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Abstract

This paper presents a series of measure-
ments of the accuracy of speech under-
standing when grammar-based or robust
approaches are used. The robust ap-
proaches considered here are based on sta-
tistical language models (SLMs) with the
interpretation being carried out by phrase-
spotting or robust parsing methods. We
propose a simple process to leverage ex-
isting grammarsand logged utterances
to upgrade grammar-based applications to
become more robust to out-of-coverage
inputs. All experiments herein are run
on data collected from deployed directed
dialog applications and show that SLM-
based techniques outperform grammar-
based ones without requiring any change
in the application logic.

hand-crafted rules (context-free grammars - CFGSs).
The apparent reasons for this are the up-front cost
and additional delays of collecting domain-specific
utterances to properly train the SLM (not to men-
tion semantic tagging needed to train the call router)
(Hemphill et al, 1990; Knight et al, 2001; Gorin et
al, 1997). Choosing to use a grammar-based ap-
proach also makes the application predictable and
relatively easy to design. On the other hand, these
applications are usually very rigid: the users are al-
lowed only a finite set of ways to input their requests
and, by way of consequences, these applications suf-
fer from high out-of-grammar (OOG) rates or out-
of-coverage rates.

A few studies have been published compar-
ing grammar-based and SLM-based approaches to
speech understanding. In (Knight et al, 2001),
a comparison of grammar-based and robust ap-
proaches is presented for a user-initiative home au-
tomation application. The authors concluded that
it was relatively easy to use the corpus collected

during the course of the application development to
train a SLM which would perform better on out-
The bulk of the literature on spoken dialog systemsf-coverage utterances, while degrading the accu-
is based on the simple architecture in which theacy on in-coverage utterances. They also reported
input speech is processed by a statistical languagjgat the SLM-based system showed slightly lower
model-based recognizer (SLM-based recognizer) tword error rate but higher semantic error rate for
produce a word string. This word string is furtherthe users who know the application’s coverage. In
processed by a robust parser (Ward, 1990) or cglRayner et al, 2005), a rigorous test protocol is pre-
router (Gorin et al, 1997) to be converted in a sesented to compare grammar-based and robust ap-
mantic interpretation. However, it is striking to segproaches in the context of a medical translation sys-
that a large portion of deployed commercial applitem. The paper highlights the difficulties to con-
cations do not follow this architecture and approachktruct a clean experimental set-up. Efforts are spent
the recognition/interpretation problem by relying orto control thetraining set of both approaches to
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have them align. Theraining sets are defined as 3. Leverage existing grammars

the set of data available to build each system: for a o .

ple dlalggs. (ten Bosch, 2005) presents experlments5. Simple process that requires little manual inter-
comparing grammar-based and SLM-based systems vention

for naive users and an expert user. They conclude

that. the SLM-based system is most effective in rethe first constraint dictates that, for each context,
ducing the error rate for naive users. Recently (s&fe interpretation engines (from the current and up-

(Balakrishna et al, 2006)), a process was presentggaded systems) must return the same semantics (i.e.
to automatically build SLMs from a wide variety same set of slots).

of sources (in-service data, thesaurus, WordNet andTe rest of this paper is organized as follows. The

world-wide web). Results on data from commernext Section describes the applications from which
cial speech applications presented therein echo eghe data was collected, the experimental set-up and
lier results (Knight et al, 2001) while reducing thethe accuracy measures used. Section 3 describes
effort to build interpretation rules. how the semantic truth is generated. The main re-
Most of the above studies are not based on dagyits of the upgrade from grammar-based to SLM-
collected on deployed applications. One of the corpased recognition are presented in Section 4. The
clusions from previous work, based on the measureglrget audience for this paper is composed of appli-
fact that in-coverage accuracy of the grammar-basegtion developers and researchers that are interested
systems was far better than the SLM one, was th@ the robust information extraction from directed

as people get more experience with the applicationgialog speech applications targeted at the general
they will naturally learn its coverage and gravitateyyplic.

