also, ITG al-
gorithms explore their alignment space perfectly, but
that space has been reduced by the ITG constraint
described in Section 2.3. We will address each of
these issues in the following two subsections.

3.1 Pruning Spans

First, we address the problem of scaling ITG to large
data. ITG dynamic programming algorithms work
by analyzing each bitext span only once, storing its
value in a table for future use. There are O(n*) of
these spans, and each analysis takes O(n?) time. An
effective approach to speeding up ITG algorithms
is to eliminate unlikely spans as a preprocessing
step, assigning them O probability and saving the
time spent processing them. Past approaches have
pruned spans using IBM Model 1 probability esti-
mates (Zhang and Gildea, 2005) or using agreement
with an existing parse tree (Cherry and Lin, 2006).
The former is referred to as tic-tac-toe pruning be-
cause it uses both inside and outside estimates.

We propose a new ITG pruning method that lever-
ages high-confidence links by pruning all spans that
are inconsistent with a provided alignment. This
is similar to the constraint used in the C-JPTM,
but we do not just eliminate those spans as poten-
tial phrase-to-phrase links: we never consider any
ITG parse that builds a non-terminal over a pruned
span.? This fixed-link pruning will speed up both
Viterbi alignment and EM training by reducing the
number of analyzed spans, and so long as we trust

?Birch et al. (2006) re-introduce inconsistent phrase-pairs in
cases where the sentence pair could not be aligned otherwise.
We allow links to @) to handle these situations, completely elim-
inating the pruned spans from our alignment space.



our high-confidence links, it will do so harmlessly.
We demonstrate the effectiveness of this pruning
method experimentally in Section 5.1.

3.2 Handling the ITG Constraint

Our remaining concern is the ITG constraint. There
are some alignments that we just cannot build, and
sentence pairs requiring those alignments will occur.
These could potentially pollute our training data; if
the system is unable to build the right alignment, the
counts it will collect from that pair must be wrong.
Furthermore, if our high-confidence links are not
ITG-compatible, our fixed-link pruning will prevent
the aligner from forming any alignments at all.
However, these two potential problems cancel
each other out. Sentence pairs containing non-ITG
translations will tend to have high-confidence links
that are also not ITG-compatible. Our EM learner
will simply skip these sentence pairs during train-
ing, avoiding pollution of our training data. We can
use a linear-time algorithm (Zhang et al., 2006) to
detect non-ITG movement in our high-confidence
links, and remove the offending sentence pairs from
our training corpus. This results in only a minor re-
duction in training data; in our French-English train-
ing set, we lose less than 1%. In the experiments de-
scribed in Section 5, all systems that do not use ITG
will take advantage of the complete training set.

4 Applying the model

Any phrasal translation model can be used for two
tasks: translation modeling and phrasal word align-
ment. Previous work on JPTM has focused on only
the first task. We are interested in phrasal alignment
because it may be better suited to heuristic phrase-
extraction than word-based models. This section de-
scribes how to use our phrasal ITG first as a transla-
tion model, and then as a phrasal aligner.

4.1 Translation Modeling

We can test our model’s utility for translation by
transforming its parameters into a phrase table for
the phrasal decoder Pharaoh (Koehn et al., 2003).
Any joint model can produce the necessary condi-
tional probabilities by conditionalizing the joint ta-
ble in both directions. We use our p(e/f|C) dis-
tribution from our stochastic grammar to produce
p(e|f) and p(f|€) values for its phrasal lexicon.

21

Pharaoh also includes lexical weighting param-
eters that are derived from the alignments used to
induce its phrase pairs (Koehn et al., 2003). Us-
ing the phrasal ITG as a direct translation model,
we do not produce alignments for individual sen-
tence pairs. Instead, we provide a lexical preference
with an IBM Model 1 feature pyp; that penalizes un-
matched words (Vogel et al., 2003). We include both

pwi (€ f) and pan (f]€).
4.2 Phrasal Word Alignment

We can produce a translation model using inside-
outside, without ever creating a Viterbi parse. How-
ever, we can also examine the maximum likelihood
phrasal alignments predicted by the trained model.

Despite its strengths derived from using phrases
throughout training, the alignments predicted by our
phrasal ITG are usually unsatisfying. For exam-
ple, the fragment pair (order of business, ordre des
travaux) is aligned as a phrase pair by our system,
linking every English word to every French word.
This is frustrating, since there is a clear compo-
sitional relationship between the fragment’s com-
ponent words. This happens because the system
seeks only to maximize the likelihood of its train-
ing corpus, and phrases are far more efficient than
word-to-word connections. When aligning text, an-
notators are told to resort to many-to-many links
only when no clear compositional relationship ex-
ists (Melamed, 1998). If we could tell our phrasal
aligner the same thing, we could greatly improve the
intuitive appeal of our alignments. Again, we can
leverage high-confidence links for help.

In the high-confidence alignments provided by
GIZA++ intersection, each token participates in at
most one link. Links only appear when two word-
based IBM translation models can agree. Therefore,
they occur at points of high compositionality: the
two words clearly account for one another. We adopt
an alignment-driven definition of compositional-
ity: any phrase pair containing two or more high-
confidence links is compositional, and can be sep-
arated into at least two non-compositional phrases.
By removing any phrase pairs that are compositional
by this definition from our terminal productions,
we can ensure that our aligner never creates such
phrases during training or alignment. Doing so pro-
duces far more intuitive alignments. Aligned with



a model trained using this non-compositional con-
straint (NCC), our example now forms three word-
to-word connections, rather than a single phrasal
one. The phrases produced with this constraint are
very small, and include only non-compositional con-
text. Therefore, we use the constraint only to train
models intended for Viterbi alignment, and not when
generating phrase tables directly as in Section 4.1.

5 Experiments and Results

In this section, we first verify the effectiveness of
fixed-link pruning, and then test our phrasal ITG,
both as an aligner and as a translation model. We
train all translation models with a French-English
Europarl corpus obtained by applying a 25 to-
ken sentence-length limit to the training set pro-
vided for the HLT-NAACL SMT Workshop Shared
Task (Koehn and Monz, 2006). The resulting cor-
pus has 393,132 sentence pairs. 3,376 of these
are omitted for ITG methods because their high-
confidence alignments have ITG-incompatible con-
structions. Like our predecessors (Marcu and Wong,
2002; Birch et al., 2006), we apply a lexicon con-
straint: no monolingual phrase can be used by any
phrasal model unless it occurs at least five times.
High-confidence alignments are provided by inter-
secting GIZA++ alignments trained in each direc-
tion with 5 iterations each of Model 1, HMM, and
Model 4. All GIZA++ alignments are trained with
no sentence-length limit, using the full 688K corpus.

5.1 Pruning Speed Experiments

To measure the speed-up provided by fixed-link
pruning, we timed our phrasal inside-outside algo-
rithm on the first 100 sentence pairs in our training
set, with and without pruning. The results are shown
in Table 1. Tic-tac-toe pruning is included for com-
parison. With fixed-link pruning, on average 95%
of the possible spans are pruned, reducing running
time by two orders of magnitude. This improvement
makes ITG training feasible, even with large bitexts.

5.2 Alignment Experiments

The goal of this experiment is to compare the Viterbi
alignments from the phrasal ITG to gold standard
human alignments. We do this to validate our non-
compositional constraint and to select good align-
ments for use with the surface heuristic.
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Table 1: Inside-outside run-time comparison.

Method | Seconds | Avg. Spans Pruned
No Prune 415 -
Tic-tac-toe 37 68%
Fixed link 5 95%

Table 2: Alignment Comparison.

Method \ Prec \ Rec \ F-measure
GIZA++ Intersect 96.7 | 53.0 68.5
GIZA++ Union 82.5 | 69.0 75.1
GIZA++ GDF 84.0 | 68.2 75.2
Phrasal ITG 50.7 | 80.3 62.2
Phrasal ITG + NCC | 75.4 | 78.0 76.7

Following the lead of (Fraser and Marcu, 2006),
we hand-aligned the first 100 sentence pairs of
our training set according to the Blinker annota-
tion guidelines (Melamed, 1998). We did not dif-
ferentiate between sure and possible links. We re-
port precision, recall and balanced F-measure (Och
and Ney, 2003). For comparison purposes, we in-
clude the results of three types of GIZA++ combina-
tion, including the grow-diag-final heuristic (GDF).
We tested our phrasal ITG with fixed link prun-
ing, and then added the non-compositional con-
straint (NCC). During development we determined
that performance levels off for both of the ITG mod-
els after 3 EM iterations. The results are shown in
Table 2.

The first thing to note is that GIZA++ Intersection
is indeed very high precision. Our confidence in it
as a constraint is not misplaced. We also see that
both phrasal models have significantly higher recall
than any of the GIZA++ alignments, even higher
than the permissive GIZA++ union. One factor con-
tributing to this is the phrasal model’s use of cepts:
it completely interconnects any phrase pair, while
GIZA++ union and GDF may not. Its global view
of phrases also helps in this regard: evidence for a
phrase can be built up over multiple sentences. Fi-
nally, we note that in terms of alignment quality,
the non-compositional constraint is an unqualified
success for the phrasal ITG. It produces a 25 point
improvement in precision, at the cost of 2 points



of recall. This produces the highest balanced F-
measure observed on our test set, but the utility of
its alignments will depend largely on one’s desired
precision-recall trade-off.

5.3 Translation Experiments

In this section, we compare a number of different
methods for phrase table generation in a French to
English translation task. We are interested in an-
swering three questions:

1. Does the phrasal ITG improve on the C-JPTM?

2. Can phrasal translation models outperform the
surface heuristic?

3. Do Viterbi phrasal alignments provide better
input for the surface heuristic?

With this in mind, we test five phrase tables. Two
are conditionalized phrasal models, each EM trained
until performance degrades:

e C-JPTM? as described in (Birch et al., 2006)
e Phrasal ITG as described in Section 4.1

Three provide alignments for the surface heuristic:

o GIZA++ with grow-diag-final (GDF)

e Viterbi Phrasal ITG with and without the non-
compositional constraint

We use the Pharaoh decoder (Koehn et al., 2003)
with the SMT Shared Task baseline system (Koehn
and Monz, 2006). Weights for the log-linear model
are set using the 500-sentence tuning set provided
for the shared task with minimum error rate train-
ing (Och, 2003) as implemented by Venugopal
and Vogel (2005). Results on the provided 2000-
sentence development set are reported using the
BLEU metric (Papineni et al., 2002). For all meth-
ods, we report performance with and without IBM
Model 1 features (M1), along with the size of the re-
sulting tables in millions of phrase pairs. The results
of all experiments are shown in Table 3.

We see that the Phrasal ITG surpasses the C-
JPTM by more than 2.5 BLEU points. A large com-
ponent of this improvement is due to the ITG’s use
of inside-outside for expectation calculation, though

3Supplied by personal communication. Run with default pa-
rameters, but with maximum phrase length increased to 5.
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Table 3: Translation Comparison.

Method | BLEU | +MI | Size
Conditionalized Phrasal Model
C-JPTM 26.27 | 2898 | 1.3M
Phrasal ITG 28.85 | 30.24 | 2.2M
Alignment with Surface Heuristic
GIZA++ GDF 30.46 | 30.61 | 9.8M
Phrasal ITG 30.31 | 30.39 | 5.8M
Phrasal ITG + NCC | 30.66 | 30.80 | 9.0M

there are other differences between the two sys-
tems.* This improvement over search and sampling
is demonstrated by the ITG’s larger table size; by ex-
ploring more thoroughly, it is extracting more phrase
pairs from the same amount of data. Both systems
improve drastically with the addition of IBM Model
1 features for lexical preference. These features also
narrow the gap between the two systems. To help
calibrate the contribution of these features, we pa-
rameterized the ITG’s phrase table using only Model
1 features, which scores 27.17.

Although ITG+M1 comes close, neither phrasal
model matches the performance of the surface
heuristic. Whatever the surface heuristic lacks in
sophistication, it makes up for in sheer coverage,
as demonstrated by its huge table sizes. Even the
Phrasal ITG Viterbi alignments, which over-commit
wildly and have horrible precision, score slightly
higher than the best phrasal model. The surface
heuristic benefits from capturing as much context
as possible, while still covering smaller translation
events with its flat counts. It is not held back by
any lexicon constraints. When GIZA++ GDF+M1
is forced to conform to a lexicon constraint by drop-
ping any phrase with a frequency lower than 5 from
its table, it scores only 29.26, for a reduction of 1.35
BLEU points.

Phrases extracted from our non-compositional
Viterbi alignments receive the highest BLEU score,
but they are not significantly better than GIZA++
GDF. The two methods also produce similarly-sized
tables, despite the ITG’s higher recall.

*Unlike our system, the Birch implementation does table
smoothing and internal lexical weighting, both of which should
help improve their results. The systems also differ in distortion
modeling and () handling, as described in Section 3.



6 Conclusion

We have presented a phrasal ITG as an alternative
to the joint phrasal translation model. This syntactic
solution to phrase modeling admits polynomial-time
training and alignment algorithms. We demonstrate
that the same consistency constraints that allow joint
phrasal models to scale also dramatically speed up
ITGs, producing an 80-times faster inside-outside
algorithm. We show that when used to learn phrase
tables for the Pharaoh decoder, the phrasal ITG is
superior to the constrained joint phrasal model, pro-
ducing tables that result in a 2.5 point improve-
ment in BLEU when used alone, and a 1 point im-
provement when used with IBM Model 1 features.
This suggests that ITG’s perfect expectation count-
ing does matter; other phrasal models could benefit
from either adopting the ITG formalism, or improv-
ing their sampling heuristics.

We have explored, for the first time, the utility of a
joint phrasal model as a word alignment method. We
present a non-compositional constraint that turns the
phrasal ITG into a high-recall phrasal aligner with
an F-measure that is comparable to GIZA++.

With search and sampling no longer a concern,
the remaining weaknesses of the system seem to lie
with the model itself. Phrases are just too efficient
probabilistically: were we to remove all lexicon con-
straints, EM would always align entire sentences to
entire sentences. This pressure to always build the
longest phrase possible may be overwhelming oth-
erwise strong correlations in our training data. A
promising next step would be to develop a prior over
lexicon size or phrase size, allowing EM to intro-
duce large phrases at a penalty, and removing the
need for artificial constraints on the lexicon.
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for their comments. The first author is funded by
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Factorization of Synchronous Context-Free Grammarsin Linear Time
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Abstract

Factoring a Synchronous Context-Free
Grammar into an equivalent grammar with
a smaller number of nonterminals in each
rule enables synchronous parsing algo-
rithms of lower complexity. The prob-
lem can be formalized as searching for the
tree-decomposition of a given permutation
with the minimal branching factor. In this
paper, by modifying the algorithm of Uno
and Yagiura (2000) for the closely related
problem of finding all common intervals
of two permutations, we achieve a linear
time algorithm for the permutation factor-
ization problem. We also use the algo-
rithm to analyze the maximum SCFG rule
length needed to cover hand-aligned data
from various language pairs.

Introduction

and Ullman, 1972), but also require greater compu-
tational complexity for word alignment algorithms
based on synchronous parsing (Satta and Peserico,
2005). Grammar rules extracted from large paral-
lel corpora by systems such as Galley et al. (2004)
can be quite large, and Wellington et al. (2006) ar-
gue that complex rules are necessary by analyzing
the coverage of gold-standard word alignments from
different language pairs by various grammars.

However, parsing complexity depends not only
on rule length, but also on the specific permutations
represented by the individual rules. It may be possi-
ble to factor an SCFG with maximum rule length
n into a simpler grammar with a maximum @f
nonterminals in any one rule, if not all permuta-
tions appear in the rules. Zhang et al. (2006) discuss
methods for binarizing SCFGs, ignoring the non-
binarizable grammars; in Section 2 we discuss the
generalized problem of factoring feary grammars
for any k£ and formalize the problem as permutation
factorization in Section 3.

In Section 4, we describe a@(k - n) left-to-

A number of recent syntax-based approaches tight shift-reduce algorithm for analyzing permuta-
statistical machine translation make use of Syrtions that can bé-arized. Its time complexity be-
chronous Context Free Grammar (SCFG) as the usemesO(n?) when k is not specified beforehand
derlying model of translational equivalence. Wuand the minimalk is to be discovered. Instead of
(1997)’s Inversion Transduction Grammar, as wellinearly shifting in one number at a time, Gildea
as tree-transformation models of translation such ag al. (2006) employ a balanced binary tree as the
Yamada and Knight (2001), Galley et al. (2004), andontrol structure, producing an algorithm similar in
Chiang (2005) all fall into this category.

spirit to merge-sort with a reduced time complex-

A crucial question for efficient computation in ap-ity of O(nlogn). However, both algorithms rely
proaches based on SCFG is the length of the graron reduction tests on emerging spans which involve
mar rules. Grammars with longer rules can represenédundancies with the spans that have already been
a larger set of reorderings between languages (Attested.
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Uno and Yagiura (2000) describe a clever algorn-ary SCFG, the parsing complexity can be as high
rithm for the problem of finding all common inter- asO(N"**). The reason is even if we binarize on
vals of two permutations in timé&(n + K ), where one side to maintaifi indices, for many unfriendly
K is the number of common intervals, which campermutations, at most + 1 boundary variables in
itself be Q(n?). In Section 5, we adapt their ap-the other language are necessary.
proach to the problem of factoring SCFGs, and show The fact that this bound is exponential in the rule
that, given this problem definition, running time carlength» suggests that it is advantageous to reduce
be improved toO(n), the optimum given the time the length of grammar rules as much as possible.
needed to read the input permutation. This paper focuses on converting an SCFG to the

The methodology in Wellington et al. (2006) mea-equivalent grammar with smallest possible maxi-
sures the complexity of word alignment using thenum rule size. The algorithm processes each rule
number of gaps that are necessary for their synn the input grammar independently, and determines
chronous parser which allows discontinuous spanghether the rule can be factored into smaller SCFG
to succeed in parsing. In Section 6, we provide aules by analyzing the rule’s permutatian
more direct measurement using the minimal branch- As an example, given the input rule:

ing factor yielded by the permutation factorization (X — AN BOCE p) B OGO,

algorithm.
X = EOGOpWFOc® AR (1)
2 Synchronous CFG and Synchronous

Parsing we consider the associated permutation:

We begin by describing the synchronous CFG for- (5,7,4,6,3,1,2)

malism, which is more rigorously defined by Ahowe determine that this permutation can be fac-
and Ullman (1972) and Satta and Peserico (2005).tored into the following permutation tree:

We adopt the SCFG notation of Satta and Peserico (2.1)
(2005). Superscrignhdicesin the right-hand side of (21)/\(12)
grammar rules: o~ o~
(2,4,1,3) 3 1 2
(1) n m(1)) m(n)) T
X = x{xm, x G x G 7 oy %

o _ _ ) We define permutation trees formally in the next
indicate that the nonterminals with the same indeXaction. but note here that nodes in the tree corre-

are linked across the two languages, and will eventigong to subsets of nonterminals that form a sin-
aIIy_ be revx_mtten by the same rule application. Eacleﬂe continuous span in both languages, as shown by
X is avariable which can take the value of any nong,e shaded regions in the permutation matrix above.

terminal in the grammar. This tree can be converted into a set of output rules

~ We say an SCFG is-ary if and only if the max- nat are generatively equivalent to the original rule:
imum number of co-indexed nonterminals, i.e. the

longest permutation contained in the set of rules, is
of sizen.

(X - xPxP® x - xPxM)
Given a synchronous CFG and a pair of input [
[

X, - AVBA x; - AWBA)]
Xy — CWXP| Xy — X oW
X3 — DWE@ G W),
X3 — EAGWpMEG)]

strings, we can apply a generalized CYK-style bot-
tom up chart parser to build synchronous parse
trees over the string pair. Wu (1997) demonstrates
the case of binary SCFG parsing, where six string
boundary variables, three for each language as imhere X, X> and X3 are new nonterminals used to
monolingual CFG parsing, interact with each othemepresent the intermediate states in which the syn-
yielding an O(N®) dynamic programming algo- chronous nodes are combined. The factorized gram-
rithm, where N is the string length, assuming themar is only larger than the original grammar by a
two paired strings are comparable in length. For anonstant factor.
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3 Permutation Trees Stack Input Operation
5,7,4,6,3,1,2 shift

We define the notion of permutation structure in this 5 7,4,6,3,1,2  shift
section. We define permuted sequence as a per- 5,7 4,6,3,1,2 shift
mutation ofn (n > 1) consecutive natural numbers. 2 ; 4 3 g' i 2 2 fehgflce (0413
A permuted sequence is said toary parsable [A: ’7]’ 3192 Shift y(@2413)
if either of the following conditions holds: [4..7], 3 12 reduce by (2,1)
[3..7] 1,2 shift
1. The permuted sequence only has one number. 3 7] 1 2 shift
3..7,1,2 reduce by (1,2
2. It has more than one number and can be seg- {3___7}’ [1...2] reduce bi// Ez,lg
mented intok’ (¢ > k' > 2) permuted se- [1..7]

guences each of which fs-ary parsable, and _ _
the &’ subsequences are arranged in an ordd@ble 1. The execution trace of the shift-reduce
identified by one of thé’! permutations of/. ~ Parser on the input permutation7, 4,6, 3,1, 2.

This is a recursive definition, and we call the cor-

responding recursive structure over the entire S(?-:'ngeg Sequenﬁe dfto n, and parS|ngf|s succgss-
quence -ary permutation tree. ul. Otherwise, the input permutation afcannot be

Our goal is to find out thé-ary permutation tree parsed into &-ary permutatlon tree. _ _
for a given permutation, whereis minimized. An example execution trace of the algorithm is

shown in Table 1.
4  Shift-reduce on Permutations The partition property is a sufficient and neces-
_ _ _ sary condition for the topn subsequences to be re-
In Fh's sect|on,- we present afi(n - k) a'9°f_'thm ducible. In order to check if the property holds, we
which can be viewed as a need-to-be-optimized Vefiaed to compute the sum of the lengths of subse-
sion of the Iipear time algorithm to be presented i'?1uences under consideration and the difference be-
the next sec_tlon. ) . tween the largest and smallest number in the cov-
The algorithm is based on a shift-reduce parseg oy region. We can incrementally compute both
which maintains a stack for subsequences that ha&?ong with each step going down the stack. nif
been discovered so far and loops over shift and res bounded byk, we needO(k) operations for each
duce steps: item shifted onto the stack. So, the algorithm runs in
1. Shift the next number in the input permutationo(” k).
onto the stack. We might also wish to compute the minimuin
for which k-arization can be successful on an input
2. Go down the stack from the top to the _bOttompermutation ofr. We can simply keep doing reduc-
Whe_”_e"er the topn sgbsequences satisfy thetion tests for every possible top region of the stack
partition property, which says the total I_ength while going deeper in the stack to find the minimal
of them (k > m > 2) subsequences minus oy tion |n the worst case, each time we go down
is equal to the difference between the smalle% the bottom of the increasingly higher stack with-

number and the largest number contained in thgut a successful reduction. Thus,@{n?), we can

m segments, make a reduction by gluing th?ind the minimun-arization
m segments into one subsequence and restart '

reducing from the top of the new stack. S5 | inear Time Factorization
when no reduction is possible.

3. If there are remaining numbers in the input perl this section, we show a linear time algorithm
mutation, go to 1. which shares the left-to-right and bottom-up control

structure but uses more book-keeping operations to
When we exit from the loop, if the height of the stackreduce unnecessary reduction attempts. The reason
is 1, the input permutation af has been reduced to that our previous algorithm is asymptoticall}(n?)
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is that whenever a new number is shifted in, we have e We filter z's to maintain the invariant that

to try out every possible new span ending at the new
number. Do we need to try every possible span? Let
us start with a motivating example. The permuted
sequencéb, 7,4, 6) in Table 1 can only be reduced
as a whole block. However, in the last algorithm,
when4 is shifted in, we make an unsuccessful at-
tempt for the span of7,4), knowing we are miss-
ing 5, which will not appear when we expand the
span no matter how much further to the right. Yet
we repeat the same mistake to try Brwhen6 is
scanned in by attempting df, 4, 6). Such wasteful
checks result in the quadratic behavior of the algo-
rithm. The way the following algorithm differs from

f(z,y) (x < y) is monotonically decreasing
with respect tar, over iterations ory (from 1

to n), so that any remaining values ofcorre-
sponding to valid reductions are clustered at the
point wheref tails off to zero. To put it another
way, we never have to test invalid reductions,
because the valid reductions have been sorted
together for us.

We make greedy reductions as in the shift-
reduce algorithm.

In the new algorithm, we use a doubly linked list,
instead of a stack, as the data structure that stores

and outperforms the previous algorithm is exactl¥he candidater’s to allow for more flexible main-

that it crosses out impossible candidates for redu
tions such a§ in the example as early as possible.
Now we state our problem mathematically. We

?éining operations. The steps of the algorithm are as
follows:

define a function whose value indicates the re- 1. Increase the left-to-right indexby one and ap-

ducibility of each pair of positiongz, y) (1 < z <
y <n)

f(@,y) = u(z,y) —l(z,y) — (y — )
where

Wz, y) = ierr[liny] 7 ()

u(z,y) = max 7(i)
i€[z,y]

[ records the minimum of the numbers that are
permuted to from the positions in the region y|.
u records the maximum. Figure 1 provides the vi-
sualization ofu, [, and f for the example permuta-
tion (5,7,4,6,3,1,2). v andl can be visualized as
stairs. u goes up from the right end to the lefi.
goes down. f is hon-negative, but not monotonic
in general. We can make a reduction ony) if
and only if f(x,y) = 0. This is the mathemati-
cal statement of the partition property in step 2 of
the shift-reduce algorithm: and/ can be computed

incrementally from smaller spans to larger spans to g_

guaranted (1) operations for computing on each
new span ofz, y] as long as we go bottom up. In the

pend it to the right end of the list.

. Find thepivot x* in the list which is minimum

(leftmost) amongr satisfying eitheru(x,y —
1) < u(z,y) (exclusively) orl(z,y — 1) >
Uz, y).

. Remove thoser’s that yield even smaller

u(xz,y — 1) thanu(z*,y — 1) or even larger
l(z,y — 1) thanl(z*,y — 1). Thosex’'s must
be on the right ofc* if they exist. They must
form a sub-list extending to the right end of the
original z list.

4. Denote ther which is immediately to the left

of z* asz’. Repeatedly remove aifs such that
f(z,y) > f(a',y) wherex is at the left end of
the sub-list ofr’s starting fromz* extending to
the right.

. Go down the pruned list from the right end, out-

put (z,y) until f(z,y) > 0. Remover’s such
that f(z,y) = 0, sparing the smallest which
is the leftmost among all suctis on the list.

If there are remaining numbers in the input per-
mutation, go to 1.

new algorithm, we will reduce the size of the search The tricks lie in step 3 and step 4, where bad can-
space of candidate position paits, y) to be linear didatex’s are filtered out. We use the following di-

in n so that the whole algorithm i9(n).
The algorithm has two main ideas:
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that the two steps are filtering on.



Case 1. If ; < zi41 < z¥, then f(z;,y) —

step 4 f(zi,y — 1) = —1. The reason is if; is on the
Ty ey @ T Ty e Ty, TR, Y left of «*, bothu(z;, y) andl(z;, y) are not changed

from they — 1-th step, so the only difference is that

_ ~y—ux; has increased by one. Graphically, theurve
The steps from 2 to 4 are the operations that ma”é‘xtending to the left af* shifts down a unit of.. So,
tain the monotonic invariant which makes the reducie monotonic property still holds to the left of.

tions in step 5 as trivial as performing output. The

stack-based shift-reduce algorithm has the same topase 2 If 2" < @ < @iy, then f(zs,y) —
level structure, but lacks steps 2 to 4 so that in step5(®i, ¥ — 1) = ¢ (¢ = 0). The reason is that after
we have to winnow the entire list. Both algorithmsexecuting step 3 in the algorithm, the remainint
scan left to right and examine potential reductiofave either their(z;, y) shifted up uniformly with
spans by extending the left endpoint from right td (i, y) being unchanged, or the symmetric case that

step 3

left given a right endpoint. l[(x;,y) is shifted down uniformly without changing
u(x;,y). In both cases, the difference betweeand
5.1 Example Execution Trace l increases by at least one unit to offset the one unit

An example of the algorithm’s execution is showr"Créase of — ;. The resultis that th¢ curve ex-
in Figure 1. The evolution ofi(z,y), I(z, y), and tending fromz* to the right shifts up or remains the

f(x,y) is displayed for increasing's (from2to 7). Same

To identify reducible spans, we can check the plotofase 3:  So the half curve off on the left ofz* is
f(z,y) to locate thez, y) pairs that yield zero. The shifting down and the half right curve on the right is
pivots found by step 2 of the algorithm are markeghifting up, making it necessary to consider the case
with x's on thez-axis in the plot foru andl. Thex’s  thatz; is on the left andz;, on the right. Fortu-
that are filtered out by step 3 or 4 are marked withately, step 4 in the algorithm deals with this case
horizontal bars across. We want to point out the inexplicitly by cutting down the head of the right half
teresting steps. When= 3, 2" = 1, z = 2 needs curve to smooth the whole curve into a monotoni-
to be crossed out by step 3 in the algorithm. Whega|ly decreasing one.

y =4,z =3,z = 3itselfis to be deleted by step 4 e still need one last piece for the proof, i.e., the
in the algorithm.z = 4 is removed at step 5 becauseyalidity of pruning. Is it possible we winnow off

it is the I’ight end in the first reduction. On the Othergood z's that will become useful in later stages of
hand,z = 4 is also a bad starting point for future y» The answer is no. The values we remove in step
reductions. Notice that we also remove= 5 at 3 and 4 are similar to the points indexing into the
step 6, which can be a good starting point for reduGsecond and third numbers in the permuted sequence
tions. But we exclude it from further considerations,(g), 7,4,6). Any span starting from these two points
because we want left-most reductions. will not be reducible because the eleméris miss-
ing.!

To summarize, we remove impossible left bound-
Now we explain why the algorithm works. Both al-aries and keep good ones, resulting in the mono-
gorithms are greedy in the sense that at each scanicity of f function which in turn makes safe
point we exhaustively reduce all candidate spans treedy reductions fast.
the leftmost possible point. It can be shown that ] ) ]
greediness is safe for parsing permutations. 5.3 Implementation and Time Analysis

What we need to show is how the monotonic inWe use a doubly linked list to implement both the
variant holds and is valid. Now we sketch the proofand! functions, where list element includes a span
We want to show for allz; remaining on the list, of = values (shaded rectangles in Figure 1). Both
f(xi,y) > f(ziv1,y). Wheny = 1, itis trivially  lists can be doubly linked with the list ofs so that

true. '_\IOW we do the induction op step by case 1Uno and Yagiura (2000) prove the validity of step 3 and
analysis: step 4 rigorously.

5.2 Correctness
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we can access thefunction and function atO(1) 6 Experimentson Analyzing Word
time for eachz. At the same time, if we search for Alignments
x based onu or [, we can follow the stair functions,

skipping many intermediate’s. We apply the factorization algorithm to analyzing

The total number of operations that occur at step/ord alignments in this section. Wellington et al.
4 and step 5 i¥)(n) since these steps just involve(2006) indicate the necessity of introducing discon-
removing nodes on the list, and onlyn nodes are tinuous spans for synchronous parsing to match up
created in total over the entire algorithm. To findwith human-annotated word alignment data. The
x*, we scan back from the right end oflist or / number of discontinuous spans reflects the struc-
list. Due to step 3, each (andl) element that we tural complexity of the synchronous rules that are
scan over is removed at this iteration. So the totdnvolved in building the synchronous trees for the
number of operations accountable to step 2 and st@p/en alignments. However, the more direct and de-
3 is bounded by the maximum number of nodes evdailed analysis would be on the branching factors of
created on the and! lists, which is also. the synchronous trees for the aligned data.

Since human-aligned data has many-to-one word
links, it is necessary to modify the alignments into
one-to-one. Wellington et al. (2006) treat many-to-

) ] ) ~ . one word links disjunctively in their synchronous
Our algorithm is based on an algorithm for finding,<er We also commit to one of the many-one links
all common intervals of two permutations (Uno ancE

s ; o y extracting a maximum match (Cormen et al.,
Yagiura, 2000). The differenéds in step 5, where 1

: 990) from the bipartite graph of the alignment. In
we remove the embedded reducibls and keep er words, we abstract away the alternative links
only the leftmost one; their algorithm will keep all of

i : ' ) ~' in the given alignment while capturing the backbone
the reducibler’s for future c;on&deraﬂon_s o] thqt N sing the maximum number of word links.
the example the numb@rwill be able to involve in ) )
We use the same alignment data for the five

both the reductiori[4 — 7], 3) and(3, [1 —2]). In the | irs Chi /Enalish ian/Endlish
worst case, their algorithm will output a quadratic"’mgu"’uge pairs Chinese/English, Romanian/English,

number of reducible spans, making the whole algoI:|indi_/Eninsh, Spanish/English, and French/English
fithm O(n2). Our algorithm isO(n) in the worst (Wellington et al., 2006). In Table 2, we report the

case. We can also generate all common intervals meer of sentences that areary parsable but not

transforming the permutation tree output by our aIZC — 1-ary parsable for increasings. Our analysis

gorithm reveals that the permutations that are accountable for
' _ o non-ITG alignments include higher order permuta-
However, we are not the first to specialize the Ungons such a$3,1,5,2,4), albeit sparsely seen.
and Yagiura algorithm to produce tree structures for ,
. : . We also look at the number of terminals the non-
permutations. Bui-Xuan et al. (2005) reached a lin-. .
) . . S binary synchronous nodes can cover. We are in-
ear time algorithm in the definition framework of

PQ trees. PQ trees represent families of permutzg{gr%teOI In doing so, because this can tell us how

tions that can be created by composing operatiorgneral these unfriendly rules are. Wellington et al.

