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Abstract

This paper reports on progress applying
partially observable Markov decision pro-
cesses (POMDPs) to a commercial dia-
log domain: troubleshooting. In the trou-
bleshooting domain, a spoken dialog sys-
tem helps a user to fix a product such as
a failed DSL connection. Past work has
argued that a POMDP is a principled ap-
proach to building spoken dialog systems
in the simpler slot-filling domain; this pa-
per explains how the POMDPs formula-
tion can be extended to the more complex
troubleshooting domain. Results from di-
alog simulation verify that a POMDP out-
performs a handcrafted baseline.

I ntroduction

Dialog models which explicitly model uncertainty
have been shown to significantly outperform base-
line models which do not, primarily because they
cope better with conflicting evidence introduced by
speech recognition errors (Roy et al., 2000; Zhang
et al., 2001; Williams and Young, 2007). However,
past work has been confined to slot-filling tasks and
has not tackled the troubleshooting domain. Con-
versely, dialog systems for troubleshooting in the
literature have not attempted to model uncertainty
directly (Grosz and Sidner, 1986; Lochbaum, 1998).

The contribution of this paper is to show how
to model a troubleshooting spoken dialog system
as a partially observable Markov decision process
(POMDP). We argue that past work in the gen-
eral troubleshooting literature represents simplifica-
tions or special cases of a POMDP, then we show
how a troubleshooting POMDP can be combined
with a dialog system POMDP to create a unified
framework that admits global optimization. Exper-
iments with simulated users show how the POMDP

In the troubleshooting domaira spoken dialog sys- formulation effectively balances diagnostic actions

tem (SDS) helps a user to restore a malfunctiort—such as a network test) with communicative ac-

ing product such as a DSL connection to a Wor_kfions (such as giving the user instructions), and how

ing state. Building dialog systems for this domalr}he POMDP formulation outperforms a hand-crafted
presents several new challenges. First, the user MB¥seline both in terms of efficiency and task comple-

make mistakes such as misinterpreting the meani 9n
of a status light or pressing the wrong button, so even

if no speech recognition errors are made, the user’s This paper is organized as follows. Section 2 re-
P 9 ' views POMDPs, the general troubleshooting prob-

response may pe ml_sleadl_ng. Next, m_addltlon toth m, and POMDP-based spoken dialog systems:
speech recognizer, input is also received from run-

nina network tests such as pinding the user's DSEection 3 explains how these two POMDPs can be
9 pinging combined to model a troubleshooting spoken dialog

modem. Input from both sources may contain er- . : ) .2
system; sections 4-5 present results from simulation;

rors, and a dialog system must cope with conflict- .
o . ._and section 6 concludes.

ing information from two channels. In sum, the dia-

log system never knows the true state of the produg Background

nor the user’s true actions, yet must still instruct the

user to successfully restore the product to a working POMDP is a model for control when there is un-

state. certainty in the effects of actions and in the state
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of the environment. Formally, a POMDR is de-
fined as a tuplg3 = (S, A, T,R,0,Z,~, by) where
S is a set of states describing the environment with
s € S; A is a set of actions € A which operate
on the environmentT defines a transition proba-
bility P(s|s,a); R defines the expected (immedi-
ate, real-valued) reward(s,a) € ®; O is a set
of observations € O which describe the state of Timestepn ' Timestep n+1

the environment;Z defines an observation proba-Figure 1: Influence diagram depiction of automated
bility P(o'|s’,a); v is a geometric discount factor troubleshooting. Round nodes represent random
0 < v < 1; andb is an initial belief state, defined variables, shaded nodes are unobservable and clear
below. nodes are observable. Arcs show conditional depen-
The POMDP operates as follows. At each timedence. Squares indicate actions, selected by the pol-
step, the environment is in some unobserved stai®y. Diamonds indicate real-valued rewards.
s. Sinces is not known exactly, aistribution over
possible states calledlzelief stateb is maintained

whereb(s) indicates the probability of being in a o _ _
particular states, with by denoting the initial belief ~ Formalizing this, a product has some hidden state

state. Based ob, a control algorithm (also called a . Which is usually decomposed into components
policy) selects an action, receives a reward, and ¢ = (€1,%2,...,%n). A control algorithm takes
the environment transitions to (unobserved) state actionan,, which changes the state ofaccording
wheres’ depends only om anda. The environment 0 P(z'[z,a;). The product then produces an ob-

