
Bridging the Gap: Academic and Industrial Research in Dialog Technologies Workshop Proceedings, pages 1–8,

NAACL-HLT, Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Applying POMDPs to Dialog Systems in the Troubleshooting Domain

Jason D. Williams
AT&T Labs – Research

180 Park Ave, Building 103
Florham Park, NJ 07932

jdw@research.att.com

Abstract

This paper reports on progress applying
partially observable Markov decision pro-
cesses (POMDPs) to a commercial dia-
log domain: troubleshooting. In the trou-
bleshooting domain, a spoken dialog sys-
tem helps a user to fix a product such as
a failed DSL connection. Past work has
argued that a POMDP is a principled ap-
proach to building spoken dialog systems
in the simpler slot-filling domain; this pa-
per explains how the POMDPs formula-
tion can be extended to the more complex
troubleshooting domain. Results from di-
alog simulation verify that a POMDP out-
performs a handcrafted baseline.

1 Introduction

In the troubleshooting domain, a spoken dialog sys-
tem (SDS) helps a user to restore a malfunction-
ing product such as a DSL connection to a work-
ing state. Building dialog systems for this domain
presents several new challenges. First, the user may
make mistakes such as misinterpreting the meaning
of a status light or pressing the wrong button, so even
if no speech recognition errors are made, the user’s
response may be misleading. Next, in addition to the
speech recognizer, input is also received from run-
ning network tests such as pinging the user’s DSL
modem. Input from both sources may contain er-
rors, and a dialog system must cope with conflict-
ing information from two channels. In sum, the dia-
log system never knows the true state of the product
nor the user’s true actions, yet must still instruct the
user to successfully restore the product to a working
state.

Dialog models which explicitly model uncertainty
have been shown to significantly outperform base-
line models which do not, primarily because they
cope better with conflicting evidence introduced by
speech recognition errors (Roy et al., 2000; Zhang
et al., 2001; Williams and Young, 2007). However,
past work has been confined to slot-filling tasks and
has not tackled the troubleshooting domain. Con-
versely, dialog systems for troubleshooting in the
literature have not attempted to model uncertainty
directly (Grosz and Sidner, 1986; Lochbaum, 1998).

The contribution of this paper is to show how
to model a troubleshooting spoken dialog system
as a partially observable Markov decision process
(POMDP). We argue that past work in the gen-
eral troubleshooting literature represents simplifica-
tions or special cases of a POMDP, then we show
how a troubleshooting POMDP can be combined
with a dialog system POMDP to create a unified
framework that admits global optimization. Exper-
iments with simulated users show how the POMDP
formulation effectively balances diagnostic actions
(such as a network test) with communicative ac-
tions (such as giving the user instructions), and how
the POMDP formulation outperforms a hand-crafted
baseline both in terms of efficiency and task comple-
tion.

This paper is organized as follows. Section 2 re-
views POMDPs, the general troubleshooting prob-
lem, and POMDP-based spoken dialog systems;
section 3 explains how these two POMDPs can be
combined to model a troubleshooting spoken dialog
system; sections 4-5 present results from simulation;
and section 6 concludes.

2 Background

A POMDP is a model for control when there is un-
certainty in the effects of actions and in the state

1

of the environment. Formally, a POMDPP is de-
fined as a tupleP = (S, A, T, R, O, Z, γ, b0) where
S is a set of statess describing the environment with
s ∈ S; A is a set of actionsa ∈ A which operate
on the environment;T defines a transition proba-
bility P (s′|s, a); R defines the expected (immedi-
ate, real-valued) rewardr(s, a) ∈ <; O is a set
of observationso ∈ O which describe the state of
the environment;Z defines an observation proba-
bility P (o′|s′, a); γ is a geometric discount factor
0 ≤ γ ≤ 1; andb0 is an initial belief state, defined
below.