. . 006) did a similar analysis on the English-English
of scrambling subsequences according to any pey- L
. . itext. They found out the majority of non-ITG
mutation (P nodes) and concatenating subsequences

in order (Q nodes). Our definition of permutationparsable cases are not local in the sense that phrases

tree can be thought of as a more specific version of%lf length up to 10 are not helpful in covering the

PQ tree, where the nodes are all labeled with a sp aps. We analyzed the translation data for the five

o . . anguage pairs instead. Our result differs. The right-
cific permutation which is not decomposable. ) .
most column in Table 2 shows that only a tiny per-

cent of the non-ITG cases are significant in the sense
2The original Uno and Yagiura algorithm also has the minmthat we Can nOI_de_aI W'th them th_rOUQh phrases or
difference that the scan point goes from right to left. tree-flattening within windows of size 10.

54 Reated Work
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Figure 1: Evolution ofu(z,y), l(x,y), and f(x,y) as y goes from 2 to 7 for the permutation
(5,7,4,6,3,1,2). We usex under thez-axis to indicate ther*’s that are pivots in the algorithm. Use-
lessz’s are crossed out:’s that contribute to reductions are marked with eithen its left or) on its right.
For the f function, we use solid boxes to plot the values of remainilsgon the list but also show the other
f values for completeness.
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Branching Factor
1 2| 4 5 6 7 10| >4 (and covering> 10 words)
Chinese/English 451130 4 5 1 7(1.4%)
Romanian/English 195| 4 0
Hindi/English 3 8| 1 1 0
Spanish/English 195| 4 1(0.5%)
French/English 4251 9 9 3 1) 6(1.3%)

Table 2: Distribution of branching factors for synchronous trees oiowva language pairs.
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Abstract tee contiguous spans on the target-side, due to the ar-
bitrary re-ordering of nonterminals between the two
Binarization is essential for achieving languages. As a result, decoding with an integrated
polynomial time complexities in pars- language model still has an exponential complexity.
ing and syntax-based machine transla- Synchronous binarizatiorfZhang et al., 2006)
tion. This paper presents a new binariza-  solves this problem by simultaneously binarizing
tion schemetarget-side binarizationand both source and target-sides of a synchronous rule,
compares it with source-side and syn-  making sure of contiguous spans on both sides
chronous binarizations on both string-  whenever possible. Neglecting the small amount

based and tree-based systems using syn- of non-binarizable rules, the decoding complexity
chronous grammars. In particular, we with an integrated language model becomes polyno-
demonstrate the effectiveness of target-  mial and translation quality is significantly improved
side binarization on a large-scale tree-to-  thanks to the better search. However, this method is
string translation system. more sophisticated to implement than the previous
method and binarizability ratio decreases on freer
word-order languages (Wellington et al., 2006).

This paper presents a third alternatitarget-
Several recent syntax-based models for machirside binarizationwhich is the symmetric version of
translation (Chiang, 2005; Galley et al., 2006) cathe simple source-side variant mentioned above. We
be seen as instances of the general framework obmpare it with the other two schemes in two pop-
synchronous grammars and tree transducers. In thikar instantiations of MT systems based on SCFGs:
framework, decoding can be thought of as parghe string-based system€hiang, 2005; Galley et
ing problems, whose complexity is in general expoal., 2006) where the input is a string to be parsed
nential in the number of nonterminals on the rightising the source-side of the SCFG; and thee-
hand side of a grammar rule. To alleviate this probbased systent(kiu et al., 2006; Huang et al., 2006)
lem, one can borrow from parsing the techniquevhere the input is a parse tree and is recursively
of binarizing context-free grammars (into Chomskyonverted into a target string using the SCFG as a
Normal Form) to reduce the complexity. With syn-tree-transducer. While synchronous binarization is
chronous context-free grammars (SCFG), howevethe best strategy for string-based systems, we show
this problem becomes more complicated with théhat target-side binarization can achieve the same
additional dimension of target-side permutation. performance of synchronous binarization for tree-

The simplest method of binarizing an SCFG idased systems, with much simpler implementation
to binarize (left-to-right) on the source-side as ifand100% binarizability.
treating it as a monolingual CFG for the source-
langauge. However, this approach does not guarad- Synchronous Grammarsand
Binarization Schemes

1 Introduction

*This work is partially supported by NSF ITR grants I1IS-
0428020 (while | was visiting USC/ISI) and EIA-0205456. | . . .
also wish to thank Jonathan Graehl, Giorgio Satta, Hao zhan) this section, we define synchronous context-

and the three anonymous reviewers for helpful comments.  free grammars and present the three binarization
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%2 5 g == . >
c 8 8 1 1
: NP g3
Chinese— contiguous contiguous gap
(a) example rule (b) source-side (c) synchronous (d) target-side
Figure 1: lllustration of the three binarization schemes, with virtual nontetmingray.
schemes through a motivational example. 2.1 Source-sideBinarization

A synchronous CFG (SCFG) is a context-free Te first and simplest schemsgurce-side binariza-
rewriting system for generating string pairs. Eaclon works left-to-right on the source projection of

rule (synchronous productigirewrites a nontermi-  yhe SCFG without respecting the re-orderings on the
nal in two dimensions subject to the constraint th"’ltarget-side. So it will binarize the first rule as:

the sequence of nonterminal children on one side is
a permutation of the nonterminal sequence on t S — NP-PPVP
other side. Each co-indexed child nonterminal pair = NP-PP — NP PP

will be further rewritten as a unit. Theank ofarule  \yhjch corresponds to Figure 1 (b). Notice that the
is defined as the number of its synchronous nontejra| nonterminalNP-PP representing the inter-
minals. We also define the source and target projegsediate symbol igliscontinuouswith two spans on
tions of an SCFG to be the CFGs for the source angle target (English) side, because this binarization
target languages, respectively. scheme completely ignores the reorderings of non-
For example, the following SCFG terminals. As a result, the binarized grammar, with

S . NPEZpPZvypE NPZyPE ppZ  @gapon the target-side, is no longer an SCFG, but
NP — Baoweier ' Powell can be represented in the more general formalism of
O e juxing le huitan held a meeting Multi-Text Grammars (MTG) (Melamed, 2003):
PP —

yu Shalong with Sharon S [1,2] NP-PP V
3) —D :
S [1,2,1] \NP-PP(2) VP

captures the re-ordering of PP and VP between
Chinese (source) and English (target). The sourcere|1, 2, 1] denotes that on that target-side, the first
projection of the first rule, for example, is nonterminal NP-PP has two discontinuous spans,
with the second nonterminal VP in the gap.

Intuitively speaking, the gaps on the target-side

Decoding with an SCFG (e.g., translating fromW'” lead to exponential complexity in de_codmg with
Chinese to English using the above grammar) can tfa€grated language models (see Section 3), as well
cast as a parsing problem (see Section 3 for detail§S Synchronous parsing (Zhang et al., 2006).
in_which case we needto bin_arize a sync_:hronous rule, Synchronous Binarization
with more than two nonterminals to achieve ponnoA incioled hod | h binari
mial time algorithms (Zhang et al., 2006). We will”, more principled method isynchronous binariza-

next present the three different binarization schem @g which .Z|multe.1nhe(;]usly blnarlzei bOt.h scl)urce
using Example 1. and target sides, with the constraint that virtual non-

terminals always have contiguous spans on both

'An alternative notation, used by Satta and Peserico (2005jdes. The resulting grammar is thus another SCFG,
allows co-indexed nonterminals to take different symbols acro

languages, which is convenient in describing syntactic divej-?]e bina_ry branching equivalent of the origin_al gram-
gences (see Figure 2). mar, which can be thought of as an extension of the

S— NP PP VP
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[jinyibu]; [jiu zhongdongveiji Jo [juxing]s [huitan]4
further on Mideast crisis hold talk

English—

‘[hold]s [further]; [talks]y [onthe Mideast crisig] 3

Chinese—

Figure 2: An example of non-binarizable rule from the hand-aligned Ghiisnglish data in Liu et al.
(2005). The SCFG rule is VP> ADVPY pP2 vBE NN, vP — VBB 3¢ NNS? PP? in the notatoin
of Satta and Peserico (2005).

Chomsky Normal Form in synchronous grammars. scheme s(b) t(b)
The example rule is now binarized into: source-side 1 <n/2
synchronous 1 1
4 S — NPZPP-vF, NPYPP-VP target-side | <n/2| 1
PP-VP — PP VP2, VPZ pp! =

Table 1: Source and target arities of the three bina-

which corresponds to Figure 1 (c). This represertization schemes of an SCFG rule of ramk
tation, being contiguous on both sides, successfully

reduces the decoding complexity to a low polyno-
mial and significantly improved the search qua“tythis new scheme causes exponential complexity in

(Zhang et al., 2.006)' . string-based systems (Section 3.1), the continuous
However, this scheme has the following draw-s ans on the target-side will ensure polynomial com-
backs. First, synchronous binarizatiomist always P g POty

) . . lexity in tree-based systems (Section 3.2).
possible with an arbitrary SCFG. Some reorderE) y y ( ) .
: : : Before we move on to study the effects of vari-
ings, for example, the permutatiof2, 4,1, 3), is L ; )

o . ous binarization schemes in decoding, we need some
non-binarizable. Although according to Zhang et al

(2008), the vast majority0.7%) of rules in their formal machineries of discontinuities.

. i T We define thesource and target arities of a
Chinese-English dataset are binarizable, there do e\@tual nonterminalV’, denoteds(V) and(V), to

ist some interesting cases that are not (see FigureOe the number of (consecutive) spansiobn the
for a real-data example). More importantly, the ra-

) U source and target sides, respectively. This definition
tio of binarizability, as expected, decreases on freer AR
) extends to a binarizatioh of an SCFG rule of rank
word-order languages (Wellington et al., 2006). Sec- . )
S T n, where aritiess(b) and¢(b) are defined as the
ond, synchronous binarization is significantly more ' . " .
; . . maximum source and target arities over all virtual
complicated to implement than the straightforward : . .
. o nonterminals inb, respectively. For example, the
source-side binarization. " L .
source and target arities of the three binarizations in
2.3 Target-side Binarization Figure 1 are 1 and 2 for (b), 1 and 1 for (c), and

2 and 1 for (d). In general, the arities for the three

We now introduce a novel scheme, target-side bB' . . .
o S . ; inarization schemes are summarized in Table 1.
narization, which is the symmetric version of the

source-side variant. Under this method, the targeg  Theoretical Analysis
side is always contiguous, while leaving some gaps

on the source-side. The example rule is binarized/e now compare the algorithmic complexities of the
into the following MTG form: three binarization schemes in a central problem of

machine translation: decoding with an integrated
S [1,2,1] (NP-VP(2) PP gram language model. Depending on the input be-
(5) —D . . 7
S [1,2] NP-VP PP ing a string or a parse-tree, we divide MT systems
based on synchronous grammars into two broad cat-
which corresponds to Figure 1 (d). egories: string-based and tree-based.

Although the discontinuity on the source-side in
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3.1 String-based Approaches

o
String-based approaches include both string-to‘ﬁj = PP
string (Chiang, 2005) and string-to-tree system§& S >
(Galley et al., 20065. To simplify the presentation % = e a
we will just focus on the former but the analysis alsat = k z
¢ J

applies to the latter. We will first discuss decoding o o
with a pure SCFG as the translation model (hence-  fhvee Chinese indices four Chinese indices
forth —LM decoding, and then extend it to include (a): Deduction (8) (b): Deduction (10)

ann-gram model LM decoding).
Figure 3: lllustrations of two deductions with gaps.
3.1.1 Trandation asParsing

The —LM decoder can be cast as a (monolinfeaving a gapL() on the target-side resulting item,
gual) parser on the source language: it takes thacause NP and PP are not contiguous in the En-
source-language string as input and parses it usigfish ordering. This gap is later filled in by the sub-
the Source‘pFOjeCtion of the SCFG while bUiIdinql’ans|atiom3 of VP (See also Figure 3 (a)):
the corresponding target-language sub-translations
in parallel. For source-side and synchronous bina- NP-PRy) : (w1, ti Uta) — (VPry) : (w2 ts)

rizations, since the resulting grammar has contigu- (Sig) : (w1 + wo, titsty)
ous source spans, we can apply the CKY algorithm (8)
which guarantees cubic time complexity. In both cases, there are still only three free indices

the synchronously binarized grammar (4) is notated € gaps on the target-side do not require any ex-
tra computation in the currertLM setting, but as

(PP ) : (w1,t1) (VP : (wa, t2) we shall see shortly below, will lead to exponential
(PP-VP,) : (wy + wa, tot1) (6) complexity when integrating a language model.
For a target-side binarized grammar as in (5),
wherei, j, k are free indices in the source stringowever, the source-side spans are discontinuous

w,wy are the scores of the two antecedent item¥/here CKY can notapply, and we have to enumerate
and ¢, t, are the corresponding sub-translatidns.more free indices on the source side. For example,
The resulting translatiofy¢; is the inverted concate- the first deduction
nation as specified by the target-side of the SCFG (NP, ;) : (w1, 1) (VPy) : (wa,t2)
rule. S (NP-VP, jug) © (w1 + wy, tata) — (9)
The case for a source-side binarized grammar (3) _ _ _

is slightly more complicated than the above, becaud@aves a gap in the source-side span of the resulting
we have to keep track of gaps on the target side. F§#M, which is later filled in when the item is com-
example, we first combine NP with PP bined with a PP (see also Figure 3 (b)):
NP-VP, ) : (wy,t PP.,) : (wy,
(NPLy): (w1)  (PRe): (3, 1) VP (onty) (PR : [t

’ ’ (Siy) : (w1 + w2, tat2)

(NP-PR ) : (w1 + wa, t1 L ta) (7) ’ (10)

20ur notation ofX-to-Y systemis defined as follows: X de- Both of the above deductions have four free in-

notes the input, either a string or a tree; while Y represents tt@ices, and thus of complexit9(|w|*) instead of cu-
RHS structure of an individual rule: Y istring if the RHS is  pjc in the length of the input string.

a flat one-level tree (as in SCFGs), and Vtiise if the RHS M v, th lexity of a binarizati
is multi-level as in (Galley et al., 2006). This convention also VIOT€ generally, the compiexity or a binarization

applies to tree-based approaches. scheme depends on its source arity. In the worst-
The actual system does not need to store the translatiopgse, a binarized grammar with a source arity of

since they can be recovered from backpointers and theyaire . . L .
considered part of the state. We keep them here only for preseW—'” require at mos{2s + 1) free indices in a deduc-

tation reasons. tion, because otherwise if one rule negds + 2)
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indices, then there aret 1 spans, which contradicts wherew’ = w; + we — log Py, (with | talk) is

the definition of arity (Huang et al., 200%). the score of the resultingLM item: the sum of
These deductive systems represent the seartite scores of the antecedent items, plusoabi-

space of decoding without a language model. Whemation costwhich is the negative log probability of

one is instantiated for a particular input string, it dethe bigrams formed in combining adjacent boundary

fines a set of derivations, calledaest represented words of antecedents.

in a compact structure that has a structure of a hyper- Now that we keep track of target-side boundary

graph. Accordingly we call items likéPP, 3) nodes words, an additional complexity, calledrget-side

in the forest, and an instantiated deduction like ~ complexity is introduced. In Deduction (11), four

target words are enumerated, and eadiM item
(PP-VR5) — (PP3)(VPs) sto?es two boundary words; this is also true in gen-

we call ahyperedgehat connects one or more an_eral for synchronous and target-side binarized gram-

tecedent nodes to a consequent node. In this reffars where we always combine two consecutive

resentation, the time complexity ofLM decoding, target strings in a deduction. More generally, this

which we refer to asource-side complexitjs pro- scheme can be easily extended to work withnan

portional to the size of the foredt, i.e., the num- gram model (Chiang, 2007) wheneis usually> 3

ber of hyperedges (instantiated deductionsyiffo ~ (trigram or higher) in practice. The target-side com-

summarize, the source-side complexity for a binaPlexity for this case is thus

rized grammar of source arityis

o(v[*m1)
|F| = O(Jw[>**1).
i whereV is the target language vocabulary. This is
312 Addingal anguage Model because each constituent must store its initial and
To integrate with a bigram language model, wgjng| (m — 1)-grams, which yields foufm — 1)-
can use the dynamic-programming algorithm of Wigrams in a binary combination. In practice, it is often
(1996), which we may think of as proceeding inagssumed that there are only a constant number of

two passes. The first pass is as above, and the s@émsiations for each input word, which reduces this
ond pass traverses the first-pass forest, assigningdemplexity intoO (|w|4™~1).

each node a set of augmented items, which we call However, for source-side binarization which

+LM items of the form (v***), wherea andb are  |eaves gaps on the target-side, the situation becomes
target words and- is a placeholder symbol for an more complicated. Consider Deduction (8), where
elided part of a target-language string. This item inthe sub-translation for the virtual node NP-PP is
dicates that a possible translation of the part of th@apped {1 Ut,). Now if we integrate a bigram model
input spanned by is a target string that starts with hased on that deduction, we have to maintain the
a and ends wittb. boundary words of botk, andt, in the +LM node
Here is an example deduction in the synyfNP-PP. Together with the boundary words in node

chronously binarized grammar (4), fordlM item  \/p, there are a total of six target words to enumerate
for the node(PP-VR ¢) based on the-LM Deduc- oy this +L M deduction:

tion (6):

(PP‘i"’i;h*Sharo'”): (wlatl) (Vpg%ld*talk): (wg,tg) -

*
(PP-VPedxsharon. (4 tat4) (S577) + (w', tatst)
(11) (12)

e — ! _

“Actually this is true only if in any binarization scheme,Wherew =wit .wQ . l.og le(c ’ b)le(e| d)' .
a non-contiguous item is always combined with a contiguous With an analysis similar to that of the source-side,

item. We define both source and target binarizations tinbe we state that, for a binarized grammar with target

cremental(i.e., left-to-right or right-to-left), so this assumption i ; ;
trivially holds. More general binarization schemes are possibl"é“’Ity t, the target-side complexity, denotéd is
to have even higher complexities, but also possible to achieve

better complexities. Full discussion is left for a separate paper. T = O(|w|>EFDm=1))

(NP-PRET )+ (wy, ty Uty)  (VPEE) : (wa, ts)
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scheme string-based tree-based

source-side | [wPF2EFDm=T) ||| TF2E 1 m=1) |

synchronous  |w|?H40m—1) |w[TFHm=1) S, : titst

target-side | [w]*FDHA0RD | ot HAMD T

i . an-l Al PPn.Q ) VPn.3 . t3

Table 2: Worst-case decoding complexities of the

three binarization schemes in the two approaches

(excluding theO(|w|?) time for source-side parsing Figure 4: lllustration of tree-to-string deduction.

in tree-based approaches).

string, using the SCFG as a tree-transducer. In this
because in the worst-case, there @are1 spans in- S€tting, the-LM decoding phase is &ee-parsing
volved in a+LM deduction ¢ of them from one vir- Problem (Eisner, 2003) which aims to cover the en-
tual antecedent and the other one non-virtual), arff€ (ree by a set of rules. For example, a deduction
for each span, there are — 1 target words to enu- ©f the firstrule in Example 1 would be:
merate at both left and right boundaries, giving &NP,.,) : (w1,¢1) (PR2) : (w2,t2) (VPy3) : (ws,ts)

total of 2(¢ + 1)(m — 1) words in this deduction. (Sy) : (w1 + wa + ws, t1t3ts)
We now conclude that, in a string-based system, (13)

the combined complexities for a binarized grammaghere; and - i(i = 1,2,3) are tree addresses
with source aritys and target arity is (Shieber et al., 1995), with -  being theit" child
f n (the address of the root nodee)s The nonter-
_ (25+1)+2(t+1)(m—1) orn
O(FIT) = O(jv| )- minal labels at these tree nodes must match those in

The results for the three specific binarizationtnhoedi':]:';G rule, e.g., the input tree must have a PP at
schemes are summarized in Table 2. Although both The semantics of this deduction is the following:

source-side and target-side binarizations lead to e>§-

onential complexities. it is likelv that language the label of the current node in the input tree is
P . p_ ' . y . guag S, and its three children are labeled NP, PP, and VP,
model combinations (target-side complexity) dom-

inate the computation, since is larger than 2 in with corresponding sub-translations, ¢3, ands,

practice. In this sense, target-side binarization is stiwen a possible translation for the current node S is

preferable to source-side binarization. t1tsto (See Figure 4). An alternative, top-down ver-

It is also worth noting that with the hook trick sion of this bottom-up deductive system is, at each

of Huang et al. (2005), the target-side complexpOde’ try all SCFG rules thpattern-matcfthe cur-

ity can be reduced t@(]w|2+D(m—1) making re_nt subtree, and _recursn_/ely solve sub-problems in-
. : . g_lcated by the variables, i.e., synchronous nontermi-
it more analogous to its source-side counterpart:

. . . . pals, of the matching rule (Huang et al., 2006).
if we consider the decoding problem as intersect- With the input tree completely aiven. this settin
ing the SCFG with a source-side DFA which ha% P petely g9 ’ g

S| = [w|+1 states, and a target-side DFAwhich hag - o fundamental difierences from 1ts string-
IT| = O(Jw|™1) states, then the intersected gram-. part. '

mar has a parsing complexity 61(| 5|2+ T2+1), rize the SCFG grammar beforeLM decoding. In'
o . . fact, it will be much harder to do the tree-parsing
which is symmetric from both sides. . . L
(pattern-matching) with a binarized grammar. Sec-
3.2 Tree-based Approaches ond, regardless of the number of nonterminals in a
Thetree-based approachésclude the tree-to-string rule,_ bundlng the-LM fgrest always_ costs time lin-
ear in the size of the input tree (times a grammar

(also_ called syntax-directe}i systgms (Liu et al., constant, see (Huang et al., 2006, Sec. 5.1) for de-
2006; Huang et al., 2006). This approach takes. L ' . .

. tails), which isin turn linear in the length of the input
a source-language parse tree, instead of the plaé L d. So we have:
string, as input, and tries to find the best derivation 9: '

that recursively rewrites the input tree into a target O(|F|) = O(|w)).
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This fast—LM decoding is a major advantage of 600 : . . . . .

tree-based approaches. - _ original forest —=+—
. d di till need binariza- g 500 [- target-side binarization AT
. Now in +LM deco Ing, we s ‘ i) on-the-fly generation ---*--- - *
tion of the hyperedges, as opposed to rules, in thé 400 | X -
forest, but the analysis is almost identical to that ofs x
. L300 i
string-based approach. For example, the tree-basezl T

version of Deduction (12) for source-side binariza-2 200 |- -
tion is now notated

100 —

numbe

(an'l_PPnQa*bUe*f) : (wl,tl L tQ) (VPn.gc*d) : (wg,tg) o L +/T”**’:”+/:J+ | |
fy . / i 5 10 15 20 25 30 35 40
(S”a* ) ’ (w ’tltdt?) length of the input sentence
(14)
In general, the target-side complexity of a binafigure 5: Number of nodes in the forests. Input
rized grammar with target arity is stil 7 = sentences are grouped into bins according to their

O(|w[*t+Dm=1)) and the combined decoding com-lengths (5-9, 10-14, 15-20, etc.).
plexity of the tree-based approach is

O(|F|T) = O(Jw|* 2D m=1)), VP — beizy
/\
Table 2 shows that in this tree-based setting, VBD VP-C
target-side binarization has exactly the same perfor- ' — T~
) T . . was z1:VBN PP

mance with synchronous binarization while being o

much simpler to implement and does not have the IN 29:NP-C

problem of non-binarizability. The fact that simple |

binarization works (at least) equally well, which is by

not possible in string-based systems, is another agiansiates an English passive construction into Chi-

vantage of the tree-based approaches. nese. Although the rules are actually in a syn-

chronous tree-substitution grammar (STSG) instead
of an SCFG, its derivation structure is still a hy-
Section 3 shows that target-side binarizatiofergraph and all the analysis in Section 3.2 still
achieves the same polynomial decoding complexitgpplies. This system performs slightly better than
as the more sophisticated synchronous binarizatidhe state-of-the-art phrase-based system Pharaoh
in the tree-based systems. We now empirically con{Koehn, 2004) on English to Chinese translation. A
pare target-side binarization with an even simplevery similar system for the reverse direction is de-
variant, on-the-fly generatignwhere the only dif- scribed in (Liu et al., 2006).
ference is that the latter does target-side left-to-right Our data preparation follows (Huang et al., 2006):
binarization during+-LM decoding on a hyperedge- the training data is a parallel corpus of 28.3M words
per-hyperedge basis, without sharing common vien the English side, from which we extracted 24.7M
tual nonterminals across hyperedges, while the fotree-to-string rules using the algorithm of (Galley et
mer binarizes the whole-LM forest before the al., 2006), and trained a Chinese trigram model on
+LM decoding. the Chinese side. We test our methods on the same
Our experiments are on English-to-Chinese trangest-set as in (Huang et al., 2006) which is a 140 sen-
lation in the tree-to-string system of Huang et altence subset of NIST 2003 MT evaluation with 9-36
(2006), which takes a source-language parse treewerds on the English side. The weights for the log-
input and tries to recursively convert it to a targetlinear model is tuned on a separate development set.
language string according to transfer rules in a syn- Figure 5 compares the number of nodes in the bi-
chronous grammar (Galley et al., 2006). For innarized forests against the original forest. On-the-fly
stance, the following rule generation essentially works on a larger forest with

4 Experiments
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deeper analysis of the syntactic structure of a sen-

tence has long been identified as a desirable objec-
tive in principle (consider (Wu, 1997; Yamada and
Knight, 2001)). However, attempts to retrofit syn-
tactic information into the phrase-based paradigm
have not met with enormous success (Koehn et al.,
2003; Och et al., 2003) and purely phrase-based
machine translation systems continue to outperform
these syntax/phrase-based hybrids.

In this work, we try to make a fresh start with
syntax-based machine translation, discarding the
phrase-based paradigm and designing a machine
translation system from the ground up, using syntax
as our central guiding star. Evaluation with BLEU
and a detailed manual error analysis of our nascent
system show that this new approach might well have
the potential to finally realize some of the promises
of syntax.

Statistical machine translation has, for a while now,
been dominated by the phrase-based translation pér-

adigm (Och and Ney, 2003). In this paradigmyye want to build a system that can learn to translate
sentences are translated from a source languagesightences from a source language to a destination
a target language through the repeated substitutiphhguage. As our first step, we will assume that the
of contiguous word sequences (“phrases”) from thgystem will be learning from a corpus consisting of
source language for word sequences in the targRiples (f, e, a), where: (i) f is a sentence from our
language. Training of the phrase translation mod&burce language, which is parsed (the words of the
builds on top of a standard statistical word alignsentence and the nodes of the parse tree may or may
ment over the training corpus for identifying correot be annotated with auxiliary information), (i)s
sponding word blocks, assuming no further linguisg gold-standard translation of senterfcghe words

tic analysis of the source or target language. In deyf sentence may or may not be annotated with aux-
coding, these systems then typically rely on n-gramiiary information), and (iii)a is an automatically-
language models and simple statistical reorderingenerated word alignment (e.g. via GIZA++) be-
models to shuffle the phrases into an order that igyeen source sentengeand destination sentenee

coherent in the target language. — N :
Th limits hat h h (Chiang, 2005) also reports that with his hierarchical gen-
ere are imits to whal such an approach can u!e'ralization of the phrase-based approach, the addition of parser

timately achieve. Machine translation based on iaformation doesn't lead to any improvements.

We present the main ideas behind a new
syntax-based machine translation system,
based on reducing the machine translation
task to a tree-labeling task. This tree la-
beling is further reduced to a sequence of
decisions (of four varieties), which can be
discriminatively trained. The optimal tree
labeling (i.e. translation) is then found
through a simple depth-first branch-and-
bound search. An early system founded
on these ideas has been shown to be
competitive with Pharaoh when both are
trained on a small subsection of the Eu-
roparl corpus.

1 Motivation

Problem Formulation
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Formally, what is a GHKM tree? Definerale el-
ementas a string or an indexed variable (e.g;,
T4, T32). A GHKM rule of rank & (wherek is
a non-negative integer) is a paiRs, R;), where
source listR, anddestination listR,; are both lists
of rule elements, such that each variableXgf =
{x1,x9, ..., 21} appears exactly once iR and ex-
actly once inR;. Moreover, inR;, the variables ap-
pear in ascending order. In Figure 2, some of the

| am not going  today
tree nodes are annotated with GHKM rules. For
clarity, we use a simplified notation. For instance,
Aujourdhui . je ne vais pas rule ((x1, x2, x3), (x3,"“”, x1, z2)) IS represented as
“123— 3,12". We have also labeled the nodes
Figure 1: Example translation object. with roman numerals. When we want to refer to a

particular node in later examples, we will refer to it,
Let us refer to these triples &mnslation objects €8, 8% Of Lwi)- :
A rule nodeis a tree node annotated with a

The learning task is: using the training data, prosHKM rule (for instance, nodes;) or ¢, of Fig-
duce a scoring functior that assigns a score t0 yre 2. put not node;,)). A tree node; is reachable
every translation objeq(f, e, a), such that this scor- from tree node; iff node ¢, is a proper descendant
ing function assigns a high score to good translasf nodet; and there is no rule node (not including
tions, and a low score to poor ones. The decodiqgodesh’ t5) on the path from nod# to nodet,.
task is: given scoring functio® and an arbitrary  pefine thesuccessor lisbf a tree node as the list
sentencef from the source language, find translagf ryle nodes and leaves reachable friogordered in
tion object(f, e, a) that maximizes”((f, e, a)). left-to-right depth-first search order). For Figure 2,

To facilitate matters, we will map translation ob-the successor list of nodk;) is (t(ii), t(v)s L(wiii) )
jects to an alternate representation. In (Galley et abnd the successor list of nodg) is (t(viiy: twii))-
2003), the authors give a semantics to every trangherule node successor lisf a tree node is its suc-
lation object by associating each with an annotategkssor list, with all non-rule nodes removed.
parse tree (hereafter calleds#KM treg) represent-  Define thesignatureof a parse tree nodeas the
ing a specific theory about how the source sentengesult of taking its successor list, replacing tha
was translated into the destination sentence. rule node with variable ;, and replacing every non-

In Figure 1, we show an example translation obrule node with its word label (observe that all non-
ject and in Figure 2, we show its associated GHKMule nodes in the successor list are parse tree leaves,
tree. The GHKM tree is simply the parse tréef and therefore they have word labels). For Figure 2,
the translation object, annotated with rules (hereaftéhe signature of nodg;) is (1, z2, z3), and the sig-
referred to a&SHKM ruleg. We will not describe in  nature of node,, is (“am”, z1).
depth the mapping process from translation object to Notice that the signature of every rule node in Fig-
GHKM tree. Sulffice it to say that the alignment in-ure 2 coincides with the source list of its GHKM
duces a set of intuitive translation rules. Essentiallyule. This is no accident, but rather a requirement.
arule like: “not 1— ne 1 pas” (see Figure 2) meansDefine aGHKM tree nodeas a parse tree node
if we see the word “not” in English, followed by a whose children are all GHKM tree nodes, and whose
phrase already translated into French, then translaBHKM rule’s source list is equivalent to its signa-
the entire thing as the word “ne” + the translatedure (if the node is a rule node).
phrase + the word “pas.” A parse tree node gets la- Given these definitions, we can proceed to define
beled with one of these rules if, roughly speakinghow a GHKM tree expresses a translation theory.
its span is still contiguous when projected (via th&Suppose we have a list = (s1, ..., si) of strings.
alignment) into the target language. Define thesubstitutionof string list.S into rule ele-
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[
(iit)

am

(vii)

today —— aujourd'hui
(xiii)
not 1 —m ne | pas

today
(xiv)

not

)

going
(xii)

Figure 2: GHKM tree equivalent of example translation object. The light goales are rule nodes of the

GHKM tree.

mentr as:

if r is indexed var;

8
rS] = { otherwise

r

3 Probabilistic Approach

To achieve this “good” labeling of GHKM rules,
we will define a probabilistic generative modgl

Notice that this operation always produces a&f GHKM trees, which will serve as our scoring

string. Define the substitution of string list into
rule element lislR = (rq, ..., ;) as:

RI[S] = concatr:[S], r2[S], ..., 5 [S])

where concdty, ..., si) is the spaced concatenation

of stringssi, ..., s (€.9., concat( “hi”, “there” ) =

“hi there”). This operation also produces a string.
Finally, define theranslationof GHKM tree node

t as:

7(t) £ Ral(r(t1), ..., 7(tx))]

where (¢4, ..., ;) is the rule node successor list ofp

GHKM tree nodet.
For Figure 2, the rule node successor list of nod

t(wiii) 1S (t(zi))- SO

T(t(uuz)) = <“ne”7 z1, upaS”> [(T(t(z’b) )>]
('ne’, 1, "pas’)[(*vais”)]
= “ne vais pas”

A similar derivation gives us:

7(t(;y) = “aujourd’hui, je ne vais pas”

In this way, every GHKM tree encodes a transla
tion. Given this interpretation of a translation object

function. We would like to depart from the stan-
dard probabilistic approach of most phrase-based
translators, which employ very simple probability
models to enable polynomial-time decoding. In-
stead, we will use an alternative probabilistic ap-
proach (anassignment procegswhich sacrifices
polynomial-time guarantees in favor of a more flexi-
ble and powerful model. This sacrifice of guaranteed
polynomial-time decoding does not entail the sacri-
fice of good running time in practice.

