
Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 32–39,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Olympus: an open-source framework

for conversational spoken language interface research

Dan Bohus, Antoine Raux, Thomas K. Harris,

Maxine Eskenazi, Alexander I. Rudnicky
School of Computer Science

Carnegie Mellon University

{dbohus, antoine, tkharris, max, air}@cs.cmu.edu

Abstract

We introduce Olympus, a freely available

framework for research in conversational

interfaces. Olympus’ open, transparent,

flexible, modular and scalable nature fa-

cilitates the development of large-scale,

real-world systems, and enables research

leading to technological and scientific ad-

vances in conversational spoken language

interfaces. In this paper, we describe the

overall architecture, several systems

spanning different domains, and a number

of current research efforts supported by

Olympus.

1 Introduction

Spoken language interfaces developed in industrial

and academic settings differ in terms of goals, the

types of tasks and research questions addressed,

and the kinds of resources available.

In order to be economically viable, most indus-

try groups need to develop real-world applications

that serve large and varied customer populations.

As a result, they gain insight into the research

questions that are truly significant for current-

generation technologies. When needed, they are

able to focus large resources (typically unavailable

in academia) on addressing these questions. To

protect their investments, companies do not gener-

ally disseminate new technologies and results.

In contrast, academia pursues long-term scien-

tific research goals, which are not tied to immedi-

ate economic returns or customer populations. As a

result, academic groups are free to explore a larger

variety of research questions, even with a high risk

of failure or a lack of immediate payoff. Academic

groups also engage in a more open exchange of

ideas and results. However, building spoken lan-

guage interfaces requires significant investments

that are sometimes beyond the reach of academic

researchers. As a consequence, research in acade-

mia is oftentimes conducted with toy systems and

skewed user populations. In turn, this raises ques-

tions about the validity of the results and hinders

the research impact.

In an effort to address this problem and facilitate

research on relevant, real-world questions, we have

developed Olympus, a freely available framework

for building and studying conversational spoken

language interfaces. The Olympus architecture,

described in Section 3, has its roots in the CMU

Communicator project (Rudnicky et al., 1999).

Based on that experience and subsequent projects,

we have engineered Olympus into an open, trans-

parent, flexible, modular, and scalable architecture.

To date, Olympus has been used to develop and

deploy a number of spoken language interfaces

spanning different domains and interaction types;

these systems are presented in Section 4. They are

currently supporting research on diverse aspects of

spoken language interaction. Section 5 discusses

three such efforts: error handling, multi-participant

conversation, and turn-taking.

We believe that Olympus and other similar tool-

kits, discussed in Section 6, are essential in order

to bridge the gap between industry and academia.

Such frameworks lower the cost of entry for re-

32

search on practical conversational interfaces. They

also promote technology transfer through the reuse

of components, and support direct comparisons

between systems and technologies.

2 Desired characteristics

While developing Olympus, we identified a num-

ber of characteristics that in our opinion are neces-

sary to effectively support and foster research. The

framework should be open, transparent, flexible,

modular, and scalable.

Open. Complete source code should be avail-

able for all the components so that researchers and

engineers can inspect and modify it towards their

ends. Ideally, source code should be free for both

research and commercial purposes and grow

through contributions from the user community.

Transparent / Analytic. Open source code

promotes transparency, but beyond that researchers

must be able to analyze the system’s behavior. To

this end, every component should provide detailed

accounts of their internal state. Furthermore, tools

for data visualization and analysis should be an

integral part of the framework.

Flexible. The framework should be able to ac-

commodate a wide range of applications and re-

search interests, and allow easy integration of new

technologies.

Modular / Reusable. Specific functions (e.g.

speech recognition, parsing) should be encapsu-

lated in components with rich and well-defined

interfaces, and an application-independent design.

This will promote reusability, and will lessen the

system development effort.

Scalable. While frameworks that rely on sim-

ple, well established approaches (e.g. finite-state

dialogs in VoiceXML) allow the development of

large-scale systems, this is usually not the case for

frameworks that provide the flexibility and trans-

parency needed for research. However, some re-

search questions are not apparent until one moves

from toy systems into large-scale applications. The

framework should strive to not compromise scal-

ability for the sake of flexibility or transparency.