The POMDP operates as follows. At each time-
step, the environment is in some unobserved state
s. Sinces is not known exactly, adistribution over
possible states called abelief stateb is maintained
where b(s) indicates the probability of being in a
particular states, with b0 denoting the initial belief
state. Based onb, a control algorithm (also called a
policy) selects an actiona, receives a rewardr, and
the environment transitions to (unobserved) states′,
wheres′ depends only ons anda. The environment
then generates an observationo′ which is dependent
on s′ anda. At each time-step,b is updated as

b′(s′) = η · P (o′|s′, a)
∑

s

P (s′|s, a)b(s) (1)

whereη is a normalization constant (Kaelbling et
al., 1998). The process of maintainingb at each
time step is calledbelief monitoring. The cumula-
tive, infinite-horizon, discounted reward is called the
return and writtenV =

∑
∞

t=0
γtr(st, at), wherest

andat indicate the state of the environment and the
action taken at timet, respectively. The goal of the
control algorithm is to choose actions that maximize
the expected returnE[V] given b and the POMDP
parametersP, and the process of searching for such
a control algorithm is calledoptimization.

2.1 Troubleshooting as a POMDP

The goal of the general (non-dialog) problem of au-
tomated troubleshooting is for a control algorithm to
fix a product by taking a sequence of diagnosis and
repair actions. Different actions have different relia-
bilities and different costs, and the aim is to find the
sequence that minimizes the total cost. Since the ac-
tions are not completely reliable, the true state of the

Timestep n Timestep n+1

x'

amy'

r'

x

amy

r

'

Figure 1: Influence diagram depiction of automated
troubleshooting. Round nodes represent random
variables, shaded nodes are unobservable and clear
nodes are observable. Arcs show conditional depen-
dence. Squares indicate actions, selected by the pol-
icy. Diamonds indicate real-valued rewards.

product can’t be known with certainty: for example,
an instrument may provide a faulty reading.

Formalizing this, a product has some hidden state
x, which is usually decomposed into components
x = (x1, x2, . . . , xn). A control algorithm takes
actionam, which changes the state ofx according
to P (x′|x, am). The product then produces an ob-
servationy according toP (y′|x′, am). Replacing
cost with reward, the control algorithm receives re-
ward r(x, am) and the goal is to find the sequence
of actions which maximizes the cumulative sum of
reward. When viewed in this way, automated trou-
bleshooting can be readily viewed as a POMDP
(Shakeri et al., 1997). Figure 1 shows the automated
troubleshooting task as an influence diagram.

Although POMDPs are an elegant model for trou-
bleshooting, they are also notoriously difficult to
optimize and much of the troubleshooting litera-
ture seeks appropriate constraints which render the
optimization tractable, such as assuming that each
action affects at most one product state compo-
nent, that actions have deterministic effects, and that
there is only fault present (Heckerman et al., 1995).
More recently, advances in the POMDP literature
have radically increased the scalability of optimiza-
tion algorithms: for example, Poupart optimizes a
substantial network troubleshooting problem cast as
a generic POMDP (Poupart and Boutilier, 2004).
Viewing troubleshooting as a generic POMDP in-
creases the scope of admissible troubleshooting
tasks, and as will be discussed in section 3, this view
also allows the uncertainty in the product state to be
explicitly modelled in a spoken dialog system.

2

2.2 Spoken dialog as a POMDP

Past work has argued that POMDPs represent a prin-
cipled approach to modelling (non-troubleshooting)
spoken dialog systems (Roy et al., 2000; Zhang et
al., 2001; Williams and Young, 2007). The intu-
ition is that a user’s goals and actions form the un-
observed state and the (possibly erroneous) ASR
result forms the observation. The SDS-POMDP
model (Williams and Young, 2007) formalizes this
by decomposing the POMDP state variables into
three components,s = (su, au, d). The component
su gives theuser’s goal, such as a complete travel
itinerary in a travel reservation task. The component
au gives the most recentuser action(communicative
intent), such as stating a place the user would like to
travel to. Finally the componentd records relevant
dialog history, such as the grounding status of a slot.
None of these components is observable directly by
the dialog system and the SDS-POMDP belief state
is formed of a distribution over these components
b(su, au, d). The POMDP actiona corresponds to
the dialog system actionam, such as asking the user
where they want to go to. Finally, the POMDP ob-
servationo is set to(ãu, c), whereãu is the hypoth-
esis of the user’s action (communicative intent) pro-
vided by the speech recognition and understanding
process, andc is the confidence score. Figure 2
shows the SDS-POMDP model as an influence di-
agram, and also shows the conditional dependencies
assumed in the SDS-POMDP model.