3.1 Assignment Processes

n assignment process builds a sequence of vari-
able assignments (called assignment histo)yby
fepeatedly iterating the following steps. First, it re-
quests a variable name (say,) from a so-named
variable generator It takes this variable name
and the assignment history built so far and com-
presses this information into a set of features (say
{f2, f6, fso}) using a feature function. These fea-
tures are then mapped to a probability distribution by
afunction (sayr) requested from a so-namdistri-
bution generatorThe iteration ends by assigning to
the chosen variable a value (sa4) drawn from this
distribution. In the above running example, the iter-
ation assigns, to x99, which was drawn according

the task of machine translation becomes somethinig distributionpz({ f2, fs, fso}). The process ends
concrete: label the nodes of a parsed source sentendeen the variable generator produces the reserved

with a good set of GHKM rules.
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Var | Assignment | Distribution Features 3. Return history.

T3 true P4 { {} }

T7 “the” P1io fi2, fio2 ..

s blue D2 {fs, fss} 3.2 Training

o 7rezd9 v {fs’flz’ff")} Given all components of an assignment process
T30 false Pa {fa, f5, f7} of signatureX except for the setP of feature-

z1 “man” P1o {f1, f2, 12} conditional distributions, the training task is to learn
102 blue p2 {f17f557f56}

P from a training corpus of assignment histories of
%'gnaturez. This can be achieved straightforwardly
eby taking the feature vectors generated by a partic-
ular distribution and using them to discriminatively
learn the distribution. For instance, say that our cor-

point, the assignment history built so far (like thepus consists of the single history given in Fig@Re
example in Figure 3) is returned. To learn distributionps, we simply take the three
Formally, define avariable signatureas a pair variable assignments producedayand feed these
¥ = (X,V), where X is a set of variable names feature vectors to a generic discriminative learner.
andV is a set of values. Define\ariable assign- \We prefer learners that produce distributions (rather
mentof signature(X, V') as a pair(z,v), for vari- than hard classifiers) as output, but this is not re-
abler € X and valuev € V. Define amassignment quired.
history of signatureX as an ordered list of variable )
assignments of. The notationf () represents the 3.3 Decoding
set of all assignment histories of signatiie Notice that an assignment process of signakune-
We define afeature functionof signatureX = duces a probability distribution over the §&{>) of
(X,V) as a functionf that maps every pair of set all assignment histories of. The decoding ques-
X x H(X) to a set of assignments (calléshture3 tion is: given a partial assignment histoky what
of an auxiliary variable signature;. is the most probable completion of the history, ac-
We define anassignment processf signature cording to this induced distribution? We will use
Y = (X,V)asatuplgf, P, gz, gp), Where: (i) f is  the natural naive search space for this question. The
a feature function ok, (ii) P = {p1,....,pr} isafi- nodes of this search space are the assignment his-
nite set ofk functions (called théeature-conditional tories of H(X). The children of the search node
distributiong that map each feature setiinnge(f)  representing historg are those histories that can be
to a probability distribution oveV’, (iii) g, isafunc- generated fronk in one iteration of the assignment
tion (called thevariable generatoy mapping each process. The value of a search node is the proba-
assignment history in the séf(X) to either a vari- bility of its assignment history (according to the as-
able name inX or the reserved tokeATOP, and signment process). To decode, we begin at the node
(iv) gy is a function (called thelistribution gener- representing history,, and search for the highest-
ator) mapping each assignment history in the sefalue descendant that represents a complete assign-

Figure 3: A example assignment history generat
by an assignment process.

H(Y) to a positive integer betwednandk. ment history (i.e. an assignment history terminated
An assignment process probabilistically generatesy the ST O P token).

an assignment history of signatuxein the follow- This is, potentially, a very large and intractible

ing way: search space. However, if most assignment deci-

sions can be made with relative confidence, then the

1. h — empty list great majority of search nodes have values which

2. Do untilg,(h) = STOP: are inferior to those of the best solutions. The
standard search techniquedafpth-first branch-and-
(@) Letx = g,(h) and letj = g,(h). bound searchakes advantage of search spaces with
(b) Draw valuev probabilistically from distri-  this particular characteristic by first finding greedy
butionp; (f(z, h)). good-quality solutions and using their values to opti-
(c) Append assignmerit:, v) to historyh. mally prune a significant portion of the search space.
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Figure 4: Partial GHKM tree, after rule nodes have been identified (ligly)gNotice that once we identify
the rule node, the rule left-hand sides are already determined.

Depth-first branch-and-bound search has the follows;. Variablex} is assignedrue iff the parse tree
ing advantage: it finds a good (suboptimal) solutiomodet will be a rule node in the GHKM tree.
in linear time and continually improves on this solu- In Figure 3.3, we show a partial GHKM tree af-
tion until it finds the optimal. Thus it can be run ei-ter these assignments are made. The key thing to
ther as an optimal decoder or as a heuristic decodehserve is that, after this sequence of boolean deci-
since we can interrupt its execution at any time to gefions, the LHS of every rule in the tree is already
the best solution found so far. Additionally, it takesgetermined! To complete the tree, all we need to do
only linear space to run. is to fill in their right-hand sides.

Again, we could create variables to do this di-
rectly, i.e. have a variable for each rule whose do-

We now return to where we left off at the end of Secmain is the space of possible right-hand sides for its
tion 2, and devise an assignment process that Iorgstablished left-hand sides. But this is still a wide-
duces a GHKM tree from an unlabeled parse tre@Pen decision, so we will break it down further.
This will give us a quality measure that we can use For each rule, we will begin by choosing the
to produce a “good” labeling of a given parse treéemplateof its RHS, which is a RHS in which
with GHKM rules (i.e., the probability of such a la- all sequences of variables are replaced with an
beling according to the assignment process). empty slot into which variables can later be placed.
The simplest assignment process would have Bor instance, the template dfne”, z;,"pas”) is
variable for each node of the parse tree, and theéé€”, X, “pas”) and the template afrs, )", z1, x2)
variables would all be assigned by the same featuris (X, “,”, X), where X represents the empty slots.
conditional distribution over the space of all possible Once the template is chosen, it simply needs to be
GHKM rules. The problem with such a formulationfilled with the variables from the LHS. To do so, we
is that such a distribution would be inachievably difprocess the LHS variables, one by one. By default,
ficult to learn. We want an assignment process ithey are placed to the right of the previously placed
which all variables can take only a very small numvariable (the first variable is placed in the first slot).
ber of possible values, because it will be much ea$¥Ve repeatedly offer the option to push the variable
ier to learn distributions over such variables. Thigo the right until the option is declined or it is no
means we need to break down the process of colenger possible to push it further right. If the vari-
structing a GHKM rule into simpler steps. able was not pushed right at all, we repeatedly offer
Our assignment process will begin by sequerthe option to push the variable to the left until the
tially assigning a set of boolean variables (which weption is declined or it is no longer possible to push
will call rule node indicator variablés one for each it further left. Figure 4 shows this generative story
node in the parse tree. For parse tree ngaee de- in action for the rule RHSx3, ", z1, 22).
note its corresponding rule node indicator variable These are all of the decisions we need to make

4 Generative Modée
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Decision tomake | Decision | RHSso far system achieved a BLEU score of 11.52. What is
RHS template? X, X X, X .
default placement of var T T.X notable here is not the scores themselves (low due to
push var 1right?] yes X, 1 the size of the training corpus). However our system
defﬁ“'t p'zaf?t“;e“t of var 2 iig managed to perform comparably with Pharaoh in a
pdu:fam?glaferﬁe[m ofr\]/grs <153 very early stage of its development, with rudimen-
push var 3 [eft? yes X,132 tary features and without the benefit of an n-gram
push var 3 left? yes X,312 language model.
push var 3 left? yes 3,12

Let's take a closer look at the sentences produced

Figure 5: Trace of the generative story for the rightby our system, to gain some insight as to its current
. strengths and weaknesses.
hand side of a GHKM rule. g

Starting with the English sentence (note that all
data is lowercase):

in order to label a parse tree with GHKM rules. No-
tice that, aside from the template decisions, all of the
decisions are binary (i.e. feasible to learn discrimi-
natively). Even the template decisions are not terri-
bly large-domain, if we maintain a separate feature- ich stimme die geist dieser
conditional distribution for each LHS template. For |~ vote  the.FEM spiritMASC these
instance, if the LHS template i&not”, X), then gﬁgﬁgg‘gfggﬁ’:@’:
RHS template(“ne”, X, “pas”) and a few other se-
lect candidates should bear most of the probability The GHKM tree is depicted in Figure 5. The key

i agree with the spirit of those amendments .

Our system produces:

mass. feature of this translation is how the English phrase
“agree with” is translated as the German “stimme
5 Evaluation ... zU” construction. Such a feat is difficult to pro-

' _ o ~duce consistently with a purely phrase-based sys-
In this section, we evaluate a preliminary Englishtem as phrases of arbitrary length can be placed be-
to-German tl’anS|ati0n SyStem baSEd on the ide%een the Words “Stimme” and “Zu"’ as we can see
outlined in this paper. We first present a quantiahgppening in this particular example. By contrast,

tive comparison with the phrase-based approach, Usharaoh opts for the following (somewhat less de-
ing the BLEU metric; then we discuss two con-sjraple) translation:

crete translation examples as a preliminary qualita-

tive evaluation. Finally, we present a detailed man- :Ch Sti;nme m_itth ?hemMASC ge_iS_: ASC flrileser
. V WI . Iric.
ual error analysis. ote e sp ese

anderungsardige.
Our data was a subset of the Europarl corpus con-  change-proposals

sisting of sentences of lengths ranging from 8 to 17 _ _ )

words. Our training corpus contained 50000 sen- A Weakness in our system is also evident here.
tences and our test corpus contained 300 sentencé8€ German noun “Geist” is masculine, thus our
We also had a small number of reserved sentence¥Stem Uses the wrong article (a problem that
for development. The English sentences were pars€iaraoh, with its embedded n-gram language model,
using the Bikel parser (Bikel, 2004), and the send0€S not encounter). _ .
tences were aligned with GIZA++ (Och and Ney, [N general, it seems that our system is superior to
2000). We used the WEKA machine learning packl?haraoh at figuring out the proper way to arrange the

age (Witten and Frank, 2005) to train the distribu¥vords of the output sentence, and inferior to Pharaoh
tions (specifically, we used model trees). at finding what the actual translation of those words

eahould be.

For comparison, we also trained and evaluat - ]
Consider the English sentence:

Pharaoh (Koehn, 2005) on this limited corpus, us-
ing Pharaoh’s default parameters. Pharaoh achieved ¢ shail submit a proposal along these lines before
a BLEU score of 11.17 on the test set, whereas our  the end of this year .
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spirit

those amendments

Figure 6: GHKM tree output for the first test sentence.

Here we have an example of a double verb: “shall We defined the following basic types of edits, with
submit.” In German, the second verb should go durther subdistinctions depending on the word type:
the end of the sentence, and this is achieved by odDD, DELETE, CHANGE andMOVE. A special type
system (translating “shall” as “werden”, and “sub-TRANSLATE-untranslated was assumed for untrans-

mit” as “vorlegen”). lated source words in the output. For theANGE,
. . o more fine-grained distinctions were made? sin-

wir werden eine  vorschlag in dieser i .
we  will a.FEM proposal.MASC in these gle MOVE operation was assumed to displace an en-
haushaltslinien vor die ende tire phrase; the distance of the movement in terms
budget-iines  before the.FEM end NEUT of the number of words was calculated. The table in
dieser jahres vorlegen. . . . .
this. FEMyear.NEUTsubmit . Figure 7 shows the edits required for correcting the

. . output of the two systems on 100 sentences.
_P”har?oh does_ not”manage _th's_ (trgnslatlng sub- We again observe that our system, which is at
mit” as “unterbreiten” and placing |tm|d-sentence).an early stage of development and contrary to the
werdenwir unterbreiteneine vorschlagin dieser Pharaoh system does not include an n-gram lan-

will  we submit ~ a proposal in these guage model trained on a large corpus, already
haushaltslinievor  endedieser jahr .

budget-lines beforeend this.FEMyear.NEUT. yields promising re_SU|tS'_ The higher proportion
. _ _ of CHANGE operations, in particulatCHANGE-
It is worth noting that while our system gets thejpflection andcHANGE-function-word edits is pre-

word order of the output system right, it makes SeVsumably a direct consequence of providing a lan-
eral agreement mistakes and (like Pharaoh) doesg{jage model or not. An interesting observation is
get the translation of “along these lines” right. ~ that our system currently tends to overtranslate, i.e.,
To have a more systematic basis for comparisopedundantly produce several translations for a word,
we did a manual error analysis for 100 sentenceghich leads to the need ofELETE operations. The

from the test set. A native speaker of German (in theharaoh system had a tendency to undertranslate, of-
present pilot study one of the authors) determineg, with crucial words missing.

the editing steps required to transform the system
output into an acceptable translation — both in terms 2cHancE-inflection: keeping the lemma and category the
of fluency and adequacy of translation. In order t§ame, e.g.taken— takes CHANGE-part-of-speech: choos-

. . . ing a different derivational form, e.gjudged — judgement
avoid a bias for our system, we randomized the pr

X &HANGE-function-word: e.g.in — from; CHANGE-content-
sentation of output from one of the two systems. word: e.g.,opinion— consensus

47



l | TL-MT [ Pharaoh |  azgsignment process, can be used. Furthermore, we

ADD-function-word 40 49 . - .
ADD-Content-word 17 35 can_mark up t.he parse treg Wlth any auxiliary infor
ADD-punctuation 12 13 mation that might be beneficial, like noun gender or
ADD (total) 69 97 verb cases. The current implementation has hardly
DELETE-function-word 37 18 SNili .
DELETE-Content-word pos 10 begun to explc_)r_e these possibilities, containing only
DELETE-punctuation 13 15 features pertaining to aspects of the parse tree.
DELETE-(Untf%nS'ated 2 1 Even in these early stages of development, the
DELETE (total 74 44 . . . L.
CHANGE contentword 57 19 s_ystem _shows promise in using sy_ntactlc mfo.rma-
CHANGE-function-word | 44 26 tion flexibly and effectively for machine translation.
CHANGE-inﬂeCtLOH A 10: ?8 We hope to develop the system into a competitive
CHANGE-part-of-speec . )
CHANGE (fofal) 173 135 alternative to phrase-based approaches.
TRANSLATE-untranslated 34 1
MOVE (distance)
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Abstract

Discriminative approaches for word align-
ment have gained popularity in recent
years because of the flexibility that they
offer for using a large variety of features
and combining information from various
sources. But, the models proposed in the
past have not been able to make much use
of features that capture the likelihood of an
alignment structure (the set of alignment
links) and the syntactic divergence be-
tween sentences in the parallel text. Thisis
primarily because of the limitation of their
search techniques. In this paper, we pro-
pose a generic discriminative re-ranking
approach for word alignment which allows
us to make use of structural features effec-
tively. These features are particularly use-
ful for language pairs with high structural
divergence (like English-Hindi, English-
Japanese). We have shown that by us-
ing the structural features, we have ob-
tained a decrease of 2.3% in the absolute
value of alignment error rate (AER). When
we add the cooccurence probabilities ob-
tained from IBM model-4 to our features,
we achieved the best AER (50.50) for the
English-Hindi parallel corpus.

1 Introduction

In this paper, we propose a discriminative re-
ranking approach for word alignment which al-
lows us to make use of structural features effec
tively. The alignment algorithm first generates

Aravind K. Joshi
Department of Computer and
Information Science and Institute for
Research in Cognitive Science,
University of Pennsylvania, PA, USA.
joshi@linc.cis.upenn.edu

a list of k-best alignments using local features.
Then it re-ranks this list of k-best alignments us-
ing global features which consider the entire align-
ment structure (set of alignment links) and the syn-
tactic divergence that exists between the sentence
pair. Use of structural information associated with
the alignment can be particularly helpful for lan-
guage pairs for which a large amount of unsuper-
vised data is not available to measure accurately
the word cooccurence values but which do have a
small set of supervised data to learn the structure
and divergence across the language pair. We have
tested our model on the English-Hindi language
pair. Here is an example of an alignment between
English-Hindi which shows the complexity of the
alignment task for this language pair.

These islands of people  hindi language

acommu. language in form of  adopted-take-be

Figure 1: An example of an alignment between an
English and a Hindi sentence

To learn the weights associated with the param-
eters used in our model, we have used a learning
framework called MIRA (The Margin Infused Re-
laxed Algorithm) (McDonald et al., 2005; Cram-
mer and Singer, 2003). This is an online learning
algorithm which looks at one sentence pair at a
time and compares the k-best predictions of the
alignment algorithm with the gold alignment to
update the parameter weights appropriately.

In the past, popular approaches for doing word
alignment have largely been generative (Och and

'1Part of the work was done at Institute for ResearchNey, 2003; Vogel et al., 1996). In the past cou-

in Cognitive Science (IRCS), University of Pennsylvania,
Philadelphia, PA 19104, USA, when he was visiting IRCS

as a Visiting Scholar, February to December, 2006.
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the flexibility they offer in using a large variety of general. It achieves this by breaking the search
features and in combining information from vari- into two steps, first by using local features to get
OUS sources. the k-best alignments and then by using struc-

(Taskar et al., 2005) cast the problem of aIign-uilr?kI] fekaEJrets tlo re-rantk ]:[he “s;' t.Als?r’] by using
ment as a maximum weight bipartite matchinga € k-best algnments for updating the parame-

problem, where nodes correspond to the wordgers through MIRA, it is possible to model the en-
in the tv;/o sentences. The link between a pairtireinference algorithm but in Moore’s work, only
of words, €,.h,) is .associated with a score the best alignment is used to update the weights

(scoreé,,hy)) reflecting the desirability of the ex- of parameters. (Fraser and_ Marcu, 20_0 6) have
istence of the link. The matching problem is proposed an algorithm for doing word alignment

solved by formulating it as a linear programmingWhiCh applies a discriminative step at every iter-
problem. The parameter estimation is done Wi,[hmation of the traditional Expectation-Maximization
the framework of large margin estimation by re.algorithm used in IBM models. This model still

: . lies on the generative story and achieves only a
ducing the problem to a quadratic program (QP) rell . :
The main limitation of this work is that the fea- limited freedom in choosing the features. (Blun-

tures considered are local to the alignment Iinksf)?m anfd Ctohn, 2096) do V\g.)tr.d alllgnm((-:'jnt b):rc;)dm-
joining pairs of words. The score of an align- Ining Teatures using conditional random Telds.

ment is the sum of scores of individual alignmentEVen though their approach allows one to include

links measured independently i.e., it is assumea)verlapplng features while training a discrimina-

that there is no dependence between the aligntlve model, it still does not allow us to use fea-

ment links. (Lacoste-Julien et al., 2006) extendUres that capture information of the entire align-

the above approach to include features for fertjl-ment structure.

ity and first-order correlation between alignment N Section 2, we describe the alignment search
links of consecutive words in the source sentencel detail. Section 3 describes the features that
They solve this by formulating the problem as aWe have considered in our paper. Section 4 talks
quadratic assignment problem (QAP). But, everpbout the Parameter optimization. In Section 5,
this algorithm cannot include more general fea-We present the results of our experiments. Section
tures over the entire alignment. In contrast to theé contains the conclusion and our proposed future
above two approaches, our approach does not inWork.

pose any constraints on the feature space except

for fertility (<1) of words in the source language. 2 Alignment Search

In our approach, we model the one-to-one and

many-to-one links between the source sentenc@ne goal of the word alignment algorithm is to link
and target sentence. The many-to-many alignmeRfords in the source language with words in the tar-
links are inferred in the post-processing stage Usget language to get the alignments structure. The
ing simple generic rules. Another positive aspechest alignment structure between a source sen-
of our approach is the application of MIRA. It, be- tence and a target sentence can be predicted by
ing an online approach, converges fast and still regonsidering three kinds of information, (1) Prop-
tains the generalizing capability of the large mar-erties of alignment links taken independently, (2)
gin approach. Properties of the entire alignment structure taken
(Moore, 2005) has proposed an approach whici@s & unit, and (3) The syntactic divergence between
does not impose any restrictions on the form ofthe source sentence and the target sentence, given
model features. But, the search technique has cefte alignment structure. Using the set of alignment
tain heuristic procedures dependent on the typei§ks, the syntactic structure of the source sentence
of features used. For example, there is little variiS first projected onto the target language to ob-
ation in the alignment search between the LLRServe the divergence.
(Log-likelihood ratio) based model and the CLP Let ¢, and h, denote the source and target
(Conditional-Link Probability) based model. LLR words respectively. Let be the number of words
and CLP are the word association statistics useth source sentence amd be the number of words
in Moore’s work (Moore, 2005). In contrast to in target sentence. Let S be the source sentence
the above approach, our search technique is moi@nd T be the target sentence.
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2.1 Populate the Beam Let the global feature vector be represented as

The task in this step is to obtain the k-best candi/c(@)- The global score is defined as the dot prod-
date alignment structures using the local featured!Ct of the weight vector and the global feature vec-
The local features mainly contain the cooccurencd®’

information between a source and a target word scoreg(a) = W.fa(a)

and are independent of other alignment links inThe overall score is calculated by adding the local
the sentence pair. Let the local feature vector b@core and the global score.

denoted asfr(ep, hy). The score of a particular

alignment link is computed by taking a dot prod- score(a) = scorepq(a) + scoreg(a)

uct of the weight vectoi’” with the local feature

vector of the alignment link. More formally, the The beam is now sorted based on the overall scores

local score of an alignment link is of each alignment. The alignment at the top of
the beam is the best possible alignment between
scorer(ep, hg) = W.fL(€p, hq) source sentence and the target sentence.

The total score of an alignment structure is com2.3  Post-processing

puted by adding the scores of individual allgnmentIhe previous two steps produce alignment struc-

ures which contain one-to-one and many-to-one
links. In this step, the goal is to extend the best
scorera(d, S, T) = S scorer(ep,hy) alignment structure obtained in the previous step
(epihg)€a to include the other alignments links of one-to-
many and many-to-many types.

We have proposed a dynamic programming al- The majority of the links between the source
gorithm of worst case complexit§(nm” +nk?)  sentence and the target sentence are one-to-one.
to compute the k-best alignments. First, the locakome of the cases where this is not true are the in-
score of each source word with every target wordsiances of idioms, alignment of verb groups where

is computed and stored in local beams associateg\xjliaries do not correspond to each other, the
with the source words. The local beams correylignment of case-markers etc. Except for the

sponding to all the source words are sorted and thgzses of idioms in target language, most of the
top-k alignment links in each beam are retai”edmany-to-many links between a source and target
This operation has the worst-case complexity okentences can be inferred from the instances of
O(nm?). one-to-one and many-to-one links using three lan-
Now, the goal is to get the k-best alignments ingyage language specific rules (Hindi in our case)
the global beam. The global beam initially con-tg handle the above cases. Figure 1, Figure 2 and
tains no alignments. The k best alignment links OfFigure 3 depict the three such cases where many-
the first source wore, are added to the global to-many alignments can be inferred. The align-
beam. To add the alignment links of the nextments present at the left are those which can be
source word to the global beam, the(if & < m) predicted by our alignment model. The alignments

combinations of the alignments in the global beamy the right side are those which can be inferred in
and alignments links in the local beam are takeRne post-processing stage.

and the besk are retained in the global beam.

If & > m, then the total combinations taken are - are playing ... . are playing ....
mk. This is repeated till the entries in all the lo- —

cal beams are considered, the overall worst case

complexity beingD(nk?) (or O(nmk) if k >m). ™ &pklgsl g:f T;i)n """" khel rahe hain

links present in the alignment. Hence, the score o
an alignment structure is,

2.2 Reorder the beam . . .
) ) Figure 2: Inferring the many-to-many alignments
We now have the k-best alignments using the locajt \erp and auxiliaries

features from the last step. We then use global fea-

tures to reorder the beam. The global features look After applying the language specific rules, the
at the properties of the entire alignment structuredependency structure of the source sentence is tra-
instead of the alignment links locally. versed to ensure the consistency of the alignment
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Jonn v John ......... get word based on the co-occurrence information
- /\ obtained from a large sentence aligned corpora

John ne ... John ne .. 3.1.1 DiceWords

Dice Coefficient of the source word and the tar-

Figure 3: Inferring the one-to-many alignment toget word (Taskar et al., 2005).

case-markers in Hindi
2 x Count(e,, hyq)

... kicked the bucket ... kicked the bucket DCOGH e, h) =
. N (epsq) Count(e,) + Count(h,)
.......... mara gaya T e goclight verb) where Count(e,,, hq) is the number of times the

word h, was present in the translation of sentences
Figure 4. Inferring many-to-many alignment for containing the word,, in the parallel corpus.

source idioms i
3.1.2 DiceRoots

truct If th . d d link bet Dice Coefficient of the lemmatized forms of the
tsruc ure. Zre 1S ?j epe; ency I?h he Wdeensource and target words. It is important to consider
WO Source words, ande,, Wneree, IS the Nead .o toature for language pairs which do not have a
ande, is the modifier and ik, ande,, are linked

¢ ¢ ¢ q itis | large unsupervised sentence aligned corpora. Co-
{0 ONE or more common farget wor (s), itis 99" occurrence information can be learnt better after
ical to imagine that the alignment should be ex-

tended such that both, ande, are linked to the we lemmatize the words.
same set of target words. For example, in Figure 43.1.3 Dict
new alignment link is first formed between ‘kick'  This feature tests whether there exists a dictio-
and ‘gayA’ using the language specific rule, andnary entry from the source worg, to the target
as ‘kick’ and ‘bucket’ are both linked to ‘mara’, \yord h,. For English-Hindi, we used a medium-
‘bucket’ is also now linked to ‘gayA’. Similarity, coverage dictionary (25000 words) available from
‘the’ is linked to both ‘mara’ and ‘gayA’. Hence, |||T - Hyderabad, Indic.
the rules are applied by traversing through the de-
pendency tree associated with the source sentendel-4 NUILPOS
words in depth-first order. The dependency parser These parameters measures the likelihood of a
used by us was developed by (Shen, 2006). Theource word with a particular part of speech’ttm
following summarizes this step, be aligned to no word (Null) on the target language
side. This feature was extremely useful because
e Letw be the next word considered in the dependencyit models the cooccurence information of words
tree, letpw be the parent ofv. . . )
with nulls which is not captured by the features
— It w andpw are linked to one or more common pjce\brds and DiceRoots. Here are some of the

d(s) in target | , align to all target . . .
xgﬁdfmcﬁ fffe aﬁgﬂgg‘%;w? on fo alI9Y features of this type with extreme estimated pa-

_ Else, Use the target-specific rules (if they match) Fameter weights.
to extend the alignments af. ] )
3.2 Lemmatized word pairs

Recursively consider all the children af . -
* y The word pairs themselves are a good indicator

of whether an alignment link exists between the
word pair or not. Also, taking word-pairs as fea-
As the number of training examples is small, weture helps in the alignment of some of the most
chose to use features (both local and structuralfommon words in both the languages. A variation
which are generic. Some of the features which wef this feature was used by (Moore, 2005) in his
used in this experiment are as follows: paper.

3 Parameters

150K sentence pairs originally collected as part of TIDES
3.1 Localfeatures ¢71) MT project and Iattfr refineg at II)I/T-Hyderabad,pIndia.
The local features which we consider are mainly 2http://litrc.iiit.ac.in/onlineServices/Dictionaridsitt_Frame.html
. 3We have limited the number of POS tags by considering
co-occurrence features. These features eSt'maB%Iy the first alphabets of Penn Tags as our POS tag cate-

the likelihood of a source word aligning to a tar- gories
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Param. | weight Param. | weight
Null* | 0.2737 null.C | -0.7030
Null_U | 0.1969 nul.D | -0.6914

Null L | 0.1814 null.v | -0.6360 . _

Figure 6: Alignment where the source words are
Null-.} 0.0383 null-N-— ) -0.5600 aligned to many different target words
Null_: | 0.0055 nullLl | -0.4839 9 y 9

Table 1: Top Five Features each with Maximum Formally,

S ) it is defined as
and Minimum weights

3 Fert?(h,

| - Overlap(a) = heeT,Fert(hy)>1 (hq)
Other parameters like the relative distance be- > ner Fert(h)

tween the source word, and the target word,, . o ) _

RelDist(e,, hy) = abs(j/|e| — k/|h|), which are whereT’ is the Hindi sentence}_ Fert*(h,) is

mentioned as important features in the previouéneasured in the numerator so that a more uniform

|iterature, did not perform well for the English_ distribution of target word fertilities be favored in

Hindi language pair. This is because of the pre£Omparison to others. The weight oferlap as

dominant word-order variation between the sen€stimated by our model is -6.1306 which indicates

tences of English and Hindi (Refer Figure 1).  the alignments having a low overlap value are pre-
ferred.

3.3 Structural Features (F() 332 NullPercent
.3. u

The global features are used to model the prop- .
. : ) This feature measures the percentage of words
erties of the entire alignment structure taken as a

in target language sentence which are not aligned

unit, between the source and the target sentenc?. X .
. . 0 any word in the source language sentence. It is
In doing so, we have attempted to exploit the syn- efined as

tactic information available on both the source an
the target sides of the corpus. The syntactic infor-

mation on the target side is obtained by projecting NullPercent =
the syntactic information of the source using the

alignment links. Some of the features which we3.3.3 Direction.DepPair
have used in our work are in the following subsec-
tion.

|hql hgeT,Fertility(hg)==0
|Pher

The following feature attempts to capture the
first order interdependence between the alignment
3.3.1 Overlap links of pairs of source sentence_ words which are
_ . . _ connected by dependency relations. One way in
This feature considers the instances in a Sefich sych an interdependence can be measured
tence pair vyhere a source word links to a ta_lrge}S by noting the order of the target sentence words
word which is a participant in more than one align-jinkeq to the child and parent of a source sentence
ment Im_ks (has a fertility greater than one). Th'sdependency relation. Figures 7, 8 and 9 depict
feature is used to encourage the source words iq \arioys possibilities. The words in the source
be linked to different words in the targelt languag,e'sentence are represented using their part-of-speech
For example, we would prefer the alignment iny, ¢ These part-of-speech tags are also projected

Figure 6 when compa_red to the alignment in Fig_'onto the target words. In the figurgss the parent
ure 5 even before looking at the actual words. This, 4 . is the part-of-speech of the child.

parameter captures such prior information about
the alignment structure.

p c
o o o0 O O

W o o o o
o o c P

Figure 5: Alignment where many source words ard~igure 7: Target word linked to a child precedes
linked to one target word the target word linked to a parent
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pf\c pendency pair and observe its order in the target
R side. This feature is equivalent to the first-order
features used in the related work.

© S o o o There are three possibilities here, (1) The words

of the bigram maintain their order when projected

Figure 8: Target word linked to a parent precedesnto the target words, (2) The words of the bigram
the target word linked to a child are reversed when projected, (3) Both the words
are linked to the same word of the target sentence.

p ¢ - - - -
© R o 9o 4 Online large margin training

S For parameter optimization, we have used an on-
pc line large margin algorithm called MIRA (Mc-

) ) _ Donald et al., 2005) (Crammer and Singer, 2003).
Figure 9: Parent and the child are both linked 1O i briefly describe the training algorithm that
same target word we have used. Our training set is a set of English-

Hindi word aligned parallel corpus. Let the num-

The situation in Figure 9 is an indicator that theber of sentence pairs in the training datatb&ve
parent and child dependency pair might be part ohave{S;, T}, a,} for training wherer < ¢ is the
whole of a multi-word expression on the sourceindex number of the sentence p&##., 7 } in the
side. This feature thus captures the divergence bétaining set andi, is the gold alignment for the
tween the source sentence dependency structuRir {S,7;}. Let W be the weight vector which
and the target language dependency structure (ifas to be learnty; be the weight vector after the
duced by taking the alignment as a constraint)end ofi’" update. To avoid over-fitting}’ is ob-
Hence, in the test data, the alignments which ddained by averaging over all the weight vectbirs
not express this divergence between the depen- A generic large margin algorithm is defined
dency trees are penalized. For example, the aligrfollows for the training instancegs;, 7, a, },
ment in Figure 10 will be heavily penalized by
the model during re-ranking step primarily fortwo Initialize Wy, W, i
reasons, 1) The word aligned to the preposition for p = 1 to Iterations do
‘of’ does not precede the word aligned to the noun for r =1totdo

‘king’ and 2) The word aligned to the preposition Get K-Best predictions,, = {ay,as...a;}
‘to’ does not succeed the word aligned to the noun for the training exampléS,., T, d,.)
‘king’. using the current modél’* and applying

step 1 and 2 of section 4. Compufe+!