3 Architecture

At the high level, a typical Olympus application

consists of a series of components connected in a

classical, pipeline architecture, as illustrated by the

bold components in Figure 1. The audio signal for

the user utterance is captured and passed through a

speech recognition module that produces a recog-

nition hypothesis (e.g., two p.m.). The recognition

hypothesis is then forwarded to a language under-

standing component that extracts the relevant con-

cepts (e.g., [time=2p.m.]), and then through a

confidence annotation module that assigns a confi-

dence score. Next, a dialog manager integrates this

semantic input into the current context, and pro-

duces the next action to be taken by the system in

the form of the semantic output (e.g., {request

end_time}). A language generation module pro-

duces the corresponding surface form, which is

subsequently passed to a speech synthesis module

and rendered as audio.

Galaxy communication infrastructure. While

the pipeline shown in bold in Figure 1 captures the

logical flow of information in the system, in prac-

tice the system components communicate via a

centralized message-passing infrastructure – Gal-

axy (Seneff et al., 1998). Each component is im-

plemented as a separate process that connects to a

traffic router – the Galaxy hub. The messages are

sent through the hub, which forwards them to the

appropriate destination. The routing logic is de-

scribed via a configuration script.

Speech recognition. Olympus uses the Sphinx

decoding engine (Huang et al., 1992). A recogni-

tion server captures the audio stream, forwards it to

a set of parallel recognition engines, and collects

the corresponding recognition results. The set of

best hypotheses (one from each engine) is then

forwarded to the language understanding compo-

nent. The recognition engines can also generate n-

best lists, but that process significantly slows down

the systems and has not been used live. Interfaces

to connect Sphinx-II and Sphinx-III engines, as

well as a DTMF (touch-tone) decoder to the recog-

nition server are currently available. The individual

recognition engines can use either n-gram- or

grammar-based language models. Dialog-state

specific as well as class-based language models are

supported, and tools for constructing language and

acoustic models from data are readily available.

Most of the Olympus systems described in the next

section use two gender-specific Sphinx-II recog-

nizers in parallel. Other parallel decoder configura-

tions can also be created and used.

Language understanding is performed by

Phoenix, a robust semantic parser (Ward and Issar,

33

1994). Phoenix uses a semantic grammar to parse

the incoming set of recognition hypotheses. This

grammar is assembled by concatenating a set of

reusable grammar rules that capture domain-

independent constructs like [Yes], [No], [Help],

[Repeat], and [Number], with a set of domain-

specific grammar rules authored by the system de-

veloper. For each recognition hypothesis the output

of the parser consists of a sequence of slots con-

taining the concepts extracted from the utterance.

Confidence annotation. From Phoenix, the set

of parsed hypotheses is passed to Helios, the con-

fidence annotation component. Helios uses features

from different knowledge sources in the system

(e.g., recognition, understanding, dialog) to com-

pute a confidence score for each hypothesis. This

score reflects the probability of correct understand-

ing, i.e. how much the system trusts that the cur-

rent semantic interpretation corresponds to the

user’s intention. The hypothesis with the highest

score is forwarded to the dialog manager.

Dialog management. Olympus uses the Raven-

Claw dialog management framework (Bohus and

Rudnicky, 2003). In a RavenClaw-based dialog

manager, the domain-specific dialog task is repre-

sented as a tree whose internal nodes capture the

hierarchical structure of the dialog, and whose

leaves encapsulate atomic dialog actions (e.g., ask-

ing a question, providing an answer, accessing a

database). A domain-independent dialog engine

executes this dialog task, interprets the input in the

current dialog context and decides which action to

engage next. In the process, the dialog manager

may exchange information with other domain-

specific agents (e.g., application back-end, data-

base access, temporal reference resolution agent).

Language generation. The semantic output of

the dialog manager is sent to the Rosetta template-

based language generation component, which pro-

duces the corresponding surface form. Like the

Phoenix grammar, the language generation tem-

plates are assembled by concatenating a set of pre-

defined, domain-independent templates, with

manually authored task-specific templates.

Speech synthesis. The prompts are synthesized

by the Kalliope speech synthesis module. Kalliope

can be currently configured to use Festival (Black

and Lenzo, 2000), which is an open-source speech

synthesis system, or Cepstral Swift (Cepstral

2005), a commercial engine. Finally, Kalliope also

supports the SSML markup language.