towards it. While this can be an acceptable option
for some types of applications (when the user po2 Applications, corpus and experimental
ulation tends to be experienced or captive), it cer- set-up
tainly is not a possibility for large-scale commercial o o
applications that are targeted at the general public. 1 APPlication descriptions
few examples of such applications are public transis mentioned eatrlier, the data for this study was col-
schedules and fares information, self-help applicdected on deployed commercial directed dialog ap-
tions for utilities, banks, telecommunications busiplications. AppA is a self-help application in the in-
ness, and etc. Steering application design and rternet service provider domain, while AppB is also
search based on in-coverage accuracy is not suitalsleself-help application in the public transportation
for these types of applications because a large fradomain. Both applications are grammar-based di-
tion of the users are naives and tend to use more n#gcted dialogs and receive a daily average of 50k
ural and unconstrained speech inputs. calls. We will concentrate on a subset of contexts
This paper exploits techniques known since thédialog states) for each application as described in
90’s (SLM with robust parsing, (Ward, 1990)) andTable 1. Themainmenu grammars (each application
applies them to build robust speech understandirfags its ownmainmenu grammar) contain high-level
into existing large scale directed dialog grammartargets for the rest of the application and are active
based applications. This practical application ofnce the initial prompt has been played. Tdoen
(Ward, 1990; Knight et al, 2001; Rayner et al, 2005fmand grammar contains universal commands like
ten Bosch, 2005) is cast as an upgrade problefelp”, “agent”, etc. Theorigin and destination
which must obey the following constraints. grammars contain a list of 2500 cities and states
with the proper prefixes to discriminate origin and
1. No change in the application logic and to thedestination.num_type_passenger accepts up to nine
voice user interface (VUI) passengers of types adults, children, seniors, etc.
Finally time is self explanatory. For each applica-
2. Roughly similar CPU consumption tion, the prompt directs the user to provide a specific
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Context Description Active grammars | Training | Testing
sentences utts
AppA_MainMenu || Main menu mainmenu and 5000 5431
for the application commands (350) (642)
AppB_MainMenu || Main menu mainmenu and 5000 4039
for the application commands (29) (987)
AppB_Origin Origin of travel origin, destination 5000 8818
and commands | (20486) | (529)
AppB_Passenger || Number and type | num.type passenger 1500 2312
of passenger and commands | (32332) (66)
AppB_Time Time of departure| time and commands 1000 1149
(4102) (55)

Table 1: Description of studied contexts for each applicatNote that the AppBOrigin context contains a
destination grammar: this is due to the fact that the same set of gramnessiged in the AppBestination
context (not studied here). “Training” contains the numtifdraining sentences drawn from the corpus and
used to train the SLMs. As mentioned in Sec. 2.3, in the casead SLMs, we also use sentences that are
covered by the grammars in each context as backoffs (se@pdthe number of unique sentences covered
by the grammars is in parenthesis in the “Training” columhe TTesting” column contains the number of
utterances in the test set. The number of those utteranaesdahtain no speech (noise) is in parenthesis.

piece of information (directed dialog). Each gram2.3 Experimental set-up description
mar fills a single slot with that information. The in- . .
. . . p he baseline system is the grammar-based system;
formation contained in the utterance “two adults an . .
the recognizer uses, on a per-context basis, the gram-

one child” (AppB.Passenger context) would be col- . . .
lapsed to ﬁ(” tpr:Oenum_typeg_lpassenger)slot with the Mars listed in Table 1 in parallel. The SLM systems

value “Adult2 Child1”. From the application point studied all used the same interpretation engine: ro-

of view, each context can fill only a very limited setbuSt parsing with the grammars listed in Table 1 as

: . rules to fill slots. Note that this allows the applica-
of slots. To keep results as synthesized as possible, . . .
téion logic to stay unchanged since the set of potential

unless otherwise stated, the results from all studie - . .
. L ots returned within any given context is the same as
contexts will be presented per application: as sucf1

: . or the grammar-based systems (see first constraint
results from all contexts in AppB will be pooled to-. . ; .
gether, in Sec. 1). Adhering to this experimental set-up also

guarantees that improvements measured in the lab
will have a direct impact on the raw accuracy of the
deployed application.

We have considered two different SLM-based
systems in this study: standard SLM (wordSLM)
Table 1 presents the details of the corpus that wend class-based SLM (classSLM) (Jelinek, 1990;
have used for this study. As mentioned above the efillett and Ward, 1998). In the classSLM systems,
tire corpora used for this study is drawn from comihe classes are defined as the rules of the interpre-
mercially deployed systems that are used by the getation engine (i.e. the grammars active for each
eral public. The user population reflects realisticontext as defined in Table 1). The SLMs are all
usage (expert vs naive), noise conditions, handsetsained on a per-context basis (Xu and Rudnicky,
etc. The training utterances do not contain noise u000; Goel and Gopinath, 2006) as bi-grams with
terances and is used primarily for SLM training (ndWitten-Bell discounting. To insure that the word-
acoustic adaptation of the recognition models is pe6LM system covered all sentences that the grammar-
formed). based system does, we augmented the training set of

2.2 Corpus description
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Figure 1: ROC curves for AppMainMenu with the automatic or human-generated truth. Ichehe
grammar-based and SLM-based systems are compared.