/NN N by updatingl¥* based on

......... to the king of Rajastan ....... (Sr, T’V‘a Cirv O‘T)'
i=i+1
W =W + Wi+1
...... Réjastan ke Rlaja ko .. W = Tierationssm
(Rajastan of King to ) end for
end for

Figure 10: A simple example of an alignment
that would be penalized by the feature Direc-

tion DepPair The goal of MIRA is to minimize the change in

W such that the score of the gold alignmérex-
ceeds the score of each of the predictions by a
3.3.4 DirectionBigram margin which is equal to the number of mistakes in
This feature is a variation of the previous fea-the predictions when compared to the gold align-
ture. In the previous feature, the dependency paiment. One could choose a different loss function
on the source side was projected to the target sidehich assigns greater penalty for certain kinds of
to observe the divergence of the dependency paimistakes when compared to others.
In this feature, we take a bigram instead of a de- Step 4 Get K-Best predictions) in the algo-
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rithm mentioned above can be substituted by th®.2 Experiments

following optimization problem, We first obtain the predictions of GIZA++ to ob-

tain the baseline accuracies. GIZA++ was run in

minimize||(AWi“ — W) four different modes 1) English to Hindi, 2) Hindi
S.t.Vk, score(ar, S“ 1) - Sc‘fre(aq,kv S, Tr) to English, 3) English to Hindi where the words in
>= Mistakes(ay, ar, Sy, Tr) both the languages are lemmatized and 4) Hindi to

English where the words are lemmatized. We then

For optimization of the parameters, ideally, wetake the intersections of the predictions run from
need to consider all the possible predictions angoth the directions (English to Hindi and Hindi to
assign margin constraints based on every predigenglish). Table 2 contains the results of experi-
tion. But, here the number of such classes is exments with GIZA++. As the recall of the align-
ponential and therefore we restrict ourselves to thenent links of the intersection is very low for this
k — best predictions. dataset, further refinements of the alignments as

We estimate the parameters in two steps. In theuggested by (Och and Ney, 2003) were not per-
first step, we estimate only the weights of the lo-formed.
cal parameters. After that, we keep the weights
of local parameters constant and then estimate the Mode Prec. | Rec. | F-meas. | AER
weights of global parameters. It is important to| Normal: Eng-Hin | 47.57 | 40.87| 43.96 | 56.04
decouple the parameter estimation to two steps.Normal: Hin-Eng | 47.97| 38.50 | 42.72 | 57.28
We also experimented estimating the parameters Normal: Inter. | 88.71| 27.52| 42.01 | 57.99
in one stage but as expected, it had an adversg-emma.: Eng-Hin | 53.60 | 44.58| 48.67 | 51.33
impact on the parameter weights of local features Lemma.: Hin-Eng | 53.83 | 42.68 | 47.61 | 52.39
which resulted in generation of poor k-best list af-{ Lemma.: Inter. | 86.14 | 32.80 | 47.51 | 52.49
ter the first step while testing.

Table 2: GIZA++ Results
5 Experiments and Results In Table 3, we observe that the best result
(51.33 is obtained when GIZA++ is run after lem-
matizing the words on the both sides of the unsu-
We have used English-Hindi unsupervised data opervised corpus. The best results obtained without
50000 sentence pafrsThis data was used to ob- lemmatizing is56.04when GIZA++ is run from
tain the cooccurence statistics suchbaseWords  English to Hindi.
andDiceRoots which we used in our model. This  The table 4 summarizes the results when we
data was also used to obtain the predictions ofised only the local features in our model.
GIZA++ (Implements the IBM models and the
HMM model). We take the alignments of GIZA++ | Features | Prec. | Rec. | F-meas. | AER
as baseline and evaluate our model for the English- DiceRoots | 41.49 | 38.71| 40.05 | 59.95

5.1 Data

Hindi language pair. + DiceWbrds
The supervised training data which is used tg +Null POS | 42.82 | 38.29 | 40.43 | 59.57
estimate the parameters consists of 4252 sentence + Dict. 43.94| 39.30| 41.49 | 5851

pairs. The development data consists of 100 sen-+Word pairs | 46.27 | 41.07 | 43.52 | 56.48
tence pairs and the test data consists of 100 sen-
tence pairs. This supervised data was obtained

from IRCS, University of Pennsylvania. For train- ) ]
ing our model, we need to convert the many-to- We now add the global features. While esti-

many alignments in the corpus to one-to-one ofnating the parameter weights a§sociated with the
may-to-one alignments. This is done by applyinggIObal features, we keep the weights of local fea-

inverse operations of those performed during thdUres constant. We choose the appropriate beam
post-processing step (section 2.3). size as 50 after testing with several values on the

development set. We observed that the beam sizes
“Originally collected as part of TIDES MT project and (between 10 and 100) did not affect the alignment
later refined at llIT-Hyderabad, India. error rates very much.

Table 3: Results using local features
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Features Prec. | Rec. | F-meas. | AER tures. We also plan to design an appropriate de-
Local feats. 46.27 | 41.07| 43.52 | 56.48 pendency based decoder for machine translation
Local feats. 48.17 | 42.76 | 45.30 | 54.70 to make good use of the parameters estimated by

+ Overlap our model.
Local feats. 47.93 | 42.55| 45.08 | 54.92
+ Direc._Deppair
Local feats. 48.31 | 42.89| 45.44 | 54.56 References
+ Direc._Bigram Phil Blunsom and Trevor Cohn. 2006. Discriminative

word alignment with conditional random fields. In
Local feats. 4881 43311 45.90 | 54.10 Proceedings of the 21st COLING and 44th Annual
+ Al Global feats. Meeting of the ACL, Sydney, Australia, July. ACL.

Table 4: Results after adding global features Koby Crammer and Yoram Singer. 2003. Ultraconser
vative online algorithms for multiclass problems. In
Journal of Machine Learning Research.

We see that by adding global features, we ob- . )
tained an absolute increase of about 2.3 AER su plexander Fraser and Daniel Marcu. '2006. Semi-
: g supervised training for statistical word alignment. In

gesting the usefulness of structural features which proceedings of the 21st COLING and 44th Annual

we considered. Also, the new AER is much better Meeting of the ACL, Sydney, Australia, July. Asso-

than that obtained by GIZA++ run without lem-  ciation for Computational Linguistics.

matizing the words. Simon Lacoste-Julien, Ben Taskar, Dan Klein, and
We now add the IBM Model-4 parameters (co- Michael I. Jordan. 2006. Word alignment via

occurrence probabilities between source and tar- guadratic assignment. Froceedings of the Human

. . _ Language Technology Conference of the NAACL,
get words) obtained using GIZA++ and our fea Main Conference, pages 112119, New York City,

tures, and observe the results (Table 6). We can ysa, june. Association for Computational Linguis-
see that structural features resulted in a significant tics.
decrease in AER. Also, the AER that we ObtalnedRyan McDonald, Fernando Pereira, Kiril Ribarov, and

is slightly better than the best AER obtained by the “jan Hajic. 2005. Non-project dependency pars-

GIZA++ models. ing using spanning tree algorithms. Rroceed-
ings of Human Language Technology Conference
Features Prec. | Rec. | F-meas. | AER and Conference on Empirical Methods in Natural

IBM Model-4 Pars. | 48.85 | 4398 | 46.29 | 52.71 Language Processing, pages 523-530, Vancouver,

British Columbia, Canada, October. Association of

* LocalFeats Computational Linguistics.

IBM Model-4 Pars. | 48.95| 50.06 | 49.50 | 50.50

+ Al feats. Robert C. Moore. 2005. A discriminative frame-
work for bilingual word alignment. IfProceedings
Table 5: Results after combining IBM model-4 pa- ©f Human Language Technology Conference and

. Conference on Empirical Methods in Natural Lan-

rameters with our features guage Processing, pages 81-88, Vancouver, British
Columbia, Canada, October. Association of Compu-
tational Linguistics.

6 Conclusion and Future Work _ o
F. Och and H. Ney. 2003. A systematic comparisoin

In this paper, we have proposed a discriminative of various statistical alignment models. Gompu-

re-ranking approach for word alignment which al- ~ tational Linguistics.

lows us to make use of structural features effectibin Shen. 2006. Satistical LTAG Parsing. Ph.D.

tively. We have shown that by using the structural thesis.

features, we have obtained a decrease of 2.3% iy Taskar, Simon Lacoste-Julien, and Dan Klein.

the absolute value of alignment error rate (AER). 2005. A discriminative machine approach to word

When we combine the prediction of IBM model-4  alignment. InProceedings of HLT-EMNLP, pages

with our features, we have achieved an AER which 73-80, Vancouver, British Columbia, Canada, Octo-

is slightly better than the best AER of GIZA++ ber. Association of Computational Linguistics.

for the English-Hindi parallel corpus (a languageStefan Vogel, Hermann Ney, and Christoph Tillmann.

pair with significant structural divergences). We 1996. Hmm-based word alignment in statistical
. translation. IrProceedings of the 16th International

expect to get large improvements when we add ~gterenceon Computational Linguistics.

more number of relevant local and structural fea-
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Generation in Machine Trandlation from Deep Syntactic Trees

Keith Hall
Center for Language and Speech Processing
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Abstract

In this paper we explore a generative
model for recovering surface syntax and
strings from deep-syntactic tree structures.
Deep analysis has been proposed for a
number of language and speech process-
ing tasks, such as machine trandation and
paraphrasing of speech transcripts. In an
effort to validate one such formalism of
deep syntax, the Praguian Tectogrammat-
ica Representation (TR), we present a
model of synthesis for English which gen-
erates surface-syntactic trees as well as
strings. We propose a generative model
for function word insertion (prepositions,
definite/indefinite articles, etc.) and sub-
phrase reordering. We show by way of
empirical results that this model is ef-
fective in constructing acceptable English
sentences given impoverished trees.

1 Introduction

Syntactic models for language are being reintro-
duced into language and speech processing sys
tems thanks to the success of sophisticated statisti-
cal models of parsing (Charniak and Johnson, 2005;
Coallins, 2003). Representing deep syntactic rela-
tionships is an open area of research; examples of
such models are exhibited in a variety of grammat-
ical formalisms, such as Lexica Functional Gram-
mars (Bresnan and Kaplan, 1982), Head-driven
Phrase Structure Grammars (Pollard and Sag, 1994)
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and the Tectogrammatical Representation (TR) of
the Functional Generative Description (Sgall et a.,
1986). In this paper we do not attempt to analyze the
differences of these formalisms; instead, we show
how one particular formalism is sufficient for au-
tomatic analysis and synthesis. Specificaly, in this
paper we provide evidence that TR is sufficient for
synthesisin English.

Augmenting models of machine translation (M T)
with syntactic features is one of the main fronts of
the MT research community. The Hiero model has
been the most successful to date by incorporating
syntactic structure amounting to simple tree struc-
tures (Chiang, 2005). Synchronous parsing mod-
€l's have been explored with moderate success (Wu,
1997; Quirk et al., 2005). An extension to this work
is the exploration of deeper syntactic models, such
as TR. However, a better understanding of the syn-
thesis of surface structure from the deep syntax is
necessary.

This paper presents a generative model for surface
syntax and strings of English given tectogrammati-
cal trees. Sentence generation begins by inserting
auxiliary words associated with autosemantic nodes;
these include prepositions, subordinating conjunc-
tions, modal verbs, and articles. Following this, the
linear order of nodes is modeled by a similar gen-
erative process. These two models are combined in
order to synthesize a sentence.

The Amalgam system provides a similar model
for generation from a logical form (Corston-Oliver
et a., 2002). The primary difference between our
approach and that of the Amalgam system is that
we focus on an impoverished deep structure (akin to

Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 57-64,
Rochester, New York, April 2007. (©2007 Association for Computational Linguistics



logical form); we restrict the deep analysis to con-
tain only the features which transfer directly across
languages; specifically, those that transfer directly
in our Czech-English machine transation system.
Amalgam targets different issues. For example,
Amalgam’s generation of prepositions and subordi-
nating conjunctions is severely restricted as most of
these are considered part of the logical form.

Thework of Langkilde-Geary (2002) on the Halo-
gen system is similar to the work we present here.
The differences that distinguish their work from
ours stem from the type of deep representation from
which strings are generated. Although their syntac-
tic and semantic representations appear similar to
the Tectogrammatical Representation, more explicit
information is preserved in their representation. For
example, the Halogen representation includes mark-
ings for determiners, voice, subject position, and
dative position which simplifies the generation pro-
cess. We believetheir minimally specified results are
based on input which most closely resembles the in-
put from which we generate in our experiments.

Amalgam’s reordering model is similar to the one
presented here; their model reorders constituents in
a similar way that we reorder subtrees. Both the
model of Amalgam and that presented here differ
considerably from the n-gram models of Langkilde
and Knight (1998), the TAG models of Bangalore
and Rambow (2000), and the stochastic generation
from semantic representation approach of Soricut
and Marcu (2006). In our work, we order the local-
subtrees! of an augmented deep-structure tree based
on the syntactic features of the nodes in the tree. By
factoring these decisions to be independent for each
local-subtree, the set of strings we consider is only
constrained by the projective strucutre of the input
tree and the local permutation limit described below.

In the following sections we first provide a brief
description of the Tectogrammatical Representation
as used in our work. Both manually annotated and
synthetic TR trees are utilized in our experiments;
we present a description of each type of tree as well
as the motivation for using it. We then describe the
generative statistical process used to model the syn-
thesis of analytical (surface-syntactic) trees based

1A local subtree consists of a parent node (governor) and it's
immediate children.
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FORM: #2
LEMM: #:
FUNC: SENT

FORM: opened
LEMM: open

FUNC: PRED
POS: 'VBN'
T_M: 'SIM'_IND'

FORM: network FORM: Now FORM: bureau FORM: capital
LEMM: network LEMM: now LEMM: bureau LEMM: capital
FUNC: ACT FUNC: TWHEN FUNC: PAT FUNC: LOC
POS: 'NN' POS: 'RB' POS: 'NN' POS: 'NN'

5ok

FORM: news  FORM: Hungarian
LEMM: news  LEMM: hungarian
FUNC: RSTR  FUNC: RSTR
POS: 'NN' POS: JJ'

Figure 1. Example of a manually annotated, Synthetic TR
tree (see Section 2.2).

Reference: Now the network has opened a news bureau in
the Hungarian capital

Each sentence has an artificial root node labeled #. Verbs con-
tain their tense and mood (labeled T_M).

on the TR trees. Details of the model’s features
are presented in the following section. Finaly we
present empirical results for experiments using both
the manually annotated and automatically generated
data.

2 Tectogrammatical (Deep) Syntax

The Tectogrammatical Representation (TR) comes
out of the Praguian linguistic theory known as
the Functional Generative Description of language
(Sgal et al., 1986). TR attempts to capture deep
syntactic relationships based on the valency of pred-
icates (i.e., function-argument structure) and modifi-
cation of participants (i.e., nouns used as actors, pa-
tients, etc.). A key feature of TR is that dependency
relationships are represented only for autosemantic
words (content words), meaning that synsemantic
words (syntactic function words) are encoded asfea
tures of the grammatical relationships rather than the
actual words. Abstracting away from specific syn-
tactic lexical items alows for the representation to
be less language-specific making the representation
attractive as a medium for machine tranglation and
summarization.

Figure 1 shows an example TR tree, the nodes of



which represent the autosemantic words of the sen-
tence. Each node is labeled with a morphologically
reduced word-form called the lemma and a functor
that describes the deep syntactic relationship to its
governor (function-argument form). Additionaly,
the nodes are labeled with grammatemes that cap-
ture morphological and semantic information asso-
ciated with the autosemantic words. For example,
English verb forms are represented by the infinitive
form as the lemma and the grammatemes encode
the tense, aspect, and mood of the verb. For a de-
tailed description of the TR annotation scheme see
Bohmova et a. (2002). In Figure 1 we show only
those features that are present in the TR structures
used throughout this paper.

Both the synsemantic nodes and the left-to-right
surface order? in the TR trees is under-specified. In
the context of machine trandation, we assume the
TR word order carries no information with the ex-
ception of a single situation: the order of coordi-
nated phrases is preserved in one of our models.

2.1 Analytic Representation

Whileit is not part of the formal TR description, the
authors of the TR annotation scheme have found it
useful to define an intermediate representation be-
tween the sentence and the TR tree (Bohmova et
a., 2002). The analytical representation (AR) is a
surface-syntactic dependency tree that encodes syn-
tactic relationships between words (i.e., object, sub-
ject, attribute, etc.). Unlikethe TR layer, the analyti-
cal layer contains all words of the sentence and their
relative ordering isidentical to the surface order.

2.2 Manually Annotated TR

In order to evaluate the efficacy of the generation
model, we construct a dataset from both manually
annotated data and automatically generated data.
The information contained in the originally manu-
aly annotated TR all but specifies the surface form.
We have modified the annotated data by removing
all features except those that could be directly trans-
fered across languages. Specifically, we preserve
thefollowing features: lemma, functor, verbal gram-

’In aTR tree, a subtreeis always between the nodes to the
left and right of its governor. More specifically, all TR trees
are projective. For this reason, the relative ordering of subtrees
imposes an absolute ordering for the tree.
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matemes, and part-of-speech tags. The lemma is
the morphologicaly reduced form of the word; for
verbs this is the infinitive form and for nouns thisis
the singular form. The functor isthe deep-syntactic
function of the node; for example, the deep functor
indicates whether anode is apredicate, an actor, or a
patient. Modifiers can be labeled as locative, tempo-
ral, benefactive, etc. Additionally we include a ver-
bal grammateme which encodes tense and mood as
well as a Penn Treebank style part-of-speech tag.

3 Generative Process

In this section we describe the generative process
that inserts the synsemantic auxiliary words, re-
orders the trees, and produces a sentence. Our eval-
uation will be on English data, so we describe the
models and the model features in the context of En-
glish. While the model is language independent, the
specific features and the size of the necessary condi-
tioning contexts is afunction of the language.

Given a TR tree T', we wish to predict the cor-
rect auxiliary nodes A and an ordering of the words
associated with {T" U A}, defined by the function
f{T U A}). Thefunctions f determine the surface
word order of the words associated with nodes of the
auxiliary-inserted TRtree: N = {T'U A}. Thenode
features that we use from the nodes in the TR and
AR trees are: the word lemma, the part-of-speech
(POS) tag, and the functor® The objective of our
model is:

arg max P(A, fIT)

= argmax P(f|A, T)P(A|T) )

)

R~ argm?xP(f]T, argmjixP(A\T)) 2

In Equation 2 we approximate the full model with a
greedy procedure. First, we predict the most likely
A according to the model P(A|T). Given A, we
compute the best ordering of the nodes of the tree,
including those introduced in A.

There is an efficient dynamic-programming solu-
tion to the objective function in Equation 1; how-

3The type of functor used (deep syntactic or surface-
syntactic) depends on the tree to which we are applying the
model. One form of the reordering model operates on AR trees
and therefore uses surface syntactic functors. The other model
is based on TR trees and uses deep-syntactic functors.



ever, in this work we experiment with the greedy
approximation.
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The specific English auxiliary nodes which are not
present in TR include articles, prepositions, subor-
dinating conjunctions, and modal verbs® For each
node in the TR tree, the generative process predicts
which synsemantic word, if any, should be inserted
as a dependent of the current node. We make the
assumption that these decisions are determined in-
dependently.

Let 7 = {wi,...,w;,..., wi} bethe nodes of
the TR tree. For each node w;, we define the asso-
ciated node a; to be the auxiliary node that should
be inserted as a dependent of w;. Given atree T,
we wish to find the set of auxiliary nodes A =
{ai,...,a;} that should be insertec’:

Insertion Model

P(A|T)
:HP(ai|a1,...,al-,1,T) (3)

~ [ Pl (4)
~ Hp(ai’wiawg(i)) (5

Equation 3 is simply a factorization of the origi-
nal model, Equation 4 shows the independence as-
sumption, and in Equation 5 we make an additional
conditional independence assumption that in order
to predict auxiliary a;, we need only know the asso-
ciated node w; and its governor wy ;) 6

We further divide the model into three compo-
nents: one that models articles, such as the En-
glish articles the and a; one that models preposi-
tions and subordinating conjunctions; and one that
models modal verbs. Thefirst two models are of the
form described by Equation 5. The modal verb in-
sertion model is a deterministic mapping based on

“The function of synsemantic nodes are encoded by func-
tors. For example, the prepositions to, at, in, by, and on may be
used to indicate time or location. An autosemantic modifier will
be labeled as temporal or locative, but the particul ar preposition
is not specified.

®Note that we include the auxiliary node labeled NOAUX to
be inserted, which in fact means a node is not inserted.

81n the case of nodes whose governor is a coordinating con-

junction, the governor information comes from the governor of
the coordination node.
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grammatemes expressing the verb modality of the
main verb. Additionally, each model is independent
of the other and therefore up to two insertions per
TR node are possible (an article and another syntac-
tic modifier). In avariant of our model, we perform
asmall set of deterministic transformations in cases
where the classifier is relatively uncertain about the
predicted insertion node (i.e., the entropy of the con-
ditiona distribution ishigh).

We note here that unlike the Amalgam system
(Corston-Oliver et al., 2002), we do not address fea-
tures which are determined (or almost completely
determined) by the underlying deep-structure. For
example, the task of inserting prepositions is non-
trivial given we only know a node’s functor (e.g.,
the node's valency role).

3.2 Analytical Representation Tree Generation

We have experimented with two paradigms for syn-
thesizing sentences from TR trees. The first tech-
nique involves first generating AR trees (surface
syntax). In this model, we predict the node inser-
tions, transform the functors from TR to AR func-
tions (deep valency relationship to surface-syntactic
relationships), and then reorder the nodes. In the
second framework, we reorder the nodes directly in
the TR trees with inserted auxiliary nodes.

3.3 Surface-order Model

The node ordering model is used to determine a pro-
jection of the tree to a string. We assume the order-
ing of the nodes in the input TR trees is arbitrary,
the reordering model proposed hereis based only on
the dependency structure and the node’s attributes
(words, POS tags, etc.). In avariant of the reorder-
ing model, we assume the deep order of coordinating
conjunctions to be the surface order.

Algorithm 1 presents the bottom-up node reorder-
ing agorithm. In the first part of the algorithm, we
determine the relative ordering of child nodes. We
maximize the likelihood of a particular order viathe
precedence operator <. If node ¢ < ¢;11, then
the subtree of the word associated with ¢ imme-
diately precedes the subtree of the word associated
with ¢; 11 in the projected sentence.

In the second half of the algorithm (starting at
line 13), we predict the position of the governor
within the previously ordered child nodes. Recall



Algorithm 1 Subtree Reordering Algorithm

procedure REORDER(T', A, O) > Resultin O
N —bottomUp(T' U A); O~ {}
for g € N do
bestScore < 0; og — {}
5 for C' «—permutation of ¢'s children do
fori— 1...|C|do
s «— s* P(c; < cit1]ci, cit1,9)
end for
if s > bestScore then
10: bestScore « s;
end if
end for
bestScore < 0; m <« 0
for i « 1...|bestOrder| do
15: S «— P(Ci <g= C¢+1|C¢,C¢+1,g)
if s > bestScore then
s < bestScore ;
end if
end for
20: Insert governor c, after m*™ childin o,
O —O0OUoyq
end for

end procedure

0g — C

m <1

that thisis adependency structure; knowing the gov-
ernor does not tell us where it lies on the surface
with respect to its children. The model is similar
to the general reordering model, except we consider
an absolute ordering of three nodes (left child, gov-
ernor, right child). Finally, we can reconstruct the
total ordering from the subtree ordering defined in
0= {01,...,0n}.

The procedure described here is greedy; first we
choose the best child ordering and then we choose
the location of the governor. We do thisto minimize
the computational complexity of the algorithm. The
current algorithm’s runtime complexity isO(n!), but
the complexity of the alternative algorithm for which
we consider triples of child nodesis O(n!(n — 1)!).
The actual complexity is determined by the maxi-
mum number of child nodes k = |C| andis O(k!).

3.4 Morphological Generation

In order to produce true English sentences, we con-
vert the lemma and POS tag to a word form. We
use John Carroll’s morphg tool’ to generate English
word forms given lemma/POS tag pairs. This is
not perfect, but it performs an adequate job at re-
covering English inflected forms. In the complete-
system evaluation, we report scores based on gener-

"Available on the web at;

http://ww. i nformatics. susx. ac. uk/research/nl p/carrol |/ norph. htni .
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ated morphological forms.
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Features for the insertion model come from the cur-
rent node being examined and the node's governor.
When the governor is a coordinating conjunction,
we use features from the governor of the conjunc-
tion node. The features used are the lemma, POS
tag, and functor for the current node, and the lemma,
POS tag, and functor of the governor.

Hp(ai’wivwg)
= HP(ai”iatiafialgvtgafg)

Insertion Features

(6)

The left-hand side of Equation 6 is repeated from
Equation 5 above. Equation 6 shows the expanded
model for auxiliary insertion where j; isthe lemma,
t; isthe POStag, and f; is the functor of node w;

3.6 Reordering Features

Our reordering model for English is based primar-
ily on non-lexical features. We use the POS tag
and functor from each node as features. The two
distributions in our reordering model (used in Algo-
rithm 1) are:

P(c; < ciy1lci, ciy1,9) (7
= (¢; = eyl fists, fir1, tivas g  tg)
P(ci < g < ciyileis cit1, 9)
= P(c; < g < cip1lfisti, firrstivr.tgs fq)
In both Equation 7 and Equation 8, only the func-
tor and POS tag of each node is used.

(8)

4 Empirical Evaluation

We have experimented with the above models on
both manually annotated TR trees and synthetic
trees (i.e., automatically generated trees). The data
comes from the PCEDT 1.0 corpus®, aversion of the
Penn WSJ Treebank that has been been trandlated to
Czech and automatically transformed to TR in both
English and Czech. The English TR was automat-
ically generated from the Penn Treebank’s manu-
aly annotated surface syntax trees (English phrase-
structure trees). Additionally, asmall set of 497 sen-
tences were manually annotated at the TR level: 248

8L.DC catalog number: LDC2004T25.



Model Manual Data Synthetic Data
Ins. Rules No Rules Ins. Rules No Rules

Model Articles | Prep & SC | Articles | Prep & SC || Articles | Prep & SC | Articles | Prep & SC
Baseline N/A N/A 77.93 76.78 N/A N/A 78.00 78.40
w/o g. functor 87.29 89.65 86.25 89.31 88.07 91.83 87.34 91.06
w/o g. lemma 86.77 89.48 85.68 89.02 87.53 90.95 86.55 91.16
w/o g. POS 87.29 89.45 86.10 89.14 87.68 91.86 86.89 92.07
w/o functor 86.10 85.02 84.86 84.56 86.01 85.60 84.79 85.65
w/o lemma 81.34 89.02 80.88 88.91 81.28 91.03 81.42 91.33
w/o POS 84.81 88.01 84.01 87.29 85.53 91.08 84.69 90.98
All Features 87.49 89.68 86.45 89.28 87.87 91.83 87.24 92.02

Table 1: Classification accuracy for insertion models on development data from PCEDT 1.0. Article accuracy is computed over
the set of nouns. Preposition and subordinating conjunction accuracy (P & SC) is computed over the set of nodes that appear on
the surface (excluding hidden nodes in the TR — these will not exist in automatically generated data). Models are shown for all
features minus the specified feature. Features with the prefix “g.” indicate governor features, otherwise the features are from the
node's attributes. The Baseline model is one which never inserts any nodes (i.e., the model which inserts the most probable value —

NOAUX).

for development and 249 for evaluation; results are
presented for these two datasets.

All models were trained on the PCEDT 1.0 data
set, approximately 49,000 sentences, of which 4,200
wererandomly selected as held-out training data, the
remainder was used for training. We estimate the
model distributions with a smoothed maximum like-
lihood estimator, using Jelinek-Mercer EM smooth-
ing (i.e., linearly interpolated backoff distributions).
L ower order distributions used for smoothing are es-
timated by deleting the rightmost conditioning vari-
able (as presented in the above models).

Similar experiments were performed at the 2002
Johns Hopkins summer workshop. The results re-
ported here are substantially better than those re-
ported in the workshop report (Hgjic et a., 2002);
however, the details of the workshop experiments
are not clear enough to ensure the experimental con-
ditions are identical.

4.1 Insertion Results

For each of the two insertion models (the article
model and the preposition and subordinating con-
junction model), there is a finite set of values for
the dependent variable o;. For example, the articles
are the complete set of English articles as collected
from the Penn Treebank training data (these have
manual POS tag annotations). We add a dummy
value to this set which indicates no article should
be inserted.® The preposition and auxiliary model

%In the classifier evaluation we consider the article a and an
to be equivalent.
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assumes the set of possible modifiers to be al those
seen in the training data that were removed when
modifying the manual TR trees.

The classification accuracy is the percentage of
nodes for which we predicted the correct auxiliary
from the set of candidate nodes for the auxiliary
type. Articles are only predicted and evaluated for
nouns (determined by the POS tag). Prepositions
and subordinating conjunctions are predicted and
evaluated for all nodes that appear on the surface.
We do not report results for the modal verb inser-
tion as it is primarily determined by the features of
the verb being modified (accuracy is approximately
100%). We have experimented with different fea-
tures sets and found that the model described in
Equation 6 performs best when all features are used.

In avariant of the insertion model, when the clas-
sifier prediction is of low certainty (probability less
than .5) we defer to asmall set of deterministic rules.
For infinitives, we insert “to”; for origin nouns, we
insert “from”, for actors we insert “of”, and we at-
tach “by” to actors of passive verbs. In the article
insertion model, we do not insert anything if there
is another determiner (e.g., “none” or “any”) or per-
sonal pronoun; we insert “the” if the word appeared
within the previous four sentences or if there is a
suggestive adjective attached to the noun?°

Table 1 shows that the classifiers perform better
on automatically generated data (Synthetic Data),
but also perform well on the manually annotated

©Any adjective that is always followed by the definite article
in the training data.



Model Manual Data Synthetic Data

Coord. Rules No Rules Coord. Rules No Rules

All Interior All Interior All Interior All Interior
Baseline N/A N/A 68.43 21.67 N/A N/A 69.00 21.42
w/o g. functor 9451 | 86.44 | 9242 | 8127 9490 | 87.25 | 93.37| 8342
w/o g. tag 9343 | 8375 | 90.89 | 77.50 93.82 | 8456 | 91.64| 79.12
w/oc. functors || 91.38 | 78.70 | 89.71 | 74.57 9191 | 79.79 | 9041 | 76.04
w/o c. tags 88.85 | 7244 | 8229 | 57.36 8891 | 7229 | 83.04| 57.60
All Features 9443 | 86.24 | 92.01 | 80.26 9521 | 88.04 | 9337 | 8342

Table 2: Reordering accuracy for TR trees on development data from PCEDT 1.0. We include performance on the interior nodes

(excluding leaf nodes) for the Manual datato show a more detailed analysis of the performance.

7]

g.” arethe governor features and

“c.” arethe child features. The baseline model sorts subtrees of each node randomly.

data. Prediction of articlesis primarily dependent on
the lemma and the tag of the node. The lemma and
tag of the governing node and the node’s functor is
important to alesser degree. In predicting the prepo-
sitions and subordinating conjunctions, the node's
functor is the most critical factor.

% Errors | Reference—Hypothesis
41 the — NULL
19 aan — NULL
16 NULL —  the
11 aan —  the
11 the — aan
2 NULL — alan

Table 3: Article classifier errors on development data.

Manual Synthetic
Det. | P& SC Det. | P& SC
85,53 | 89.18 || 8531 | 91.54

Table 4: Accuracy of best models on the evaluation data.

Table 3 presents a confusion set from the best ar-
ticle classifier on the development data. Our model
isrelatively conservative, incurring 60% of the error
by choosing to insert nothing when it should havein-
serted an article. The model requires more informed
features as we are currently being overly conserva
tive.

In Table 4 wereport the overall accuracy on evalu-
ation datausing the model that performed best on the
development data. The results are consistent with
the results for the development data; however, the
article model performs dlightly worse on the evalua-
tion set.

4.2 Reordering Results

Evaluation of the final sentence ordering was based
on predicting the correct words in the correct po-
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sitions. We use the reordering metric described in
HagjiC et a. (2002) which computes the percentage
of nodes for which all children are correctly ordered
(i.e., no credit for partially correct orderings).

Table 2 shows the reordering accuracy for the
full model and variants where a particular feature
type is removed. These results are for ordering
the correct auxiliary-inserted TR trees (using deep-
syntactic functors and the correctly inserted auxil-
iaries). In the model variant that preserves the deep
order of coordinating conjunctions, we see a signif-
icant increase in performance. The child node tags
are critical for the reordering model, followed by the
child functors.

4.3 Combined System Results

Model Manual | Synthetic
TR w/ Rules 4614 ATT7
TR w/o Rules 4532 4657
AR .2337 .2451

Table 5: BLEU scores for complete generation system for TR
trees (with and without rules applied) and the AR trees.