Other components. The various components

briefly described above form the core of the Olym-

pus dialog system framework. Additional compo-

nents have been created throughout the

development of various systems, and, given the

modularity of the architecture, can be easily re-

used. These include a telephony component, a text

Parsing
PHOENIX

Recognition
Server

Lang. Gen
ROSETTA

Synthesis
KALLIOPE

☺

SPHINX
SPHINX

SPHINX

Confidence
HELIOS

HUB
Text I/O

TTYSERVER
Application
Back-end

Dialog. Mgr.
RAVENCLAW

Date-Time
resolution

Process
Monitor

Until what time

would you like
the room?

{request end_time}

Figure 1. The Olympus dialog system reference architecture (a typical system)

two p.m. [time=2pm] [time=2pm]/0.65

34

input-and-output interface, and a temporal refer-

ence resolution agent that translates complex date-

time expressions (including relative references,

holidays, etc.) into a canonical form. Recently, a

Jabber interface was implemented to support inter-

actions via the popular GoogleTalk internet mes-

saging system. A Skype speech client component

is also available.

Data Analysis. Last but not least, a variety of

tools for logging, data processing and data ana-

lytics are also available as part of the framework.

These tools have been used for a wide variety of

tasks ranging from system monitoring, to trends

analysis, to training of internal models.

A key characteristic shared by all the Olympus

components is the clear separation between do-

main-independent programs and domain-specific

resources. This decoupling promotes reuse and

lessens the system development effort. To build a

new system, one can focus simply on developing

resources (e.g., language model, grammar, dialog

task specification, generation templates) without

having to do any programming. On the other hand,

since all components are open-source, any part of

the system can be modified, for example to test

new algorithms or compare approaches.

4 Systems

To date, the Olympus framework has been used to

successfully build and deploy several spoken dia-

log systems spanning different domains and inter-

action types (see Table 1). Given the limited space,

we discuss only three of these systems in a bit

more detail: Let’s Go!, LARRI, and TeamTalk.

More information about the other systems can be

found in (RavenClaw-Olympus, 2007).

4.1 Let’s Go!

The Let’s Go! Bus Information System (Raux et al

2005; 2006) is a telephone-based spoken dialog

system that provides access to bus schedules. In-

teraction with the system starts with an open

prompt, followed by a system-directed phase

where the user is asked the missing information.

Each of the three or four pieces of information

provided (origin, destination, time of travel, and

optional bus route) is explicitly confirmed. The

system knows 12 bus routes, and about 1800 place

names.

Originally developed as an in-lab research sys-

tem, Let’s Go! has been open to the general public

since March, 2005. Outside of business hours, calls

to the bus company are transferred to Let’s Go!,

providing a constant flow of genuine dialogs

(about 40 calls per weeknight and 70 per weekend

night). As of March, 2007, a corpus of about

30,000 calls to the system has been collected and

partially transcribed and annotated. In itself, this

publicly available corpus constitutes a unique re-

source for the community. In addition, the system

itself has been modified for research experiments

(e.g., Raux et al., 2005, Bohus et al., 2006). Be-

tween-system studies have been conducted by run-

ning several versions of the system in parallel and

picking one at random for every call. We have re-

cently opened this system to researchers from other

groups who wish to conduct their own experi-

ments.

4.2 LARRI

LARRI (Bohus and Rudnicky, 2002a) is a multi-

modal system for support of maintenance and re-

pair activities for F/A-18 aircraft mechanics. The

system implements an Interactive Electronic Tech-

nical Manual.

LARRI integrates a graphical user interface for

easy visualization of dense technical information

(e.g., instructions, schematics, video-streams) with

a spoken dialog system that facilitates information

access and offers assistance throughout the execu-

tion of procedural tasks. The GUI is accessible via

a translucent head-worn display connected to a

wearable client computer. A rotary mouse (dial)

provides direct access to the GUI elements.

After an initial log-in phase, LARRI guides the

user through the selected task, which consists of a

sequence of steps containing instructions, option-

ally followed by verification questions. Basic steps

can include animations or short video sequences

that can be accessed by the user through the GUI

or through spoken commands. The user can also

take the initiative and access the documentation,

either via the GUI or by simple commands such as

“go to step 15” or “show me the figure”.

The Olympus architecture was easily adapted

for this mobile and multi-modal setting. The wear-

able computer hosts audio input and output clients,

as well as the graphical user interface. The Galaxy

hub architecture allows us to easily connect these

35

components to the rest of the system, which runs

on a separate server computer. The rotary-mouse

events from the GUI are rendered as semantic in-

puts and are sent to Helios which in turn forwards

the corresponding messages to the dialog manager.