then generates an observatigiwhich is dependent Servationy according toP(y'|z’, a,). Replacing
ons’ anda. At each time-steh is updated as cost with reward, the control algorithm receives re-

ward r(z, a,,,) and the goal is to find the sequence
W (s') = - P(|s,a) ZP(s’|s,a)b(s) ) of actions which maximizes the cumulative sum of
- reward. When viewed in this way, automated trou-
bleshooting can be readily viewed as a POMDP
wheren is a normalization constant (Kaelbling et(Shakeri et al., 1997). Figure 1 shows the automated
al., 1998). The process of maintainithgat each troubleshooting task as an influence diagram.

time step is calledelief monitoring The cumula- Although POMDPs are an elegant model for trou-
tive, infinite-horizon, discounted reward is called thebleshooting, they are also notoriously difficult to
return and writtenV” = 3%, y'r(s;, a;), wheres;  gptimize and much of the troubleshooting litera-
anda, indicate the state of the environment and the,re seeks appropriate constraints which render the
action taken at time, respectively. The goal of the gntimization tractable, such as assuming that each
control algorithm is to choose actions that maximizg.tjon affects at most one product state compo-
the expected retur&[V] givenb and the POMDP  nant that actions have deterministic effects, and that
parameterg’, and the process of searching for suchnere is only fault present (Heckerman et al., 1995).
a control algorithm is calledptimization More recently, advances in the POMDP literature

i have radically increased the scalability of optimiza-
2.1 Troubleshooting asa POMDP tion algorithms: for example, Poupart optimizes a
The goal of the general (non-dialog) problem of ausubstantial network troubleshooting problem cast as
tomated troubleshooting is for a control algorithm ta generic POMDP (Poupart and Boutilier, 2004).
fix a product by taking a sequence of diagnosis andiewing troubleshooting as a generic POMDP in-
repair actions. Different actions have different reliacreases the scope of admissible troubleshooting
bilities and different costs, and the aim is to find theasks, and as will be discussed in section 3, this view
sequence that minimizes the total cost. Since the aalso allows the uncertainty in the product state to be
tions are not completely reliable, the true state of thexplicitly modelled in a spoken dialog system.

product can’'t be known with certainty: for example,
an instrument may provide a faulty reading.
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2.2 Spoken dialog asa POMDP

Past work has argued that POMDPs represent a
cipled approach to modelling (non-troubleshooti
spoken dialog systems (Roy et al., 2000; Zhan
al., 2001; Williams and Young, 2007). The in
ition is that a user's goals and actions form the
observed state and the (possibly erroneous) .
result forms the observation. The SDS-PON
model (Williams and Young, 2007) formalizes t
by decomposing the POMDP state variabléento
three components;, = (sy, a,,d). The componer
sy gives theuser’s goal such as a complete tra
itinerary in a travel reservation task. The compor
a,, gives the most recemtser actionlcommunicative
intent), such as stating a place the user would lik
travel to. Finally the component records relevar
dialog history such as the grounding status of a <
None of these components is observable directl
the dialog system and the SDS-POMDP belief <
is formed of a distribution over these compone
b(sy,ay,d). The POMDP actior: corresponds t
the dialog system actiom,,, such as asking the us
where they want to go to. Finally, the POMDP «
servationo is set to(a,, c), wherea,, is the hypoth
esis of the user’s action (communicative intent)
vided by the speech recognition and understan
process, and is the confidence score. Figure
shows the SDS-POMDP model as an influence
agram, and also shows the conditional dependel
assumed in the SDS-POMDP model.

3 Troubleshooting SDS-POM DP model

In this section, we develop a statistical model «

troubleshooting dialog system. The formulation be
gins by taking the union of the state spaces of théu
dialog POMDP and the troubleshooting POMDP?
(Su, ay, d, ), and making two modifications. First,

Timestep n+1

Figure 2: SDS-POMDP model shown as an influ-
ence diagram. The dotted box refers to all of the
(hidden) POMDP state components.

ing, the combined POMDP state has components:
2

Next, the combined observation is formed of the
union of the observations from the dialog and trou-
bleshooting POMDPs:

5= (a%,z,a™, d).