In order to evaluate the combined system, we used
the multiple-tranglation dataset in the PCEDT cor-
pus. This data contains four retransations from
Czech to English of each of the original English sen-
tences in the development and evaluation datasets.
In Table 5 we report the BLEU scores on devel op-
ment data for our TR generation model (including
the morphological generation module) and the AR
generation model. Results for the system that uses
AR trees as an intermediate stage are very poor; this
islikely due to the noise introduced when generating
AR trees. Additionally, the results for the TR model
with the additional rules are consistent with the pre-



vious results; the rules provide only a margina im-
provement. Finally, we have run the complete sys-
tem on the evaluation data and achieved a BLEU
score of .4633 on the manua data and .4750 on
the synthetic data. These can be interpreted as the
upper-bound for Czech-English translation systems
based on TR tree transduction.

5 Conclusion

We have provided a model for sentence synthesis
from Tectogrammatical Representation trees. We
provide anumber of models based on relatively sim-
ple, local features that can be extracted from impov-
erished TR trees. We believe that further improve-
ments will be made by allowing for more flexible
use of the features. The current model uses sim-
ple linear interpolation smoothing which limits the
types of model features used (forcing an explicit fac-
torization). The advantage of simple models of the
type presented in this paper is that they are robust
to errors in the TR trees — which are expected when
the TR trees are generated automatically (e.g., in a
machine tranglation system).
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Abstract

The purpose of this work is to explore
the integration of morphosyntactic infor-
mationinto the translation model itself, by
enriching words with their morphosyntac-
tic categories. We investigate word dis-
ambiguation using morphosyntactic cate-
gories, n-best hypotheses reranking, and
the combination of both methods with
word or morphosyntacticn-gram lan-
guage model reranking. Experiments
are carried out on the English-to-Spanish
translation task. Using the morphosyn-
tactic language model alone does not
results in any improvement in perfor-
mance. However, combining morphosyn-
tactic word disambiguation with a word
based 4-gram language model results in a
relative improvement in the BLEU score
of 2.3% on the development set and 1.9%
on the test set.

Introduction

t@limsi.fr

context information as opposed to word-based mod-
els. Training a phrase-based model typically re-
quires aligning a parallel corpus, extracting phrases
and scoring them using word and phrase counts. The
derived statistics capture the structure of natural lan-
guage to some extent, including implicit syntactic
and semantic relations.

The output of a SMT system may be difficult to
understand by humans, requiring re-ordering words
to recover its syntactic structure. Modeling language
generation as a word-based Markovian sourcexfan
gram language model) discards linguistic properties
such as long term word dependency and word-order
or phrase-order syntactic constraints. Therefore, ex-
plicit introduction of structure in the language mod-
els becomes a major and promising focus of atten-
tion.

However, as of today, it seems difficult to outper-
form a 4-gram word language model. Several stud-
ies have attempted to use morphosyntactic informa-
tion (also known as part-of-speech or POS informa-
tion) to improve translation. (Och et al., 2004) have
explored many different feature functions. Rerank-
ing n-best lists using POS has also been explored by
(Hasan et al., 2006). In (Kirchhoff and Yang, 2005),

Recent works in statistical machine translatio® factored language model using POS information
(SMT) shows how phrase-based modeling (Och arghowed similar performance to a 4-gram word lan-
Ney, 2000a; Koehn et al., 2003) significantly outguage model. Syntax-based language models have
perform the historical word-based modeling (Browrilso been investigated in (Charniak et al., 2003). All

et al., 1993).

Using phrases, i.e.

sequences Hiese studies use word phrases as translation units

words, as translation units allows the system to pr&nd POS information in just a post-processing step.
serve local word order constraints and to improve This paper explores the integration of morphosyn-
the consistency of phrases during the translation preactic informationinto the translation model itself

cess.
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Phrase-based models provide some sort lof enriching words with their morphosyntactic cat-
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egories. The same idea has already been applipdnalty and a trigram target language model. Ad-
in (Hwang et al., 2007) to the Basic Travel Ex-ditional features can be added, as described in the
pression Corpus (BTEC). To our knowledge, thigollowing sections. The weights; are typically op-
approach has not been evaluated on a large reéimized so as to maximize a scoring function on a
word translation problem. We report results ordevelopment set (Och and Ney, 2002).
the Tc-STAR task (public European Parliament Ple- The moses decoder can outpubest lists, pro-
nary Sessions translation). Furthermore, we praucing either distinct target sentences or not (as
pose to combine this approach with classicdlest different segmentations may lead to the same sen-
list reranking. Experiments are carried out on théence). In this work, distinct sentences were always
English-to-Spanish task using a system based on theed.
publicly availableMosesdecoder. Thesen-best lists can be rescored using higher
This paper is organized as follows: In Sectiororder language models (word- or syntactic-based).
2 we first describe the baseline statistical machin€here are two ways to carry out the rescoring: one,
translation systems. Section 3 presents the consioly replacing the language model score or by adding
ered task and the processing of the corpora. Thenew feature function; two, by performing a log-
experimental evaluation is summarized in section 4inear interpolation of the language model used for
The paper concludes with a discussion of future redecoding and the new language model. This latter

search directions. approach was used in all the experiments described
o in this paper. The set of weights is systematically
2 System Description re-optimized using the algorithm presented below.

The goal of statistical machine translation is to prop Weight optimization

duce a target senteneefrom a source sentende

Among all possible target language sentences th%common criterion 0 pptimize the coeffipient§ of
one with the highest probability is chosen. The usIahe I_og_-Ilnear combination of feat_ure functlons IS t0
of a maximum entropy approach simplifies the introlNaximize the BLEU score (Papineni et al., 2002)

duction of several additional models explaining th@" & development se_t (Och a_nd Ney, ,200_2)' For
translation process: this purpose, the public numerical optimization tool

Condor(Berghen and Bersini, 2005) is integrated in
the following iterative algorithm:

e" = argmaxPr(elf)

= argmgx{exp(z)\ihi(eyf))} (1) 0. Using good general purpose weights, the
i Moses decoder is used to generate 1000-best

where the feature functiond; are the system lists.

models characterizing the translation process, and;

. ] The 1000-best lists are reranked using the cur-
the coefficients\; act as weights.

rent set of weights.

2.1 Moses decoder 2. The current hypothesis is extracted and scored.

Moses is an open-source, state-of-the-art phrase- _ ) _

based decoder. It implements an efficient beam-3- This BLEU score is passed @ondor, which

search algorithm. Scripts are also provided to traina ~ €ither computes a new set of weights (the al-

phrase-based model. The popular Giza++ (Och and gorithm thep proceeds to step 1) or detects that

Ney, 2000b) tool is used to align the parallel corpora. @ local maxima has been reached and the algo-

The baseline system uses 8 feature functibns rithm stops iterating.

namely phrase translation probabilities in both di- L .
€ly phra on p e . The solution is usually found after about 100 itera-

rections, lexical translation probabilities in both di- . . .
. . . tions. It is stressed that thebest lists are generated

rections, a distortion feature, a word and a phrase )

only once and that the whole tuning operates only

Thitp://www.statmt.org/moses/ on then-best lists.

66



English: Ipp declargy p resumeghy p thepr sessiory of;x thepr European p Parliament; p

Spanish: declafgy, f;, reanudadprqq; €larr perodoyc deprep sesionegc
delpprr, Parlamentg - Europeop

Figure 1: Example of POS-tag enriched bi-text used to train the translation models

2.3 POS disambiguation long-term effort to advance research in all core tech-

It is well-known that syntactic structures varynOIO(‘:]IeS for speech-to-speech translation.

greatly across languages. Spanish, for example, The main goal of this evaluation is to trans-

can be considered as a highly inflectional languagéate public European Parliament Plenary Sessions

whereas inflection plays only a marginal role in En{EPPS). The training material consists of the sum-

glish. mary edited by the European Parliament in several
POS language models can be used to rerank tigguages, which is also known as the Final Text

translation hypothesis, but this requires tagging thgditions (Gollan et al., 2005). These texts were

n-best lists generated by the SMT system. This cafigned at the sentence level and they are used to

be difficult since POS taggers are not well suited for@in the statistical translation models (see Table 1

ill-formed or incorrect sentences. Finding a methodr SOMe statistics).

in which morphosyntactic information is used di-

rectly in the translation model could help overcome H Spanish\ English ‘

this drawback but also takes account for the syntac

tic specificities of both source and target languages.

Whole parallel corpusg

. o Sentence Pairs 1.2M
It seems likely that the morphosyntactic informa-| 141 # Words 34.1M 32 7M
tion of each word will be useful to encode linguis- Vocabulary size 129k 74K

tic characteristics, resulting in a sort of word disam-

) ) R . Sentence lengtk 40
biguation by considering its morphosyntactic cate-

oo . ) Sentence Pairs 0.91M
gory. Therefore, in this work we investigate a trans- Total # Words 18.5M 18.0M
Iano_n model which enrlches every Worq with |_ts SYN- | \word vocabulary 104k 71k
tactic category. The enriched translation units are a POS vocabulary 69 59

combin_atio_n of the original Wor(_JI and the POStag, ag Enriched units vocabl 115k 77 6k
shown in Figure 1. The translation system takes a s
quence of enriched units as inputs and outputs. Thigble 1: Statistics of the parallel texts used to train
implies that the test data must be POS tagged befatte statistical machine translation system.
translation. Likewise, the POS tags in the enriched

output are removed at the end of the process to pro- _ - _ _

vide the final translation hypothesis which contain 1hree different conditions are considered in the

only a word sequence. This approach also allowEC-STAR evaluation: translation of the Final Text
to carry out an-best reranking step using either aEdition (texd), translation of the transcriptions of the

word-based or a POS-based language model. acoustic development dataefbatin) and transla-
tion of speech recognizer outpuA$%R. Here we

only consider theverbatim condition, translating
from English to Spanish. For this task, the develop-

The experimental results reported in this article wer1ent and test data consists of about 30k words. The
obtained in the framework of an international evalut€st data is partially collected in the Spanish parlia-
ation Organized by the Europea'm:_STAR project_’2 ment. This results in a small mismatch between de-

in February 2006. This project is envisaged as ¥elopment and test data. Two reference translations
are provided. The scoring is case sensitive and in-

2http://www.tc-star.org/ cludes punctuation symbols.

3 Task, corpus and tools
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3.1 Text normalization 3.4 Tools

The training data used for normalization differs sigPOS tagging was performed with thgeeTagger
nificantly from the development and test data. Th¢Schmid, 1994). This software provides resources
Final Text Edition corpus follows common ortho-for both of the considered languages and it is freely
graphic rules (for instance, the first letter of the worcivailable. TreeTaggeris a Markovian tagger that
following a full stop or a column is capitalized) anduses decision trees to estimate trigram transition
represents most of the dates, quantities, article refgsrobabilities. The English version is trained on the
ences and other numbers in digits. Thus the text ha®=NN treebanicorpus and the Spanish version on
to be “true-cased” and all numbers were verbalizethe CRATERcorpus?

using in-house language-specific tools. Numbers are Language models are built using the SRI-LM
not tagged as such at this stage; this is entirely lefpolkit (Stolcke, 2002). Modified Knesser-Ney dis-
to the POS tagger. counting was used for all models. In (Goodman,
2001), a systematic description and comparison of

the usual smoothing methods is reportddbdified

Long sentences (more than 40 words) greatly slownesser-Neyliscounting appears to be the most ef-
down the training process, especially at the aligncient method.

ment step with Giza++. As shown in Figure 2, the

histogram of the length of Spanish sentences in the Experiments and Results

training corpus decreases steadily after a length of

20 to 25 words, and English sentences exhibit a sirfwo baseline English-to-Spanish translation mod-
ilar behavior. Suppressing long sentences from tHis were created with Moses. The first model was
corpus reduces the number of aligned sentences #gined on the whole parallel text — note that sen-
rough|y 25% (See Table 1) but Speeds the Who]@nces with more than 100 words are excluded by
training procedure by a factor of 3. The impact off3iza++. The second model was trained on the cor-

performance is discussed in the next section. pus using only sentences with at most 40 words. The
BLEU score on the development set using good gen-
Histogram of Spanish sentences’ lengths (training set)

00 | TeonmolSpmhsenences enoms o) eral purpose weights is 48.0 for the first model and

47.0 for the second. Because training on the whole
bi-text is much slower, we decided to perform our
experiments on the bi-texts restricted to the “short”
sentences.

3.2 Translation model training corpus

30000
25000 -
20000

15000

4.1 Language model generation

10000

The reranking experiments presented below use the
following language models trained on the Spanish
T R part of the whole training corpus:

5000 -

Figure 2: Histogram of the sentence length (Spanish e word language models,
part of the parallel corpus).
e POS language model,

3.3 Language model training corpus

In the experiments reported below, a trigram word ® POS language model, with a stop list used to
language model is used during decoding. This remove the 100 most frequent words (POS-
model is trained on the Spanish part of the parallel ~ Stop100 LM),

corpus using only sentences shorter than 40 words
(total of 18.5M of language model training data).
Second pass language models were trained on all3pyy:/amww.cis.upenn.edu treebank

available monolingual data (34.1M words). “http://iwww.comp.lancs.ac.uk/linguistics/crater/corpus.html

e language model of enriched units.
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English:  you will be aware President that over the last few sessions in Strasbourg. ..
Baseline: usted sabe que el Presidehtante losiltimos sesionesn Estrasburgo ...
Enriched units:  usted sabe que el Presidentosultimos pefodos de sesionesn Estrasburgo ...

English: ... in this house there might be some recognition ...
Baseline: ... en esta asambleapuede ser un cierto reconocimiento
Enriched units: ... en esta asambdedste un cierto reconocimiento

Figure 3: Comparative translations using the baseline word system and the enriched unit system.

For each of these four models, various orderformance can be due to the fact that the tagger is
were testedi{ = 3,4, 5), but in this paper we only not able to provide a usefull tagging of sentences
report those orders that yielded the greatestimproveicluded in then-best lists. This observation is
ments. POS language models were obtained by firalso available when reranking of the watebest is
extracting POS sequences from the previously PO8ene with a language model based on enriched units
tagged training corpus and then by estimating staiBLEU score of 47.6, not reported in Table 2).
dard back-off language models.

As shown in Table 1, the vocabulary size of theét.3 POS disambiguation and reranking

word language model is 104k for Spanish_and 7¥fhe results concerning reranking experiments of the
for English. The number of POS is small: 69 for,, ot jists provided by the translation model based

Spanish and 59 for English. We emphasize thaf, enriched unitsare summarized in Table 3. Us-
the tagset provided bjreeTaggedoes include nei- jng 3 trigram language model of enriched transla-

ther gender nor number distinction. The vocabulary, units leads to a BLEU score of 47.4. a 0.4 in-
size of the enriched-unit language modelis 115k {0 g 456 over the baseline presented in section 4.2.

Spanish and 77.6k for English. The syntactical amyjgre 3 shows comparative translation examples
biguity of words is low: the mean ambiguity ratio iS¢qm the baseline and the enriched translation sys-
1.14 for Spanish and 1.12 for English. tems. In the first example, the baseline system out-
puts ‘durante loslltimos sesionéswhere the en-
riched translation system producemn“losltimos

The results concerning reranking experiments of tHeerfiodos de sesiongsa better translation that may
n-best lists provided by the translation model basele attributed to the introduction of the masculine
on words as unitare summarized in Table 2. Theword “periodos, allowing the system to build a
baseline result, with trigram word LM reranking, Syntactically correct sentence. In the second exam-
gives a BLEU score of 47.0 (1rst row). From thePle, the syntactical erromb puede ser un cierto re-
n-best lists provided by this translation model, we&onocimientd produced by the baseline system in-
compared reranking performances with different tarduces an incorrect meaning of the sentence, whereas
get language models. As observed in the literaturé}e enriched translation system hypothesigste un

an improvement can be obtained by reranking witgierto reconocimientbis both syntactically and se-

a 4-gram word language model (47-6 47.5, 2d Mantically correct.

row). By post-tagging this-best list, a POS lan-  Reranking the enriched-best with POS language
guage model reranking can be performed. Howevenodels (either with or without a stop list) does not
reranking with a 5-gram POS language model alorgeem to be efficient (0.3 BLEU increasing with the
does not give any improvement from the baselin®0S-stop100 language model).

(BLEU score of 46.9, 3rd row). This result corre- A better improvement is obtained when reranking
sponds to known work in the literature (Kirchhoffis performed with the 4-gram word language model.
and Yang, 2005; Hasan et al., 2006), when usinghis results in a BLEU score of 47.9, correspond-
POS only as a post-processing step during rerankig to a 0.9 improvement over the word baseline. It
ing. As suggested in section 2.3, this lack of peris interesting to observe that rerankingudest list

4.2 Reranking the wordn-best lists
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Dev. Test Dev. Test

3g word LM baseline  47.0 46.0 3g enriched units LM baseline 474 461
4g word LM reranking 47.5 46.5 49 enriched units LM reranking 47.8 46.8

5g POS reranking 46.9 46.1 4g word LM reranking 47.9 46.9

) . 59 POS LM reranking 475 46.2
Taple 2. BLEU scores using words as transla‘uonSg POS-stop100 LM reranking 477 463
units. word + POS LMs reranking 479 469

obtained with a translation model based on enricheg¥ord + POS-stop100 LMs rerank. 48.1  46.8
units with "?‘WO“’ LM results in bgtter performgncesl.able 3: BLEU scores using enriched translation
than a enriched units LM reranking ofrabest list units.

obtained with a translation model based on words.

The last two rows of Table 3 give results whercouraging enough to further investigate the integra-
combining word and POS language models to rerartion of syntactic information in the translation model
the enrichech-best lists. In both cases, 10 featuregtself, rather than to restrict it to the post-processing
are used for reranking (8 Moses features + worgass. As follow-up experiments, it is planned to in-
language model probability + POS language modelude gender and number information in the tagset,
probability). The best result is obtained by comas well as the word stems to the enriched units.
bining the 5-gram word language model with the 5- This work should be considered as preliminary
gram POS-stop100 language model. In that casexperiments for the investigation of factored trans-
the best BLEU score is observed (48.1), with a 2.3%ation models, which Moses is able to handle. POS
relative increase over the trigram word baseline. factorization is indeed a way to add some general-

ization capability to the enriched translation models.

4.4 Results on the test set

The results on the test set are given in the secofd Acknowledgments

column.of Tables 2 and 3. Although the eanChedI'his work has been partially funded by the European
translation system is only 0.1 BLEU over the basey o ger the integrated proje€t-STAR (IST-

line system (46.0- 46.1) when using a trigram lan- 2002-FP6-506738), and by the French Government

guage model, the best condition observed on the dﬁhder the projeciNSTAR (ANR JCJIC06143038).

velopment set (word and POS-stop100 LMs rerank-=' /. .01 jike to thanks Marc Ferras for his help
ing) results in a 46.8 BLEU score, corresponding tg . )
. . concerning the Spanish language.
a 0.8 increasing.
It can be observed that rescoring with a 4-gram
word language model leads to same score resultin@eferences

in a 1.9% relative increase over the trigram word o
baseline Frank Vanden Berghen and Hugues Bersini. 2005. CON-

DOR, a new parallel, constrained extension of powell’s
) UOBYQA algorithm: Experimental results and com-
5 Conclusion and future work parison with the DFO algorithmlournal of Computa-

o ] tional and Applied Mathematic481:157-175.
Combining word language model reranking 1of

best lists based on syntactically enriched units seerRster F Brown, Stephen A Della Pietra, Vincent J Della
: : : : : o, Of statistical machine translation: Parameter estima-
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Abstract

This paper seeks to complement the cur-
rent trend of adding more structure to Sta-
tistical Machine Translation systems, by
exploring the opposite direction: adding
statistical components to a Transfer-Based
MT system. Initial results on the BTEC
data show significant improvement ac-
cording to three automatic evaluation
metrics (BLEU, NIST and METEOR).

1 Introduction

In recent years the machine translation research
community has seen a remarkable paradigm shift.
It is not the first one, but it has been a very dra-
matic one: statistical machine translation has taken
the center stage. Conferences like ACL or HLT are
virtually flooded with papers on various flavors of
SMT. In international machine translation evalua-
tion like NIST (NIST MT Evaluation), TC-Star
(TC-STAR Evaluation) or IWSLT (IWSLT 2006)
evaluations, most participating systems are SMT
systems, with a few Example-Based systems sprin-
kled in. Rule-Based systems seem to have for the
most part disappeared. There may be many reasons
for this paradigm shift. One obvious reason is the
comparable ease, which with data-driven systems
can be built once some parallel data is available.
Another reason is that the performance of statisti-
cal translation systems has dramatically improved
over the last 5 to 10 years.

Does this mean that work on grammar-based
systems should be stopped? Should all the insight
into the structure of languages be neglected? This
might be too drastic a reaction. Actually, now that
SMT has reached some maturity, we see several
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attempts to integrate more structure into these sys-
tems, ranging from simple hierarchical alignment
models (Wu 1997, Chiang 2005) to syntax-based
statistical systems (Yamada and Knight 2001,
Zollmann and Venugopal 2006). What can tradi-
tional Rule-Based translation systems learn from
these approaches? And would it not make sense to
work from both sides towards that common goal:
structurally rich statistical translation models. In
this paper we study some enhancements for a
Transfer-Based translation system, using tech-
nigues and even components developed for statisti-
cal machine translation. While the core engine
remains virtually untouched, additional features are
added to re-score the n-best list generated by the
transfer engine. Statistical alignment techniques
are used to lower the burden in building a lexicon
for a new domain. Minimum error rate training is
used to optimize the system. We show that this
leads to significant improvements in performance.

2 A Transfer-Based Translation System

2.1 The Lexicon and Grammar

In our Rule-Based MT (RBMT) system, translation
rules include parsing, transfer, and generation in-
formation, similar to the modified transfer ap-
proach used in the early Metal system (Hutchins
and Somers, 1992).

The initial lexicon (479 entries) and grammar
(40 rules) used in our experiments were manually
written to cover the syntactic structures and the
vocabulary of the first 400 sentences of the
AVENUE Elicitation Corpus (Probst et al 2001).
The Elicitation Corpus contains sets of minimal
pairs in English and it was designed to cover a va-
riety of linguistic phenomena. Building these two
language-dependent components took a computa-
tional linguist 2-3 months. Figures 1 and 2 show

Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 72-79,
Rochester, New York, April 2007. (©2007 Association for Computational Linguistics



examples of a translation rules in the grammar and
the lexicon.

{S.4}
S::S: [NP VP] -> [NP VP]
((X1:Y1) (X2::Y2)

(x0 =x2)

((y2 subj) = -)
((y1 case) = nom)

((ylagr) = (x1 agr))
((y2 tense) = (x2 tense))
((y2 agr pers) = (y1 agr pers))
((y2 agr num) = (y1 agr num)) )
Figure 1: English->Spanish translation rule with
agreement constraints for subject (NP) and verb
(VP).
ViV |: ["prefer”] -> ["prefiero”]
((X1::Y1)
((x0 form) = prefer)
((x0 tense) = pres)
((yo agr pers) = 1)
((y0 agr num) = sg))
Figure 2: English->Spanish lexical entry for the
verb “prefer”.

2.2 Refined MT System

The original grammar and lexicon were automati-
cally improved with an Automatic Rule Refiner,
guided by a few bilingual speaker corrections
(Font Llitjés & Ridmann 2007). In this approach,
automatic refinements only affect the target lan-
guage side of translation rules, namely transfer and
generation information.

The refined MT system used in our experiments
is the result of adding 30 agreement constraints to
the grammar rules, which makes the grammar
tighter (leading to an increase in precision), as well
as adding three new rules to cover new syntactic
structures and five lexical entries for new senses
and forms of existing words (leading to an increase
in recall).

2.3

The Transfer Engine, or Xfer engine for short,
combines the translation grammar and lexicon in
order to produce translations of a source language
sentence into a target language. The Xfer engine
incorporates the three main processes involved in
Transfer-based MT: parsing of the source language
input, transfer of the parsed constituents of the
source sentence to their corresponding structured
constituents on the target language side, and gen-
eration of the target sentence.

The Transfer Engine
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The currently implemented algorithm is similar
to bottom-up chart parsing as described for exam-
ple in Allen (1995). A chart is first populated with
all constituent structures that were created in the
course of parsing the source language sentence
with the source-side portion of the transfer gram-
mar. Transfer and generation are applied to each
constituent entry. The transfer rules associated
with each entry in the chart are used in order to
determine the corresponding constituent structure
on the target language side. At the word level, lexi-
cal transfer rules are used in order to get the differ-
ent lexical choices.

Often, no parse for the entire source sentence
can be found. Partial parses are concatenated se-
guentially to generate complete translations.

In the current version of the Xfer system, the
output can be a first-best translation or a n-best list,
which can be used for additional n-best list rescor-
ing. The alternatives arise from lexical ambiguity
and multiple synonymous choices for lexical items
in the dictionary, but also from syntactic ambiguity
and multiple competing hypotheses from the
grammar.

For our experiments, we used version 3 of the
Xfer engine. An older version of the Xfer engine is
described in detail in Peterson (2002).

24

The Xfer engine can generate multiple translations.
This requires a quality score to be assigned to all
the alternatives. Based on these scores, the 1-best
translation will be selected by the system.

Ranking Translations

Fragmentation Penalty

In the original Xfer system the only score used to
rank translation alternatives was a heuristic frag-
mentation penalty. The fragmentation penalty is
essentially the number of different chunks (rules or
lexical entries not embedded in another rule) that
span the whole translation. The intuition behind
this score is that the more partial parses are neces-
sary to span the entire sentence the less likely the
resulting translation will be a good one.

N-gram LM

The fragmentation feature is rather weak. It does
not distinguish between words which are more
likely to be seen in the target language and words
which are less likely to be used. To generate sen-



tences which are not only grammatically correct,
but also use words and word sequences that are
more natural and more common, data-driven ma-
chine translation systems use a n-gram language
model. To get the same benefit in the Xfer system,
an n-gram LM has been integrated with the engine.

This has the advantage that in the case of prun-
ing, the LM score can be used to avoid pruning
good hypotheses, in addition to re re-rank the final
translations.

For our experiments, a suffix array language
model based on the SALM toolkit (Zhang & Vo-
gel, 2006) is used.

Length Model

To adjust for the length of the translations gener-
ated by the system, the difference between the
number of words generated and the expected num-
ber of words is added as a very simple feature. The
expected length is calculated by multiplying the
source sentence length by the ratio of the number
of target and source words in the training corpus.
The effect of this feature is to balance globally the
length of the translations.

2.5

To deal with the combinatorial explosion during
the parsing/translation process, pruning has to be
applied. Only the n top-ranking hypotheses are
kept in each cell of the chart. The ranking of these
partial translations is based on their language
model score, which at this time is only an ap-
proximation, as the true history has not been seen
and cannot be taken into account.

Pruning

3 Building a Xfer System for a New Do-
main

A major bottleneck in developing a RBMT system
for a new translation task (a new language pair or a
new domain) is writing the grammar and building
the lexicon. Automatic grammar induction using
statistical alignments has been studied in (Probst
2005).

Here, we start with an existing grammar and
augment the baseline lexicon with entries to cover
the new domain. We explore semi-automatic lexi-
con generation for fast adaptation to the travel do-
main (Section 3.2).
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3.1 Test Data: BTEC Corpus

For initial evaluation on unseen data, we selected
the Basic Travel Expression Corpus (BTEC)
(Takezawa et al. 2002), which has been used in the
evaluation campaigns in connection with the Inter-
national Workshop on Spoken Language Transla-
tion (IWSLT 2006). Besides still being currently
used to build real systems (Shimizu et al. 2006;
Nakamura, et al. 2006), this corpus contains rela-
tively simple sentences that are comparable to the
ones initially corrected by users, and which are
covered by the baseline manual grammar.

As our test set, we used 506 English sentences
for which two sets of Spanish reference transla-
tions were available. Table 1 shows corpus statis-
tics for the BTEC data.

Data English
Sentences Pairs 123,416
Train | Sentence Length 7.3
BTEC Word Tokens 903,525
Word Types 12,578
Sentence Pairs 506
Test | Word Tokens 3,764
Word Types 776
Coverage Test 756 (97%)

Table 1: Corpus Statistics for the BTEC corpus

3.2 Semi-Automatic Generation of the

Transfer Lexicon

The Transfer-Based system relies on a lexicon that
contains POS, gender and number agreement,
among other linguistic features. To adjust the sys-
tem quickly to a new task, we decided to leverage
from statistical alignment models to generate word
and phrase alignments as candidates for the trans-
fer lexicon.

In the first step, we trained statistical lexicons
using the well-known IBM1 word alignment
model: one for the directions Spanish to English,
and one for the direction English to Spanish. As
multi-word entries, are often needed ([valuables]
- [objetos de valor], [reception desk] —>[recep-
cién], [air conditioner]->[aire acondicionado]), we
used phrase alignment techniques to create transla-
tion candidates for words and 2-word phrases. The
phrase alignment also generates multi-word trans-
lations for single source words. With reasonably
tight pruning, a manageable phrase translation ta-



ble was generated. This first step took about 5
hours.

The next step, manually cleaning the translation
table, annotating them with parts-of-speech, and
with agreement and tense constraints, was initially
restricted to those items that overlapped with the
vocabulary of our development test set, and took
two days.

The statistically generated lexicon comprises
1,248 lexical entries, whereas the initial manual
lexicon contained 479 lexical entries. For our
BTEC experiments, we combined both lexicons.

3.3 Xfer Results with No Ranking

To determine how the Xfer system would perform
only on the basis of the lexicon and grammar, we
ran one translation experiment in which no lan-
guage model was used. This experiment was also
intended to see if the refined grammar would lead
to better translations. We took the first-best transla-
tion output by the system without using any statis-
tical components to rank alternative translations.

34 Oracle Experiment

Oracle scores provide an upper-bound in perform-
ance. For the BTEC test set, we approximated a
human oracle by calculating automatic metric
scores for METEOR and for BLEU and NIST.

Given 100-best lists for each source language
sentence, we selected the best translation hypothe-
sis for each automatic metric separately.

These scores reflect the fact that automatic re-
finements are able to feed the n-best list with better
translations, as evulated by comparison against
human reference translations. Even with a small set
of independent user corrections, the refined system
shows potential improved translation quality as
indicated by higher scores for all three automatic
evaluation metrics in Table 3.

System | METEOR | BLEU | NIST
Baseline | 0.6863 | 0.4068 | 7.42
Refined 0.6954 |0.4215| 751

System | METEOR | BLEU | NIST
Baseline 0.5666 0.2745 | 5.88
Refined 0.5676 | 0.2559 | 5.62

Table 2: Automatic metric scores for a purely
Rule-Based MT System.

Table 2 shows that, in this crude setting, differ-
ent automatic metrics do not agree on the transla-
tion accuracy of both systems. On one hand,
METEOR (Lavie et al. 2004), which has been
shown to correlate well with human judgments
(Snover et al. 2006), indicates that the refined sys-
tem outperforms the baseline system (as measured
by the latest version v0.5.1,). On the other hand,
both BLEU (Papineni et al., 2002) and NIST
(Doddington 2002) scores are higher for the base-
line system (mteval-v11b.pl).

However, human inspection revealed that the re-
fined grammar is able to augment the n-best list
with correct translations that the baseline system
was not able to generate. This suggests that these
results reflect poor re-ranking and not n-best list
quality. In the next section, we describe an oracle
experiment to measure n-best list quality of both
systems.
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Table 3: Automatic metric oracle scores based on a
100-best list

Moreover, oracle scores provide the margin that
we can gain when improving on the re-ranking of
the n-best list produced by the Xfer engine.

3.5 Xfer Results with Initial Ranking

As expected, when the Xfer system is run in com-
bination with a LM" as well as the fragmentation
penalty, automatic metric scores for the 1-best hy-
pothesis are significantly higher (Table 4), than
when just using the first translation output by the
Xfer system alone (Table 2).

System | METEOR | BLEU | NIST
Baseline 0.6176 0.3425 | 6.53
Refined 0.6222 0.3513 | 6.56

Table 4: Automatic metric scores for 1-best de-
coder hypothesis.

These results are lower than the oracle scores for
both the baseline and the refined system (Table 3),
which is also to be expected. However, the impor-
tant thing to notice from these results is that, like in
the oracle case, the refined system consistently
outperforms the baseline MT system for all three
automatic metrics.

! The Suffix Array Language Model (SALM) was built using
the 123,416 Spanish sentences from the training data.



The difference between the baseline and the re-
fined system in terms of 1-best scores is slightly
smaller than the difference between oracle scores,
which means that the decoder can not fully lever-
age the improvements made in the grammar. This
indicates that the decoder fails to select the best
translation in most cases.

4 Adding Statistical Components to a Re-
Ranker

The information used in the Xfer system to rank
alternative translations is limited. Essentially, it is
the n-gram LM, which is the most important com-
ponent, a simple sentence length model, and the
fragmentation score, which measures if a com-
pletely spanning parse could be found or if the
translation is glued together from partial parses.
Given an n-best list of translations for each source
sentence, we can apply additional models to re-
rank these n-best list, hopefully pushing more good
translations into the first rank. We studied the ef-
fect of adding different features to the n-best lists:
lexical features and rule (type) probability features.

