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Abstract 

Statistical classification techniques for 

natural-language call routing systems 

have matured to the point where it is pos-

sible to distinguish between several hun-

dreds of semantic categories with an 

accuracy that is sufficient for commercial 

deployments. For category sets of this 

size, the problem of maintaining consis-

tency among manually tagged utterances 

becomes limiting, as lack of consistency 

in the training data will degrade perform-

ance of the classifier. It is thus essential 

that the set of categories be structured in a 

way that alleviates this problem, and en-

ables consistency to be preserved as the 

domain keeps changing. In this paper, we 

describe our experiences of using a two-

level multi-slot semantics as a way of 

meeting this problem. Furthermore, we 

explore the ramifications of the approach 

with respect to classification, evaluation 

and dialogue design for call routing sys-

tems. 

1 Introduction 

Call routing is the task of directing callers to a ser-

vice agent or a self-service that can provide the 

required assistance. To this end, touch-tone menus 

are used in many call centers, but such menus are 

notoriously difficult to navigate if the number of 

destinations is large, resulting in many misdirected 

calls and frustrated customers. Natural-language 

call routing provides an approach to come to terms 

with these problems. The caller gets the opportu-

nity to express her reasons for calling using her 

own words, whereupon the caller’s utterance is 

automatically categorized and routed. 

This paper focuses on experiences obtained 

from the deployment of a call-routing application 

developed for the TeliaSonera residential customer 

care.
1
 The application was launched in 2006, re-

placing a previous system based on touch-tone 

menus. The customer care annually handles some 

14 million requests and questions concerning a 

wide range of products in fixed telephony, mobile 

telephony, modem-connected Internet, broadband, 

IP telephony and digital TV.  

The crucial step in any call routing application is 

classification, that is, the mapping of natural-

language utterances to categories that correspond 

to routing destinations. Early systems used quite 

small numbers of categories. For example, the 

original “How May I Help You” system had 15 

categories (Gorin et al. 1997), the system of Chu-

Carroll and Carpenter (1999) had 23 categories, 

and Cox and Shahshahani (2001) had 32. Nowa-

days, it is possible to distinguish between several 

hundreds of categories with high accuracy (see, for 

example, Speech Technology Magazine 2004). 

The TeliaSonera system currently distinguishes 

between 123 categories with an accuracy of 85% 

(using a speech recognizer and classifier developed 

by Nuance
2
). Moreover, according to our experi-

ments the same classification technology can be 

                                                           
1 TeliaSonera (www.teliasonera.com) is the largest telecom operator in the 

Nordic–Baltic region in Europe. 
2  www.nuance.com.  
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used to distinguish between 1,500 categories with 

80% accuracy.
3
 

For large category sets like these, the problem of 

maintaining consistency among manually tagged 

utterances becomes limiting, as lack of consistency 

in the training data will degrade performance of the 

classifier. The problem is exacerbated by the fact 

that call-routing domains are always in a state of 

flux: Self-services are being added, removed, 

modified, split and merged. Organizational 

changes and product development regularly call for 

redefinitions of human expertise areas. All of these 

changes must be accommodated in the category 

set. Hence, it must be possible to update this set 

efficiently and at short intervals. 

To meet this problem, it is crucial that the set of 

categories be structured in a way that facilitates the 

task of manual tagging and enables consistency to 

be preserved. However, in spite of the fact that the 

size of category sets for call routing have increased 

dramatically since the original “How May I Help 

You” system, we are not aware of any papers that 

systematically discuss how such large sets should 

be structured in order to be efficiently maintain-

able. Rather, many papers in the call-routing litera-

ture consider the call routing problem as an 

abstract classification task with atomic categories 

at a single level of abstraction. Such atomic cate-

gories are typically taken to correspond to depart-

ments and self-services of the organization to 

which the call center belongs. In a real-life imple-

mentation, the situation is often more complicated. 

At TeliaSonera, we have adopted a two-level 

multi-slot semantics as a way of maintaining 

modularity and consistency of a large set of cate-

gories over time. 

The aim of this paper is to share our experiences 

of this by providing a detailed description of the 

approach and its implications for classification, 

dialogue design and evaluation. The rest of the pa-

per is organized as follows: Section 2 describes the 

multi-slot category system. Sections 3–5 outline 

consequences of the multi-slot semantics for dis-

ambiguation, classification and evaluation, respec-

tively. Section 6 concludes. 
 