~com

0= (au ? C’ y)' (3)

Finally, since the POMDP may choose only one ac-
tion at each time-step, the POMDP action is simply
Ay

Substituting eq. 2 into the POMDP
transition function P(s'|s,a) yields
P(al¥' 2/ aco™ d'|alf, x,ac", d,a,,) and s

decomposed as follows. First, it is assumed that
the user’s troubleshooting actief®’ depends only
on the system’s actiom,,, the previous product
statexz and the dialog historyl. Next, it is as-
sumed that the product stat¢ depends only on
the previous product state, and the most recent
user's and dialog system’s troubleshooting actions
s and a,,. Further, the user's communicative
ctiona$®™ depends only on the most recent user’s
troubleshooting action’*’, product state:’, dialog

u

it is assumed that the user's goal is known and history d and system action,,,. Finally, the dialog

constant (i.e., to fix the product), and as such do
not need to be included. Second, the user’s acti

a,, is decomposed into two components$ denotes

troubleshootingactions that are directed toward the?
product, such as turning a modem on or off, entering  P(a!s’ 2/, ac®™  d'|al®, z:, ac™
a user name or just observing the status lights; and P(a!'|z,d, a,,) - P(z'|x, am, al®’)-

aS?™ denotescommunicativeactions to the dialog

system such as saying “green” or “yes”. Reorder-

3

égstory component!’ is a function of the previous
OcH'ang historyd and the most recent user and dialog

system actions:t*’, ac°™, and a,,. With these

ssumptions, the combined transition function is:

d, am)

~
~

u U I

4
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P(ac™ da°™") can be estimated from speech
recognition data or derived analytically. The re-
ward function can include distinct costs for differ-
ent diagnostic tests, dialog actions, and for success-
ful/lunsuccessful task completion. It is not specified

explicitly here since it depends on the application.

4 |llustration: DSL-1

To illustrate the general framework, we first created
Timestep n+1 a very simple troubleshooting spoken dialog system
called DSL-1. Table 1 shows the values for all of
Figure 3: Influence diagram of a troubleshootinghe variables. In DSL-1, the are just 2 possible prob-
spoken dialog system. lems: no-powerandno-network
The conditional probability tables composing the
model were handcrafted based on conversations
with troubleshooting experts and past experience

that the ASR hvoothesE ™’ and fid with spoken dialog systems. For example, the model
atthe ypothesig,”™" and confidence score of user’s troubleshooting action assumes that the

/ , wwom/
¢’ depend only on the user's sp.eechaifj’ and user performs the correct action wigh = 0.9,
that the result of the troubleshooting test (conducte&l

. oesn’'t understand with = 0.05, and performs an
by the dialog system)’ depends only on the state p=0.0 P

fih ducte’ and the dial term’s actian. - incorrect action withp = 0.05. The model of the
ot the product:” an € dialog system's actiar,. user's communicative action assumes that the user

P(asm™ o |ats’ o' alo™  d' ap,) = 5) provides correct (but possibly incomplete) informa-

Timestep n

Substituting  eq. 3 into the POMDP
observation function  P(d'|¢',a) yields
P(ase™ oy |at®’ o’ as™ . d' ap,). It is assumed

u u u

P(ag™, ai™) - Pylam, ') tion with p = 0.9, and remains silent with = 0.1.
An influence diagram of the model is shown in Fig- The model of the product was designed such that
ure 3. the user’'scheck-powerand check-networkactions

At runtime, a belief state (i.e., distribution) are always effective, but if power is restored there
is maintained over the POMDP state variablegnay still beno-networkwith p = 0.2.
b(als, x,ac°™, d). Based on this belief state the pol- The model of the speech recognition and under-
icy chooses an action,, and receives observation standing process uses a concept error rate of 30%,
(aco™ ' y'). The belief state is updated by apply-where errors are uniformly distributed, and no con-