4.1 Word-To-Word Probabilities

In SMT systems, rescoring with an IBM1 model-
like word alignment score has become a standard
feature. We use two word-to-word lexicons (Eng-
lish->Spanish and Spanish->English) to calculate
sentence translation probabilities, based on word-
to-word probabilities:

P@m:%Hmew Eql

and:

PGsle=STIEpGs,le) a2

Here, we denote the English words with e, the
Spanish words with s, the sentence lengths are
given by I and J. In the IBML1 alignment model,
the position alignment is a uniform distribution p( i
| j) = /1 for Spanish to English and p(j | i) =1/
for English to Spanish. For Spanish to English, we
have the additional factor of (1/1)’, i.e. longer
translations get a smaller probability, and for En-
Sp we have (1/J), which again gives a bias to-
wards shorter translations. To compensate for this
bias, we use probabilities normalized to the sen-
tence length. Table 5 shows that adding the lexical
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probabilities improves the 1-best translation score.
However, there is no significant difference when
using different normalization of the lexicon prob-
abilities. The length bias introduced by different
lexicon features can be balanced by the decoder’s
length feature.

BLEU | NIST
Refined | 0.3513 | 6.56
+Lex Prob | 0.3755 | 6.88

Table 5: Comparing 1-best scores with scores
result of rescoring the n-best list with lexical fea-
tures.

4.2

The Xfer MT system can display the derivation
tree showing the rules applied during translation.
This allows rescoring the translations with rule
probabilities. However, there is no annotated cor-
pus from which the rule probabilities could be es-
timated. As an approximation to such a training
corpus, we decided to run the Xfer system over the
training data and to generate n-best lists with trans-
lations and translation trees. Overall, about 6 mil-
lion parse trees were generated. Using this data to
estimate rule probabilities is definitely not ideal, as
the translation on the training data are far from per-
fect, especially as not all the vocabulary has so far
been added to the Xfer lexicon. By averaging over
all n-best translations a reasonable smoothing is to
be expected.

We used this information in three ways. We es-
timated conditional probabilities rule r given rule-
type R, i.e. the distribution over different VP rules
or NP rules. For each derivation D the overall
probability was then calculated as:

P(D)=]]p(r|R) Eq. 3
As an alternative, we just build n-gram language

models, one on the rule level and on the rule type
level:

P(D)=[]p(r|r,..r,)
P(D)=]]pP(RIR,..R,)

Rule Probabilities

Eq. 4
Eq.5

Overall, 1,685 different rules and 19 rule types
were seen in the training data. For models 2 and 3,
we used the suffix array LM once again to allow
for arbitrary long histories. Even though it often
backs-off to 3-gram, 2-gram or even unigram prob-
abilities.



In Table 6, we can see the effect of adding these
LMs as additional features to the system and run-
ning MER training.

BLEU | NIST
Refined 0.3513 | 6.56
Lex. Prob. 0.3755 | 6.88
Cond. Prob. 0.3728 | 6.81
Rule LM 0.3717 | 6.74
Rule Type LM | 0.3736 | 6.78

Table 6: BLEU scores when rescoring the n-
best list with different rule probability features (as
well as the n-gram LM).

5 MER Training

Like in SMT systems, in the Xfer engine transla-
tions are ranked to their total cost, which is a
weighted linear combination of the individual
costs. When adding more features to the translation
system, a careful balancing of the individual con-
tributions can make a significant difference. How-
ever, with each feature added, manually tuning the
system becomes less and less practical, and auto-
matic optimization becomes necessary.

Different optimization techniques are available,
like the Simplex algorithm or the special Minimum
Error Training as described in (Och 2003). In
Minimum Error Rate (MER) training, the n-best
list generated by the translation system is used to
find feature weight, thereby re-ranking the n-best
list. This improves the match between the 1-best

translation and given reference translations. Opti-
mization can use any metric as objective function.
Typically, systems are tuned towards high BLEU
or high NIST scores, more recently also towards
METEOR or TER (Snover et al. 2006).

We used a MER training module (Venugopal),
originally developed for an SMT system, to run
MER training on the n-best lists generated by the
Xfer system. This implementation allows for opti-
mization towards BLEU and NIST mteval metrics.

5.1 Results

In Table 7, we summarize some of the results from
different n-best list rescoring experiments. Using
only the Xfer engine, without language model,
gives a very low score, as the selection is based
only on the fragmentation score.

Adding the n-gram language model gives a huge
improvement. Adding additional features leads to
more then 2 BLEU points improvement. However,
there is not much difference when using different
feature combinations. It seems that the rather small
size of the n-best list is a limiting factor.

When setting the optimal weights in the Xfer
engine for the LM and fragmentation penalty
scores obtained from MER training, both the base-
line and the refined system get higher scores, not
only according to BLEU, which was used as the
objective function, but also according to METEOR
and NIST automatic evaluation metrics (Table 8).

System + Statistical Components 1-best

Rule Based Xfer 0.2559
+ Stat. Comp. | Xfer + LM + Frag 0.3513
POS LM 0.3180

Rule Probabilities (Prob.) 0.2593

LM + Rule Type LM 0.3736

Optimizing | LM + Frag/Len + Rule Type LM 0.3737
weights LM + POS + Rule LM 0.3744
with LM + Frag + Rule Type LM + Cond. Rule Prob. 0.3743
MER training || M + Len + Rule Type LM + Cond. Rule Prob. 0.3745
LM + POS + Rule LM + Cond. Rule Prob. 0.3741

LM + Frag + Len + Rule Type LM + Rule Prob. 0.3746

LM + Frag + Len + POS + Rule LM + Rule Prob. 0.3741

Table 7: BLEU scores for the Refined MT System as the weights for the different statistical components
described in Section 2.4 and 4 are optimized with MER Training.
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Moreover, the difference between the Baseline
and the Refined system after MER training is sta-
tistically significant?, whereas this was not the case
for the initial ranking results (Table 4).

System METEOR | BLEU | NIST
Baseline | 0.6184 | 0.3609 | 6.68
Refined | 0.6231 | 0.3780 | 6.79

Table 8: Automatic metric scores for 1-best de-
coder hypothesis, after LM and Fragmentation
weights have been optimized.

Table 9 shows a few examples from the BTEC cor-
pus with 1-best translations output by the Refined
MT system before (No Optimization) and after
(With Optimization) MER training, given LM and
Fragmentation penalty scores. From these exam-
ples, it can be observed that re-ranking improves
after optimizing the LM and fragmentation
weights. In particular, order issues get resolved
(examples 1, 2 and 4), which result in correct de-
terminer agreement (1 and 2); determiner insertion
(3); correct verb form (5 and 7) and omission of
incorrect pronouns (6 and 7).

6 Conclusion

Starting from a Transfer-Based translation system,
we explored techniques currently used in statistical
translation systems to rapidly adapt to a new do-
main and to improve its performance. Using word
and phrase alignment techniques allowed us to
quickly augment the transfer lexicon. Adding a
statistical language model is crucial in selecting
good translations from the n-best lists generated by
the Xfer engine. Adding additional features, such
as word-to-word probabilities and rule (type) prob-
abilities, further improves performance.

While this information would ideally be used in
the parsing and transfer steps of the translation sys-
tem, our initial experiments were targeted at using
this in an n-best list rescoring setup. As rule prob-
abilities were estimated from noisy training data,
these models are far from optimal.

To facilitate the experiments with the Xfer sys-
tem, especially when adding more and more fea-
tures, we added a Minimum Error Rate training

2 According to the standard paired two-tailed t-Test, the de-
coder METEOR scores with optimized weights are statisti-
cally significant, with a p value of 0.0051.
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component. Having such a component will defi-
nitely boost the development of the Xfer engine.

We see statistically significant improvements
over the baseline system when using optimized
weights for the word-level language model and the
fragmentation score.

1 Source: where is the boarding gate ?
NO: dénde esta el embarque puerta ?
WO: dénde esté la puerta embarque ?

2 Src: where is the bus stop for city hall ?
NO: doénde est4 el autobis parada para ayuntamiento ?
WO: dénde esté la parada autobds para ayuntamiento ?

3 Src: i would like a twin room with a bath please .
NO: me gustaria habitacion una cama doble con un
bafio por favor .
WO: me gustaria una habitacién cama doble con un
bafio por favor .

4 Src: iwould like to buy some duty-free items .
NO: me gustaria comprar algunos duty-free productos.
WO: me gustaria comprar algunos articulos duty-free .

5 Src: does he speak japanese ?
NO: ¢l hablar a japonés ?
WO: habla japonés ?

6 Src: it is just round the corner .
NO: lo es simplemente a la vuelta de la esquina .
WO: es simplemente a la vuelta de la esquina .

7 Src: do you sell duty-free items ?
NO: te venden articulos duty-free ?
WO: vendéis articulos duty-free ?

Table 9: 1-best translations from the BTEC test set
output by the Refined MT system before and after
MER training. NO stands for No Optimization of
LM and Fragmentation weights, and WO stands
for With Optimization of weights.

7  Future Work

Using rule probabilities has shown to be a promis-
ing extension to the current Xfer system. We plan
to improve these models by selecting the oracle
best translations from the n-best list generated on
the training data. This will reduce the noise in the
training stage. Ultimately, the rule probabilities
should be applied not as an n-best list rescoring
step, but directly in the Xfer engine decoder.
Analyzing the translation results, one important
shortcoming became obvious. Currently the trans-
lation lexicon only covers about 88% of the words
that appear in the reference translations. This se-
verely limits as to what kind of BLEU score we
can achieve. When we generated the phrasal lexi-
con from the BTEC training data, we deliberately




chose to only include few alternatives, mainly to
limit the manual labor when adding POS and con-
straint. We expect that the Xfer system will sig-
nificantly benefit from further expanding the
lexicon.
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Abstract

We present a novel method for evaluating
the output of Machine Translation (MT),
based on comparing the dependency
structures of the translation and reference
rather than their surface string forms. Our
method uses a treebank-based, wide-
coverage, probabilistic Lexical-Functional
Grammar (LFG) parser to produce a set of
structural  dependencies  for  each
translation-reference sentence pair, and
then calculates the precision and recall for
these dependencies. Our dependency-
based evaluation, in contrast to most
popular string-based evaluation metrics,
will not unfairly penalize perfectly valid
syntactic variations in the translation. In
addition to allowing for legitimate
syntactic differences, we use paraphrases
in the evaluation process to account for
lexical variation. In comparison with
other metrics on 16,800 sentences of
Chinese-English newswire text, our
method reaches high correlation with
human scores. An experiment with two
translations of 4,000 sentences from
Spanish-English Europarl shows that, in
contrast to most other metrics, our method
does not display a high bias towards
statistical models of translation.

1 Introduction

Since their appearance, string-based evaluation
metrics such as BLEU (Papineni et al., 2002) and
NIST (Doddington, 2002) have been the standard
tools used for evaluating MT quality. Both score a
candidate translation on the basis of the number of
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n-grams shared with one or more reference
translations. Automatic measures are indispensable
in the development of MT systems, because they
allow MT developers to conduct frequent, cost-
effective, and fast evaluations of their evolving
models.

These advantages come at a price, though: an
automatic comparison of n-grams measures only
the string similarity of the candidate translation to
one or more reference strings, and will penalize
any divergence from them. In effect, a candidate
translation expressing the source meaning
accurately and fluently will be given a low score if
the lexical and syntactic choices it contains, even
though perfectly legitimate, are not present in at
least one of the references. Necessarily, this score
would differ from a much more favourable human
judgement that such a translation would receive.

The limitations of string comparison are the
reason why it is advisable to provide multiple
references for a candidate translation in BLEU- or
NIST-based evaluations. While Zhang and Vogel
(2004) argue that increasing the size of the test set
gives even more reliable system scores than
multiple references, this still does not solve the
inadequacy of BLEU and NIST for sentence-level
or small set evaluation. In addition, in practice
even a number of references do not capture the
whole potential variability of the translation.
Moreover, when designing a statistical MT system,
the need for large amounts of training data limits
the researcher to collections of parallel corpora
such as Europarl (Koehn, 2005), which provides
only one reference, namely the target text; and the
cost of creating additional reference translations of
the test set, usually a few thousand sentences long,
is often prohibitive. Therefore, it would be
desirable to find an evaluation method that accepts
legitimate syntactic and lexical differences

Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 80-87,
Rochester, New York, April 2007. (©2007 Association for Computational Linguistics



between the translation and the reference, thus
better mirroring human assessment.

In this paper, we present a novel method that
automatically evaluates the quality of translation
based on the dependency structure of the sentence,
rather than its surface form. Dependencies abstract
away from the particulars of the surface string (and
CFG tree) realization and provide a “normalized”
representation of (some) syntactic variants of a
given sentence. The translation and reference files
are analyzed by a treebank-based, probabilistic
Lexical-Functional Grammar (LFG) parser (Cahill
et al., 2004), which produces a set of dependency
triples for each input. The translation set is
compared to the reference set, and the number of
matches is calculated, giving the precision, recall,
and f-score for that particular translation.

In addition, to allow for the possibility of valid
lexical differences between the translation and the
references, we follow Kauchak and Barzilay
(2006) and Owczarzak et al. (2006) in adding a
number of paraphrases in the process of evaluation
to raise the number of matches between the
translation and the reference, leading to a higher
score.

Comparing the LFG-based evaluation method
with other popular metrics: BLEU, NIST, General
Text Matcher (GTM) (Turian et al., 2003),
Translation Error Rate (TER) (Snover et al,
2006)', and METEOR (Banerjee and Lavie, 2005),
we  show  that combining dependency
representations with paraphrases leads to a more
accurate evaluation that correlates better with
human judgment.

The remainder of this paper is organized as
follows: Section 2 gives a basic introduction to
LFG; Section 3 describes related work; Section 4
describes our method and gives results of two
experiments on different sets of data: 4,000
sentences from Spanish-English Europarl and
16,800 sentences of Chinese-English newswire text
from the Linguistic Data Consortium’s (LDC)
Multiple Translation project; Section 5 discusses
ongoing work; Section 6 concludes.

' As we focus on purely automatic metrics, we omit
HTER (Human-Targeted Translation Error Rate) here.

81

2 Lexical-Functional Grammar

In Lexical-Functional Grammar (Bresnan, 2001)
sentence structure is represented in terms of
c(onstituent)-structure and f(unctional)-structure.
C-structure represents the surface string word order
and the hierarchical organisation of phrases in
terms of CFG trees. F-structures are recursive
feature (or attribute-value) structures, representing
abstract grammatical relations, such as subj(ect),
obj(ect), obl(ique), adj(unct), approximating to
predicate-argument structure or simple logical
forms. C-structure and f-structure are related in
terms of functional annotations (attribute-value
structure equations) in c-structure trees, describing
f-structures.

While c-structure is sensitive to surface word
order, f-structure is not. The sentences John
resigned yesterday and Yesterday, John resigned
will receive different tree representations, but
identical f-structures, shown in (1).

(1) C-structure: F-structure:

S SUBJ PRED john
T NUM sg
PERS 3
NP VP PRED resign
| TENSE past
John  — O~ ADJ {[PRED yesterday]}
\Y NP-TMP
| |
resigned yesterday
S SUBJ PRED john
NUM sg
T PERS 3
NP NP VP PRED resign
| | | TENSE past
Yesterday John \% ADJ {[PRED vyesterdayl}

resigned

Notice that if these two sentences were a
translation-reference pair, they would receive a
less-than-perfect score from string-based metrics.
For example, BLEU with add-one smoothing®
gives this pair a score of barely 0.3781.

The f-structure can also be described as a flat
set of triples. In triples format, the f-structure in (1)
could be represented as follows: {subj(resign,
john), pers(john, 3), num(john, sg), tense(resign,

* We use smoothing because the original BLEU gives
zero points to sentences with fewer than one four-gram.



past), adj(resign, yesterday), pers(yesterday, 3),
num(yesterday, sg)}.

Cahill et al. (2004) presents Penn-II Treebank-
based LFG parsing resources. Her approach
distinguishes 32 types of dependencies, including
grammatical  functions and  morphological
information. This set can be divided into two major
groups: a group of predicate-only dependencies
and non-predicate dependencies. Predicate-only
dependencies are those whose path ends in a
predicate-value pair, describing grammatical
relations. For example, for the f-structure in (1),
predicate-only  dependencies would include:
{subj(resign, john), adj(resign, yesterday)}.’

In parser evaluation, the quality of the f-
structures produced automatically can be checked
against a set of gold standard sentences annotated
with f-structures by a linguist. The evaluation is
conducted by calculating the precision and recall
between the set of dependencies produced by the
parser, and the set of dependencies derived from
the human-created f-structure. Usually, two
versions of f-score are calculated: one for all the
dependencies for a given input, and a separate one
for the subset of predicate-only dependencies.

In this paper, we use the parser developed by
Cahill et al. (2004), which automatically annotates
input text with c-structure trees and f-structure
depen:lencies, reaching high precision and recall
rates.

3 Related work

The insensitivity of BLEU and NIST to perfectly
legitimate syntactic and lexical variation has been
raised, among others, in Callison-Burch et al.
(2006), but the criticism is widespread. Even the
creators of BLEU point out that it may not
correlate particularly well with human judgment at
the sentence level (Papineni et al., 2002). A side

? Other predicate-only dependencies include:
apposition, complement, open complement,
coordination, determiner, object, second object,
oblique, second oblique, oblique agent, possessive,
quantifier, relative clause, topic, relative clause
pronoun. The remaining non-predicate dependencies
are: adjectival degree, coordination surface form, focus,
complementizer forms: if, whether, and that, modal,
number, verbal particle, participle, passive, person,
pronoun surface form, tense, infinitival clause.

* http://Ifg-demo.computing.dcu.ie/Ifgparser.html
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effect of this phenomenon is that BLEU is less
reliable for smaller data sets, so the advantage it
provides in the speed of evaluation is to some
extent counterbalanced by the time spent by
developers on producing a sufficiently large test
set in order to obtain a reliable score for their
system.

Recently a number of attempts to remedy these
shortcomings have led to the development of other
automatic MT evaluation metrics. Some of them
concentrate mainly on word order, like General
Text Matcher (Turian et al,, 2003), which
calculates precision and recall for translation-
reference pairs, weighting contiguous matches
more than non-sequential matches, or Translation
Error Rate (Snover et al., 2005), which computes
the number of substitutions, inserts, deletions, and
shifts necessary to transform the translation text to
match the reference. Others try to accommodate
both syntactic and lexical differences between the
candidate translation and the reference, like CDER
(Leusch et al., 2006), which employs a version of
edit distance for word substitution and reordering;
or METEOR (Banerjee and Lavie, 2005), which
uses stemming and WordNet synonymy. Kauchak
and Barzilay (2006) and Owczarzak et al. (2006)
use paraphrases during BLEU and NIST evaluation
to increase the number of matches between the
translation and the reference; the paraphrases are
either taken from WordNet’® in Kauchak and
Barzilay (2006) or derived from the test set itself
through automatic word and phrase alignment in
Owczarzak et al. (2006). Another metric making
use of synonyms is the linear regression model
developed by Russo-Lassner et al. (2005), which
makes use of stemming, WordNet synonymy, verb
class synonymy, matching noun phrase heads, and
proper name matching. Kulesza and Schieber
(2004), on the other hand, train a Support Vector
Machine using features like proportion of n-gram
matches and word error rate to judge a given
translation’s distance from human-level quality.

Nevertheless, these metrics use only string-
based comparisons, even while taking into
consideration reordering. By contrast, our
dependency-based method concentrates on
utilizing linguistic structure to establish a
comparison between translated sentences and their
reference.

> http://wordnet.princeton.edu/



4 LFG f-structure in MT evaluation

The process underlying the evaluation of f-
structure quality against a gold standard can be
used in automatic MT evaluation as well: we parse
the translation and the reference, and then, for each
sentence, we check the set of translation
dependencies against the set of reference
dependencies, counting the number of matches. As
a result, we obtain the precision and recall scores
for the translation, and we calculate the f-score for
the given pair. Because we are comparing two
outputs that were produced automatically, there is
a possibility that the result will not be noise-free.
To assess the amount of noise that the parser
may introduce we conducted an experiment where
100 English Europarl sentences were modified by
hand in such a way that the position of adjuncts
was changed, but the sentence remained
grammatical and the meaning was not changed.
This way, an ideal parser should give both the
source and the modified sentence the same f-
structure, similarly to the case presented in (1). The
modified sentences were treated like a translation
file, and the original sentences played the part of
the reference. Each set was run through the parser.
We evaluated the dependency triples obtained from
the “translation” against the dependency triples for
the “reference”, calculating the f-score, and applied
other metrics (TER, METEOR, BLEU, NIST, and
GTM) to the set in order to compare scores. The
results, inluding the distinction between f-scores

for all dependencies and predicate-only
dependencies, appear in Table 1.
baseline modified
TER 0.0 6.417
METEOR 1.0 0.9970
BLEU 1.0000 0.8725
NIST 11.5232 11.1704 (96.94%)
GTM 100 99.18
dep f-score 100 96.56
dep_preds f-score 100 94.13

Table 1. Scores for sentences with reordered adjuncts
The baseline column shows the upper bound for a

given metric: the score which a perfect translation,
word-for-word identical to the reference, would
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obtain.® In the other column we list the scores that
the metrics gave to the “translation” containing
reordered adjunct. As can be seen, the dependency
and predicate-only dependency scores are lower
than the perfect 100, reflecting the noise
introduced by the parser.

To show the difference between the scoring
based on LFG dependencies and other metrics in
an ideal situation, we created another set of a
hundred sentences with reordered adjuncts, but this
time selecting only those reordered sentences that
were given the same set of dependencies by the
parser (in other words, we simulated having the
ideal parser). As can be seen in Table 2, other
metrics are still unable to tolerate legitimate
variation in the position of adjuncts, because the
sentence surface form differs from the reference;
however, it is not treated as an error by the parser.

baseline modified

TER 0.0 7.841
METEOR 1.0 0.9956
BLEU 1.0000 0.8485
NIST 11.1690 10.7422 (96.18%)
GTM 100 99.35

dep f-score 100 100
dep_preds f-score 100 100

Table 2. Scores for sentences with reordered adjuncts in
an ideal situation

4.1

In the first experiment, we attempted to determine
whether the dependency-based measure is biased
towards statistical MT output, a problem that has
been observed for n-gram-based metrics like
BLEU and NIST. Callison-Burch et al. (2006)
report that BLEU and NIST favour n-gram-based
MT models such as Pharaoh (Koehn, 2004), so the
translations produced by rule-based systems score
lower on the automatic evaluation, even though
human judges consistently rate their output higher
than Pharaoh’s translation. Others repeatedly

Initial experiment — Europarl

% Two things have to be noted here: (1) in case of NIST
the perfect score differs from text to text, which is why
we provide the percentage points as well, and (2) in case
of TER the lower the score, the better the translation, so
the perfect translation will receive 0, and there is no
upper bound on the score, which makes this particular
metric extremely difficult to directly compare with
others.



observed this tendency in previous research as
well; in one experiment, reported in Owczarzak et
al. (2006), where the rule-based system
Logomedia’ was compared with Pharach, BLEU
scored Pharaoh 0.0349 points higher, NIST scored
Pharaoh 0.6219 points higher, but human judges
scored Logomedia output 0.19 points higher (on a
5-point scale).

4.1.1 Experimental design

In order to check for the existence of a bias in the
dependency-based metric, we created a set of
4,000 sentences drawn randomly from the Spanish-
English subset of Europarl (Koehn, 2005), and we
produced two translations: one by a rule-based
system Logomedia, and the other by the standard
phrase-based statistical decoder Pharaoh, using
alignments produced by GIZA++® and the refined
word alignment strategy of Och and Ney (2003).
The translations were scored with a range of
metrics: BLEU, NIST, GTM, TER, METEOR, and
the dependency-based method.

4.1.2 Adding synonyms

Besides the ability to allow syntactic variants as
valid translations, a good metric should also be
able to accept legitimate lexical variation. We
introduced synonyms and paraphrases into the
process of evaluation, creating new best-matching
references for the translations wusing either
paraphrases derived from the test set itself
(following Owczarzak et al. (2006)) or WordNet
synonyms (as in Kauchak and Barzilay (2006)).

Bitext-derived paraphrases

Oweczarzak et al. (2006) describe a simple way to
produce a list of paraphrases, which can be useful
in MT evaluation, by running word alignment
software on the test set that is being evaluated.
Paraphrases derived in this way are specific to the
domain at hand and contain low-level syntactic
variants in addition to word-level synonymy.

Using the standard GIZA++ software and the
refined word alignment strategy of Och and Ney
(2003) on our test set of 4,000 Spanish-English
sentences, the method generated paraphrases for
just over 1100 items. These paraphrases served to

7 http://www.lec.com/
¥ http://www.fjoch.com/GIZA++
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create new individual best-matching references for
the Logomedia and Pharaoh translations. Due to
the small size of the paraphrase set, only about
20% of reference sentences were actually modified
to better reflect the translation. This, in turn, led to
little difference in scores.

WordNet synonyms

To maximize the number of matches between a
translation and a reference, Kauchak and Barzilay
(2006) use WordNet synonyms during evaluation.
In addition, METEOR also has an option of
including WordNet in the evaluation process. As in
the case of bitext-derived paraphrases, we used
WordNet synonyms to create new best-matching
references for each of the two translations. This
time, given the extensive database containing
synonyms for over 150,000 items, around 70% of
reference sentences were modified: 67% for
Pharaoh, and 75% for Logomedia. Note that the
number of substitutions is higher for Logomedia;
this confirms the intuition that the translation
produced by Pharaoh, trained on the domain which
is also the source of the reference text, will need
fewer lexical replacements than Logomedia, which
is based on a general non-domain-specific model.

4.1.3 Results

Table 3 shows the difference between the scores
which Pharaoh’s and Logomedia’s translations
obtained from each metric: a positive number
shows by how much Pharaoh’s score was higher
than Logomedia’s, and a negative number reflects
Logomedia’s higher score (the percentages are
absolute values). As can be seen, all the metrics
scored Pharaoh higher, inlcuding METEOR and
the dependency-based method that were boosted
with WordNet. The values in the table are sorted in
descending order, from the largest to the lowest
advantage of Pharaoh over Logomedia.
Interestingly, next to METEOR boosted with
WordNet, it is the dependency-based method, and
especially the predicates-only version, that shows
the least bias towards the phrase-based translation.
In the next step, we selected from this set smaller
subsets of sentences that were more and more
similar in terms of translation quality (as
determined by a sentence’s BLEU score). As the
similarity of the translation quality increased, most
metrics lowered their bias, as is shown in Table 4.
The first column shows the case where the
sentences chosen differed at the most by 0.05



points BLEU score; in the second column the
difference was lowered to 0.01; and in the third
column to 0.005. The numbers following the hash
signs in the header row indicate the number of
sentences in a given set.

metric PH score — LM score
TER 1.997
BLEU 7.16%
NIST 6.58%
dep 4.93%
dep-+paraphr 4.80%
GTM 3.89%
METEOR 3.80%
dep_preds 3.79%
dep+paraphr_preds 3.70%
dep+WordNet 3.55%
dep+WordNet_preds 2.60%
METEOR+WordNet 1.56%

Table 3. Difference between scores assigned to Pharaoh
and Logomedia. Positive numbers show by how much
Pharaoh’s score was higher than Logomedia’s. Legend:
dep = dependency f-score, paraph = paraphrases, _preds =
predicate-only f-score.

~0.05 #1692 |~ 0.01 #567 |~0.005 #335
NIST 2.29% | NIST 1.76% | NIST 1.48%
BLEU 0.95% | BLEU 0.42% | BLEU 0.59%
GTM 0.94% | GTM 0.29% |GTM -0.09%
d+p 0.67% |d 0.04% |d+p -0.15%
d 0.61% | d+p 0.02% |d -0.24%
d+WN -0.29% | d+WN -0.78% | d+WN -0.99%
d+p_pr  -0.70%|M -0.99% | d+p_pr  -1.30%
d_pr -0.75% | d_pr -1.37% | d_pr -1.43%
M -1.03% | d+p_pr -1.38%|M -1.57%
d+WN_pr -1.43% |d+WN_pr -1.97% |d+WN_pr -1.94%
M+WN  -251%|M+WN  -221%|M+WN  -2.74%
TER -1.579 | TER -1.228 | TER -1.739

Table 4. Difference between scores assigned to Pharaoh
and Logomedia for sets of increasing similarity. Positive
numbers show Pharaoh’s advantage, negative numbers
show Logomedia’s advantage. Legend: d = dependency f-
score, p = paraphrases, pr = predicate-only f-score, M =
METEOR, WN = WordNet.

These results confirm earlier suggestions that
the predicate-only version of the dependency-
based evaluation is less biased in favour of the
statistical MT system than the version that includes
all dependency types. Adding a sufficient number
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of lexical choices reduces the bias even further;
although again, paraphrases generated from the test
set only are too few to make a significant
difference.  Similarly to  METEOR, the
dependency-based method shows on the whole
lower bias than other metrics. However, we cannot
be certain that the underlying scores vary linearly
with each other and with human judgements, as we
have no framework of reference such as human
segment-level assessment of translation quality in
this case. Therefore, the correlation with human
judgement is analysed in our next experiment.

4.2 Correlation with human judgement —
MultiTrans

To calculate how well the dependency-based
method correlates with human judgement, and how
it compares to the correlation shown by other
metrics, we conducted an experiment on Chinese-
English newswire text.

4.2.1 Experimental design

We used the data from the Linguistic Data
Consortium Multiple Translation Chinese (MTC)
Parts 2 and 4. The data consists of multiple
translations of Chinese newswire text, four human-
produced references, and segment-level human
scores for a subset of the translation-reference
pairs. Although a single translated segment was
always evaluated by more than one judge, the
judges used a different reference every time, which
is why we treated each translation-reference-
human score triple as a separate segment. In effect,
the test set created from this data contained 16,800
segments. As in the previous experiment, the
translation was scored using BLEU, NIST, GTM,
TER, METEOR, and the dependency-based
method.

4.2.2 Results

We calculated Pearson’s correlation coefficient for
segment-level scores that were given by each
metric and by human judges. The results of the
correlation are shown in Table 5. Note that the
correlation for TER is negative, because in TER
zero is the perfect score, in contrast to other
metrics where zero is the worst possible score;
however, this time the absolute values can be
easily compared to each other. Rows are ordered



by the highest value of the (absolute) correlation
with the human score.

First, it seems like none of the metrics is very
good at reflecting human fluency judgments; the
correlation values in the first column are
significantly lower than the correlation with
accuracy. However, the dependency-based method
in almost all its versions has decidedly the highest
correlation in this area. This can be explained by
the method’s sensitivity to the grammatical
structure of the sentence: a more grammatical
translation is also a translation that is more fluent.

H_FL H_AC H_AVE

d+WN 0.168 |M+WN 0.294 |M+WN 0.255
d 0.162 |M 0.278 |[d+WN 0.244
d+WN pr 0.162 |NIST 0273 |M 0.242
BLEU 0.155 |d+WN 0.266 |NIST 0.238
d_pr 0.154 |GTM 0.260 |d 0.236
M+WN 0.153 |d 0.257 |GTM 0.230
M 0.149 |d+WN_pr 0.232 [d+WN_pr 0.220
NIST 0.146 |d_pr 0.224 |d_pr 0.212
GTM 0.146 |BLEU 0.199 |BLEU 0.197
TER -0.133 |TER -0.192 |[TER -0.182

Table 5. Pearson’s correlation between human scores and
evaluation metrics. Legend: d = dependency f-score, pr =
predicate-only f-score, M = METEOR, WN = WordNet,
H_FL = human fluency score, H_AC = human accuracy
score, H_AVE = human average score.

Second, and somewhat surprisingly, in this
detailed examination the relative order of the
metrics changed. The predicate-only version of the
dependency-based method appears to be less
adequate for correlation with human scores than its
non-restricted versions. As to the correlation with
human evaluation of translation accuracy, our
method currently falls short of METEOR and even
NIST. This is caused by the fact that both
METEOR and NIST assign relatively little
importance to the position of a specific word in a
sentence, therefore rewarding the translation for
content rather than linguistic form. For our
dependency-based method, the noise introduced by
the parser might be the reason for low correlation:
if even one side of the translation-reference pair
contains parsing errors, this may lead to a less
reliable score. An obvious solution to this problem,

? In general terms, an increase of 0.015 between any two
scores is significant with a 95% confidence interval.

86

which we are examining at the moment, is to
include a number of best parses for each side of the
evaluation.

High correlation with human judgements of
fluency and lower correlation with accuracy results
in a high second place for our dependency-based
method when it comes to the average correlation
coefficient. The WordNet-boosted dependency-
based method scores only slightly lower than
METEOR with WordNet. These results are very
encouraging, especially as we see a number of
ways the dependency-based method could be
further developed.

5 Current and future work

While the idea of a dependency-based method is a
natural step in the direction of a deeper linguistic
analysis for MT evaluation, it does require an LFG
grammar and parser for the target language. There
are several obvious areas for improvement with
respect to the method itself. First, we would also
like to adapt the process of translation-reference
dependency comparison to include n-best parsers
for the input sentences, as well as some basic
transformations which would allow an even deeper
logical analysis of input (e.g. passive to active
voice transformation).