 

 

                                                           
3 In both cases, the classifier was trained on 60,000 utterances. 

2 What’s in a category? 

2.1 Motivation 

As pointed out above, call-routing domains are 

always to some extent moving targets because of 

constant changes with respect to products and or-

ganization. It would be cumbersome to manually 

re-tag old data each time the category set is up-

dated. Retagging the training data for the statistical 

classifier might introduce inconsistencies into the 

training set and degrade classifier performance. 

Thus, it is a good idea to define two sets of catego-

ries at different levels; one set of semantic catego-

ries reflecting the contents of the utterance, and 

one set of application categories reflecting how the 

call should be handled. These two sets of catego-

ries are related by means of a many-to-one map-

ping from the semantic domain to the application 

domain. Figure 1 gives the general picture. 

 

 

 
Figure 1: Mapping between semantic categories and 

application categories. 

 

The utterances in the training set for the auto-

matic classifier are manually categorized using 

semantic categories. The automatic classifier can 

be trained to work either in the semantic domain or 

in the application domain (see further Section 4). 

 
 

Semantic categories Application categories 
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2.2 Semantic categories 

In the TeliaSonera system, semantic categories are 

triples of the form 

 

( family, intention, object ) 

 

where family is the general product family which 

the call concerns (e.g. fixed telephony, mobile te-

lephony, broadband, etc.), intention represents the 

nature of the request (e.g. order, want-info, 

change-info, activate, want-support, report-error, 

etc.), and object represents more specifically what 

the call is about (e.g. particular names of products, 

or concepts like “telephone number”, “SIM card”, 

or “password”). Currently there are 10 families, 

about 30 intentions, and about 170 objects that 

span the semantic domain.  

Some (in fact, the majority) of the possible tri-

ples are disallowed because they are nonsensical. 

For instance, it is not meaningful to combine 

“fixed telephony” in the family slot with “SIM 

card” in the object slot. To cater for this, we have 

defined a set of combination rules weeding out the 

illegal combinations of values. These rules disal-

low about 80% of the possible combinations, leav-

ing about 10,000 permissible semantic triples. Of 

these 10,000 triples, about 1,500 have actually 

turned up in real data.  

The three-slot structure of categories is very use-

ful when performing manual tagging of the train-

ing material for the statistical classifier. Although 

there are 10,000 categories, the person performing 

the tagging needs only to keep track of about 210 

concepts (10 families + 30 intentions + 170 ob-

jects). In contrast, it is safe to say that an unstruc-

tured category system containing 10,000 atomic 

categories would be quite impractical to use.  

In addition, the combination rules can further al-

leviate the manual tagging task. It is straightfor-

ward to implement a tagging tool that allows the 

human tagger to select a value for one semantic 

slot, and then restrict the selection for the other 

slots only to include the possible values. For ex-

ample, if “fixed telephony” is chosen for the family 

slot, “SIM card” would not appear among the pos-

sible values for the object slot. This approach has 

been successfully adopted in the project. 
 

 

2.3 Application categories 

There is one application category for each type of 

action from the system. Actions come in two fla-

vors; either the call is routed (in the cases where 

the caller has given sufficient information), or the 

system asks a counter-question in order to extract 

more information from the caller. That is, applica-

tion categories can be labeled either as routing 

categories or disambiguation categories. For con-

venience, names of application categories are also 

triples, chosen among the set of semantic triples 

that map to that application category.  

2.4 Information ordering 

Each slot in a semantic triple can take the value 

unknown, representing the absence of information. 

For instance, the most accurate semantic category 

for the caller utterance “Broadband”
4
 is (broad-

band, unknown, unknown), since nothing is known 

about the intention of the caller or the specific 

topic of the request. Thus, in the information order-

ing, “unknown” is situated below all other values.  

There are also some intermediate values in the 

information ordering. The value telephony repre-

sents “either fixed telephony or mobile telephony”, 

and has been incorporated in the category set since 

many callers tend not be explicit about this point. 

In the same vein, internet represents “either broad-

band or modem-connected internet”, and billing 

represents the disjunction of a whole range of bill-

ing objects, some of which can be handled by a 

self-service and some can not. 
 

 

 
 

Figure 2: Parts of the semantic information ordering. 