ing Eq 1, and the cycle repeats. fidence scores are used. For example, when the

The user action models”(a*’|z,d,a,,) and user expresses the conceitok, it will be recog-
P(as™|d,an,al®’,x") indicate how users are nized correctly 70% of the time, and will be mis-
likely to respond in troubleshooting dialogs and camecognized asho-power 5% of the time, asno-
be estimated from annotated dialog data. The prodetwork5% of the time, etc. The model foy in-
uct modelsP (2’ |z, ap,,at®’) and P(y'|a,,2’) in- dicates how reliable theing action is, set with a
dicate how user and dialog system actions changg@rametep.,,.: for example ifp.,, = 0.1, the result
the state of the product and the reliability of testspf a ping test will be incorrect 10% of the time. In
and these can be estimated by interviewing domathe experiments below, the valuegf.,. is varied to
experts or by examining logs of product perfor€xplore how the POMDP policy trades off between
mance. As in the SDS-POMDP model, the dithepingaction and communicative actions.
alog history modelP(d'|d, a,,as®™  z’,al*") can The reward function provides-100 for taking
be handcrafted so as to incorporate features frothe end-callaction when the connection is working,
the dialog history which the dialog designer be-—100 for taking thedoneaction when the connec-
lieves are important, such as appropriateness or niben isn’'t working, and—1 for any communicative

tions of grounding. The ASR confusion modelor test action. The dialog continues until the dialog
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Variable Values

ats {check-powercheck-networkobservedo-nothing dont-understanp
State x {all-ok, no-power no-network
Components d {start not-donedone}
asom {no-power no-network power-ok all-ok, silent didnt-understanyl
Observation — ag™™ (same set as”"™)
Components Yy {ping-ok no-responsg
Action A {ping, ask-working-ok req-check-powereq-check-networkend-call}

Table 1: Variable values in the DSL-1 simple troubleshaptxample.

system takes thdoneaction, at which point the di- >

alog is over. 02 1
91 4

41 Results 5w
3 901

The POMDP was optimized using a standard algc% 89 -
rithm from the literature (Spaan and Vlassis, 2005)¢ 8 |
. . _ . . < 87 |
This algorithm optimizes the policy at a discrete set o6 |
of belief points; as more points are added, the qual- 4 |
ity of the resulting policy improves at the expense ss
of more computation. We found that 300 belief g b° RSCUIC I S - L
points achieved asymptotic performance. A model Dy (ping error rate)
was constructed for values pf, ranging from0.0  rigure 4: Error rate of th@ing action vs. reward
to0.5; each model was optimized and then evaluateghined per dialog. As the error rate of thiag ac-
using 5000 simulated dialogs. tion is increased, performance declines until the er-

~ Results are shown in Figures 4 and 5. In eacfyy rate reaches 20%, at which point the system no
figure the x-axis is the accuracy of théng action:  |gnger uses thping action.

perr = 0% indicates that th@ing action is entirely . .
reliable andp,,, = 50% indicates that theing ac- not used at all. At this point the planning process has

tion returns useless noise. In Figure 4, the y_axigetermined that the ping action doesn't help produce

shows average return, and in Figure 5, the solid linBetter dialogs than just interacting with the caller,
shows the task completion rate and the dotted lirf@"d the performance from 20% to 50% is constant.

shows the average dialog length. The error bars in- TheS€ experiments confirm that, for a very sim-
dicate the 95% confidence interval. ple troubleshooting dialog system in simulation, the

As the error rate for thping action increases from POMDP approach is able to synthesize noisy infor-
0% to 20%, the average dialog length increases frofpation gained from communicative and test actions
5.1 turns to 6.5 turns, and the successful task corfito one unified belief while the underlying, hidden
pletion rate falls from 100.0% to 98.9%. These figProduct state is changing. This is an important re-
ures then remain broadly constant from 20% to 5098Ult because past work that has applied POMDPs
In other words, as errors in the ping action increasd? dialog systems has employed a single modality
dialogs become longer and occasionally the systeffommunicative actions), and have largely had fixed
fails to fix the connection. Inspecting the dia|ogper5|stent state. Even so, this illustration is much

transcripts showed that at,, = 0%, the policy too small to be of practical use, and relies entirely
relies on theping action to judge whether the con-©" hand-crafted models of the dynamics. In the next

nection is working. Asp.,, increases, the policy section a model of realistic scale is presented with
decreasingly employs theing diagnostic action in transition dynamics estimated from real conversa-

faVQr of the aSk'Work'ng'OkCO_mmun'Cf"‘tlve a_Ct'On The variations in performance between 20% and 50% are
until p.,» = 20%, at which point the ping action is due to sampling in the optimization algorithm.
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— 99.9% | user to turn the modem on, providing the correct
S N T 6.6 g,, username, checking whether any outages have been
€ 99.5% - = reported, and rebooting the upstream network inter-
& r62cog , . .
= st face. The user’s troubleshooting action gét con-
€ 99.1% 5.8 o . . .
s 8% sisted of 12 actions such as turning the modem on
% 98.7% 1 542 or off, opening the DSL configuration screen, enter-
© : . . .
= I ing a password, and attempting to surf to a website.
98.3% e e > The user’'s communicative action sé&”" consisted
FTFSE TP S S $E of 11 actions such as saying the color of a light (e.g.,
Per (PiNg error rate) “red” or “green”), yes and no, back-channel, silence,
‘ — Task completion rate - Average dialog length ‘ and an “out-of-grammar” action which accounts for