3 Troubleshooting SDS-POMDP model

In this section, we develop a statistical model of a
troubleshooting dialog system. The formulation be-
gins by taking the union of the state spaces of the
dialog POMDP and the troubleshooting POMDP,
(su, au, d, x), and making two modifications. First,
it is assumed that the user’s goalsu is known and
constant (i.e., to fix the product), and as such does
not need to be included. Second, the user’s action
au is decomposed into two components:ats

u
denotes

troubleshootingactions that are directed toward the
product, such as turning a modem on or off, entering
a user name or just observing the status lights; and
acom

u
denotescommunicativeactions to the dialog

system such as saying “green” or “yes”. Reorder-

c, au

au

d

su

am

r

c, au

au

d'

su

am

r'

Timestep n Timestep n+1~ ~

'

''

' '

Figure 2: SDS-POMDP model shown as an influ-
ence diagram. The dotted box refers to all of the
(hidden) POMDP state components.

ing, the combined POMDP state has components:

s = (ats

u
, x, acom

u
, d). (2)

Next, the combined observation is formed of the
union of the observations from the dialog and trou-
bleshooting POMDPs:

o = (ãcom

u
, c, y). (3)

Finally, since the POMDP may choose only one ac-
tion at each time-step, the POMDP action is simply
am.

Substituting eq. 2 into the POMDP
transition function P (s′|s, a) yields
P (ats

u

′

, x′, acom

u

′, d′|ats

u
, x, acom

u
, d, am) and is

decomposed as follows. First, it is assumed that
the user’s troubleshooting actionats

u

′ depends only
on the system’s actionam, the previous product
statex and the dialog historyd. Next, it is as-
sumed that the product statex′ depends only on
the previous product statex, and the most recent
user’s and dialog system’s troubleshooting actions
ats

u

′ and am. Further, the user’s communicative
actionacom

u

′ depends only on the most recent user’s
troubleshooting actionats

u

′, product statex′, dialog
history d and system actionam. Finally, the dialog
history componentd′ is a function of the previous
dialog historyd and the most recent user and dialog
system actionsats

u

′, acom

u

′, and am. With these
assumptions, the combined transition function is:

P (ats

u

′
, x′, acom

u

′, d′|ats

u
, x, acom

u
, d, am) ≈

P (ats

u

′|x, d, am) · P (x′|x, am, ats

u

′)·
P (acom

u

′|d, am, ats

u

′, x′)·
P (d′|d, am, ats

u

′, x′, acom

u

′)

(4)

3

Timestep n Timestep n+1

x'

am

au

y'

au

r'

x

am

au

y

au

r

d'd

c,au
~com

com com'ts ts'

'

c,au
~com'

Figure 3: Influence diagram of a troubleshooting
spoken dialog system.

Substituting eq. 3 into the POMDP
observation function P (o′|s′, a) yields
P (ãcom

u

′, c′, y′|ats

u

′, x′, acom

u

′, d′, am). It is assumed
that the ASR hypothesis̃acom

u

′ and confidence score
c′ depend only on the user’s speech inacom

u

′ and
that the result of the troubleshooting test (conducted
by the dialog system)y′ depends only on the state
of the productx′ and the dialog system’s actionam:

P (ãcom

u

′, c′, y′|ats

u

′, x′, acom

u

′, d′, am) ≈
P (ãcom

u

′, c′|acom

u

′) · P (y|am, x′)
(5)

An influence diagram of the model is shown in Fig-
ure 3.

At runtime, a belief state (i.e., distribution)
is maintained over the POMDP state variables,
b(ats

u
, x, acom

u
, d). Based on this belief state the pol-

icy chooses an actionam and receives observation
(ãcom

u

′, c′, y′). The belief state is updated by apply-
ing Eq 1, and the cycle repeats.