 

 

The information ordering extends naturally to 

triples. In particular, the triple (unknown, unknown, 

                                                           
4
 Many callers express themselves in this telegraphic fashion. 

unknown 

telephony internet 

modemConnected broadband fixed mobile 
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unknown) represents complete absence of informa-

tion. 

3 Disambiguation 

The caller’s request might be ambiguous in one 

sense or another, in which case the system will 

need to perform disambiguation by asking a fol-

low-up question. This might either be a general 

question encouraging the user to describe his re-

quest in greater detail, or a directed question of the 

type “Would that be fixed telephony or mobile te-

lephony?” 

Ambiguous utterances might be represented in 

at least two fundamentally different ways. In vec-

tor-based approaches, routing destinations and in-

put utterances alike are represented by vectors in a 

multi-dimensional space. An input utterance is 

routed to a specific destination if the vector repre-

sentation of the utterance is close to that of the des-

tination. An ambiguous utterance is characterized 

by the fact that the Euclidean distances from the 

utterance vector to the n closest routing destination 

vectors are roughly the same.  

Chu-Carroll and Carpenter (1999) describe a 

method of disambiguation, where disambiguation 

questions are dynamically constructed on the basis 

of an analysis of the differences among the closest 

routing destination vectors. However, it is not clear 

that the disambiguation questions produced by 

their proposed method would make sense in all 

possible situations. Furthermore, their method does 

not take into account the fact that some ambiguities 

tend to be more important and arise more often 

than others. We think it is worthwhile to concen-

trate on these important cases (in terms of prompt 

design, speech recognition grammar construction, 

etc.), rather than trying to solve every conceivable 

ambiguity, most of which would never appear in 

real life.  

As previously mentioned, in the TeliaSonera 

system we have chosen another way of treating 

ambiguities, namely that certain application cate-

gories are disambiguation categories; they repre-

sent foreseen, frequently occurring, ambiguous 

input utterances. The three-slot structure of catego-

ries provides a handy way of identifying ambigu-

ous cases; they are represented by triples where 

one or more slots are unknown, or where some slot 

has an intermediate value, like telephony or inter-

net. Examples of such ambiguous utterances are 

“broadband” (broadband-unknown-unknown) and 

“I want to have a telephone subscription” (teleph-

ony-order-subscription). All categories that repre-

sent ambiguities have pre-prepared disambiguation 

questions, speech recognition grammars, and dia-

logue logic to handle the replies from the callers. 

Of course, there are still problematic cases 

where an utterance can not be assigned any unique 

category with any tolerable level of confidence, 

neither a routing category nor a disambiguation 

category. In those cases, the system simply re-

phrases the question: “Sorry, I didn’t quite under-

stand that. Could you please rephrase?”  

4 Classification 

4.1 Atomic vs. multi-slot classification 

For the purpose of automatic classification of ut-

terances, there are at least two different views one 

may adopt. In one view, the “atomic” view, the 

three-slot structure of category names is considered 

as merely a linguistic convention, convenient only 

when manually tagging utterances (as discussed in 

Section 2.1). When adopting this view, we still 

regard the categories to be distinct atomic entities 

as concerns automatic classification. For instance, 

to the human eye it is obvious that two categories 

like (internet, order, subscription) and (broadband, 

order, subscription) are related, but the automatic 

classifier just considers them to be any two catego-

ries, each with its separate set of training examples.  

An alternative view, the “multi-slot view”, is to 

see the category as actually consisting of three 

slots, each of which should be assigned a value 

independently. This means that a separate classifier 

is needed for each of the three slots. 

It is not clear which view is preferable. An ar-

gument in favor of the multi-slot view is the fol-

lowing: If some categories have the same value in 

one slot, then these categories are semantically 

related in some way. Most likely this semantic re-

lation is reflected by the use of common words and 

phrases; for instance, expressions like “order” and 

“get a new” presumably are indicative for all cate-

gories having the value order in the intention slot. 

Therefore, classifying each slot separately would 

be a way to take a priori semantic knowledge into 

account.  

  To this, proponents of the atomic view may re-

spond that such similarities between categories 
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would emerge anyway when using a single classi-

fier that decides the entire semantic triple in one go 

(provided that enough training data is available). In 

addition, if each slot is categorized separately, it is 

not certain that the resulting three values would 

constitute a permissible semantic triple (as men-

tioned in Section 2.1, about 80% of the possible 

combinations are illegal). In contrast, if a single 

classifier is used, the result will always be a legal 

triple, since only legal triples appear in the training 

material. 