Figure 5: Error rate of theing action vs. success- USer speech which cannot be recognized.

ful task completion rate and average dialog length. The conditional probability tables for each of the_:
The lefty axis and the solid line show the task comProduct components were handcrafted based on in-
pletion rate, and the right axis and the dotted line terviews with DSL technicians and are almost all

show the average dialog length in number of turns detérministic.  For example, if the DSL modem
is powered on, the power light will always be on.
Next a subset of the agent/user telephone calls were
5 |llustration: DSL-2 transcribed and annotated with simple dialog acts,
and from these the two user models were estimated.
In this section we present a second POMDP-bas&moothing was applied so that the models allow for
troubleshooting dialog system called DSL-2 whichithe user to take any action at any point in the dia-
captures many of the properties of a real-worldog. Concept recognition errors were generated with
DSL troubleshooting task. Approximately 100 telep = 0.30, and confidence scores were drawn from
phone calls between (human) DSL support agent exponential distribution such that (at an equal er-
and customers were monitored, and the observationsr rate confidence threshold) about half of the con-
of these conversations guided creation of the diazept errors could be identified. The reward func-
log system, including typical problems, agent intion provides+100 for ending the dialog having cor-
structions, and user responses. The product sfaterectly identified (and if possible resolved) the root
was decomposed into 19 components which trackauses,—100 for ending the dialog with unidenti-
for example, whether there are any outages rdied or unresolved root causes, and for any other
ported, whether the DSL modem is switched on, andction. If a dialog ran for more than 100 turns, it was
whether the username has been entered correctlydansidered a failure and terminated.
the DSL configuration. Seven of these components We created a state-based dialog manager by hand
can cause the connection to fail: (1) router pow¢called HC) which broadly reflects the agents’ trou-
ered off or crashed, (2) an upstream network crashleshooting practices and which serves as our base-
(3) a service outage, (4-6) a wrong username, padsie. HC consisted of 19 dialog states, where each
word, or connection type entered in the DSL moderstate specified an actian,, to take (for example to
configuration, and (7) an unknown root cause whichsk the user to turn the modem on), and observations
can't be fixed by the dialog system. Some of thdérom the speech recognizé&f’™ or troubleshooting
problems can only be identified or fixed by the diatestsy may cause transitions between dialog states.
log system (such as a service outage or an upstreat® first asks the user to power cycle the modem,
network crash), and the rest only by the user (such &sen checks for outages and “resets” the upstream
a router being off or wrong username entered). Theetwork interface, then verifies that the username,
problems may occur in any combination: for exampassword, and network type are configured correctly
ple, there may be a service outage while the userén the router. After each step HC checks if the con-
password is entered incorrectly. The system actiomection is working by asking if the network light
set (A,,) consisted of 18 actions such as asking this green, pinging the modem, then asking the user

tional data.
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POMDP  HC | HC(0) transcripts found that the main source of failure for

CER| 30% 30% 0% HC(0) was exceeding 100 turns. In other words,

N 500 500 500 quantitatively, the POMDP is both more robust to

TCR| 96.1%  78.0% | 88.6% ASR errors and (independent of ASR errors) more
Length| 19.9 76.5 48.5 efficient.