The user action modelsP (ats

u

′|x, d, am) and
P (acom

u

′|d, am, ats

u

′, x′) indicate how users are
likely to respond in troubleshooting dialogs and can
be estimated from annotated dialog data. The prod-
uct modelsP (x′|x, am, ats

u

′) and P (y′|am, x′) in-
dicate how user and dialog system actions change
the state of the product and the reliability of tests,
and these can be estimated by interviewing domain
experts or by examining logs of product perfor-
mance. As in the SDS-POMDP model, the di-
alog history modelP (d′|d, am, acom

u

′, x′, ats

u

′) can
be handcrafted so as to incorporate features from
the dialog history which the dialog designer be-
lieves are important, such as appropriateness or no-
tions of grounding. The ASR confusion model

P (ãcom

u

′, c′|acom

u

′) can be estimated from speech
recognition data or derived analytically. The re-
ward function can include distinct costs for differ-
ent diagnostic tests, dialog actions, and for success-
ful/unsuccessful task completion. It is not specified
explicitly here since it depends on the application.

4 Illustration: DSL-1

To illustrate the general framework, we first created
a very simple troubleshooting spoken dialog system
called DSL-1. Table 1 shows the values for all of
the variables. In DSL-1, the are just 2 possible prob-
lems:no-powerandno-network.

The conditional probability tables composing the
model were handcrafted based on conversations
with troubleshooting experts and past experience
with spoken dialog systems. For example, the model
of user’s troubleshooting action assumes that the
user performs the correct action withp = 0.9,
doesn’t understand withp = 0.05, and performs an
incorrect action withp = 0.05. The model of the
user’s communicative action assumes that the user
provides correct (but possibly incomplete) informa-
tion with p = 0.9, and remains silent withp = 0.1.

The model of the product was designed such that
the user’scheck-powerand check-networkactions
are always effective, but if power is restored there
may still beno-networkwith p = 0.2.

The model of the speech recognition and under-
standing process uses a concept error rate of 30%,
where errors are uniformly distributed, and no con-
fidence scores are used. For example, when the
user expresses the conceptall-ok, it will be recog-
nized correctly 70% of the time, and will be mis-
recognized asno-power 5% of the time, asno-
network5% of the time, etc. The model fory in-
dicates how reliable theping action is, set with a
parameterperr: for example ifperr = 0.1, the result
of a ping test will be incorrect 10% of the time. In
the experiments below, the value ofperr is varied to
explore how the POMDP policy trades off between
theping action and communicative actions.

The reward function provides+100 for taking
theend-callaction when the connection is working,
−100 for taking thedoneaction when the connec-
tion isn’t working, and−1 for any communicative
or test action. The dialog continues until the dialog

4

Variable Values

ats

u
{check-power, check-network, observe, do-nothing, dont-understand}

State x {all-ok, no-power, no-network}
Components d {start, not-done, done}

acom

u
{no-power, no-network, power-ok, all-ok, silent, didnt-understand}

Observation ãcom

u
(same set asacom

u
)

Components y {ping-ok, no-response}
Action am {ping, ask-working-ok, req-check-power, req-check-network, end-call}

Table 1: Variable values in the DSL-1 simple troubleshooting example.

system takes thedoneaction, at which point the di-
alog is over.

4.1 Results

The POMDP was optimized using a standard algo-
rithm from the literature (Spaan and Vlassis, 2005).
This algorithm optimizes the policy at a discrete set
of belief points; as more points are added, the qual-
ity of the resulting policy improves at the expense
of more computation. We found that 300 belief
points achieved asymptotic performance. A model
was constructed for values ofperr ranging from0.0
to0.5; each model was optimized and then evaluated
using 5000 simulated dialogs.

Results are shown in Figures 4 and 5. In each
figure the x-axis is the accuracy of theping action:
perr = 0% indicates that theping action is entirely
reliable andperr = 50% indicates that theping ac-
tion returns useless noise. In Figure 4, the y-axis
shows average return, and in Figure 5, the solid line
shows the task completion rate and the dotted line
shows the average dialog length. The error bars in-
dicate the 95% confidence interval.