4.3 TeamTalk

TeamTalk (Harris et al., 2005) is a multi-modal

interface that facilitates communication between a

human operator and a team of heterogeneous ro-

bots, and is designed for a multi-robot-assisted

treasure-hunt domain. The human operator uses

spoken language in concert with pen-gestures on a

shared live map to elicit support from teams of ro-

bots. This support comes in the forms of mapping

unexplored areas, searching explored areas for ob-

jects of interest, and leading the human to said ob-

jects. TeamTalk has been built as a fully functional

interface to real robots, including the Pioneer

P2DX and the Segway RMP. In addition, it can

interface with virtual robots within the high-

fidelity USARSim (Balakirsky et al., 2006) simula-

tion environment. TeamTalk constitutes an excel-

lent platform for multi-agent dialog research.

To build TeamTalk, we had to address two chal-

lenges to current architecture. The multi-

participant nature of the interaction required multi-

ple dialog managers; the live map with pen-

gestured references required a multi-modal integra-

tion. Again, the flexibility and transparency of the

Olympus framework allowed for relatively simple

solutions to both of these challenges. To accom-

modate multi-participant dialog, each robot in the

domain is associated with its own RavenClaw-

based dialog manager, but all robots share the

other Olympus components: speech recognition,

language understanding, language generation and

speech synthesis. To accommodate the live map

GUI, a Galaxy server was built in Java that could

send the user’s inputs to Helios and receive outputs

from RavenClaw.

5 Research

The Olympus framework, along with the systems

developed using it, provides a robust basis for re-

search in spoken language interfaces. In this sec-

tion, we briefly outline three current research

efforts supported by this architecture. Information

about other supported research can be found in

(RavenClaw-Olympus, 2007).

5.1 Error handling

A persistent and important problem in today’s spo-

ken language interfaces is their lack of robustness

when faced with understanding errors. This prob-

lem stems from current limitations in speech rec-

ognition, and appears across most domains and

interaction types. In the last three years, we con-

ducted research aimed at improving robustness in

spoken language interfaces by: (1) endowing them

with the ability to accurately detect errors, (2) de-

System name Domain / Description Genre

RoomLine
(Bohus and Rudnicky 2005)

telephone-based system that provides support for conference
room reservation and scheduling within the School of Com-
puter Science at CMU.

information access (mixed
initiative)

Let’s Go! Public
(Raux et al 2005)

telephone-based system that provides access to bus schedule
information in the greater Pittsburgh area.

information access
(system initiative)

LARRI
(Bohus and Rudnicky 2002)

multi-modal system that provides assistance to F/A-18 aircraft
personnel during maintenance tasks.

multi-modal task guidance
and procedure browsing

Intelligent Procedure
Assistant
(Aist et al 2002)

early prototype for a multi-modal system aimed at providing
guidance and support to the astronauts on the International
Space Station during the execution of procedural tasks and
checklists.

multi-modal task guidance
and procedure browsing

TeamTalk
(Harris et al 2005)

multi-participant spoken language command-and-control inter-
face for a team of robots in the treasure-hunt domain.

multi-participant command-
and-control

VERA
telephone-based taskable agent that can be instructed to de-
liver messages to a third party and make wake-up calls.

voice mail / message deliv-
ery

Madeleine text-based dialog system for medical diagnosis. diagnosis

ConQuest
(Bohus et al 2007)

telephone-based spoken dialog system that provides confer-
ence schedule information.

information access
(mixed-initiative)

RavenCalendar
(Stenchikova et al 2007).

multimodal dialog system for managing personal calendar
information, such as meetings, classes, appointments and
reminders (uses Google Calendar as a back-end)

information access and
scheduling

Table 1. Olympus-based spoken dialog systems (shaded cells indicate deployed systems)

36

veloping a rich repertoire of error recovery strate-

gies and (3) developing scalable, data-driven ap-

proaches for building error recovery policies
1
. Two

of the dialog systems from Table 1 (Let’s Go! and

RoomLine) have provided a realistic experimental

platform for investigating these issues and evaluat-

ing the proposed solutions.