The statistical classifier actually used in the live 

call routing system treats categories as atomic enti-

ties and, as mentioned in the introduction, it works 

well. The encouraging numbers bear out that the 

“atomic” view is viable when lots of data is at 

hand. On the other hand, if training data is sparse, 

one might consider using a hand-written, rule-

based classifier, and in these cases the multi-slot 

view seems more natural.  

4.2 Rule-based multi-slot classification 

To obtain a baseline for the performance of the 

statistical classifier used in the live system, we im-

plemented an alternative classifier that solves the 

classification task using hand-written rules. Thus, 

the purpose of this was to investigate the perform-

ance of a naïve classification method, and use that 

for comparison with other methods. In addition, 

the rule-based classifier provides an example of 

how the multi-slot approach can support the inclu-

sion of human a priori domain knowledge into the 

classification process. 

The rule-based classifier has three kinds of 

rules: Firstly, phrase-spotting rules associate a 

word or a phrase with a value for a semantic slot 

(i.e. a family, an intention, or an object). Rules of 

the second kind are domain axioms that encode 

invariant relationships, such as the fact that ob-

ject=SIMcard implies family=mobileTelephony. 

Finally, rules of the third kind specify how seman-

tic values can be combined into a legal semantic 

triple (these rules are also used for manual tagging, 

as mentioned in Section 2.1). Each semantic value 

is also (manually) given a score that reflects its 

information content; a higher score means that the 

value contains more information. For instance, the 

value subscription has a lower information score 

than have the names of specific subscription types 

that TeliaSonera offers its customers.  

The classifier works in three phases, which we 

will demonstrate on a running example. In the first 

phase, it applies the phrase-spotting rules to the 

input sentence, returning a list of slot-value pairs. 

For instance, the input sentence “I want to order a 

new SIM card” would yield the list [ inten-

tion=order, object=SIMcard ], using rules trigger-

ing on the phrases “order” and “SIM card” in the 

input sentence.  

Secondly, the classifier adds semantic compo-

nents as a result of applying the domain axioms to 

members of the list. Using the domain axiom men-

tioned above, the semantic component fam-

ily=mobileTelephony would be added to the list, 

due to the presence of object=SIMcard. Thus, after 

the two first phases, the intermediate result in this 

example is [intention=order, object=SIMcard,  

family=mobileTelephony]. 

In the final phase, semantic components are se-

lected from the list to form a semantic triple. In the 

example, this step is straightforward since the list 

contains exactly one value for each component, 

and these values are combinable according to the 

combination rules. The final result is: 

 

( mobileTelephony, order, SIMcard ) 
 

In cases where the semantic values in the list are 

not combinable (a situation often originating from 

a speech recognition error), one or several values 

have got to be relaxed to unknown. According to 

our experiments, the best heuristic is to first relax 

the object component and then the intention com-

ponent. For example, in the list [family = fixed-

Telephony, intention=order, object=SIMcard], the 

first and third elements are not combinable; thus 

this list yields the triple: 

 

( fixedTelephony, order, unknown ) 

 

In the case where some slots are not filled in 

with a value, the values of those slots are set to 

unknown.  Thus, the list [ family=fixedTelephony, 

intention=order ] would also yield the semantic 

triple above. 

 Finally, consider the case where the input list 

contains more than one value for one or several 

slots. In this case, the algorithm picks the value 

with the highest information content score. For 

instance, consider the utterance “I want to have a 

broadband subscription, this eh ADSL I’ve read 

72



about”. After the first two phases, the algorithm 

has found family=broadband, intention=order, 

and two possible values for the object slot, namely 

object=subscription and object=ADSL. Since the 

latter has higher information score, the final result 

is: 
 

( broadband, order, ADSL ) 

 

The rule-based classifier was developed in about 

five man-weeks, and contains some 3,000 hand-

written rules. When evaluated on a set of 2,300 

utterances, it classified 67% of the utterances cor-

rectly. Thus, not surprisingly, its performance is 

significantly below the statistical classifier used in 

the deployed system. Still, the rule-based approach 

might be a viable alternative in less complex do-

mains. It might also be usable for data collection 

purposes in early prototypes of natural-language 

call routing systems. 