As the error rate for thepingaction increases from
0% to 20%, the average dialog length increases from
5.1 turns to 6.5 turns, and the successful task com-
pletion rate falls from 100.0% to 98.9%. These fig-
ures then remain broadly constant from 20% to 50%.
In other words, as errors in the ping action increase,
dialogs become longer and occasionally the system
fails to fix the connection. Inspecting the dialog
transcripts showed that atperr = 0%, the policy
relies on theping action to judge whether the con-
nection is working. Asperr increases, the policy
decreasingly employs theping diagnostic action in
favor of theask-working-okcommunicative action
until perr = 20%, at which point the ping action is

84

85

86

87

88

89

90

91

92

93

94

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

p err (ping error rate)

A
ve

ra
ge

 r
et

ur
n

Figure 4: Error rate of theping action vs. reward
gained per dialog. As the error rate of theping ac-
tion is increased, performance declines until the er-
ror rate reaches 20%, at which point the system no
longer uses theping action.

not used at all. At this point the planning process has
determined that the ping action doesn’t help produce
better dialogs than just interacting with the caller,
and the performance from 20% to 50% is constant.1

These experiments confirm that, for a very sim-
ple troubleshooting dialog system in simulation, the
POMDP approach is able to synthesize noisy infor-
mation gained from communicative and test actions
into one unified belief while the underlying, hidden
product state is changing. This is an important re-
sult because past work that has applied POMDPs
to dialog systems has employed a single modality
(communicative actions), and have largely had fixed
persistent state. Even so, this illustration is much
too small to be of practical use, and relies entirely
on hand-crafted models of the dynamics. In the next
section a model of realistic scale is presented with
transition dynamics estimated from real conversa-

1The variations in performance between 20% and 50% are
due to sampling in the optimization algorithm.

5

98.3%

98.7%

99.1%

99.5%

99.9%

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

p err (ping error rate)

T
as

k
co

pm
le

tio
n

ra
te

 (
%

)

5

5.4

5.8

6.2

6.6

7

A
ve

ra
ge

 d
ia

lo
g

le
ng

th

(t
ur

ns
)

Task completion rate Average dialog length

Figure 5: Error rate of theping action vs. success-
ful task completion rate and average dialog length.
The lefty axis and the solid line show the task com-
pletion rate, and the righty axis and the dotted line
show the average dialog length in number of turns.

tional data.

5 Illustration: DSL-2

In this section we present a second POMDP-based
troubleshooting dialog system called DSL-2 which
captures many of the properties of a real-world
DSL troubleshooting task. Approximately 100 tele-
phone calls between (human) DSL support agents
and customers were monitored, and the observations
of these conversations guided creation of the dia-
log system, including typical problems, agent in-
structions, and user responses. The product stateX

was decomposed into 19 components which track,
for example, whether there are any outages re-
ported, whether the DSL modem is switched on, and
whether the username has been entered correctly in
the DSL configuration. Seven of these components
can cause the connection to fail: (1) router pow-
ered off or crashed, (2) an upstream network crash,
(3) a service outage, (4-6) a wrong username, pass-
word, or connection type entered in the DSL modem
configuration, and (7) an unknown root cause which
can’t be fixed by the dialog system. Some of the
problems can only be identified or fixed by the dia-
log system (such as a service outage or an upstream
network crash), and the rest only by the user (such as
a router being off or wrong username entered). The
problems may occur in any combination: for exam-
ple, there may be a service outage while the user’s
password is entered incorrectly. The system action
set (Am) consisted of 18 actions such as asking the

user to turn the modem on, providing the correct
username, checking whether any outages have been
reported, and rebooting the upstream network inter-
face. The user’s troubleshooting action setAts

u
con-

sisted of 12 actions such as turning the modem on
or off, opening the DSL configuration screen, enter-
ing a password, and attempting to surf to a website.
The user’s communicative action setAcom

u
consisted

of 11 actions such as saying the color of a light (e.g.,
“red” or “green”), yes and no, back-channel, silence,
and an “out-of-grammar” action which accounts for
user speech which cannot be recognized.

The conditional probability tables for each of the
product components were handcrafted based on in-
terviews with DSL technicians and are almost all
deterministic. For example, if the DSL modem
is powered on, the power light will always be on.
Next a subset of the agent/user telephone calls were
transcribed and annotated with simple dialog acts,
and from these the two user models were estimated.
Smoothing was applied so that the models allow for
the user to take any action at any point in the dia-
log. Concept recognition errors were generated with
p = 0.30, and confidence scores were drawn from
an exponential distribution such that (at an equal er-
ror rate confidence threshold) about half of the con-
cept errors could be identified. The reward func-
tion provides+100 for ending the dialog having cor-
rectly identified (and if possible resolved) the root
causes,−100 for ending the dialog with unidenti-
fied or unresolved root causes, and−1 for any other
action. If a dialog ran for more than 100 turns, it was
considered a failure and terminated.