Second, we want to repeat both
experiments using a paraphrase set derived from a
large parallel corpus, rather than the test set, as
described in Oweczarzak et al. (2006). While
retaining the advantage of having a similar size to
a corresponding set of WordNet synonyms, this set
will also capture low-level syntactic variations,
which can increase the number of matches and the
correlation with human scores.

Finally, we want to take advantage of the
fact that the score produced by the dependency-
based method is the proportional average of f-
scores for a group of up to 32 (but usually far
fewer) different dependency types. We plan to
implement a set of weights, one for each
dependency type, trained in such a way as to
maximize the correlation of the final dependency f-
score with human evaluation.

6 Conclusions

In this paper we present a novel way of
evaluating MT output. So far, all metrics relied on



comparing translation and reference on a string
level. Even given reordering, stemming, and
synonyms for individual words, current methods
are still far from reaching human ability to assess
the quality of translation. Our method compares
the sentences on the level of their grammatical
structure, as exemplified by their f-structure
dependency triples produced by an LFG parser.
The dependency-based method can be further
augmented by using paraphrases or WordNet
synonyms, and is available in full version and
predicate-only version. In our experiments we
showed that the dependency-based method
correlates higher than any other metric with human
evaluation of translation fluency, and shows high
correlation with the average human score. The use
of dependencies in MT evaluation is a rather new
idea and requires more research to improve it, but
the method shows potential to become an accurate
evaluation metric.
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Abstract

We provide a conceptual basis for think-
ing of machine translation in terms of syn-
chronous grammars in general, and proba-
bilistic synchronous tree-adjoining gram-
mars in particular. Evidence for the view
is found in the structure of bilingual dic-
tionaries of the last several millennia.

1 Introduction

In this paper, we provide a conceptual basis for
thinking of machine translation in terms of syn-
chronous grammars in general, and probabilistic
synchronous tree-adjoining grammars in particular.
The basis is conceptual in that the arguments are
based on generalizations about the translation re-
lation at a conceptual level, and not on empirical
results at an engineering level. Nonetheless, the
conceptual idea is consistent with current efforts in
MT, and in fact may be seen as underlying so-called
syntax-aware MT.

We will argue that the nature of the translation re-
lation is such that an appropriate formalism for re-
alizing it should have a set of properties — expres-
sivity, trainability, efficiency — that we will charac-
terize more precisely below. There may be multi-
ple formalisms that can achieve these ends, but one,
at least, is probabilistic synchronous tree-adjoining
grammar, and to our knowledge, no other qualita-
tively distinct formalism has been argued to display
all of the requisite properties.

Below, we will discuss the various properties,
with particular attention to an examination of a par-
ticular source of data about the translation relation,
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namely bilingual dictionaries. Multilingual lexicog-
raphy has a history of some four millennia or more.
In that time, a great deal of knowledge about par-
ticular translation relations has been explicitly codi-
fied in multilingual dictionaries. More interestingly
for our present purposes, multilingual dictionaries
through their own structuring implicitly express in-
formation about translation relations in general.

In Section 2, we introduce the Construction Prin-
ciple, a property of the translation relation implicit
in the structure of bilingual dictionaries throughout
their four millennium history. Section 3 provides
a review of synchronous tree-adjoining grammars
showing that this formalism directly incorporates the
Construction Principle and allows the formal im-
plementation of bilingual dictionary relations. In
Section 4, we argue that the probabilistic variant
of STAG (PSTAG) inherits the expressivity advan-
tages of STAG while adding the trainability of sta-
tistical MT. Section 5 concerns the practical efficacy
of STAG. We conclude (Section 6) with an overall
proposal for the use of PSTAG in a statistical MT
system. By virtue of its fundamentality to the mod-
eling of the translation relation, PSTAG or its formal
relatives merits empirical examination as a basis for
statistical MT.

2 Expressivity

Of course, a formalism for describing the transla-
tion relation must be able to capture the relations
between words in the two languages: acqua means
water, dormire means sleep, and so forth. Indeed,
the stereotype of a bilingual dictionary is just such
a relation; the HarperCollins Italian College Dictio-
nary (HCICD) (Clari and Love, 1995) contains en-

Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 88-95,
Rochester, New York, April 2007. (©2007 Association for Computational Linguistics



tries (acqua | water)yo and (dormire | sleep)yo;.!
This property doesn’t distinguish among any of the
formal means for capturing these direct lexical re-
lationships. Finite-state string transducers naturally
capture these simple relationships, but so do more
(and less) expressive formalisms.

Simple word-by-word replacement is not a viable
translation method; this was noted even as early
as Weaver’s famous memorandum (Weaver, 1955).
Systems based on word-to-word lexicons, such as
the IBM systems (Brown et al., 1990; Brown et
al., 1993), incorporate further devices that allow re-
ordering of words (a “distortion model”) and rank-
ing of alternatives (a monolingual language model).
Together, these allow for the possibility that

The Word Principle:
Words translate differently when adjacent to
other words.

This property of the translation relation is patently
true.

Even a word-to-word system with the ability to
reorder words and rank alternatives has obvious lim-
itations, which have motivated the machine transla-
tion research community toward progressively more
expressive formalisms. Again, we see precedent for
the move in bilingual dictionaries, which provide
phrasal translations in addition to simple word trans-
lations: (by and large / nel complesso)se, (full moon
/ luna piena)o6. The insight at work here is

The Phrase Principle:
Phrases (not words) translate differently when
adjacent to other phrases.

And again, we see this insight informing statisti-
cal machine translation systems, for instance, in the
phrase-based approaches of Och (2003) and Koehn
et al. (2003). These two principles, while true, do
not exhaust the insights implicit in the structure of
bilingual dictionaries. A fuller view is accomplished
by moving from words and phrases to constructions.

2.1 The construction principle

The phenomenon that underlies the use of syn-
chronous grammars for MT is simply this:

' Throughout, we notate entries in HCICD with the notation
(entry form [ translation form) page, providing the Italian and
English forms, along with the page number of the cited entry.
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The Construction Principle:
Words and phrases translate differently in con-
struction with other words.

The notion of in construction with is a structural no-
tion. A word is in construction with another if they
are related by a structural relation of some sort de-
pendent on the identity or role of the word.

For example, the English word take is prototypi-
cally translated with a form of the Italian prendere
(take | prendere)es). But when its object is a bath,
as in the sentence “I like to take several long bubble
baths every day”, the word is translated with a form
of fare. More accurately, the construction typified
by the phrase take a bath is translated by the corre-
sponding construction typified by the phrase fare un
bagno ((take a bath | fare un bagno)eg,).

One may think that we are still in the realm of the
Phrase Principle; the phrase take a bath translates as
the phrase fare un bagno. But the generalization is
clearly much more general than that in several ways.

First, the notion of in construction with does not
necessarily lead to contiguous phrases because of
variability within the constructions. Bilingual dic-
tionaries have developed notational conventions for
such cases. When freely variable objects can inter-
vene between the words in construction, a kind of
variable word is used in dictionary entries, such as
SB (somebody), STH (something), QN (qualcuno),
QC (qualcosa). The word take participates in an-
other construction (take SB by surprise | cogliere
[literally “catch”] QN di sorpresa). The phe-
nomenon is widespread. We find entries for light
verb phrases such as take SB by surprise, idiomatic
constructions such as {(pull SB’s leg | prendere in
giro QN)sg7, and particle constructions such as (call
SB up / chiamare QN)gs. These variable notations
not only stand in for variable textual material and
categorize that material (as specifying an entity (QC)
or human (QN)) but also provide links between the
portions of the two constructions. Whatever lexi-
cal material instantiates a SB variable on the English
side, its translation instantiates the QN in the Ital-
ian. Thus translations require not only structure in
the monolingual representations, but structure bilin-
gually across them.?

2The linking of the subject roles in these constructions is
typically left implicit in these entries, following from an as-



Second, even constructions that are in and of
themselves contiguous may become discontiguous
by intervention of other lexical material: modifiers,
appositives, and the like. An example has already
been seen in the example “I like to take several long
bubble baths every day”. There is no contiguity be-
tween take and bath here. A formalism based purely
on concatenation of contiguous phrases will be un-
able to model such constructions.

These two aspects of variability and interven-
tion within and between constructions preclude sim-
ple concatenative formalisms such as finite-state or
context-free formalisms.

2.2 Prevalence of bilingual constructions

A natural question arises as to the prevalence of such
nontrivial bilingual constructions. Presumably, if
they are sufficiently rare and exotic, it may be ac-
ceptable, and in fact optimal, from an engineering
point of view to ignore them and stay with simpler
formalisms.

We can ask the prevalence question at the level of
types or tokens. At the type level, a simple examina-
tion of a comprehensive modern bilingual dictionary
reveals a quite high frequency of non-word-for-word
translations. Analysis of a small random subsam-
ple of HCICD yielded only 34% of entries of the
(acqua | water) g sort. In contrast, 52% were con-
tiguous multi-word translations, e.g., (guarda caso /
strangely enough)oo. An additional 11% of entries
had variable content, split about equally between en-
tries with overt marking of variability ((prendere QN
in castagna | to catch SB in the act)jpp) and im-
plicit variability ((hai fatto caso al suo cappello? /
did you notice his hat?) oo, in which the (suo cap-
pello | his hat) pair serves as a placeholder for other
translates. (The remaining 3% is accounted for by
entries providing monolingual equivalences and un-
translated proper names.) The line between implicit
variability and multi-word translations is quite per-
meable, so that many of the 54% of entries classified
as the latter might in fact be better thought of as the
former, and in any case many of the multi-word en-

sumption that subjects are typically linked across these lan-
guages. Where this assumption fails, however, explicit marking
is found in the dictionary, either by using a passive alternation
(piacere a QN / to be liked by SB)4p4, or implicit linking (mi
piace ! I like if)404.
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tries would be subject to noncontiguity through in-
sertion of other lexical material. At the type level,
then, there is plenty of evidence for the Phrase Prin-
ciple and the Construction Principle.

At the token level, the general interest in so-
called syntax-aware statistical MT approaches is it-
self evidence that researchers believe that the to-
kens accounting for the performance gap in current
systems based on the Word and Phrase Principles
transcend those principles in some way, presum-
ably because they manifest the Construction Prin-
ciple.> Only time will tell if such syntax-aware
systems are able to display performance improve-
ments over their nonstructural alternatives. Success-
ful experiments such as those of Chiang (2005) us-
ing synchronous context-free grammar are a good
first start.*

2.3 Heritage of the construction principle

We have argued that a formalism expressive enough
to model the translation relation implicit in bilin-
gual dictionaries must be based on relations over
constructions, the primitive relations found in such
bilingual dictionaries and founded by the Construc-
tion Principle. The fundamentality of this princi-
ple is evidenced by the fact that it has informed
bilingual dictionaries literally since their inception.
The earliest known bilingual dictionaries are those
incorporated in the so-called lexical texts of an-
cient Mesopotamia from four millennia ago. Even
there, we find evidence of the Construction Princi-
ple in entries that describe translation of words de-
pendent upon words they are in construction with.
Civil (1995) cites an example of the Akkadian word
nakapu (to gore, to knock down) whose translation
into Sumerian is given differentially dependent on
the nature of “grammatical constructions with par-
ticular subjects or objects’:

3 A reviewer objects that this point is vacuous: “Is the fact
that researchers aren’t building large-scale statistical semantic
transfer models evidence for the fact that they don’t believe in
semantics?” This is an instance of the logical fallacy of denying
the antecedent. If researchers act on a premise, they believe the
premise. From this it does not follow that if they fail to act on a
premise, they deny the premise.

It would be more convincing to have empirical token-level
statistics on the prevalence of constructions found in bilingual
dictionaries. Unfortunately, this would require much of the ef-
fort of building an MT system on a construction basis itself.



Translation When said of
sag-ta-dugs-ga the head

dury oxen

rus rams

Si-tuyg oxen/bulls
kur-ku a flood

ru-gu a finger

si-ga a garment

3 Synchronous Grammars Reviewed

To summarize, the translation relation in evidence
implicitly in bilingual dictionaries requires a for-
malism expressive enough to directly represent re-
lations between constructions, appropriately linked,
and to do so in a way that allows these constructions
to be realized noncontiguously by virtue of vari-
ability and intervention. As we will show, the for-
mer requirement is exactly the idea underlying syn-
chronous grammars. The latter requirement of non-
contiguity in its two aspects further implicates oper-
ations of substitution and adjunction (respectively)
to combine constructions. The requirements lead
naturally to a consideration of synchronous tree-
adjoining grammar as the direct embodiment of the
bilingual dictionaries of the last four millennia.

A synchronous grammar formalism is built by
synchronizing grammars from some base formal-
ism. A grammar in the base formalism consists
of a set of elementary tree structures along with
one or more combining operations. All of the fa-
miliar monolingual formalisms—finite-state gram-
mars, context-free grammars, tree-substitution and
-adjoining grammars, categorial grammars, inter
alia—can be thought of in this way. A synchronous
grammar consists of a set of pairs of elementary
trees from the base formalism together with a link-
ing relation between nodes in the trees at which
combining operations can perform. Derivation pro-
ceeds as in the base formalism, whatever that is, ex-
cept that a pair of trees operate at a pair of linked
nodes in an elementary tree pair. An operation per-
formed at one end of a link must be matched by a
corresponding operation at the other end of the link.
For example, the tree pair in Figure 1 might be ap-
propriate for use in translating the sentence Eli took
his father by surprise. The links between the NP
nodes play the same role as the linked variables SB
and QN in the bilingual dictionary entry. They allow
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for substitution of tree pairs for Eli and its translation
and his father and its. The additional links allow for
further modification, as in Eli recently took his fa-
ther by surprise by preparing dinner, the modifiers
recently and by preparing dinner adjoining at the VP
and S links, respectively.

Expressing this relation in other frameworks in-
volves either limiting its scope (for instance, to par-
ticular objects and intervening material), expanding
its scope (by separating the translations of the con-
tiguous portions of the constructions), or mimicking
the structure of the STAG (as described at the end of
Section 5).

The basic idea of using synchronous TAG for ma-
chine translation dates from the original definition
(Shieber and Schabes, 1990), and has been pur-
sued by several researchers (Abeille et al., 1990;
Dras, 1999; Prigent, 1994; Palmer et al., 1999), but
only recently in its probabilistic form (Nesson et al.,
2006). The directness with which the formalism fol-
lows from the structure of bilingual dictionaries has
not to our knowledge been previously noted. It leads
to the possibility of making direct use of bilingual
dictionary material in a statistical machine transla-
tion system.’ But even if the formalism is not used
in that way, there is import to the fact that its expres-
sivity matches that thought by lexicographers of the
last several millennia to be needed for capturing the
translation relation; this fact indicates at least that
STAG’s use as a substrate for MT systems may be a
promising research direction to pursue, should other
necessary properties be satisfiable as well. We turn
next to two of these properties: trainability and effi-
ciency.

4 Trainability

The mere ability to formally represent the contents
of manually developed bilingual dictionaries is not
sufficient for the building of robust machine trans-
lation systems. The last decade and a half of MT
research has demonstrated the importance of train-
ability of the models based on statistical evidence
found in corpora. Without such training, manually

SFor construction-based MT, reconstruction of tree align-
ments from data is much more difficult than for phrase-based
MT, and hence extracting them from a dictionary becomes
much more appealing.



di  sorpresa

Figure 1: A synchronous tree pair.

developed models are too brittle to be seriously con-
sidered as a basis for machine translation.

It may also be the case that with such training, the
manually generated materials are redundant. Cer-
tainly, it has been difficult to show the utility of man-
ually generated annotations in improving MT per-
formance. But this may be because the means by
which the materials are represented is not yet appro-
priate; it does not articulate well with the statistical
substrate used by the training methodology.

A further property, then, for the formalism is that
it be trainable based on bilingual corpora. Consider
training of the sort that underlies the IBM-style word
models and their phrase-based offshoots, or statisti-
cal parsing based on probabilistic CFGs (Lari and
Young, 1990) or other generative formalisms. Such
methods use an underlying probabilistic formalism,
typically structuring the parameters based on a uni-
versal parametric normal form (as n-gram proba-
bilities are for finite-state grammars and Chomsky-
normal form is for PCFGs), and applying an efficient
training algorithm to set values for the parameters.

A full system based on STAG would use the for-
malism to express both the detailed bilingual con-
structional relationships as found in a bilingual dic-
tionary and a backbone in the form of the uni-
versal normal form. Trained together, the normal
form would serve to smooth the brittle construction-
specific part, while the construction-specific part
would relieve the burden on the universal learned
portion to allocate parameters to rare constructions.
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How do synchronous tree-adjoining grammars
fare in this area? Do they admit of the kind of uni-
versal normal-form training that might serve as a
smoothing method for the more highly articulated
but brittle lexicographic relation?

A probabilistic variant of synchronous TAG is
straightforward to specify, given that the formal-
ism itself has a natural generative interpretation
(Shieber, 1994). A universal parametric normal
form has been provided by Nesson et al. (2006)
(see Figure 2), who show that, at least on small
training sets, a synchronous TAG in this normal
form performs at a level comparable to standard
word- and phrase-based systems. Synchronous
TAGs thus seem to have the best of both worlds:
They can directly express the types of ramified bilin-
gual constructions as codified in bilingual dictionar-
ies, and they can also express the types of universal
assumption-free normal forms that underlie modern
statistical MT. Importantly, they can do so ar one
and the same time, as both types of information are
expressed in the same way, as sets of tree pairs. Both
can therefore be trained together based on bilingual
corpora.

We emphasize that the advantage that we find for
STAGs in displaying well the necessary properties
for statistical machine translation systems implicit in
bilingual dictionaries is not that they are able to code
efficiently all generalizations about the translation
relation. Indeed, STAG is not able to do so (Shieber,
1994), which has motivated more expressive exten-
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Figure 2: A normal form for synchronous tree-insertion grammar. (Reproduced from Nesson et al. (2006).)

sions of the formalism (Chiang et al., 2000). For
example, STAG might express the construction rela-
tion (attraversare QC di corsa | run across ST) and
similar relations between Italian verbs of direction
with modifiers of motion and English verbs of mo-
tion with directional modifiers. However, the gener-
alization that directional verbs with motion-manner
adverbials translate as motion-manner verbs with di-
rectional adverbials is not expressed or expressible
by STAG. Each instance of the generalization must
be specified or learned separately.® Nonetheless, we
are content (in the spirit of statistical MT) to have
lots of such particular cases missing a generaliza-
tion, so long as the parts from which they are con-
structed are pertinent, that is, so long as we do not
need to specify (attraversare la strada di corsa | run
across the road)s) separately from all of the other
things one might run across.

5 Efficiency

A final set of considerations has to do with the effi-
ciency of the formalism. Is it practical to use STAG
for the purposes we have outlined? It is important
not to preclude a formalism merely based on im-
practicality of its current use (given the constant in-
creases in computer speed), but inherent intractabil-
ity is another matter.’

Palmer et al. (1999) provide an approach to STAG that at-
tempts to address this particular problem as does the extension
of Dras (1999). It is unclear to what extent such extensions are
amenable to trainable probabilistic variants.

70f course, too much might be made of this question of
computational complexity. The algorithms used for decoding
of statistical MT systems almost universally incorporate heuris-
tics for efficiency reasons, even those that are polynomial. One
reviewer notes that “the admittedly perplexing reality is that ex-
ponential decoders run much faster than polynomial ones, pre-
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Here, the STAG situation is equivocal. Bilingual
parsing of a corpus relative to an STAG is a nec-
essary first step in parameter training. The recog-
nition problem for STAG, like that for synchronous
context-free grammar (SCFG) is NP-hard (Satta and
Peserico, 2005). Under appropriate restrictions of
binarizability, SCFG parsing can be done in O(n®)
time, doubling the exponent of CFG parsing. Simi-
larly, STAG parsing under suitable limitations (Nes-
son et al. (2005)) can be done in O(n'?) time dou-
bling the exponent of monolingual TAG parsing. On
the positive side, recent work exploring the auto-
matic binarization of synchronous grammars (Zhang
et al., 2006) has indicated that non-binarizable con-
structions seem to be relatively rare in practice.
Nonetheless, such a high-degree polynomial makes
the complete algorithm impractical.

Nesson et al. (2006) use synchronous tree-
insertion grammar (STIG) (Schabes and Waters,
1995) rather than STAG for this very reason.
STIG retains the ability to express a universal nor-
mal form, while allowing O(n%) bilingual parsing.
(Again, limitations on the formalism are required to
achieve this complexity.) Even this complexity may
be too high. Methods such as those of Chiang (2005)
have been proposed for further reducing the com-
plexity of SCFG parsing; they may be applicable to
STIG (and STAG) parsing as well.

The STIG formalism can be shown to be expres-
sively equivalent to synchronous tree-substitution
grammar (STSG) and even SCFG. Does this viti-
ate the argument for STIG as a natural formalism
for MT? No. The reductions of STIG to these other
formalisms operate by introducing additional nodes

sumably because they prune more intelligently.”



in the elementary trees that extend the size of those
trees and hence the complexity of their parsing, un-
less subtle tricks are used to take advantage of the
special structure of these added nodes. These tricks
essentially amount to treating the formalism as an
STIG, not an SCFG. That is, even if an SCFG were
to be used, its structure would best be built on the
observations found here.

For example, the method of Cowan et al. (2006)
synchronizes elementary trees of a prescribed form
to handle translation of clauses (verbs plus their ar-
guments) essentially implementing a kind of STSG.
However, because modifiers can make these trees
discontiguous, they augment the model by allowing
for free insertion of modifiers in certain locations.
One view of this is as an implementation of the prin-
ciple that motivates adjoining, without using adjoin-
ing itself. Thus, systems that are designed to take
account of the principles adduced in this paper are
likely to be implementing aspects of STAG implic-
itly, even if not explicitly.

Similarly, recent research is beginning to unify
synchronous grammar formalisms and tree trans-
ducers (Shieber, 2004; Shieber, 2006). There may
well be equally direct transducer formalisms that el-
egantly express construction-based translation rela-
tions. This would not be a denial of the present the-
sis but a happy acknowledgment of it.

6 Conclusion

We have argued that probabilistic synchronous TAG
or some closely related formalism possesses a con-
stellation of properties—expressivity, trainability,
and efficiency—that make it a good candidate at
a conceptual level for founding a machine transla-
tion system. What would such a system look like?
It would start with a universal normal form sub-
grammar serving as the robust “backoff” relation to
which additional more articulated bilingual material
could be added in the form of additional tree pairs.
These tree pairs might be manually generated, au-
tomatically reconstructed from repurposed bilingual
dictionaries, or automatically induced from aligned
bilingual treebanks (Groves et al., 2004; Groves and
Way, 2005) or even unannotated bilingual corpora
(Chiang, 2005). In fact, since all of these sources
of data yield interacting tree pairs, more than one of
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these techniques might be used. In any case, further
training would automatically determine the interac-
tions of these information sources.

The conclusions of this paper are admittedly pro-
grammatic. But plausible arguments for a program
of research may be just the thing for clarifying a re-
search direction and even promoting its pursual. In
that sense, this paper can be read as a kind of man-
ifesto for the use of probabilistic synchronous TAG
as a substrate for MT research.
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Abstract

Machine translation of a source language
sentence involves selecting appropriate
target language words and ordering the se-
lected words to form a well-formed tar-
get language sentence. Most of the pre-
vious work on statistical machine transla-
tion relies on (local) associations of target
words/phrases with source words/phrases
for lexical selection. In contrast, in this
paper, we present a novel approach to lex-
ical selection where the target words are
associated with the entire source sentence
(global) without the need for local asso-
ciations. This technique is used by three
models (Bag—of-words model, sequential
model and hierarchical model) which pre-
dict the target language words given a
source sentence and then order the words
appropriately. We show that a hierarchi-
cal model performs best when compared
to the other two models.

1 Introduction
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sometimes augmented with target—-to—source word
alignments in order to improve the precision of
these local associations. Further, the word—level
alignments are extended to phrase—level align-
ments in order to increase the extent of local asso-
ciations. The phrasal associations compile some
amount of (local) lexical reordering of the target
words—those permitted by the size of the phrase.
Most of the state—of-the—art machine translation
systems use these phrase—level associations in
conjunction with a target language model to pro-
duce the target sentence. There is relatively little
emphasis on (global) lexical reordering other than
the local re-orderings permitted within the phrasal
alignments. A few exceptions are the hierarchical
(possibly syntax—based) transduction models (Wu,
1997; Alshawi et al., 1998; Yamada and Knight,
2001; Chiang, 2005) and the string transduction
models (Kanthak et al., 2005).

In this paper, we present three models for doing
discriminative machine translation usingjobal
lexical selection andlexical reordering.

1. Bag—of-Words model: Given a source sen-
tence, each of the target words are chosen by
looking at the entire source sentence. The

The problem of machine translation can be viewed
as consisting of two subproblems: (a) lexical se-
lection, where appropriate target language lexi-
cal items are chosen for each source language
lexical item and (b) lexical reordering, where
the chosen target language lexical items are rear-
ranged to produce a meaningful target language
string. Most of the previous work on statisti-
cal machine translation, as exemplified in (Brown
et al., 1993), employs word—alignment algorithm

(such as GIZA++ (Och et al., 1999)) that provides 2.

local associations between source words and target
words. The source—to—target word—alignments are
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target language words are then permuted in
various ways and then, the best permutation
is chosen using the language model on the
target side. The size of the search space of
these permutations can be set by a parameter
called the permutation window. This model
does not allow long distance re-orderings of
target words unless a very large permutation
window chosen which is very expensive.

Sequential Lexical Choice model: Given
a source sentence, the target words are pre-
dicted in an order which is faithful to the or-

Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pages 96—102,
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der of words in the source sentence. Nowgranslations are not exact but paraphrases (b) the
the number of permutations that need to bdarget language does not have one lexical item
examined to obtain the best target languageo express the same concept that is expressed in
strings are much less when compared to th¢he source word. The extensions of word align-
Bag—of-Words model. This model is ex- ments to phrasal alignments attempt to address
pected to give good results for language pairsome of these situations in additional to alleviat-
such as English—French for which only lo- ing the noise in word-level alignments.
cal word order variations exist between sen- As a consequence of the global lexical selection
tences. approach, we no longer have a tight association
between source language words/phrases and tar-
deri del - For | : h get language words/phrases. The result of lexical
or E”n? rr]n?_'_ed: (I)Er alflghu%ge pairs sur(]: selection is simply a bag of words(phrases) in the
‘18 Nglis _h '?] :jor ng 'Sf _I ip?nesedw _er%arget language and the target sentence has to be
t ere 1S a high degree ot global reorderning,q .qngiryced using this bag of words.
(Figure 1), itis necessary to be able to handle . _
. The target words in the bag, however, might
long distance movement of words/phrases o o .
. .~ ~be enhanced with rich syntactic information that
In this approach, the target words predicted L :
. . could aid in the reconstruction of the target sen-
through global lexical selection are associ- . . X
tence. This approach to lexical selection and

ated with various nodes of the source depen- . : .
sentence reconstruction has the potential to cir-

dency tree and then, hierarchical reordering is oo !
. . cumvent the limitations of word—alignment based
done to obtain the order of words in the tar- . S )
. . . methods for translation between significantly dif-
get sentence. Hierarchical reordering allow Y
. ) erent word order languages. However, in this pa-
phrases to distort to longer distances than the _
) per, to handle large word order variations, we asso-
previous two models. . .
ciate the target words with source language depen-

dency structures to enable long distance reorder-
ing.

3. Hierarchical lexical association and re-

3 Training the discriminative models for
lexical selection and reordering

These islands of people  hindi language acommu. language inform of adopted-take-be

Figure 1: Sample distortion between En-

glish—Hindi In this section, we present our approach for a

global lexical selection model which is based on
discriminatively trained classification techniques.
The outline of the paper is as follows. In Sectionpiscriminant modeling techniques have become
2, we talk about the global lexical selection. Secthe dominant method for resolving ambiguity in
tion 3 describes three models for global lexical Sespeech and natural language processing tasks, out-
lection and reordering. In Section 4, we report theperforming generative models for the same task.
results of the translation models on English—Hindiye expect the discriminatively trained global lex-
language pair and contrast the strengths and limizg| selection models to outperform generatively
tations of the models. trained local lexical selection models as well as
provide a framework for incorporating rich mor-
pho—syntactic information.
For global lexical selection, in contrast to the Statistical machine translation can be formu-
local approaches of associating target words tdated as a search for the best target sequence that
the source words, the target words are associatadaximizesP (T | S), whereS is the source sen-
to the entire source sentence. The intuition igence andl is the target sentence. Ideally(T |
that there may be lexico—syntactic features of the5) should be estimated directly to maximize the
source sentence (not necessarily a single souramnditional likelihood on the training data (dis-
word) that might trigger the presence of a targetcriminant model). However, T corresponds to
word in the target sentence. Furthermore, it mightt sequence with a exponentially large combina-
be difficult to exactly associate a target word totion of possible labels, and traditional classifica-
a source sentence in many situations - (a) whetion approaches cannot be used directly. Although

2 Global lexical selection
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Conditional Random Fields (CRF) (Lafferty et al., orderings.
2001) train an exponential model at the sequence The bag—of-words approach can also be modi-
level, in translation tasks such as ours the compufied to allow for length adjustments of target sen-
tational requirements of training such models ardgences, if we add optional deletions in the final
prohibitively expensive. step of permutation decoding. The parameter
) i and an additional word deletion penaftgan then

3.1 Bag-of-Words Lexical Choice Model be used to adjust the length of translated outputs.
This model doesn’t require the sentences to be _ . .
word aligned in order to learn the local associa—3'2 Sequential Lexical Choice Model
tions. Instead, we take the sentence aligned corthe previous approach gives us a predetermined
pus as before but we treat the target sentence asPsder of words initially which are then permuted to
bag—of-words or BOW assigned to the source serpbtain the best target string. Given that we would
tence. The goal is, given a source senteficgo  Not be able to search the entire space, it would be a
estimate the probability that we find a given wordhelpful if we could start searching various permu-
(t;) in its translation ie.., we need to estimate thetations using a more definite string. One such def-
probabilities P(truelt;, S) and P(false|t;, S).  inite orderin which the target words can be placed
To train such a model, we need to build binaryis the order of source words itself. In this model,
classifiers for all the words in the target lan-during the lexical selection, we try to place the
guage vocabulary. The probability distributionstarget words in an order which is faithful to the
of these binary classifiers are learnt using maxisource sentence.
mum entropy model (Berger et al., 1996; Haffner, This model associates sets of target words with
2006). For the wordt;, the training sentence every position in the source sentence and yet re-
pairs are considered as positive examples wheri@ins the power of global lexical selection. For
the word appears in the target, and negative othepvery position {) of the source sentence, a prefix
wise. Thus, the number of training examples forstring is formed which consists of the sequence of
each binary classifier equals the number of trainwords from positions 1 té. Each of these prefix
ing examples. In this model, classifiers are train-strings are used to predict bags of target words us-
ing using n—gram features (BOgrams(S)). ing the global lexical selection. Now, these bags

During decoding, instead of producing the tar-generated using the prefix strings are processed in
get sentence directly, what we initially obtain is the order of source positions. L€} be the bag of
the target bag of words. Each word in the targetarget words generated by prefix stringFigure
vocabulary is detected independently, so we havé)-
here a very simple use of binary static classifiers.
Given a sentencé, the bag of wordsBOW (T') «
contains those words whose distributions have the / N
positive probability greater than a threshotd. ( | " "”‘

BOW(T) = {t | P(true | t, BOgrams(S)) > 7}
(N T(+1)

In order to reconstruct the proper order of words
in the target sentence, we consider various permuzigure 2: The generation of target bags associated
tations of words |rBOW(T) and Welght them by with source sentence position
a target language model. Considering all possible
permutations of the words in the target sentence The goal is to associate a set of target words
is computationally not feasible. But, the numberwith every source position. A target wort
of permutations examined can be reduced by uss attached to the*” source position if it is
ing heuristic forward pruning or by constraining present in7; but not in7;_; and the probability
the permutations to be within a local window of P(true|t, T;) > 7. The intuition behind this ap-
adjustable size (also see (Kanthak et al., 2005)proach is that a wortlis associated with a position
We have chosen to constrain permutations here.if there was some information present at ite
Constraining the permutation using a local win-source position that triggered the probability of the
dow can provide us some very useful local re-t to exceed the threshotd
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Hence, the initial target string is the sequencdn addition to the n—gram features, this model uses
of target language words associated with the sesues provided by the dependency structure to pre-
guence of source language positions. This stringlict the target bag—of—-words.
is now permuted in all possible ways (section 3.1)
and the best target string is chosen using the lan-
guage model.