5 Evaluation of call-routing dialogues 

5.1 Motivation 

An important issue in the development of any dia-

logue system is the selection of an evaluation met-

ric to quantify performance improvements. In the 

call-routing area, there have been many technical 

papers specifically comparing the performance of 

classifiers, using standard metrics such as accuracy 

of the semantic categories obtained over a test cor-

pus (see e.g. Kuo and Lee, 2000, and Sarikaya et 

al., 2005). Accuracy is then stated as a percentage 

figure showing the degree of the categories that 

have been completely correctly classified, given 

that categories are atomic. There have also been 

some design-oriented papers that try to assess the 

effects of different prompt styles by looking at the 

proportion of routable versus unroutable calls 

given callers’ first utterances. Thus, both of these 

strands of work base their evaluations on binary 

divisions between correct/incorrect and rout-

able/unroutable, respectively. Furthermore, they 

both constitute utterance-based metrics in the sense 

that they focus on the outcome of a single system–

caller turn. 

An excellent example of a design-oriented call-

routing paper is Williams and Witt (2004), which 

among other things compares open and directed 

prompt styles in the initial turn of the dialogue. 

Williams and Witt divide callers’ responses into 

Routable (if the utterance contained sufficient in-

formation for the call to be routed) or Failure (if 

the utterance did not contain sufficient information 

for routing). Depending on why a call is not rout-

able, Williams and Witt further subdivide instances 

of Failure into three cases: Confusion (utterances 

such as “Hello?” and “Is this a real person?”), 

Agent (the caller requests to speak to a human 

agent), and Unroutable (which corresponds to ut-

terances that need disambiguation). Thus, Williams 

and Witt’s performance metric uses altogether four 

labels. (In addition, they have three labels related 

to non-speech events: silence, DTMF and hang-up. 

Since such events are not handled by the classifier, 

they fall outside of the scope of this paper.) 

Although all of Williams’ and Witt’s measures 

are needed in evaluating call-routing dialogue, the 

field clearly needs more in-depth evaluation. In 

particular, we need more fine-grained metrics in 

order to probe more exactly to what extent Failure 

actually means that the dialogue is off track. Fur-

thermore, given that call-routing dialogues typi-

cally consist of between one and (say) five turns, 

we need not just utterance-based metrics, but also 

dialogue-based metrics — in other words, being 

able to evaluate the efficiency of an overall dia-

logue. 

5.2 Utterance-based metrics 

When assessing the performance of classification 

methods, it is perfectly reasonable to use the binary 

distinction correct/incorrect if only few categories 

are used. In such a context it can be assumed that 

different categories correspond to different de-

partments of the organization, and that a misclassi-

fication would lead the call being routed the wrong 

way. However, with a richer category system, it is 

important to realize that the classifier can be par-

tially correct. For instance, if the caller expresses 

that he wants technical support for his broadband 

connection, then the information that the purpose 

of the call has something to do with broadband is 

surely better than no information at all. If the sys-

tem obtains this information, it could ask a directed 

follow-up question: OK broadband. Please tell me 

if your call concerns an order, billing, deliveries, 

support, error report, or something else, or some-

thing to that effect. Otherwise, the system can only 

restate the original question. 
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In the field of task-oriented dialogue, several 

evaluation metrics have been put forward that go 

beyond a simple division into correct/incorrect. In 

particular, concept accuracy (Boros et al. 1996) is 

an attempt to find a semantic analogue of word 

accuracy as used in speech recognition. Basically, 

the idea is to compute the degree of correctness of 

a semantic analysis based on a division of the rep-

resentation into subunits, and by taking into ac-

count insertions, deletions and replacements of 

these subunits. 

Making use of our multi-slot semantics, we can 

take subunits to correspond to semantic slot values. 

An insertion has occurred if the classifier spuri-

ously has added information to some slot value 

(e.g. if the classifier outputs the value broadband 

for the family slot, when the correct value is inter-

net or unknown). Conversely, a deletion has oc-

curred when semantic triple output from the 

classifier contains a slot value which is situated 

lower than the correct value in the information or-

dering (a part of which is depicted in Figure 2). 

Finally, a replacement has occurred when the com-

puted slot value and the correct slot value are unre-

lated in the information ordering. 

By using concept accuracy as an evaluation met-

ric for classifiers rather than the binary distinction 

correct/incorrect, we can arrive at more informa-

tive assessments. This possibility is brought about 

by the multi-slot structure of categories.  