We created a state-based dialog manager by hand
(called HC) which broadly reflects the agents’ trou-
bleshooting practices and which serves as our base-
line. HC consisted of 19 dialog states, where each
state specified an actionam to take (for example to
ask the user to turn the modem on), and observations
from the speech recognizerãcom

u
or troubleshooting

testsy may cause transitions between dialog states.
HC first asks the user to power cycle the modem,
then checks for outages and “resets” the upstream
network interface, then verifies that the username,
password, and network type are configured correctly
on the router. After each step HC checks if the con-
nection is working by asking if the network light
is green, pinging the modem, then asking the user

6

POMDP HC HC(0)
CER 30% 30% 0%

N 500 500 500
TCR 96.1% 78.0% 88.6%

Length 19.9 76.5 48.5
Return 73.3 8.13 48.8

Table 2: Results for the POMDP and hand-crafted
dialog managers. CER is concept error rate; TCR is
task completion rate; Length is measured in turns.

to open a web browser; if any one of these tests
fails, troubleshooting resumes, and if they all suc-
ceed then HC ends the dialog. If an outage is de-
tected, HC says this and exits, and if the connection
still isn’t working at the end of the dialog then HC
escalates the call to a (human) technician. In general
when HC receives an unexpected answer or confi-
dence score below the equal-error rate threshold, it
treats this as a likely speech recognition error and
remains in the same dialog state.

Next, optimization was performed as described in
(Williams et al., 2005). This technique takes as in-
put a POMDP model and a state-based dialog con-
troller, and produces an improved dialog controller.
Space limitations prevent a full description here; the
intuition is that the algorithm uses the POMDP be-
lief state at runtime to “rewire” the dialog controller
to achieve an improvement in reward. Because this
optimization algorithm improves a standard state-
based dialog controller (in this case the HC base-
line), it provides an indication of the value of adding
the POMDP machinery.

5.1 Results and discussion

First, 500 simulated dialogs were run with the
POMDP, and then 500 simulated dialogs were run
with the HC baseline controller. Finally, as a fur-
ther comparison, the ASR simulation was changed
so that no ASR errors were made, and HC was
run for 500 dialogs in this configuration, which we
call HC(0). Results are shown in Table 2. All of
the observed differences are statistically significant
(p � 0.01).

In the presence of speech recognition errors, the
POMDP produces dialogs which are significantly
shorter and more successful than HC. Moreover, the
POMDP, which faced ASR errors, also outperforms
HC(0), which did not. Examination of the dialog

transcripts found that the main source of failure for
HC(0) was exceeding 100 turns. In other words,
quantitatively, the POMDP is both more robust to
ASR errors and (independent of ASR errors) more
efficient.

The dialog transcripts were inspected to deter-
mine qualitatively how the POMDP attained better
performance. An example is shown in Table 3. At
the start of the conversation, the belief (probability)
that the connection is workingp(allOk) is 56% and
the belief that the power to the DSL modem is on
p(pwrOn) is 98.0% (these are 2 of the 19 compo-
nents in the product statex). As the dialog pro-
gresses, belief monitoring updates these to account
for the evidence received. For example, the unsuc-
cessfulping in S1 causesp(allOk) to drop from 56%
to 14%. The belief monitoring process also natu-
rally makes use of indirect evidence – for example,
in U14 the user indicates the network light is “red”:
since the network light will only be on if the power
to the DSL modem is on, this causes an increase in
the belief that the power is on, from 99.1% to 99.8%.

The key benefit of the POMDP approach is that
the dialog manager can exploit the belief state to
make better progress in the face of low-confidence
or even nonsensical replies, without sacrificing over-
all task completion. For example, in S1 through S9
the POMDP policy differs from the baseline con-
troller: the baseline controller would have ignored
the lower-confidence recognitions in U4 and U8, but
the POMDP policy moves ahead. When the policy
receives a nonsensical reply, for example in U6, it
reverts back to an earlier stage of the troubleshoot-
ing procedure it had previously skipped. This latter
behavior ensures that omitting steps to move faster
through the procedure doesn’t ultimately sacrifice
task completion.