With respect to error detection, we have devel-

oped tools for learning confidence annotation

models by integrating information from multiple

knowledge sources in the system (Bohus and Rud-

nicky, 2002b). Additionally, Bohus and Rudnicky

(2006) proposed a data-driven approach for con-

structing more accurate beliefs in spoken language

interfaces by integrating information across multi-

ple turns in the conversation. Experiments with the

RoomLine system showed that the proposed belief

updating models led to significant improvements

(equivalent with a 13.5% absolute reduction in

WER) in both the effectiveness and the efficiency

of the interaction.

With respect to error recovery strategies, we

have developed and evaluated a large set of strate-

gies for handling misunderstandings and non-

understandings (Bohus and Rudnicky, 2005). The

strategies are implemented in a task-decoupled

manner in the RavenClaw dialog management

framework.

Finally, in (Bohus et al., 2006) we have pro-

posed a novel online-learning based approach for

building error recovery policies over a large set

of non-understanding recovery strategies. An em-

pirical evaluation conducted in the context of the

Let’s Go! system showed that the proposed ap-

proach led to a 12.5% increase in the non-

understanding recovery rate; this improvement was

attained in a relatively short (10-day) time period.

The models, tools and strategies developed

throughout this research can and have been easily

reused in other Olympus-based systems.

5.2 Multi-participant conversation

Conversational interfaces are generally built for

one-on-one conversation. This has been a workable

assumption for telephone-based systems, and a

useful one for many single-purpose applications.

However this assumption will soon become

strained as a growing collection of always-

1 A policy specifies how the system should choose between

different recovery strategies at runtime.

available agents (e.g., personal trainers, pedestrian

guides, or calendar systems) and embodied agents

(e.g., appliances and robots) feature spoken lan-

guage interfaces. When there are multiple active

agents that wish to engage in spoken dialog, new

issues arise. On the input side, the agents need to

be able to identify the addressee of any given user

utterance. On the output side, the agents need to

address the problem of channel contention, i.e.,

multiple participants speaking over each other.

Two architectural solutions can be envisioned:

(1) the agents share a single interface that under-

stands multi-agent requirements, or (2) each agent

uses its own interface and handles multi-participant

behavior. Agents that provide different services

have different dialog requirements, and we believe

this makes a centralized interface problematic. Fur-

thermore, the second solution better fits human

communication behavior and therefore is likely to

be more natural and habitable.

TeamTalk is a conversational system that fol-

lows the second approach: each robot has its own

dialog manager. Processed user inputs are sent to

all dialog managers in the system; each dialog

manager decides based on a simple algorithm

(Harris et al., 2004) whether or not the current in-

put is addressed to it. If so, an action is taken. Oth-

erwise the input is ignored; it will be processed and

responded to by another robot. On the output side,

to address the channel contention problem, each

RavenClaw output message is augmented with in-

formation about the identity of the robot that gen-

erated it. The shared synthesis component queues

the messages and plays them back sequentially

with the corresponding voice.

We are currently looking into two additional

challenges related to multi-participant dialog. We

are interested in how to address groups and sub-

groups in addition to individuals of a group, and

we are also interested in how to cope with multiple

humans in addition to multiple agents. Some ex-

periments investigating solutions to both of these

issues have been conducted. Analysis of the results

and refinements of these methods are ongoing.

5.3 Timing and turn-taking

While a lot of research has focused on higher lev-

els of conversation such as natural language under-

standing and dialog planning, low-level inter-

actional phenomena such as turn-taking have not

37

received as much attention. As a result, current

systems either constrain the interaction to a rigid

one-speaker-at-a-time style or expose themselves

to interactional problems such as inappropriate

delays, spurious interruptions, or turn over-taking

(Raux et al., 2006). To a large extent, these issues

stem from the fact that in common dialog architec-

tures, including Olympus, the dialog manager

works asynchronously from the real world (i.e.,

utterances and actions that are planned are as-

sumed to be executed instantaneously). This means

that user barge-ins and backchannels are often in-

terpreted in an incorrect context, which leads to

confusion, unexpected user behavior and potential

dialog breakdowns. Additionally, dialog systems’

low-level interactional behavior is generally the

result of ad-hoc rules encoded in different compo-

nents that are not precisely coordinated.

In order to investigate and resolve these is-

sues, we are currently developing version 2 of the

Olympus framework. In addition to all the compo-

nents described in this paper, Olympus 2 features

an Interaction Manager which handles the precise

timing of events perceived from the real world

(e.g., user utterances) and of system actions (e.g.,

prompts). By providing an interface between the

actual conversation and the asynchronous dialog

manager, Olympus 2 allows a more reactive behav-

ior without sacrificing the powerful dialog man-

agement features offered by RavenClaw. Olympus

2 is designed so that current Olympus-based sys-

tems can be upgraded with minimal effort.