the wordSLM (see Table 1) with the list of sentences e Recall = #slot correct slots (slot name and
that are covered by the baseline grammar-based sys- value) / #slots potential slots (in truth)

tem. This acts as a backoff in case a word or bi- gjnce applications use confidence extensively to
gram is not found in the training set (not to be conyjige the course of dialogue, it is of limited interest
fused with bi-gram to uni-gram backoffs found iny, gtdy forced-choice accuracy (accuracy with no
standard SLM training). This is particularly helprIrejection). Hence, we will present receiver operat-
when a little amount of data is available for traininging characteristic (ROC) curves. The slot confidence
the wordSLM (see Sec. 4.3). measure is based on redundancy of a slot/value pair
across the NBest list. For CA-in and FA-total, the
confidence is the average confidence of all slots
Throughout this paper, we will use two sets of meapresent in the utterance. Note that in the case where

sures. This is motivated by the fact that applicagach utterance only fills a single slot, CA-in = Re-
tion developers are familiar with the concepts of corgg)|.

rect/false acceptance at the utterance level. For in-
formation extraction (slot filling) from utterances,3 Truth

these concepts are restrictive because an utterangge 1 the |arge amount of data processed (see Table
can be partly correct or wrong. In thls_ case we prel), semantic tagging by a human may not be avail-
fer a more relevant measure from the information respe ¢ ail contexts (orthographic transcriptions are
trieval field: precision and recall on a per-slot basis, ilapje however). We need to resort to a more au-
We use the following definitions. tomatic way of generating the truth files while main-

e CA-in = #utts that had ALL slots correct (SlOt ta!nlng a strong confidence in our measurements. To

name and value) / #utts that are in—coveragg:cIS end, \/t\(e n‘tahe d tto tinSl'JITe tr][att)_any([r? utomal'ilc }[/vay
(i.e. truth has at least a slot filled) ot generating the truth witt not bias the resufts to-

wards any of the systems.

o FA-total = #utts that had at least one erroneous The automatic truth can be generated by simply

slot (slot name or value) / total #utts using the robust parser (see Sec. 2.3) on the or-
thographic transcriptions which are fairly cheap to

e Precision = #slot correct slots (slot name an@cquire. This will generate a semantic interpreta-
value) / #slots returned by system tion for those utterances that contain fragments that

2.4 Accuracy measures
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parse rules defined by the interpretation engine. THie any rule for each of the interpretation engines.
human-generated truth is the result of semanticallyhese include noise utterances as described in Table
tagging all utterances that didn't yield a full parsel. If we remove the noise utterances, going from
by one of the rules for the relevant context. the grammar-based interpretation to an SLM-based

Figure 1 presents the ROC curves of human amhe reduces the out-of-coveragediys. This result
automatic truth generation for the grammar-based interesting because the data was collected from
and wordSLM systems. We can see that human sdirected-dialog applications which should be heav-
mantic tagging increases the accuracy substantialify guiding the users to the grammar-based system’s
but this increase doesn’t seem to favor one systenoverage.
over the other. We are thus led to believe that in our ) )
case (very few well defined non-overlapping classeéy2 Results with recognizer
the automatic truth generation is sufficient. ThisSThe main results of this paper are found in Fig-
would not be the case, for example if for a given conure 2. It presents for grammar-based, wordSLM
text atime grammar andgiumber were active classes. and classSLM systems the four measurements men-
Then, an utterance like “seven” might lead to an ettioned in Sec.2.4 for AppA and AppB. We have
roneous slot being automatically filled while a huimanaged, with proper Viterbi beam settings, to keep
man tagger (who would have access to the entire dia the increase in CPU (grammar-based system
alog) would tag it correctly. SLM-based system) betwe&¥ and24% relative.

In our experiments, we will use the hu-We can see that the wordSLM is outperforming the
man semantically tagged truth when availablelassSLM. The SLM-based systems outperform the
(AppA_MainMenu and AppBOrigin). We have grammar-based systems substantially30 — 50%
checked that the conclusions of this paper are netror rate reduction on most of the confidence do-
altered in any way if the automatic semanticallymain). The only exception to this is the classSLM
tagged truth had been used for these two contextsin AppA: we will come back to this in Sec. 4.4.

_ This can be interpreted as a different conclusion than

4 Results and analysis those of (Knight et al, 2001; ten Bosch, 2005). The
4.1 Out-of-coverage analysis discrepancy can be tied to the fact that the data we
are studying comes from a live deployment targeted

Context (#utts) grammar-|] SLM-based to the general public. In this case, we can make

based the hypothesis that a large fraction of the popula-

- tion is composed of naive users. As mentioned in
ﬁppg_k/l/l:ilr?ll\\/lﬂsgﬂ 1;23 1228 (ten Bosch, 2005), SLM-based systems perform bet-
PbB- — ter than grammar-based ones on that cross-section of

AppB_Origin 1617 1161 the user population.