S1

S2
3.3 Hierarchical lexical association and S5

reordering model

The Sequential Lexical Choice Model presented in s3 s4

the last section is expected to work best for lan-

guage pairs for which there are mostly local wordFigure 3: Dependency tree of a source sentence

order variations. For language pairs with signifi-with words s1, s2, s3, s4 and s5

cant word order variation, the search for the target

string may still fail examine the best target lan- Hence, the features that we have considered in

guage string given the source sentence. The mod#le model are (Figure 3),

proposed in this section should be able to handle

such long distance movement of words/phrases.
In this model, the goal is to search for the best

target stringZ” which maximizes the probability 2 pependency pair (The pair of nodes and its

P(T|S,D(S)), whereS is the source sentence parents). Example in Figure 2., ‘s2 s1’, ‘s4
and D(S) is the dependency structure associated g2’ etc.

with the source sentencg. The probabilities of
the target words given the source sentence are3. Dependency treelet (The triplet of a node, it's
estimated in the same way as the bag—of-words  parent and sibling). For example, ‘s3 s2 s4’,
model. The only main difference during the esti- ‘s2 s1s5' etc.

mation stage is that we consider the dependenc

tree based features apart from the n-gram feature :3.2  Attachment to Source nodes

The decoding of the source senten§etakes For every target word; in the bag, the most
place in three steps, likely source nodes are determined by measuring

the positive distribution of the word; given the
1. Predict the bag-of-words : Given a sourcefeatures of the particular node (Figure 4). Let
sentences, predict the bag of words BOW(T) S(;) denote the set of source nodes to which the
whose distributions have a positive probabil-word ¢; can be attached to, the$i(;) is deter-
ities greater than a threshold)( mined as,

1. N-grams. For example, in Figure 2, ‘'s1’, ‘'s2
s3 s4’, 's4 s5’ etc.

2. Attachment to Source nodes : These target st
words are now attached to the nodes of source
dependency trees. For making the attach- s5
ments, the probability distributions of target
words conditioned on features local to the

source nodes are used. W

3. Ordering the target language words : Tra-

verse the source dependency tree in a bottonFigure 4: Dependency tree of a source sentence
up fashion to obtain the best target string.  with words S1, S2, S3, S4 and S5

3.3.1 Predict the bag—of—-words

Given a source sentenég all the target words
whose positive probability distributions are above S(tj) = argmaxs(P(truelt;, f(s))  (3)

7 are included in the bag.
where f(s) denotes the features 6fin which

BOW(T) = {t | P(true|t, f(S))} (2) only those features are active which contain the

99



lexical item representing the node The target mum source sentence length of 30 words. The av-
words are in the global bag are processed in therage length of English sentences is 18 while that
order of their global probabilitieg(¢]S). While  of Hindi sentences is 20.

attaching the target words, it is ensured that no The source language vocabulary is 41017 and
source node had more thamarget words attached target sentence vocabulary is 48576. The to-
to it. Also, a target word should not be attachedken/type ratio of English in the dataset is 16.70
to more to more thaa number of times. There and that of Hindi is 15.64. This dataset is rela-
is another constraint that can be applied to ensurtvely sparse. So, the translation accuracies on this
that the ratio of the total target words (which aredataset would be relatively less when compared to
attached to source nodes) to the total number ahose on much larger datasets. In the target side
words in the source sentence does exceed a valwé the development corpus, the percentage of un-

(14). seen tokens is 13.48%(3.87% types) while in the
) source side, the percentage of unseen tokens is
3.4 Ordering the target language words 10.77%(3.20% types). On furthur inspection of

In this step, the source sentence dependency treeassmall portion of the dataset, we found that the
traversed in a bottom-up fashion. At every nodemaximum percentage of the unseen words on the
the best possible order of target words associatetdrget side are the named entities.

with the sub-tree rooted at the node is determined.

This string is then used as a cohesive unit by the® Results

superior nodes. 5.1 Bag-of-Words model
A The quality of the bag—of-words obtained is gov-
s1 .
erned by the parameter (probability threshold).
To determine the bestvalue, we experiment with
S2 vari_ous values of and measure the lexical accu-
S5 racies (F-score) of the bags generated on the de-

velopment set (See Figure 6). The total number
of features used for training this model are 53166
(with count-cutoff of 2).

Figure 5: The target string associated with node

S3 S4

S1 is determined by permuting strings attached to Lexical Accuracy of Predicted Bags of Words
the children (in rectangular boxes, to signify that o
they are frozen) and the lexical items attached to D;i P Lk SrevEEa
Sl 0.35 F}.’l
g 03 J

For example, in Figure 5, let ‘t1 t2 t3’, ‘t4 t5’ 20
be the best strings associated with the children of |  "'® F
nodes s2 and s3 respectively. Let t6 and t7 be the| oo
words that are attached to node s1. The best strinc “@'é)‘ B & i B B i 0 o
for the node sl is determined by permuting the A TET s
strings ‘t1 t2 t3', ‘t4 t5', ‘16’ ‘t7’ in all possible
ways and then choosing the best string using the o
language model.

Figure 6: Lexical Accuracies of the Bags-of-
4 Dataset words

The language pair that we considered for our ex- Now, we order the bags of words obtained
periments are English—Hindi. The training setthrough global selection to get the target lan-
consists of 37967 sentence pairs, the developmeguage strings. While reordering using the lan-
set contains 819 sentence pairs and the test sgiage model, some of the noisy words from the
has 699 sentence pairs. The dataset is from theag can be deleted by setting a deletion cakt (

newspaper domain with topics ranging from pol-We experimented with various deletion costs, and
itics to tourism. The sentence pairs have a maxituned it according to the best BLEU score that we
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obtained on the development set. Figure 7 showS.2 Sequential Lexical Choice Model

the best BLEU scores obtained by reordering therpe |exical accuracy values of the sequence of
bags associated with various threshold values.  \yords obtained by the sequential lexical choice

model are comparable to those obtained using the

BestREl i erious:tresatis bag—of-words model. The real difference comes
S for the BLEU score. The best BLEU score ob-
g 0054 = wa ' tained on the development set wa8586whenr
3 0052 et \1-!'““-\ | was set to 0.14 and deletion cost was 15. On the
E ael = test set, the BLEU score obtained was 0.0473.
G E— — ] 5.3 Tree based model

The lexical accuracy values of the words obtained
Thresholds in this model are comparable to the lexical accu-
[~=—Best BLEL o arious Trveshoias | racy values of the bag of words model. The total
number of features used for training this model are
) ) ) 118839 (with count-cutoff of 2). On the develop-
Figure 7: Lexical Accuracies of the Bags-of- . set, we obtained a BLEU score0oB650for
words T set at 0.17 and the deletion cost set at 20. On
We can see that we obtained the best BLEUIe test set, we obtained a BLEU score of 0.0498.
when we choose a threshold of 0.17 to obtain th&Ve can see that the BLEU scores are now bet-
bag—of-words, when the deletion cost is set to 19t€r than the ones obtained using any of the other
The reference target strings of the developmenfnodels discussed before. This is because the Tree
set has 15986 tokens. So, while tuning the parampased model has both the strengths of the global
eters, we should ensure that the bags (obtained ulgxical selection that ensures high quality lexical
ing the global lexical selection) that we consideritems in the target sentences and that of an efficient

have more tokens than 15986 to allow some delgteconstruction model which takes care of long dis-

tions during reordering, and in effect obtain thetance reordering. The table summarizes the BLEU
target Strings whose total token count is approxSCOfGS obtained by the three models on the devel-
imately equal to 15986. Figure 8 shows the variaPPment and test sets.

tion in BLEU scores for various deletion costs by
fixing the threshold at 0.17.

Devel. Set| Test. Set
Bag-of-Words| 0.0545 0.0428

_ . Sequential 0.0586 0.0473
BLE Ll scores for warious deletion costs for 0.17 _ .
threshold Hierarchical 0.0650 0.0498
0.06 Table 1: Summary of the results
005 /_—)_‘_'_‘__‘_,_._,—Q——‘—.—'—‘_‘_'—\—‘—"
0.04 1
0.03 6 Conclusion
.oz .
.01 In this paper, we present a novel approach to lex-
i— ical selection where the target words are associ-
A HRTH SRR R RS 2l ated with the entire source sentence (global) with-
| —+—BLEU scores for warious deletion costs for 017 threshold | out the need for local associations. This technique

is used by three models (Bag—of—words model, se-
quential model and hierarchical model) which pre-
dict the target language words given a source sen-
tence and then order the words appropriately. We
show that a hierarchical model performs best when

On the test set, we now fix the threshold at 0.17compared to the other two models. The hierar-
(r) and the deletion cost) at 19 to obtain the chical model presented in this paper has both the
target language strings. The BLEU score that westrengths of the global lexical selection and effi-
obtained for this set is 0.0428. cient reconstruction model.

Figure 8: BLEU scores for various deletion costs
when the threshold for global lexical selection is
setto 0.17
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In the future, we are planning to improve the hi- K. Yamada and K. Knight. 2001. A syntax-based sta-
erarchical model by making two primary additions g\sct:_cal translation model. IProceedings of 39"

e Handling cases of structural non-
isomorphism between source and target
sentences.

e Obtaining K-best target string per node of the
source dependency tree instead of just one
per node. This would allow us to explore
more possibilities without having to compro-
mise much on computational complexity.
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Using Efficient BLEU Oracle Computation

Markus Dreyer, Keith Hall, and Sanjeev Khudanpur
Center for Language and Speech Processing
Johns Hopkins University
3400 North Charles Street, Baltimore, MD 21218 USA

{dreyer keith

Abstract

This paper describes a new method to
compare reordering constraints for Statis-
tical Machine Translation. We investi-
gate the best possible (oracle)®BJ score
achievable under different reordering con-
straints. Using dynamic programming, we
efficiently find a reordering that approxi-
mates the highest attainable.BJ score
given a reference and a set of reordering
constraints. We present an empirical eval-
uation of popular reordering constraints:
local constraints, the IBM constraints,
and the Inversion Transduction Grammar
(ITG) constraints. We present results for a
German-English translation task and show
that reordering under the ITG constraints
can improve over the baseline by more
than 7.5 B EU points.

Introduction

_hall,khudanpur

}@jhu.edu

reorderings. Other models (Wu (1997), Xiong et al.
(2006)) explicitly allow global reorderings, but do
not allow all possible permutations, including some
local permutations.

We present a novel technique to compare achiev-
able translation accuracies under different reorder-
ing constraints. While earlier work has trained and
tested instantiations of different reordering models
and then compared the translation results (Zens and
Ney, 2003) we provide a more general mechanism
to evaluate theotentialefficacy of reordering con-
straints, independent of specific training paradigms.
Our technique attempts to answer the question:
What is the highesBLEU score that a given trans-
lation system could reach when using reordering
constraints X?Using this oracle approach, we ab-
stract away from issues that are not inherent in the
reordering constraints, but may nevertheless influ-
ence the comparison results, such as model and fea-
ture design, feature selection, or parameter estima-
tion. In fact, we compare several sets of reorder-
ing constraints empirically, but do not train them as
models. We merely decode by efficiently search-

Reordering the words and phrases of a foreign seHld over possible translations allowed by each model
tence to obtain the target word order is a fundamer@d choosing the reordering that achieves the high-
tal, and potentially the hardest, problem in machin@St BLEU score.

translation. The search space for all possible per- We start by introducing popular reordering con-

mutations of a sentence is factorial in the numbestraints (Section 2).

Then, we present dynamic-

of words/phrases; therefore a variety of models hay@rogramming algorithms that find the highest-

been proposed that constrain the set of possible paecoring permutations of sentences under given re-
mutations by allowing certain reorderings while dis-ordering constraints (Section 3). We use this tech-
allowing others. Some models (Brown et al. (1996)nique to compare several reordering constraints em-
Kumar and Byrne (2005)) allow words to changepirically. We combine a basic translation framework
place with their local neighbors, but disallow globalwith different reordering constraints (Section 4) and
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present results on a German-English translation tagk(Zens and Ney, 2003). We write IBM witt=4 as
(Section 5). Finally, we offer an analysis of thelBM(4). The IBM constraints are supersets of the
results and provide a review of related work (Seclocal constraints.

tions 6_8) if O you to-me that explain could O
: (1 2 3 4 5 6

2 Reordering Constraints (a) The sentence in foreign word order.

ou if explain
Reordering constraints restrict the movement of @i@y\~ () - ®
words or phrases in order to reach or approximate ome O™ O,
the word order of the target language. Some of 2 g

the constraints considered in this paper were origi- (b) MJ-1
nally proposed for reordering words, but we will de-
scribe all constraints in terms of reordering phrases.
Phrases are units of consecutive words read off a
phrase translation table.

2.1 Local Constraints

Local constraints allow phrases to swap with one
another only if they are adjacent or very close to
each other. Kumar and Byrne (2005) define two
local reordering models for their Translation Tem-
plate Model (TTM): In the first one, called MJ-1,
only adjacent phrases are allowed to swap, and the
movement has to be done within a window of 2. A
sequence consisting of three phraabs can there-

fore becomeacb or bac but notcba One phrase
can jump at most one phrase ahead and cannot take
part in more than one swap. In their second strategy,
called MJ-2, phrases are allowed to swap with their
immediate neighbor or with the phrase next to the (d) IBM(2)

immediate neighbor; the maximum jump length is 2, . . . .
This allows for al six possible permutationsatic 19412 11 The Germn wo craetyou e that expen
The movement here has to take place within a wineorderings under different constraints, represented as lattices.
dow of 3 phrases. Therefore, a four-phrase Sequen@gne of these lattices contains the correct English oifdeu
abcdcannot be reordered tadh for example. MJ- could explain that to-meSee also Table 1.

1 and MJ-2 are shown in Figure 1.

2.2 IBM Constraints 2.3 ITG Constraints

First introduced by Brown et al. (1996), the IBMThe Inversion Transduction Grammar (ITG) (Wu,

constraints are among the most well-known and997), a derivative of the Syntax Directed Trans-
most widely used reordering paradigms. Transladuction Grammars (Aho and Uliman, 1972), con-
tion is done from the beginning of the sentence tstrains the possible permutations of the input string
the end, phrase by phrase; at each point in time, thy defining rewrite rules that indicate permutations
constraints allow one of the firétstill untranslated of the string. In particular, the ITG allows all per-

phrases to be selected for translation (see Figure Idutations defined by all binary branching struc-
for k=2). The IBM constraints are much less restrictures where the children of any constituent may be
tive than local constraints. The first word of the in-swapped in order. The ITG constraint is different
put, for example, can move all the way to the endrom the other reordering constraints presented in
independent of the value &t Typically, k is setto that it is not based on finite-state operations. An
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| Model | # perm. | “Best’sentence |  n-gram precisions | BLEU |

MJ-1 13 || if you that to-me could explain ~ 100.0/66.7/20.0/0.0 0.0
MJ-2 52 || to-me if you could explain that  100.0/83.3/60.0/50.0 | 70.71
IBM(2) 32 || if to-me that you could explain ~ 100.0/50.0/20.0/0.0 0.0
IBM(4) 384 || if you could explain that to-me 100.0/100.0/200.0/100.0 100.0
IBM(4) (prune) 42 || if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
ITG 394 || if you could explain that to-mg 100.0/100.0/100.0/100.0 100.0
ITG (prune) 78 || if you could explain that to-mg 100.0/100.0/100.0/100.0 100.0

Table 1: lllustrating example: The number of permutations (# perm.) that different reordering paradigms consider for the input
sequenceéf you to-me that explain cou)dind the permutation with highest.Bu score. The sentence length is 7, but there are
only 6! possible permutations, since the phrimsenecounts as one word during reordering. ITG (prune) is the ITiG Bdecoder

with the pruning settings we used in our experiments (beam threditolt). For comparison, IBM(4) (prune) is the lattice
BLEU decoder with the same pruning settings, but we use pruning only for ITG permutations in our experiments.

ing tested can be expressed as a special dynamic-
Figure 2: The exampleif programming decoder which, when applied to an
you tﬁ;”;g;:‘;érie;‘g'?c'i? ;85"’ unreordered hypothesis, searches the space of per-
could explain that to-mes- ~ Mutations defined by the reordering constraints and
ing an ITG. The alignments  returns the highest-scoring permutation. We employ
f‘hr: ﬁgﬁzegn?;'%";rtshient{ﬁg'tfened this strategy for the ITG reorderings (Section 3.2).
if you could explain that to-me _ indicate a swap. For the other reordering constraints, we employ a
more generic strategy: Given the set of reorder-
] o ing constraints, all permutations of an unreordered
ITG decoder runs in polynomial time and allows for, g 1ation candidate are precomputed and explicitly
long-distance phrasal reordering. A phrase can, fQLosented as a lattice. This lattice is passed as in-
example, move from the first pOSItIOI’\'In the |nputput to a Dijkstra-style decoder (Section 3.1) which
to the last position in the output and vice versa, by, arses it and finds the solution that reachest the
swapping the topmost node in the constructed bh'ighest REU scorel
nary tree. However, due to the binary bracketing
constraint, some permutations are not modeled. A1 Dijkstra BLEU Decoder
four-phrase sequenabcdcannot be permuted into The Dijkstra-style decoder takes as input a lattice in

cadborbdac Therefore, the ITG constraints are nOtWhich each path represents one possible permutation
supersets of the IBM constraints. IBM(4), for exam

. of an unreordered hypothesis under a given reorder-
ple, allowsabedto be permuted intoadbandbdac ing paradigm, as in Figure 1. It traverses the lat-

3 Factored BLEU Computation tice and finds the solution that has the highest ap-
\groximate B EU score, given the reference. The

if you to-me that explain could

The different reordering strategies described allo ) : . .
ynamic-programming algorithm divides the prob-

for different permutations and restrict the searc L into subproblems that are solved independent
space in different ways. We are concerned wit >U0p . . pendenty,
the solutions of which contribute to the solutions

the maximal achievable accuracy under given con-

straints, independent of feature design or paramet%? other subproblems. The general procedure is

estimation. This is what we call theracleaccuracy sketched in Figure 3: for each subpath of the fat-

under the reordering constraints and it is computetcllCe containing the precomputed permutations, we

. . store the three most recently attached words (Fig-
on a dataset with reference translations.
We now describe algorithms that can be used !For both strategies, several unreordered translation candi-
to find such oracle translations among unreorderetjtes do not have to be regarded separately, but can be repre-
. . . sented as a weighted lattice and be used as input to the special
translation candidates. There are two equwalera@

) ) i namic program or to the process that precomputes possible
strategies: The reordering constraints that are bgermutations.
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B([0, k,len + 1, wa, w3, Wnew)) = max ( getbleu( [0, 7, len, wy, wa, w3], [j, k, Wnew] ) ) (@D)
w1

function getbleu( [0, 7, len, w1, wa, ws], [j, k, Wnew] ) :=
updatengrams0, j, k, len, w1, wa, w3, Wnew ) ;

4 2)
i ngrams([0, k, len + 1, w2, w3, Wnew)) _
returnexp <4 ngl log < Pp—— ;

Figure 3:Top: The BLEU score is used as inside score for a subpath fromiOwith the rightmost wordsvs, w3, Wnew iN the
Dijkstra decoderBottom: Pseudo code for a functigget _bleu which updates the n-gram matches ngrafns ), ngrams(....),
ngrams(...), ngrams(...) for the resulting subpath in a hash tafilek, len + 1, w2, w3, wnew] @and returns its approximate
BLEU score.

("you" "could" "explain®) ("could","explain","that")
6/4/2/1 7/5/3/2

(if" "your "couldr)
513/1/0 explain "@ that @
could L —]

("to","me","if") ("me""if" "you") —> that
\»

(" "to" "me) 3/10/0 4/2/0/0
, 107,"me
2/1/0/0 it /@ you /1;< that
to-me L—] AL explan
(o ) [ Jou \
0/0/0/0 ~—
| i

Figure 4: Three right-most words and n-gram matches: This shows the best path for the MJ-2 reordériymudb-me that
explain could along with the words stored at each state and the progressively updated n-gram matches. Thetduthpattyou
could explain thahas 7 unigram matches, 5 bigram, 3 trigram, and 2 fourgram matches. See the full MJ-2 lattice in Figure 1c.

ure 4). A context of three words is needed to comscores. We call this the DijkstraLBu decoder.
pute fourgram precisions used in the &) score.
Starting from the start state, we recursively extend-2 TG BLEU Decoder
a subpath word by word, following the paths inFor the ITG reordering constraints, we use a dy-
the lattice. Whenever we extend the path by @aamic program that computes the permutations im-
word to the right we incorporate that word and us@licitly. It takes only the unreordered hypothesis
update _ngrams to update the four n-gram countsas input and creates the possible reorderings under
for the subpath. The functiarpdate _ngrams has the ITG constraints during decoding, as it creates
access to the reference strirand stores the updateda parse chart. The algorithm is similar to a CKY
n-gram counts for the resulting path in a hash tdbleparsing algorithm in that it proceeds bottom-up and
The inside score of each subpath is the approximag@mbines smaller constituents into larger ones re-
BLEU score, calculated as the average of the fowursively. Figure 5 contains details of the algo-
n-gram log precisions. An n-gram precision is alyithm. The ITG B.Eu decoder stores the three left-
ways the number of n-gram matches divided by theost and the three rightmost words in each con-
length len of the path minugn — 1). A path of stituent. A constituent from position to posi-
length 4 with 2 bigram matches, for example, hagon &, with w,, w,, and w. as leftmost words,
a bigram precision of/3. This method is similarto and w,, wy, w, as rightmost words is written as
Dijkstra’s algorithm (Dijkstra, 1959) composed with[i, k, (wq, wp, w.), (ws, wy, w,)]. Such a constituent
a fourgram finite-state language model, where thean be built by straight or inverted rules. Using an
scoring is done using n-gram counts and precisianverted rule means swapping the order of the chil-
dren in the built constituent. The successive bottom-
" 2Multiple reference strings can be used if available. up combinations of adjacent constituents resultin hi-
3An epsilon value oft *° is used for zero precisions. erarchical binary bracketing with swapped and non-
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) _ By ([4, k; (wa, wp, we), (wa, wy, wy)])
Pt w wm o) = (0G5 vl ) @
Bes([is b, (Was wo, we), (W, wy, wy)]) =
[] k, (waa Wy, 'LUC), (wx/>wy’a wz’)] ) (4)

max <getb|eu< 0 ) )
jvwalvwb/vw(:/ vww/’wy/awz/ [27 ]7 (wa/ I wb/ I wC’)? (w$7 wy> wz)]

Figure 5:Equations for the ITG oracleiB:u decoder]i, k, (wa, ws, we), (W, wy, w, )] is a constituent from to k with leftmost
wordswg,wy,w. and rightmost wordsv, ,wy,,w.. Top: A constituent can be built with a straight or a swapped rule. Bottom: A
swapped rule. Thget _bleu function can be adapted from Figure 3

swapped constituents. Our ITG.Bu decoder uses We also adopt the approximation that treats every
standard beam search pruning. As in Zens and Negntence with its reference as a separate corpus (Till-
(2003), phrases are not broken up, but every phrasgann and Zhang, 2006) so that ngram counts are not
is, at the beginning of reordering, stored in the chadgccumulated, and parallel processing of sentences
as one lexical token together with the precomputebdecomes possible. Due to these two approximations,
n-gram matches and the n-gram precision score. our method is not guaranteed to find the best reorder-

In addition to standard ITG we run experimentsng defined by the reordering constraints. However,
with a constrained ITG, in which we impose a boundve have found on our heldout data that an oracle
p on the maximum length of reordered constituentghat does not accumulate n-gram counts is only min-
measured in phrases. If the combined length of twimnally worse than an oracle that does accumulate
constituents exceeds this bound they can only beem (up to 0.25 BEU points)® If, in addition,
combined in the given monotone order. Experimentslipping is ignored, the resulting oracle stays virtu-
with this ITG variant give insight into the effect thatally the same, at most 0.02LBuU points worse than
various long-distance reorderings have on the finslhe oracle found otherwise. All results in this paper
BLEU scores (see Table 3). Such bounds are alsge computed with the originaltBu formula on the
effective speedup technigues(Eisner and Tromblegntences found by the oracle algorithms.

2006). _ )
4 Creating a Monotone Translation

3.3 BLEU Approximations Baseline

BLEU is defined to use thenodifiedn-gram preci- To compare the reordering constraints under ora-
sion, which means that a correct n-gram that 0Gge conditions we first obtain unreordered candi-
curs once in the reference, but several times in thgyte translations from a simple baseline translation
system translation will be counted only once aghodel. For each reordering paradigm, we take the
correct. The other occurrences are clipped. Weandidate translations, get the best oracle reorder-
do not include this global feature since we wanfngs under the given reordering constraints and pick
a dynamic-programming solution with polynomialthe pest sentence according to theeB score.

size and runtime. The decoder processes subprob-the paseline translation system is created using
lems independently; words are attached locally angkopapilistic word-to-word and phrase-to-phrase ta-
stored only as boundary words of covered path _ _
constituents. Therefore we cannot discount a localfj/?! aslglnézrr'fgz of difte f;tkleeenp%';stfzgﬁ ;?'lelg;&epa:igi revty
attached word that has already been attached elsgched phrases.

where to an alternative path/constituent. However, °The accumulating oracle algorithm makes a greedy deci-
Cllpplng aﬁ;ects most heaVIIy the Unlgram Score$|0n for every sentence given the ngram counts so far accumu-

: ) ated (Zens and Ney, 2005). The result of such a greedy or-
which are constant, like the length of the sentehceacle method may depend on the order of the input sentences.

- We tried 100 shuffles of these and received 100 very simi-
“Since the sentence lengths are constant for all reorderinggr results, with a variance of under 0.0068) points. The

of a given sentence we can in our experiments also ignore th®n-accumulating oracles use an epsilon value?) for zero

brevity penalty which cancels out. If the input consists of seveounts.
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bles. Using the translation probabilities, we creatand Figure 6 show the resulting.Bu scores for dif-

a lattice that contains word and phrase translatiorisrent sentence lengths. Table 3 shows results of the
for every substring of the source sentence. The réFG runs with different length bounds The aver-
sulting lattice is made of English words and phrasesage phrase length in the candidate translations of the
of different lengths. Every word or phrase translatest set is 1.42 words.

tion probabilityp is a mixture ofp(f|e) andp(el f). Oracle decodings under the ITG and under
We discard short phrase translations exponentiallBM(4) constraints were up to 1000 times slower
by a parameter that is trained on heldout data. Inseihan under the other tested oracle reordering meth-
tions and deletions are handled exclusively by theds in our implementations. Among the faster meth-
use of a phrase table: an insertion takes place wherds, decoding under MJ-2 constraints was up to 40%
ever the English side of a phrase translation is longéaster than under IBM(2) constraints in our imple-
than the foreign side (e.g. Engliginesidential can- mentation.

didate for GermanPrasidentschaftskandidatand
vice versa for deletions (e.gwe discussedior wir
haben diskutiejt Gaps or discontinuous phrases
are not handled. The baseline decoder outputs the 45 1 N\
n-best paths through the lattice according to the lat- |
tice score$, marking consecutive phrases so that the
oracle reordering algorithms can recognize them and
keep them together. Note that the baseline system is 01
trained on real data, while the reordering constraints 25 |
that we want to test are not trained.

35 r

BLEU

20

5 Empirical Comparison of Reordering 5 10 15 20 25 30 35 40
Constraints Sentence length

We use the monotone translation baseline model and

the oracle BEU_computatlpn to evaluate dlﬁe_rent Figure 6: Reordering oracle scores for different sentence
popular reordering strategies. We now describe thgngths. See also Table 2.

experimental settings. The word and phrase transla-

tion probabilities of the baseline model are trained

on the Europarl German-English training set, using Discussion

GIZA++ and the Pharaoh phrase extraction algo- o )

fithm. For testing we use the NAACL 2006 SMT 1he empirical results show that reordering un-
Shared Task test data. For each sentence of the t4§f Sufficiently permissive constraints can improve
set, a lattice is created in the way described in Se@ Monotone baseline oracle by more than 7.5
tion 4, with parameters optimized on a small heldodBLEY Points. This gap between choosing the best
set’ For each sentence, the 1000-best candidates &reordered sentences versus choosing the best op-
cording to the lattice scores are extracted. We takinally reordered sentences is small for short sen-
the 10-best oracle candidates, according to the rdfnces and widens dramatically (more than nine
erence, and use aLBU decoder to create the bestBLEU Points) for longer sentences. _
permutation of each of them and pick the best one. 1h€ ITG constraints and the I1BM(4) constraints
Using this procedure, we make sure that we get tHpth give very hlg_h oracle tra_mslatlon accuracies on
highest-scoring unreordered candidates and chod&¥ German-English translation task. Overall, their

the best one among their oracle reorderings. TableBL-EU scores are about 2 to more than 4 points bet-

_— _ _ _ ter than the BEU scores of the best other meth-
o \é/ﬁi;ig ?Z%B??htforward adaption of Algorithm 3in Huangy s, This gap between the two highest-scoring con-
"We fill the initial phrase and word lattice with the 20 bestStraints and the other methods becomes bigger as

candidates, using phrases of 3 or less words. the sentence lengths grow and is greater than 4
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\6(\(5{(\ e“\e(\
\e(\c,e ’\\86\6
= °© BLEU (NIST) scores

ITG (prune)| IBM, k=4 | IBM, k=2 MJ-2 MJ-1 | No reordering
1-5 61 | 48.21(5.35)| 48.21(5.35) | 48.21(5.35) | 48.21(5.35) | 48.21(5.35) 48.17(5.68)
6-10 | 230 | 43.83(6.75) | 43.71(6.74) | 41.94(6.68) | 42.50(6.71) | 40.85(6.66) 39.21(6.99)
11-15| 440| 33.66(6.71) | 33.37(6.71) | 31.23(6.62) | 31.49(6.64) | 29.67(6.56) 28.21(6.76)
16-20| 447 | 30.47(6.66) | 29.99(6.65) | 27.00(6.52) | 27.06(6.50) | 25.15(6.45) 23.34(6.52)
21-25| 454 || 30.13(6.80) | 29.83(6.79) | 27.21(6.67) | 27.22(6.65) | 25.46(6.58) 23.32(6.63)
26-30| 399 | 26.85(6.42) | 26.36(6.42) | 22.79(6.25) | 22.47(6.22) | 20.38(6.12) 18.31(6.11)
31-35| 298 || 28.11(6.45) | 27.47(6.43) | 23.79(6.25) | 23.28(6.21) | 21.09(6.12) 18.94(6.06)
36-40| 242 || 27.65(6.37) | 26.97(6.35) | 23.31(6.19) | 22.73(6.16) | 20.70(6.06) 18.22(5.94)
1-40 | 2571 || 29.63(7.48) | 29.17(7.46) | 26.07(7.24) | 25.89(7.22) | 23.95(7.08) 21.89(7.07)

Table 2: BLEu and NIST results for different reordering methods on binned sentence lengths. The ITG results are, unlike the
other results, with pruning (beait®~*). The BLEU results are plotted in Figure 6. All results are computed with the original
BLEU formula on the sentences found by the oracle algorithms.

BLEU scores for sentences longer than 30 sentencesen. [| p=0 | p=5 [ p=10 | p=20 | p=30 | p=40 |
This advantage in translation accuracy comes Withog_301] 1831 | 24.07 | 26.40 | 26.79 | 26.85| 26.85
high computational cost, as mentioned above. 31-351| 1894 | 2510 | 27.21 | 28.00| 28.09 | 28.11

Among the computationally more lightweight re-| 3640 || 18.22 | 24.46 | 26.66 | 27.53 | 27.64| 27.65
ordering methods tested, IBM(2) and MJ-2 are veryoe 40 || 18.49 | 24.74 | 26.74 | 27.41| 27.50 | 27.51
close to each other in translation accuracy, wit
IBM(2) obtaining slightly better scores on longerTable 3:BLEu results of ITGs that are constrained to reorder-
sentences. while MJ-2 is more efficient. MJ-1 idngs not exceeding a certain span lengthResults shown for

' . . . . different sentence lengths.

less successful in reordering, improving the mono-
tone baseline by only about 2.5 Bu points at best,
but is the best choice if speed is an issue.

As described above, the reorderings defined by,ations. zens and Ney (2005) describe a dynamic-

the local constraints MJ-l_and MJ-2 are subsets ‘bfrogramming algorithm in which at every state the
IBM(2) and IBM(3). We did not test IBM(3), but ,ymper of n-gram matches is stored, along with a

the values can be interpolated between IBM(2) angljtiset that contains all words from the reference
IBM(4). The ITG constraints do not belong in thisihat have not yet been matched. This makes it pos-
family of finite-state contraints; they allow reorder-gjpje 1o compute thenodifiedngram precision, but
ings that none of the other methods allow, and vicg,g search space is exponential. Tillmann and Zhang
versa. The fact that ITG constraints can reach suc@o%) use a Beu oracle decoder for discrimina-
high translation accuracies supports the findings if\e training of a local reordering model. No de-
Zens et al. (2004_) and is an empirical validation of5is apout the algorithm are given. Zens and Ney
the ITG hypothesis. _ (2003) perform a comparison of different reorder-
The experiments with the constrained ITG show,q strategies. Their study differs from ours in that
the effect of reorderings spanning different lengthg,ey yse reordering models trained on real data and
(see Table 3). While most reorderings are shorinay therefore be influenced by feature selection,
distance {5 phrases) a lot of improvements can still) 3 rameter estimation and other training-specific is-
be obtained whep is increased from length 510 10 ges.  In our study, only the baseline translation
and even from 10 to 20 phrases. model is trained on data. Zens et al. (2004) con-
duct a study similar to Zens and Ney (2003) and note
that the results for the ITG reordering constraints
There exist related algorithms that search the spaweere quite dependent on the very simple probability
of reorderings and computeLBU oracle approxi- model used. Our study avoids this issue by using the
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