6 Conclusions

This paper has shown how a spoken dialog system
for troubleshooting can be cast as a POMDP. The
troubleshooting domain has important differences to
past applications of the POMDP approach and the
two illustrations provided in this paper support our
claim that, at least in dialog simulation, the advan-
tages of POMDPs apply to this domain.

After finishing simulation experiments, we in-
7

stalled DSL-2 into a real dialog system, and found
that belief monitoring runs slower than real-time.
We subsequently developed a method to address
this, which we will report on separately in the fu-
ture, and are now preparing for a pilot study with
real users.

References
BJ Grosz and CL Sidner. 1986. Attention, intentions,

and the structure of discourse.Computational Lin-
guistics, 12(3):175–204.

D Heckerman, JS Breese, and K Rommelse. 1995.
Decision-theoretic troubleshooting.Communications
of the ACM, 38(3):49–57.

L Kaelbling, ML Littman, and AR Cassandra. 1998.
Planning and acting in partially observable stochastic
domains.Artificial Intelligence, 101.

KE Lochbaum. 1998. A collaborative planning model
of intentional structure. Computational Linguistics,
24(4):525–572.

P Poupart and C Boutilier. 2004. VDCBPI: an ap-
proximate scalable algorithm for large scale POMDPs.
In Proc Advances in Neural Information Processing
Systems 17 (NIPS), Vancouver, Canada, pages 1081–
1088.

N Roy, J Pineau, and S Thrun. 2000. Spoken dialog
management for robots. InProc Association for Com-
putational Linguistics (ACL), Hong Kong.

M Shakeri, KR Pattipati, V Raghavan, A Patterson-Hine,
and DL Iverson. 1997. Multiple fault isolation in
redundant systems. Technical Report NCC2-5123,
NASA Ames.

MTJ Spaan and N Vlassis. 2005. Perseus: randomized
point-based value iteration for POMDPs.Journal of
Artificial Intelligence Research, 24:195–220.

JD Williams and SJ Young. 2007. Partially observable
markov decision processes for spoken dialog systems.
Computer Speech and Language, 21(2):393–422.

JD Williams, P Poupart, and SJ Young. 2005. Partially
observable Markov decision processes with continu-
ous observations for dialogue management. InProc
SIGdial Workshop on Discourse and Dialogue, Lis-
bon.

B Zhang, Q Cai, J Mao, and B Guo. 2001. Planning
and acting under uncertainty: A new model for spoken
dialogue system. InProc Conf on Uncertainty in Ar-
tificial Intelligence (UAI), Seattle, Washington, pages
572–579.

ID p(allOk) p(pwrOn) Transcript
*S1 56% 98.0% I’m going to try pinging your DSL modem from here.
S2 - - There was no response so it seems your connection isn’t working yet.

*S3 14% 96.1% Please turn the DSL modem on.
U4 - - ok [ok, 0.004]

*S5 30% 96.4% What color is the network light on the DSL modem?
U6 - - dontunderstand[no, 0.052]

*S7 30% 93.8% Please turn the DSL modem on.
U8 - - dontunderstand[ok, 0.454]

*S9 31% 99.1% I’m going to check if there are any outages reported, just a moment.
S10 - - There are no outages reported.
S11 39% 99.1% I’m going to try resetting your connection fromhere, just a moment.
S12 - - Ok, that has been done.
S13 48% 99.1% What color is the network light on the DSL modem?
U14 - - red [red, 0.678]
S15 3% 99.8% Please open the DSL configuration screen.

...

Table 3: Fragment of a conversation with the POMDP dialog manager. Asterisks (*) indicate transitions
not in the baseline dialog manager.p(allOk) shows the probability that DSL connectivity is working and
p(pwrOn) shows the probability that the power to the DSL modem is on, according to the POMDP belief

state. The simulated user’s communicative actions are shown in italics, followed by the [concept,
confidence score] produced by the ASR simulation.

8