AppB_P.assenger 492 414 One might argue that the comparison between the
AppB_Time 327 309 grammar-based and wordSLM systems is unfair be-

Table 2: Number of utterances out-of-coverage forause the wordSLM intrinsically records tagriori
each context. probability that a user says a specific phrase while

the grammar-based system studied here didn't ben-

Coverage is a function of the interpretation enefit from this information. In Sec. 4.4, we will ad-
gine. We can readily analyze the effect of goinglress this and show thatpriori has a negligible ef-
from a grammar-based interpretation engine (granfect in this context.
mars in Table 1 are in parallel) to the robust ap- Note that these impressive results are surprisingly
proach (rules from grammars in Table 1 are useedasy to achieve. A simple process could be as fol-
in robust parsing). This is simply done by runningows. An application is developed using grammar-
the interpretation engine on the orthographic trarbased paradigm. After a limited deployment or pilot
scriptions. As expected, the coverage increased. Taith real users, a wordSLM is built from transcribed
ble 2 shows the number of utterances that didntiorthographic) data from the field. Then the recog-
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Figure 2. ROC curves for AppA (top) and AppB (bottom). In palesis is the average time for the
recognition and interpretation.

nition and interpretation engines are upgraded. Theomplexity of grammars (see Section 2). On one
grammars built in the early stages of developmeritand, the grammars for AppMainMenu can cover
can largely be re-used as interpretation rules. a total of 350 unique sentences while ApgBigin
can cover over 20k. As the amount of training
4.3 Amount of training data for SLM training data for the SLMs is reduced from 5000 down to

For the remaining Sections, we will use precisior?>0 sentences, the accuracy for AppRinMenu
and recall for simplicity. We will discuss an ex-is only perceptibly degraded for the wordSLM and
treme case where only a subset of 250 sentenc@@ssSLM systems on the entire confidence domain
from the standard training set is used to train théot shown here). On the other hand, in the case
SLM. We have run experiments with two contextsOf the more complex grammar (class), it is a dif-
AppA_MainMenu and AppBOrigin. These con- ferent story which highlights a second regime. For
texts are useful because a) we have the humafippB-Origin, the precision and recall curve is pre-
generated truth and b) they represent extremes in thented on Figure 3. In the case of classSLM (left),
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Figure 3: Precision and recall for the ApgBrigin context as the amount of training data for the SLMs is
reduced. On the left, classSLM systems are presented; aigtttét is the wordSLM.

even with very little training data, the accuracy idection is based on common stem with a word in the
far better than the grammar-based system and onyammar.

slightly degraded by reducing the size of the training The second caveat is based on fact that the
set. In the case of wordSLM (right), we can still segassSLM suffers from a lack of prior information
that the accuracy is better than the grammar-bas@gce the decoding process enters a specific class
system (refer to “wordSLM - 250" on the graph),since the grammars (class) do not contain priors.
but the reduction of training data has a much morgne wordSLM benefits from the full prior informa-
visible effect. If we remove the sentences that wergg g along the search. We have solved this by
drawn from the grammar-based system’s coveraggyining a small wordSLMwithin each grammar
(backoff - see Sec. 2.3), we can see that the drop {glass): for each grammar, the training set for the
accuracy is even more dramatic. small wordSLM is composed of the set of fragments
from all utterances in the main training set that fire
4.4 Coverage of interpretation rules and priors  that specific rule. Note that this represents a way

As seen in Sec. 4.2, the classSLM results for AppAC have the grammar-based and SLM-based systems
are disappointing. They, however, shed some ligiihare a commotraining set (Rayner et al, 2005).

on two caveats of the robust approach described In Figure 4, we show the effect of increasing the
here. The first caveat is the coverage of the interpreoverage and adding priors in the grammars. The
tation rules. As described in Sec. 2, the SLM-basefirst conclusion comes in comparing the grammar-
systems’ training sets and interpretation rules (granibased results with and without increased coverage
mars from Table 1) were built in isolation. This can(enhanced+priors in figure) and priors. We see that
have a dramatic effect: after error analysis of théhe ROC curves are one on top of the other. The only
classSLM system’s results, we noticed a large fradifferences are: a) at low confidence where the en-
tion of errors for which the recognized string was danced+priors version shows better precision, and
close (semantically identical) variant of a rule in theb) the CPU consumption is greatly reduced (73ms
interpretation engine (“cancellations” vs “cancella— 52ms). When the enhanced+priors version of
tion”). In response, we implemented a simple toothe grammars (for classes and interpretation rules)
to increase the coverage of the grammars (and heniseused in the context of the classSLM system, we
the coverage of the interpretation rules) using the listan see that there is a huge improvement in the accu-
of words seen in the training set. The criteria for seracy: this shows the importance of keeping the SLM
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