Return| 73.3 813 | 43.8 The dialog transcripts were inspected to deter-

Hﬁine qualitatively how the POMDP attained better
erformance. An example is shown in Table 3. At
the start of the conversation, the belief (probability)
that the connection is working(allOk) is 56% and
to open a web browser; if any one of these tesige belief that the power to the DSL modem is on
fails, troubleshooting resumes, and if they all SUCp(pwrOn) is 98.0% (these are 2 of the 19 compo-
ceed then HC ends the dialog. If an outage is deents in the product state). As the dialog pro-
tected, HC says this and exits, and if the connectiogresses, belief monitoring updates these to account
still isn’t working at the end of the dialog then HCfor the evidence received. For example, the unsuc-
escalates the call to a (human) technician. In genergéssfulpingin S1 causep(allOk) to drop from 56%
when HC receives an unexpected answer or confg 14%. The belief monitoring process also natu-
dence score below the equal-error rate threshold, ri|ly makes use of indirect evidence — for example,
treats this as a likely speech recognition error angh U14 the user indicates the network light is “red”:
remains in the same dialog state. since the network light will only be on if the power
Next, optimization was performed as described ifp the DSL modem is on, this causes an increase in
(Williams et al., 2005). This technique takes as inthe belief that the power is on, from 99.1% to 99.8%.
put a POMDP model and a state-based dialog con- The key benefit of the POMDP approach is that
troller, and produces an improved dialog controllefpe dialog manager can exploit the belief state to
Space limitations prevent a full description here; thengke better progress in the face of low-confidence
intuition is that the algorithm uses the POMDP beqy even nonsensical replies, without sacrificing over-
lief state at runtime to “rewire” the dialog controller 5)| task completion. For example, in S1 through S9
to achieve an improvement in reward. Because thipe pOMDP policy differs from the baseline con-
optimization algorithm improves a standard stateyg|ier: the baseline controller would have ignored
based dialog controller (in this case the HC basgne |ower-confidence recognitions in U4 and U8, but
line), it provides an indication of the value of addingihe POMDP policy moves ahead. When the policy
the POMDP machinery. receives a nonsensical reply, for example in U6, it
reverts back to an earlier stage of the troubleshoot-
ing procedure it had previously skipped. This latter
First, 500 simulated dialogs were run with thepehavior ensures that omitting steps to move faster
POMDP, and then 500 simulated dialogs were ruthrough the procedure doesn't ultimately sacrifice
with the HC baseline controller. Finally, as a fur-task completion.
ther comparison, the ASR simulation was changed
so that no ASR errors were made, and HC wag Conclusions
run for 500 dialogs in this configuration, which we
call HC(0). Results are shown in Table 2. All of This paper has shown how a spoken dialog system
the observed differences are statistically significarfor troubleshooting can be cast as a POMDP. The
(p < 0.01). troubleshooting domain has important differences to
In the presence of speech recognition errors, thgast applications of the POMDP approach and the
POMDP produces dialogs which are significantlytwo illustrations provided in this paper support our
shorter and more successful than HC. Moreover, th@aim that, at least in dialog simulation, the advan-
POMDP, which faced ASR errors, also outperformgages of POMDPs apply to this domain.
HC(0), which did not. Examination of the dialog After finishing simulation experiments, we in-

Table 2: Results for the POMDP and hand-crafte
dialog managers. CER is concept error rate; TCR
task completion rate; Length is measured in turns.

5.1 Reaultsand discussion
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stalled DSL-2 into a real dialog system, and foundN Roy, J Pineau, and S Thrun. 2000. Spoken dialog
that belief monitoring runs slower than real-time. ma;”f_‘ge”;im for rt‘?bOtiC'T;'OEASSOIE'a“O” for Com-
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1088.
ID p(allok) p(pwrOn) Transcript
*S1 56% 98.0% I’m going to try pinging your DSL modem from here
S2 - - There was no response so it seems your connection isrking yet.
*S3 14% 96.1% Please turn the DSL modem on.
u4 - - ok [0k, 0.004]
*S5 30% 96.4% What color is the network light on the DSL modem?
U6 - - dontunderstandno, 0.052]
*S7 30% 93.8% Please turn the DSL modem on.
us - - dontunderstandok, 0.454]
*S9 31% 99.1% I’'m going to check if there are any outages tepojust a moment.
S10 - - There are no outages reported.
S11 39% 99.1% I’'m going to try resetting your connection frogne, just a moment.
S12 - - Ok, that has been done.
S13 48% 99.1%  What color is the network light on the DSL modem?
ul4 - - red [red, 0.678]
S15 3% 99.8% Please open the DSL configuration screen.

Table 3: Fragment of a conversation with the POMDP dialogagan Asterisks (*) indicate transitions
not in the baseline dialog managg(allOk) shows the probability that DSL connectivity is working and
p(pwrOn) shows the probability that the power to the DSL modem is ooomting to the POMDP belief
state. The simulated user's communicative actions are slmitalics, followed by the [concept,
confidence score] produced by the ASR simulation.
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