This novel architecture, initially deployed in

the Let’s Go system, will enable research on turn-

taking and other low-level conversational phenom-

ena. Investigations within the context of other ex-

isting systems, such as LARRI and TeamTalk, will

uncover novel challenges and research directions.

6 Discussion and conclusion

The primary goal of the Olympus framework is to

enable research that leads to technological and sci-

entific advances in spoken language interfaces.

Olympus is however by no means a singular ef-

fort. Several other toolkits for research and devel-

opment are available to the community. They

differ on a number of dimensions, such as objec-

tives, scientific underpinnings, as well as techno-

logical and implementation aspects. Several

toolkits, both commercial, e.g., TellMe, BeVocal,

and academic, e.g., Ariadne (2007), SpeechBuilder

(Glass et al., 2004), and the CSLU toolkit (Cole,

1999), are used for rapid development. Some, e.g.,

CSLU and SpeechBuilder, have also been used for

educational purposes. And yet others, such as

Olympus, GALATEEA (Kawamoto et al., 2002)

and DIPPER (Bos et al., 2003) are primarily used

for research. Different toolkits rely on different

theories and dialog representations: finite-state,

slot-filling, plan-based, information state-update.

Each toolkit balances tradeoffs between complex-

ity, ease-of-use, control, robustness, flexibility, etc.

We believe the strengths of the Olympus

framework lie not only in its current components,

but also in its open, transparent, and flexible na-

ture. As we have seen in the previous sections,

these characteristics have allowed us to develop

and deploy practical, real-world systems operating

in a broad spectrum of domains. Through these

systems, Olympus provides an excellent basis for

research on a wide variety of spoken dialog issues.

The modular construction promotes the transfer

and reuse of research contributions across systems.

While desirable, an in-depth understanding of

the differences between all these toolkits remains

an open question. We believe that an open ex-

change of experiences and resources across toolkits

will create a better understanding of the current

state-of-the-art, generate new ideas, and lead to

better systems for everyone. Towards this end, we

are making the Olympus framework, as well as a

number of systems and dialog corpora, freely

available to the community.

Acknowledgements

We would like to thank all those who have brought

contributions to the components underlying the

Olympus dialog system framework. Neither Olym-

pus nor the dialog systems discussed in this paper

would have been possible without their help. We

particularly wish to thank Alan W Black for his

continued support and advice. Work on Olympus

components and systems was supported in part by

DARPA, under contract NBCH-D-03-0010, Boe-

ing, under contract CMU-BA-GTA-1, and the US

National Science Foundation under grant number

0208835. Any opinions, findings, and conclusions

or recommendations expressed in this material are

those of the authors and do not necessarily reflect

the views of the funding agencies.

38

References

Aist, G., Dowding, J., Hockey, B.A., Rayner, M.,

Hieronymus, J., Bohus, D., Boven, B., Blaylock, N.,

Campana, E., Early, S., Gorrell, G., and Phan, S.,

2003. Talking through procedures: An intelligent

Space Station procedure assistant, in Proc. of EACL-

2003, Budapest, Hungary

Ariadne, 2007, The Ariadne web-site, as of January

2007, http://www.opendialog.org/.

Balakirsky, S., Scrapper, C., Carpin, S., and Lewis, M.

2006. UsarSim: providing a framework for multi-

robot performance evaluation, in Proc. of PerMIS.

Black, A. and Lenzo, K., 2000. Building Voices in the

Festival Speech System, http://festvox.org/bsv/, 2000.

Bohus, D., Grau Puerto, S., Huggins-Daines, D., Keri,

V., Krishna, G., Kumar, K., Raux, A., Tomko, S.,

2007. Conquest – an Open-Source Dialog System for

Conferences, in Proc. of HLT 2007, Rochester, USA.

Bohus, D., Langner, B., Raux, A., Black, A., Eskenazi,

M., Rudnicky, A. 2006. Online Supervised Learning

of Non-understanding Recovery Policies, in Proc. of

SLT-2006, Aruba.

Bohus, D., and Rudnicky, A. 2006. A K-hypotheses +

Other Belief Updating Model, in Proc. of the AAAI

Workshop on Statistical and Empirical Methods in

Spoken Dialogue Systems, 2006.