5.3 Dialogue-based metrics 

In the literature, there have also been proposals for 

dialogue-based metrics. In particular, Glass et al. 

(2000) put forward two such metrics, query density 

(QD) and concept efficiency (CE). Query density is 

the mean number of new “concepts” introduced 

per user query, assuming that each concept corre-

sponds to a slot–filler pair in the representation of 

the query. For example, a request such as “I’d like 

a flight from Stockholm to Madrid on Sunday af-

ternoon” would introduce three new concepts, cor-

responding to departure, destination and time. 

Query density thus measures the rate at which the 

user communicates content. In contrast, concept 

efficiency measures the average number of turns it 

takes for a concept to be successfully understood 

by the system. Concept efficiency thus measures 

the rate at which the system understands content.  

Using the multi-slot semantics, we can adapt the 

notions of query density and concept efficiency in 

order to arrive at a more fine-grained performance 

metric for call routing. The basic idea is to regard 

every element in the semantic triple as one “con-

cept”. We can then obtain a measure of how in-

formation increases in the dialogue by computing 

the difference between triples in each user utter-

ance, where “difference” means that the values of 

two corresponding elements are not equal. 

An example of computing query density is given 

below. We assume that the value of the semantic 

triple is initially (unknown, unknown, unknown). 

 

System: Welcome to TeliaSonera. How may I help 

you? 
Caller: Fixed telephony. 

 (fixedTelephony, unknown, unknown) 
1 new concept 

System: Could you tell me some more about what 

you want to do? 

Caller: I can’t use my broadband while I’m speak-

ing on the phone.(broadband, reportProb-

lem, lineOrPhone) 
3 new concepts 

 

Note that query density and concept efficiency 

are both applicable on a per-utterance basis as well 

as on the whole dialogue (or indeed arbitrary 

stretches of the dialogue). To compute these meas-

ures for the whole dialogue, we simply compute 

the mean number of new concepts introduced per 

user utterance and the average number of turns it 

takes for a concept to be successfully understood, 

respectively. 

The principal application of this methodology is 

to measure the effectiveness of system utterances. 

When using a fine-grained system of categories, it 

is important that callers express themselves at a 

suitable level of detail. Too verbose user utterances 

are usually difficult to analyse, but too telegraphic 

user utterances are not good either, as they most 

often do not contain enough information to route 

the call directly. Therefore it is very important to 

design system utterances so as to make users give 

suitably expressive descriptions of their reasons for 

calling.  

By using the query density metric it is possible 

to asses the effectiveness (in the above sense) of 

different alternative system utterances at various 

points in the dialogue, most notably the first sys-
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tem utterance. Again, this possibility is brought 

about by the multi-slot structure of categories. It is 

also possible to evaluate more general dialogue 

strategies over longer stretches of dialogue (e.g. 

the use of general follow-up questions like “Could  

you please tell me some more about what you want 

to do” as opposed to more directed questions like 

“Please tell me if your call concerns an order, bill-

ing, deliveries, support, error report, or something 

else”). By calculating the average query density 

over a number of consecutive utterances, it is pos-

sible to compare the relative merits of different 

such dialogue strategies. 

We have not yet adopted this metric for evalua-

tion of dialogues from the live system. However, 

elsewhere we have applied it to dialogues from the 

initial Wizard-of-Oz data collection for the Telia-

Sonera call routing system (Wirén et al. 2007). 

Here, we used it to compare two styles of disam-

biguation prompts, one completely open and one 

more directed. 

6 Concluding remarks 

In the literature, the natural-language call routing 

problem is often presented as the problem of clas-

sifying spoken utterances according to a set of 

atomic categories. The hypothesis underlying this 

paper is that this view is inadequate, and that there 

is a need for a more structured semantics. We base 

our claims on experiences gathered from the de-

velopment and deployment of the TeliaSonera call 

center, for which we developed a multi-slot system 

of categories. 

A multi-slot semantics offers several advan-

tages. First of all, it makes the set of categories 

manageable for human taggers, and provides a 

means to break down the tagging task into sub-

tasks. Furthermore, we have shown how multi-slot 

semantics for call-routing systems allows straight-

forward division of categories into routing catego-

ries and disambiguation categories, the possibility 

of multi-slot categorization, and the use of more 

fine-grained evaluation metrics like concept accu-

racy and query density. 
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