Bohus, D., and Rudnicky, A., 2005. Sorry I didn’t

Catch That: An Investigation of Non-understanding

Errors and Recovery Strategies, in Proc. of SIGdial-

2005, Lisbon, Portugal.

Bohus, D., and Rudnicky, A., 2003. RavenClaw: Dialog

Management Using Hierarchical Task Decomposi-

tion and an Expectation Agenda, in Proc. of Eu-

rospeech 2003, Geneva, Switzerland.

Bohus, D., and Rudnicky, A., 2002a. LARRI: A Lan-

guage-based Maintenance and Repair Assistant, in

Proc. of IDS-2002, Kloster Irsee, Germany.

Bohus, D., and Rudnicky, A., 2002b. Integrating Multi-

ple Knowledge Sources in the CMU Communicator

Dialog System, Technical Report CMU-CS-02-190.

Bos, J., Klein, E., Lemon, O., and Oka, T., 2003.

DIPPER: Description and Formalisation of an In-

formation-State Update Dialogue System Architec-

ture, in Proc. of SIGdial-2003, Sapporo, Japan

Cepstral, LLC, 2005. Swift
TM

: Small Footprint Text-to-

Speech Synthesizer, http://www.cepstral.com.

Cole, R., 1999. Tools for Research and Education in

Speech Science, in Proc. of the International Confer-

ence of Phonetic Sciences, San Francisco, USA.

Glass, J., Weinstein, E., Cyphers, S., Polifroni, J., 2004.

A Framework for Developing Conversational Inter-

faces, in Proc. of CADUI, Funchal, Portugal.

Harris, T. K., Banerjee, S., Rudnicky, A., Sison, J.

Bodine, K., and Black, A. 2004. A Research Platform

for Multi-Agent Dialogue Dynamics, in Proc. of The

IEEE International Workshop on Robotics and Hu-

man Interactive Communications, Kurashiki, Japan.

Harris, T. K., Banerjee, S., Rudnicky, A. 2005. Hetero-

genous Multi-Robot Dialogues for Search Tasks, in

AAAI Spring Symposium: Dialogical Robots, Palo

Alto, California.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., Lee,

K.-F. and Rosenfeld, R., 1992. The SPHINX-II

Speech Recognition System: an overview, in Com-

puter Speech and Language, 7(2), pp 137-148, 1992.

Kawamoto, S., Shimodaira, H., Nitta, T., Nishimoto,

T., Nakamura, S., Itou, K., Morishima, S., Yotsukura,

T., Kai, A., Lee, A., Yamashita, Y., Kobayashi, T.,

Tokuda, K., Hirose, K., Minematsu, N., Yamada, A.,

Den, Y., Utsuro, T., and Sagayama, S., 2002. Open-

source software for developing anthropomorphic

spoken dialog agent, in Proc. of PRICAI-02, Interna-

tional Workshop on Lifelike Animated Agents.

Raux, A., Langner, B., Bohus, D., Black, A., and Eske-

nazi, M. 2005, Let's Go Public! Taking a Spoken

Dialog System to the Real World, in Proc. of Inter-

speech 2005, Lisbon, Portugal.

Raux, A., Bohus, D., Langner, B., Black, A., and Eske-

nazi, M. 2006 Doing Research on a Deployed Spoken

Dialogue System: One Year of Let's Go! Experience,

in Proc. of Interspeech 2006, Pittsburgh, USA.

RavenClaw-Olympus web page, as of January 2007:

http://www.ravenclaw-olympus.org/.

Rudnicky, A., Thayer, E., Constantinides, P., Tchou, C.,

Shern, R., Lenzo, K., Xu W., and Oh, A., 1999. Cre-

ating natural dialogs in the Carnegie Mellon Com-

municator system, in Proc. of Eurospeech 1999.

Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., and

Zue V. 1998 Galaxy-II: A reference architecture for

conversational system development, in Proc. of

ICSLP98, Sydney, Australia.

Stenchikova, S., Mucha, B., Hoffman, S., Stent, A.,

2007. RavenCalendar: A Multimodal Dialog System

for Managing A Personal Calendar, in Proc. of HLT

2007, Rochester, USA.

Ward, W., and Issar, S., 1994. Recent improvements in

the CMU spoken language understanding system, in

Proc. of the ARPA Human Language Technology

Workshop, pages 213–216, Plainsboro, NJ.

39

